Statistics
| Branch: | Revision:

root / target-sparc / op_helper.c @ 1b2e93c1

History | View | Annotate | Download (29.6 kB)

1
#include "exec.h"
2

    
3
//#define DEBUG_PCALL
4
//#define DEBUG_MMU
5
//#define DEBUG_UNALIGNED
6
//#define DEBUG_UNASSIGNED
7

    
8
void raise_exception(int tt)
9
{
10
    env->exception_index = tt;
11
    cpu_loop_exit();
12
}   
13

    
14
void check_ieee_exceptions()
15
{
16
     T0 = get_float_exception_flags(&env->fp_status);
17
     if (T0)
18
     {
19
        /* Copy IEEE 754 flags into FSR */
20
        if (T0 & float_flag_invalid)
21
            env->fsr |= FSR_NVC;
22
        if (T0 & float_flag_overflow)
23
            env->fsr |= FSR_OFC;
24
        if (T0 & float_flag_underflow)
25
            env->fsr |= FSR_UFC;
26
        if (T0 & float_flag_divbyzero)
27
            env->fsr |= FSR_DZC;
28
        if (T0 & float_flag_inexact)
29
            env->fsr |= FSR_NXC;
30

    
31
        if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
32
        {
33
            /* Unmasked exception, generate a trap */
34
            env->fsr |= FSR_FTT_IEEE_EXCP;
35
            raise_exception(TT_FP_EXCP);
36
        }
37
        else
38
        {
39
            /* Accumulate exceptions */
40
            env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
41
        }
42
     }
43
}
44

    
45
#ifdef USE_INT_TO_FLOAT_HELPERS
46
void do_fitos(void)
47
{
48
    set_float_exception_flags(0, &env->fp_status);
49
    FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
50
    check_ieee_exceptions();
51
}
52

    
53
void do_fitod(void)
54
{
55
    DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
56
}
57
#endif
58

    
59
void do_fabss(void)
60
{
61
    FT0 = float32_abs(FT1);
62
}
63

    
64
#ifdef TARGET_SPARC64
65
void do_fabsd(void)
66
{
67
    DT0 = float64_abs(DT1);
68
}
69
#endif
70

    
71
void do_fsqrts(void)
72
{
73
    set_float_exception_flags(0, &env->fp_status);
74
    FT0 = float32_sqrt(FT1, &env->fp_status);
75
    check_ieee_exceptions();
76
}
77

    
78
void do_fsqrtd(void)
79
{
80
    set_float_exception_flags(0, &env->fp_status);
81
    DT0 = float64_sqrt(DT1, &env->fp_status);
82
    check_ieee_exceptions();
83
}
84

    
85
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP)                      \
86
    void glue(do_, name) (void)                                         \
87
    {                                                                   \
88
        env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS);                     \
89
        switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) {   \
90
        case float_relation_unordered:                                  \
91
            T0 = (FSR_FCC1 | FSR_FCC0) << FS;                           \
92
            if ((env->fsr & FSR_NVM) || TRAP) {                         \
93
                env->fsr |= T0;                                         \
94
                env->fsr |= FSR_NVC;                                    \
95
                env->fsr |= FSR_FTT_IEEE_EXCP;                          \
96
                raise_exception(TT_FP_EXCP);                            \
97
            } else {                                                    \
98
                env->fsr |= FSR_NVA;                                    \
99
            }                                                           \
100
            break;                                                      \
101
        case float_relation_less:                                       \
102
            T0 = FSR_FCC0 << FS;                                        \
103
            break;                                                      \
104
        case float_relation_greater:                                    \
105
            T0 = FSR_FCC1 << FS;                                        \
106
            break;                                                      \
107
        default:                                                        \
108
            T0 = 0;                                                     \
109
            break;                                                      \
110
        }                                                               \
111
        env->fsr |= T0;                                                 \
112
    }
113

    
114
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
115
GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
116

    
117
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
118
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
119

    
120
#ifdef TARGET_SPARC64
121
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
122
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
123

    
124
GEN_FCMP(fcmps_fcc2, float32, FT0, FT1, 24, 0);
125
GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
126

    
127
GEN_FCMP(fcmps_fcc3, float32, FT0, FT1, 26, 0);
128
GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
129

    
130
GEN_FCMP(fcmpes_fcc1, float32, FT0, FT1, 22, 1);
131
GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
132

    
133
GEN_FCMP(fcmpes_fcc2, float32, FT0, FT1, 24, 1);
134
GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
135

    
136
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
137
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
138
#endif
139

