Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 1a03675d

History | View | Annotate | Download (29.1 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27

    
28
//#define DEBUG_KVM
29

    
30
#ifdef DEBUG_KVM
31
#define dprintf(fmt, ...) \
32
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
33
#else
34
#define dprintf(fmt, ...) \
35
    do { } while (0)
36
#endif
37

    
38
#define MSR_KVM_WALL_CLOCK  0x11
39
#define MSR_KVM_SYSTEM_TIME 0x12
40

    
41
#ifdef KVM_CAP_EXT_CPUID
42

    
43
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
44
{
45
    struct kvm_cpuid2 *cpuid;
46
    int r, size;
47

    
48
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
49
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
50
    cpuid->nent = max;
51
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
52
    if (r == 0 && cpuid->nent >= max) {
53
        r = -E2BIG;
54
    }
55
    if (r < 0) {
56
        if (r == -E2BIG) {
57
            qemu_free(cpuid);
58
            return NULL;
59
        } else {
60
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
61
                    strerror(-r));
62
            exit(1);
63
        }
64
    }
65
    return cpuid;
66
}
67

    
68
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
69
{
70
    struct kvm_cpuid2 *cpuid;
71
    int i, max;
72
    uint32_t ret = 0;
73
    uint32_t cpuid_1_edx;
74

    
75
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
76
        return -1U;
77
    }
78

    
79
    max = 1;
80
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
81
        max *= 2;
82
    }
83

    
84
    for (i = 0; i < cpuid->nent; ++i) {
85
        if (cpuid->entries[i].function == function) {
86
            switch (reg) {
87
            case R_EAX:
88
                ret = cpuid->entries[i].eax;
89
                break;
90
            case R_EBX:
91
                ret = cpuid->entries[i].ebx;
92
                break;
93
            case R_ECX:
94
                ret = cpuid->entries[i].ecx;
95
                break;
96
            case R_EDX:
97
                ret = cpuid->entries[i].edx;
98
                if (function == 0x80000001) {
99
                    /* On Intel, kvm returns cpuid according to the Intel spec,
100
                     * so add missing bits according to the AMD spec:
101
                     */
102
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
103
                    ret |= cpuid_1_edx & 0xdfeff7ff;
104
                }
105
                break;
106
            }
107
        }
108
    }
109

    
110
    qemu_free(cpuid);
111

    
112
    return ret;
113
}
114

    
115
#else
116

    
117
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
118
{
119
    return -1U;
120
}
121

    
122
#endif
123

    
124
static void kvm_trim_features(uint32_t *features, uint32_t supported)
125
{
126
    int i;
127
    uint32_t mask;
128

    
129
    for (i = 0; i < 32; ++i) {
130
        mask = 1U << i;
131
        if ((*features & mask) && !(supported & mask)) {
132
            *features &= ~mask;
133
        }
134
    }
135
}
136

    
137
int kvm_arch_init_vcpu(CPUState *env)
138
{
139
    struct {
140
        struct kvm_cpuid2 cpuid;
141
        struct kvm_cpuid_entry2 entries[100];
142
    } __attribute__((packed)) cpuid_data;
143
    uint32_t limit, i, j, cpuid_i;
144
    uint32_t unused;
145

    
146
    env->mp_state = KVM_MP_STATE_RUNNABLE;
147

    
148
    kvm_trim_features(&env->cpuid_features,
149
        kvm_arch_get_supported_cpuid(env, 1, R_EDX));
150

    
151
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
152
    kvm_trim_features(&env->cpuid_ext_features,
153
        kvm_arch_get_supported_cpuid(env, 1, R_ECX));
154
    env->cpuid_ext_features |= i;
155

    
156
    kvm_trim_features(&env->cpuid_ext2_features,
157
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
158
    kvm_trim_features(&env->cpuid_ext3_features,
159
        kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
160

    
161
    cpuid_i = 0;
162

    
163
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
164

    
165
    for (i = 0; i <= limit; i++) {
166
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
167

    
168
        switch (i) {
169
        case 2: {
170
            /* Keep reading function 2 till all the input is received */
171
            int times;
172

    
173
            c->function = i;
174
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
175
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
176
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
177
            times = c->eax & 0xff;
178