    
140
#if defined(CONFIG_USER_ONLY) 
141
void helper_ld_asi(int asi, int size, int sign)
142
{
143
}
144

    
145
void helper_st_asi(int asi, int size, int sign)
146
{
147
}
148
#else
149
#ifndef TARGET_SPARC64
150
void helper_ld_asi(int asi, int size, int sign)
151
{
152
    uint32_t ret = 0;
153

    
154
    switch (asi) {
155
    case 2: /* SuperSparc MXCC registers */
156
        break;
157
    case 3: /* MMU probe */
158
        {
159
            int mmulev;
160

    
161
            mmulev = (T0 >> 8) & 15;
162
            if (mmulev > 4)
163
                ret = 0;
164
            else {
165
                ret = mmu_probe(env, T0, mmulev);
166
                //bswap32s(&ret);
167
            }
168
#ifdef DEBUG_MMU
169
            printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
170
#endif
171
        }
172
        break;
173
    case 4: /* read MMU regs */
174
        {
175
            int reg = (T0 >> 8) & 0xf;
176
            
177
            ret = env->mmuregs[reg];
178
            if (reg == 3) /* Fault status cleared on read */
179
                env->mmuregs[reg] = 0;
180
#ifdef DEBUG_MMU
181
            printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
182
#endif
183
        }
184
        break;
185
    case 9: /* Supervisor code access */
186
        switch(size) {
187
        case 1:
188
            ret = ldub_code(T0);
189
            break;
190
        case 2:
191
            ret = lduw_code(T0 & ~1);
192
            break;
193
        default:
194
        case 4:
195
            ret = ldl_code(T0 & ~3);
196
            break;
197
        case 8:
198
            ret = ldl_code(T0 & ~3);
199
            T0 = ldl_code((T0 + 4) & ~3);
200
            break;
201
        }
202
        break;
203
    case 0xc: /* I-cache tag */
204
    case 0xd: /* I-cache data */
205
    case 0xe: /* D-cache tag */
206
    case 0xf: /* D-cache data */
207
        break;
208
    case 0x20: /* MMU passthrough */
209
        switch(size) {
210
        case 1:
211
            ret = ldub_phys(T0);
212
            break;
213
        case 2:
214
            ret = lduw_phys(T0 & ~1);
215
            break;
216
        default:
217
        case 4:
218
            ret = ldl_phys(T0 & ~3);
219
            break;
220
        case 8:
221
            ret = ldl_phys(T0 & ~3);
222
            T0 = ldl_phys((T0 + 4) & ~3);
223
            break;
224
        }
225
        break;
226
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
227
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
228
        switch(size) {
229
        case 1:
230
            ret = ldub_phys((target_phys_addr_t)T0
231
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
232
            break;
233
        case 2:
234
            ret = lduw_phys((target_phys_addr_t)(T0 & ~1)
235
                            | ((target_phys_addr_t)(asi & 0xf) << 32));
236
            break;
237
        default:
238
        case 4:
239
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
240
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
241
            break;
242
        case 8:
243
            ret = ldl_phys((target_phys_addr_t)(T0 & ~3)
244
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
245
            T0 = ldl_phys((target_phys_addr_t)((T0 + 4) & ~3)
246
                           | ((target_phys_addr_t)(asi & 0xf) << 32));
247
            break;
248
        }
249
        break;
250
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
251
    default:
252
        do_unassigned_access(T0, 0, 0, 1);
253
        ret = 0;
254
        break;
255
    }
256
    T1 = ret;
257
}
258

    
259
void helper_st_asi(int asi, int size, int sign)
260
{
261
    switch(asi) {
262
    case 2: /* SuperSparc MXCC registers */
263
        break;
264
    case 3: /* MMU flush */
265
        {
266
            int mmulev;
267

    
268
            mmulev = (T0 >> 8) & 15;
269
#ifdef DEBUG_MMU
270
            printf("mmu flush level %d\n", mmulev);
271
#endif
272
            switch (mmulev) {
273
            case 0: // flush page
274
                tlb_flush_page(env, T0 & 0xfffff000);
275
                break;
276
            case 1: // flush segment (256k)
277
            case 2: // flush region (16M)
278
            case 3: // flush context (4G)
279
            case 4: // flush entire
280
                tlb_flush(env, 1);
281
                break;
282
            default:
283
                break;
284
            }
285
#ifdef DEBUG_MMU
286
            dump_mmu(env);
287
#endif
288
            return;
289
        }
290
    case 4: /* write MMU regs */
291
        {
292
            int reg = (T0 >> 8) & 0xf;
293
            uint32_t oldreg;
294
            