    
179
            for (j = 1; j < times; ++j) {
180
                c = &cpuid_data.entries[cpuid_i++];
181
                c->function = i;
182
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
183
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
184
            }
185
            break;
186
        }
187
        case 4:
188
        case 0xb:
189
        case 0xd:
190
            for (j = 0; ; j++) {
191
                c->function = i;
192
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
193
                c->index = j;
194
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
195

    
196
                if (i == 4 && c->eax == 0)
197
                    break;
198
                if (i == 0xb && !(c->ecx & 0xff00))
199
                    break;
200
                if (i == 0xd && c->eax == 0)
201
                    break;
202

    
203
                c = &cpuid_data.entries[cpuid_i++];
204
            }
205
            break;
206
        default:
207
            c->function = i;
208
            c->flags = 0;
209
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
210
            break;
211
        }
212
    }
213
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
214

    
215
    for (i = 0x80000000; i <= limit; i++) {
216
        struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
217

    
218
        c->function = i;
219
        c->flags = 0;
220
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
221
    }
222

    
223
    cpuid_data.cpuid.nent = cpuid_i;
224

    
225
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
226
}
227

    
228
void kvm_arch_reset_vcpu(CPUState *env)
229
{
230
    env->interrupt_injected = -1;
231
    env->nmi_injected = 0;
232
    env->nmi_pending = 0;
233
}
234

    
235
static int kvm_has_msr_star(CPUState *env)
236
{
237
    static int has_msr_star;
238
    int ret;
239

    
240
    /* first time */
241
    if (has_msr_star == 0) {        
242
        struct kvm_msr_list msr_list, *kvm_msr_list;
243

    
244
        has_msr_star = -1;
245

    
246
        /* Obtain MSR list from KVM.  These are the MSRs that we must
247
         * save/restore */
248
        msr_list.nmsrs = 0;
249
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
250
        if (ret < 0 && ret != -E2BIG) {
251
            return 0;
252
        }
253
        /* Old kernel modules had a bug and could write beyond the provided
254
           memory. Allocate at least a safe amount of 1K. */
255
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
256
                                              msr_list.nmsrs *
257
                                              sizeof(msr_list.indices[0])));
258

    
259
        kvm_msr_list->nmsrs = msr_list.nmsrs;
260
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
261
        if (ret >= 0) {
262
            int i;
263

    
264
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
265
                if (kvm_msr_list->indices[i] == MSR_STAR) {
266
                    has_msr_star = 1;
267
                    break;
268
                }
269
            }
270
        }
271

    
272
        free(kvm_msr_list);
273
    }
274

    
275
    if (has_msr_star == 1)
276
        return 1;
277
    return 0;
278
}
279

    
280
int kvm_arch_init(KVMState *s, int smp_cpus)
281
{
282
    int ret;
283

    
284
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
285
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
286
     * must be part of guest physical memory, we need to allocate it.  Older
287
     * versions of KVM just assumed that it would be at the end of physical
288
     * memory but that doesn't work with more than 4GB of memory.  We simply
289
     * refuse to work with those older versions of KVM. */
290
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
291
    if (ret <= 0) {
292
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
293
        return ret;
294
    }
295

    
296
    /* this address is 3 pages before the bios, and the bios should present
297
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
298
     * this?
299
     */
300
    return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
301
}
302
                    
303
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
304
{
305
    lhs->selector = rhs->selector;
306
    lhs->base = rhs->base;
307
    lhs->limit = rhs->limit;
308
    lhs->type = 3;
309
    lhs->present = 1;
310
    lhs->dpl = 3;
311
    lhs->db = 0;
312
    lhs->s = 1;
313
    lhs->l = 0;
314
    lhs->g = 0;
315
    lhs->avl = 0;
316
    lhs->unusable = 0;
317
}
318

    
319
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
320
{
321
    unsigned flags = rhs->flags;
322
    lhs->selector = rhs->selector;
323
    lhs->base = rhs->base;
324
    lhs->limit = rhs->limit;
325
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
326
    lhs->present = (flags & DESC_P_MASK) != 0;
327
    lhs->dpl = rhs->selector & 3;
328
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
329
    lhs->s = (flags & DESC_S_MASK) != 0;
330
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
331
    lhs->g = (flags & DESC_G_MASK) != 0;
332
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
333
    lhs->unusable = 0;
334
}
335

    
336
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
337
{
338
    lhs->selector = rhs->selector;
339
    lhs->base = rhs->base;
340
    lhs->limit = rhs->limit;
341
    lhs->flags =
342
        (rhs->type << DESC_TYPE_SHIFT)
343
        | (rhs->present * DESC_P_MASK)
344
        | (rhs->dpl << DESC_DPL_SHIFT)
345
        | (rhs->db << DESC_B_SHIFT)
346
        | (rhs->s * DESC_S_MASK)
347
        | (rhs->l << DESC_L_SHIFT)
348
        | (rhs->g * DESC_G_MASK)
349
        | (rhs->avl * DESC_AVL_MASK);
350
}
351

    
352
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
353
{
354
    if (set)
355
        *kvm_reg = *qemu_reg;
356
    else
357
        *qemu_reg = *kvm_reg;
358
}
359

    
360
static int kvm_getput_regs(CPUState *env, int set)
361
{
362
    struct kvm_regs regs;
363
    int ret = 0;
364

    
365
    if (!set) {
366
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
367
        if (ret < 0)
368
            return ret;
369
    }
370

    
371
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
372
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
373
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
374
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
375
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
376
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
377
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
378
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
379
#ifdef TARGET_X86_64
380
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
381
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
382
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
383
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
384
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
385
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
386
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
387
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
388
#endif
389

    
390
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
391
    kvm_getput_reg(&regs.rip, &env->eip, set);
392

    
393
    if (set)
394
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
395

    
396
    return ret;
397
}
398

    
399
static int kvm_put_fpu(CPUState *env)
400
{
401
    struct kvm_fpu fpu;
402
    int i;
403

    
404
    memset(&fpu, 0, sizeof fpu);
405
    fpu.fsw = env->fpus & ~(7 << 11);
406
    fpu.fsw |= (env->fpstt & 7) << 11;
407
    fpu.fcw = env->fpuc;
408
    for (i = 0; i < 8; ++i)
409
        fpu.ftwx |= (!env->fptags[i]) << i;
410
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
411
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
412
    fpu.mxcsr = env->mxcsr;
413

    
414
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
415
}
416

    
417
static int kvm_put_sregs(CPUState *env)
418
{
419
    struct kvm_sregs sregs;
420

    
421
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
422
    if (env->interrupt_injected >= 0) {
423
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
424
                (uint64_t)1 << (env->interrupt_injected % 64);
425
    }
426

    
427
    if ((env->eflags & VM_MASK)) {
428
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
429
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
430
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
431
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
432
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
433
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
434
    } else {
435
            set_seg(&sregs.cs, &env->segs[R_CS]);
436
            set_seg(&sregs.ds, &env->segs[R_DS]);
437
            set_seg(&sregs.es, &env->segs[R_ES]);
438
            set_seg(&sregs.fs, &env->segs[R_FS]);
439
            set_seg(&sregs.gs, &env->segs[R_GS]);
440
            set_seg(&sregs.ss, &env->segs[R_SS]);
441

    
442
            if (env->cr[0] & CR0_PE_MASK) {
443
                /* force ss cpl to cs cpl */
444
                sregs.ss.selector = (sregs.ss.selector & ~3) |
445
                        (sregs.cs.selector & 3);
446
                sregs.ss.dpl = sregs.ss.selector & 3;
447
            }
448
    }
449

    
450
    set_seg(&sregs.tr, &env->tr);
451
    set_seg(&sregs.ldt, &env->ldt);
452

    
453
    sregs.idt.limit = env->idt.limit;
454
    sregs.idt.base = env->idt.base;
455
    sregs.gdt.limit = env->gdt.limit;
456
    sregs.gdt.base = env->gdt.base;
457

    
458
    sregs.cr0 = env->cr[0];
459
    sregs.cr2 = env->cr[2];
460
    sregs.cr3 = env->cr[3];
461
    sregs.cr4 = env->cr[4];
462

    
463
    sregs.cr8 = cpu_get_apic_tpr(env);
464
    sregs.apic_base = cpu_get_apic_base(env);
465

    
466
    sregs.efer = env->efer;
467

    
468
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
469
}
470

    
471
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
472
                              uint32_t index, uint64_t value)
473
{
474
    entry->index = index;
475
    entry->data = value;
476
}
477

    
478
static int kvm_put_msrs(CPUState *env)
479
{
480
    struct {
481
        struct kvm_msrs info;
482
        struct kvm_msr_entry entries[100];
483
    } msr_data;
484
    struct kvm_msr_entry *msrs = msr_data.entries;
485
    int n = 0;
486