295
            oldreg = env->mmuregs[reg];
296
            switch(reg) {
297
            case 0:
298
                env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
299
                env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
300
                // Mappings generated during no-fault mode or MMU
301
                // disabled mode are invalid in normal mode
302
                if (oldreg != env->mmuregs[reg])
303
                    tlb_flush(env, 1);
304
                break;
305
            case 2:
306
                env->mmuregs[reg] = T1;
307
                if (oldreg != env->mmuregs[reg]) {
308
                    /* we flush when the MMU context changes because
309
                       QEMU has no MMU context support */
310
                    tlb_flush(env, 1);
311
                }
312
                break;
313
            case 3:
314
            case 4:
315
                break;
316
            default:
317
                env->mmuregs[reg] = T1;
318
                break;
319
            }
320
#ifdef DEBUG_MMU
321
            if (oldreg != env->mmuregs[reg]) {
322
                printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
323
            }
324
            dump_mmu(env);
325
#endif
326
            return;
327
        }
328
    case 0xc: /* I-cache tag */
329
    case 0xd: /* I-cache data */
330
    case 0xe: /* D-cache tag */
331
    case 0xf: /* D-cache data */
332
    case 0x10: /* I/D-cache flush page */
333
    case 0x11: /* I/D-cache flush segment */
334
    case 0x12: /* I/D-cache flush region */
335
    case 0x13: /* I/D-cache flush context */
336
    case 0x14: /* I/D-cache flush user */
337
        break;
338
    case 0x17: /* Block copy, sta access */
339
        {
340
            // value (T1) = src
341
            // address (T0) = dst
342
            // copy 32 bytes
343
            unsigned int i;
344
            uint32_t src = T1 & ~3, dst = T0 & ~3, temp;
345
            
346
            for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
347
                temp = ldl_kernel(src);
348
                stl_kernel(dst, temp);
349
            }
350
        }
351
        return;
352
    case 0x1f: /* Block fill, stda access */
353
        {
354
            // value (T1, T2)
355
            // address (T0) = dst
356
            // fill 32 bytes
357
            unsigned int i;
358
            uint32_t dst = T0 & 7;
359
            uint64_t val;
360

    
361
            val = (((uint64_t)T1) << 32) | T2;
362

    
363
            for (i = 0; i < 32; i += 8, dst += 8)
364
                stq_kernel(dst, val);
365
        }
366
        return;
367
    case 0x20: /* MMU passthrough */
368
        {
369
            switch(size) {
370
            case 1:
371
                stb_phys(T0, T1);
372
                break;
373
            case 2:
374
                stw_phys(T0 & ~1, T1);
375
                break;
376
            case 4:
377
            default:
378
                stl_phys(T0 & ~3, T1);
379
                break;
380
            case 8:
381
                stl_phys(T0 & ~3, T1);
382
                stl_phys((T0 + 4) & ~3, T2);
383
                break;
384
            }
385
        }
386
        return;
387
    case 0x2e: /* MMU passthrough, 0xexxxxxxxx */
388
    case 0x2f: /* MMU passthrough, 0xfxxxxxxxx */
389
        {
390
            switch(size) {
391
            case 1:
392
                stb_phys((target_phys_addr_t)T0
393
                         | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
394
                break;
395
            case 2:
396
                stw_phys((target_phys_addr_t)(T0 & ~1)
397
                            | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
398
                break;
399
            case 4:
400
            default:
401
                stl_phys((target_phys_addr_t)(T0 & ~3)
402
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
403
                break;
404
            case 8:
405
                stl_phys((target_phys_addr_t)(T0 & ~3)
406
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
407
                stl_phys((target_phys_addr_t)((T0 + 4) & ~3)
408
                           | ((target_phys_addr_t)(asi & 0xf) << 32), T1);
409
                break;
410
            }
411
        }
412
        return;
413
    case 0x31: /* Ross RT620 I-cache flush */
414
    case 0x36: /* I-cache flash clear */
415
    case 0x37: /* D-cache flash clear */
416
        break;
417
    case 9: /* Supervisor code access, XXX */
418
    case 0x21 ... 0x2d: /* MMU passthrough, unassigned */
419
    default:
420
        do_unassigned_access(T0, 1, 0, 1);
421
        return;
422
    }
423
}
424