    
487
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
488
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
489
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
490
    if (kvm_has_msr_star(env))
491
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
492
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
493
#ifdef TARGET_X86_64
494
    /* FIXME if lm capable */
495
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
496
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
497
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
498
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
499
#endif
500
    kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,  env->system_time_msr);
501
    kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK,  env->wall_clock_msr);
502

    
503
    msr_data.info.nmsrs = n;
504

    
505
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
506

    
507
}
508

    
509

    
510
static int kvm_get_fpu(CPUState *env)
511
{
512
    struct kvm_fpu fpu;
513
    int i, ret;
514

    
515
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
516
    if (ret < 0)
517
        return ret;
518

    
519
    env->fpstt = (fpu.fsw >> 11) & 7;
520
    env->fpus = fpu.fsw;
521
    env->fpuc = fpu.fcw;
522
    for (i = 0; i < 8; ++i)
523
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
524
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
525
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
526
    env->mxcsr = fpu.mxcsr;
527

    
528
    return 0;
529
}
530

    
531
static int kvm_get_sregs(CPUState *env)
532
{
533
    struct kvm_sregs sregs;
534
    uint32_t hflags;
535
    int bit, i, ret;
536

    
537
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
538
    if (ret < 0)
539
        return ret;
540

    
541
    /* There can only be one pending IRQ set in the bitmap at a time, so try
542
       to find it and save its number instead (-1 for none). */
543
    env->interrupt_injected = -1;
544
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
545
        if (sregs.interrupt_bitmap[i]) {
546
            bit = ctz64(sregs.interrupt_bitmap[i]);
547
            env->interrupt_injected = i * 64 + bit;
548
            break;
549
        }
550
    }
551

    
552
    get_seg(&env->segs[R_CS], &sregs.cs);
553
    get_seg(&env->segs[R_DS], &sregs.ds);
554
    get_seg(&env->segs[R_ES], &sregs.es);
555
    get_seg(&env->segs[R_FS], &sregs.fs);
556
    get_seg(&env->segs[R_GS], &sregs.gs);
557
    get_seg(&env->segs[R_SS], &sregs.ss);
558

    
559
    get_seg(&env->tr, &sregs.tr);
560
    get_seg(&env->ldt, &sregs.ldt);
561

    
562
    env->idt.limit = sregs.idt.limit;
563
    env->idt.base = sregs.idt.base;
564
    env->gdt.limit = sregs.gdt.limit;
565
    env->gdt.base = sregs.gdt.base;
566

    
567
    env->cr[0] = sregs.cr0;
568
    env->cr[2] = sregs.cr2;
569
    env->cr[3] = sregs.cr3;
570
    env->cr[4] = sregs.cr4;
571

    
572
    cpu_set_apic_base(env, sregs.apic_base);
573

    
574
    env->efer = sregs.efer;
575
    //cpu_set_apic_tpr(env, sregs.cr8);
576

    
577
#define HFLAG_COPY_MASK ~( \
578
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
579
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
580
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
581
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
582

    
583

    
584

    
585
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
586
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
587
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
588
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
589
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
590
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
591
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
592

    
593
    if (env->efer & MSR_EFER_LMA) {
594
        hflags |= HF_LMA_MASK;
595
    }
596

    
597
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
598
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
599
    } else {
600
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
601
                (DESC_B_SHIFT - HF_CS32_SHIFT);
602
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
603
                (DESC_B_SHIFT - HF_SS32_SHIFT);
604
        if (!(env->cr[0] & CR0_PE_MASK) ||
605
                   (env->eflags & VM_MASK) ||
606
                   !(hflags & HF_CS32_MASK)) {
607
                hflags |= HF_ADDSEG_MASK;
608
            } else {
609
                hflags |= ((env->segs[R_DS].base |
610
                                env->segs[R_ES].base |
611
                                env->segs[R_SS].base) != 0) <<
612
                    HF_ADDSEG_SHIFT;
613
            }
614
    }
615
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
616

    
617
    return 0;
618
}
619

    
620
static int kvm_get_msrs(CPUState *env)
621
{
622
    struct {
623
        struct kvm_msrs info;
624
        struct kvm_msr_entry entries[100];
625
    } msr_data;
626
    struct kvm_msr_entry *msrs = msr_data.entries;
627
    int ret, i, n;
628

    
629
    n = 0;
630
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
631
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
632
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
633
    if (kvm_has_msr_star(env))
634
        msrs[n++].index = MSR_STAR;
635
    msrs[n++].index = MSR_IA32_TSC;
636
#ifdef TARGET_X86_64
637
    /* FIXME lm_capable_kernel */
638
    msrs[n++].index = MSR_CSTAR;
639
    msrs[n++].index = MSR_KERNELGSBASE;
640
    msrs[n++].index = MSR_FMASK;
641
    msrs[n++].index = MSR_LSTAR;
642
#endif
643
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
644
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
645

    
646
    msr_data.info.nmsrs = n;
647
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
648
    if (ret < 0)
649
        return ret;
650

    
651
    for (i = 0; i < ret; i++) {
652
        switch (msrs[i].index) {
653
        case MSR_IA32_SYSENTER_CS:
654
            env->sysenter_cs = msrs[i].data;
655
            break;
656
        case MSR_IA32_SYSENTER_ESP:
657
            env->sysenter_esp = msrs[i].data;
658
            break;
659
        case MSR_IA32_SYSENTER_EIP:
660
            env->sysenter_eip = msrs[i].data;
661
            break;
662
        case MSR_STAR:
663
            env->star = msrs[i].data;
664
            break;
665
#ifdef TARGET_X86_64
666
        case MSR_CSTAR:
667
            env->cstar = msrs[i].data;
668
            break;
669
        case MSR_KERNELGSBASE:
670
            env->kernelgsbase = msrs[i].data;
671
            break;
672
        case MSR_FMASK:
673
            env->fmask = msrs[i].data;
674
            break;
675
        case MSR_LSTAR:
676
            env->lstar = msrs[i].data;
677
            break;
678
#endif
679
        case MSR_IA32_TSC:
680
            env->tsc = msrs[i].data;
681
            break;
682
        case MSR_KVM_SYSTEM_TIME:
683
            env->system_time_msr = msrs[i].data;
684
            break;
685
        case MSR_KVM_WALL_CLOCK:
686
            env->wall_clock_msr = msrs[i].data;
687
            break;
688
        }
689
    }
690

    
691
    return 0;
692
}
693

    
694
static int kvm_put_mp_state(CPUState *env)
695
{
696
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
697

    
698
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
699
}
700

    
701
static int kvm_get_mp_state(CPUState *env)
702
{
703
    struct kvm_mp_state mp_state;
704
    int ret;
705

    
706
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
707
    if (ret < 0) {
708
        return ret;
709
    }
710
    env->mp_state = mp_state.mp_state;
711
    return 0;
712
}
713

    
714
static int kvm_put_vcpu_events(CPUState *env)
715
{
716
#ifdef KVM_CAP_VCPU_EVENTS
717
    struct kvm_vcpu_events events;
718

    
719
    if (!kvm_has_vcpu_events()) {
720
        return 0;
721
    }
722

    
723
    events.exception.injected = (env->exception_index >= 0);
724
    events.exception.nr = env->exception_index;
725
    events.exception.has_error_code = env->has_error_code;
726
    events.exception.error_code = env->error_code;
727

    
728
    events.interrupt.injected = (env->interrupt_injected >= 0);
729
    events.interrupt.nr = env->interrupt_injected;
730
    events.interrupt.soft = env->soft_interrupt;
731

    
732
    events.nmi.injected = env->nmi_injected;
733
    events.nmi.pending = env->nmi_pending;
734
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
735

    
736
    events.sipi_vector = env->sipi_vector;
737

    
738
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
739
#else
740
    return 0;
741
#endif
742
}
743

    
744
static int kvm_get_vcpu_events(CPUState *env)
745
{
746
#ifdef KVM_CAP_VCPU_EVENTS
747
    struct kvm_vcpu_events events;
748
    int ret;
749

    
750
    if (!kvm_has_vcpu_events()) {
751
        return 0;
752
    }
753

    
754
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
755
    if (ret < 0) {
756
       return ret;
757
    }
758
    env->exception_index =
759
       events.exception.injected ? events.exception.nr : -1;
760
    env->has_error_code = events.exception.has_error_code;
761
    env->error_code = events.exception.error_code;
762

    
763
    env->interrupt_injected =
764
        events.interrupt.injected ? events.interrupt.nr : -1;
765
    env->soft_interrupt = events.interrupt.soft;
766

    
767
    env->nmi_injected = events.nmi.injected;
768
    env->nmi_pending = events.nmi.pending;
769
    if (events.nmi.masked) {
770
        env->hflags2 |= HF2_NMI_MASK;
771
    } else {
772
        env->hflags2 &= ~HF2_NMI_MASK;
773
    }
774

    
775
    env->sipi_vector = events.sipi_vector;
776
#endif
777

    
778
    return 0;
779
}
780

    
781
int kvm_arch_put_registers(CPUState *env)
782
{
783
    int ret;
784

    
785
    ret = kvm_getput_regs(env, 1);
786
    if (ret < 0)
787
        return ret;
788

    
789
    ret = kvm_put_fpu(env);
790
    if (ret < 0)
791
        return ret;
792

    
793
    ret = kvm_put_sregs(env);
794
    if (ret < 0)
795
        return ret;
796

    
797
    ret = kvm_put_msrs(env);
798
    if (ret < 0)
799
        return ret;
800

    
801
    ret = kvm_put_mp_state(env);
802
    if (ret < 0)
803
        return ret;
804

    
805
    ret = kvm_put_vcpu_events(env);
806
    if (ret < 0)
807
        return ret;
808

    
809
    return 0;
810
}
811

    
812
int kvm_arch_get_registers(CPUState *env)
813
{
814
    int ret;
815

    
816
    ret = kvm_getput_regs(env, 0);
817
    if (ret < 0)
818
        return ret;
819

    
820
    ret = kvm_get_fpu(env);
821
    if (ret < 0)
822
        return ret;
823

    
824
    ret = kvm_get_sregs(env);
825
    if (ret < 0)
826
        return ret;
827

    
828
    ret = kvm_get_msrs(env);
829
    if (ret < 0)
830
        return ret;
831

    
832
    ret = kvm_get_mp_state(env);
833
    if (ret < 0)
834
        return ret;
835

    
836
    ret = kvm_get_vcpu_events(env);
837
    if (ret < 0)
838
        return ret;
839

    
840
    return 0;
841
}
842

    
843
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
844
{
845
    /* Try to inject an interrupt if the guest can accept it */
846
    if (run->ready_for_interrupt_injection &&
847
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
848
        (env->eflags & IF_MASK)) {
849
        int irq;
850

    
851
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
852
        irq = cpu_get_pic_interrupt(env);
853
        if (irq >= 0) {
854
            struct kvm_interrupt intr;
855
            intr.irq = irq;
856
            /* FIXME: errors */
857
            dprintf("injected interrupt %d\n", irq);
858
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
859
        }
860
    }
861

    
862
    /* If we have an interrupt but the guest is not ready to receive an
863
     * interrupt, request an interrupt window exit.  This will
864
     * cause a return to userspace as soon as the guest is ready to
865
     * receive interrupts. */
866
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
867
        run->request_interrupt_window = 1;
868
    else
869
        run->request_interrupt_window = 0;
870

    
871
    dprintf("setting tpr\n");
872
    run->cr8 = cpu_get_apic_tpr(env);
873

    
874
    return 0;
875
}
876

    
877
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
878
{
879
    if (run->if_flag)
880
        env->eflags |= IF_MASK;
881
    else
882
        env->eflags &= ~IF_MASK;
883
    
884
    cpu_set_apic_tpr(env, run->cr8);
885
    cpu_set_apic_base(env, run->apic_base);
886

    
887
    return 0;
888
}
889

    
890
static int kvm_handle_halt(CPUState *env)
891
{
892
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
893
          (env->eflags & IF_MASK)) &&
894
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
895
        env->halted = 1;
896
        env->exception_index = EXCP_HLT;
897
        return 0;
898
    }
899

    
900
    return 1;
901
}
902

    
903
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
904
{
905
    int ret = 0;
906

    
907
    switch (run->exit_reason) {
908
    case KVM_EXIT_HLT:
909
        dprintf("handle_hlt\n");
910
        ret = kvm_handle_halt(env);
911
        break;
912
    }
913

    
914
    return ret;
915
}
916

    
917
#ifdef KVM_CAP_SET_GUEST_DEBUG
918
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
919
{
920
    static const uint8_t int3 = 0xcc;
921

    
922
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
923
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
924
        return -EINVAL;
925
    return 0;
926
}
927

    
928
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
929
{
930
    uint8_t int3;
931

    
932
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
933
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
934
        return -EINVAL;
935
    return 0;
936
}
937

    
938
static struct {
939
    target_ulong addr;
940
    int len;
941
    int type;
942
} hw_breakpoint[4];
943

    
944
static int nb_hw_breakpoint;
945

    
946
static int find_hw_breakpoint(target_ulong addr, int len, int type)
947
{
948
    int n;
949

    
950
    for (n = 0; n < nb_hw_breakpoint; n++)
951
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
952
            (hw_breakpoint[n].len == len || len == -1))
953
            return n;
954
    return -1;
955
}
956

    
957
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
958
                                  target_ulong len, int type)
959
{
960
    switch (type) {
961
    case GDB_BREAKPOINT_HW:
962
        len = 1;
963
        break;
964
    case GDB_WATCHPOINT_WRITE:
965
    case GDB_WATCHPOINT_ACCESS:
966
        switch (len) {
967
        case 1:
968
            break;
969
        case 2:
970
        case 4:
971
        case 8:
972
            if (addr & (len - 1))
973
                return -EINVAL;
974
            break;
975
        default:
976
            return -EINVAL;
977
        }
978
        break;
979
    default:
980
        return -ENOSYS;
981
    }
982

    
983
    if (nb_hw_breakpoint == 4)
984
        return -ENOBUFS;
985

    
986
    if (find_hw_breakpoint(addr, len, type) >= 0)
987
        return -EEXIST;
988

    
989
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
990
    hw_breakpoint[nb_hw_breakpoint].len = len;
991
    hw_breakpoint[nb_hw_breakpoint].type = type;
992
    nb_hw_breakpoint++;
993

    
994
    return 0;
995
}
996

    
997
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
998
                                  target_ulong len, int type)
999
{
1000
    int n;
1001

    
1002
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1003
    if (n < 0)
1004
        return -ENOENT;
1005

    
1006
    nb_hw_breakpoint--;
1007
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1008

    
1009
    return 0;
1010
}
1011

    
1012
void kvm_arch_remove_all_hw_breakpoints(void)
1013
{
1014
    nb_hw_breakpoint = 0;
1015
}
1016

    
1017
static CPUWatchpoint hw_watchpoint;
1018

    
1019
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1020
{
1021
    int handle = 0;
1022
    int n;
1023

    
1024
    if (arch_info->exception == 1) {
1025
        if (arch_info->dr6 & (1 << 14)) {
1026
            if (cpu_single_env->singlestep_enabled)
1027
                handle = 1;
1028
        } else {
1029
            for (n = 0; n < 4; n++)
1030
                if (arch_info->dr6 & (1 << n))
1031
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1032
                    case 0x0:
1033
                        handle = 1;
1034
                        break;
1035
                    case 0x1:
1036
                        handle = 1;
1037
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1038
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1039
                        hw_watchpoint.flags = BP_MEM_WRITE;
1040
                        break;
1041
                    case 0x3:
1042
                        handle = 1;
1043
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1044
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1045
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1046
                        break;
1047
                    }
1048
        }
1049
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1050
        handle = 1;
1051

    
1052
    if (!handle)
1053
        kvm_update_guest_debug(cpu_single_env,
1054
                        (arch_info->exception == 1) ?
1055
                        KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
1056

    
1057
    return handle;
1058
}
1059

    
1060
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1061
{
1062
    const uint8_t type_code[] = {
1063
        [GDB_BREAKPOINT_HW] = 0x0,
1064
        [GDB_WATCHPOINT_WRITE] = 0x1,
1065
        [GDB_WATCHPOINT_ACCESS] = 0x3
1066
    };
1067
    const uint8_t len_code[] = {
1068
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1069
    };
1070
    int n;
1071

    
1072
    if (kvm_sw_breakpoints_active(env))
1073
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1074

    
1075
    if (nb_hw_breakpoint > 0) {
1076
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1077
        dbg->arch.debugreg[7] = 0x0600;
1078
        for (n = 0; n < nb_hw_breakpoint; n++) {
1079
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1080
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1081
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1082
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1083
        }
1084
    }
1085
}
1086
#endif /* KVM_CAP_SET_GUEST_DEBUG */