    
425
#else
426

    
427
void helper_ld_asi(int asi, int size, int sign)
428
{
429
    uint64_t ret = 0;
430

    
431
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
432
        raise_exception(TT_PRIV_ACT);
433

    
434
    switch (asi) {
435
    case 0x14: // Bypass
436
    case 0x15: // Bypass, non-cacheable
437
        {
438
            switch(size) {
439
            case 1:
440
                ret = ldub_phys(T0);
441
                break;
442
            case 2:
443
                ret = lduw_phys(T0 & ~1);
444
                break;
445
            case 4:
446
                ret = ldl_phys(T0 & ~3);
447
                break;
448
            default:
449
            case 8:
450
                ret = ldq_phys(T0 & ~7);
451
                break;
452
            }
453
            break;
454
        }
455
    case 0x04: // Nucleus
456
    case 0x0c: // Nucleus Little Endian (LE)
457
    case 0x10: // As if user primary
458
    case 0x11: // As if user secondary
459
    case 0x18: // As if user primary LE
460
    case 0x19: // As if user secondary LE
461
    case 0x1c: // Bypass LE
462
    case 0x1d: // Bypass, non-cacheable LE
463
    case 0x24: // Nucleus quad LDD 128 bit atomic
464
    case 0x2c: // Nucleus quad LDD 128 bit atomic
465
    case 0x4a: // UPA config
466
    case 0x82: // Primary no-fault
467
    case 0x83: // Secondary no-fault
468
    case 0x88: // Primary LE
469
    case 0x89: // Secondary LE
470
    case 0x8a: // Primary no-fault LE
471
    case 0x8b: // Secondary no-fault LE
472
        // XXX
473
        break;
474
    case 0x45: // LSU
475
        ret = env->lsu;
476
        break;
477
    case 0x50: // I-MMU regs
478
        {
479
            int reg = (T0 >> 3) & 0xf;
480

    
481
            ret = env->immuregs[reg];
482
            break;
483
        }
484
    case 0x51: // I-MMU 8k TSB pointer
485
    case 0x52: // I-MMU 64k TSB pointer
486
    case 0x55: // I-MMU data access
487
        // XXX
488
        break;
489
    case 0x56: // I-MMU tag read
490
        {
491
            unsigned int i;
492
            
493
            for (i = 0; i < 64; i++) {
494
                // Valid, ctx match, vaddr match
495
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
496
                    env->itlb_tag[i] == T0) {
497
                    ret = env->itlb_tag[i];
498
                    break;
499
                }
500
            }
501
            break;
502
        }
503
    case 0x58: // D-MMU regs
504
        {
505
            int reg = (T0 >> 3) & 0xf;
506

    
507
            ret = env->dmmuregs[reg];
508
            break;
509
        }
510
    case 0x5e: // D-MMU tag read
511
        {
512
            unsigned int i;
513
            
514
            for (i = 0; i < 64; i++) {
515
                // Valid, ctx match, vaddr match
516
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
517
                    env->dtlb_tag[i] == T0) {
518
                    ret = env->dtlb_tag[i];
519
                    break;
520
                }
521
            }
522
            break;
523
        }
524
    case 0x59: // D-MMU 8k TSB pointer
525
    case 0x5a: // D-MMU 64k TSB pointer
526
    case 0x5b: // D-MMU data pointer
527
    case 0x5d: // D-MMU data access
528
    case 0x48: // Interrupt dispatch, RO
529
    case 0x49: // Interrupt data receive
530
    case 0x7f: // Incoming interrupt vector, RO
531
        // XXX
532
        break;
533
    case 0x54: // I-MMU data in, WO
534
    case 0x57: // I-MMU demap, WO
535
    case 0x5c: // D-MMU data in, WO
536
    case 0x5f: // D-MMU demap, WO
537
    case 0x77: // Interrupt vector, WO
538
    default:
539
        do_unassigned_access(T0, 0, 0, 1);
540
        ret = 0;
541
        break;
542
    }
543
    T1 = ret;
544
}
545

    
546
void helper_st_asi(int asi, int size, int sign)
547
{
548
    if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
549
        raise_exception(TT_PRIV_ACT);
550

    
551
    switch(asi) {
552
    case 0x14: // Bypass
553
    case 0x15: // Bypass, non-cacheable
554
        {
555
            switch(size) {
556
            case 1:
557
                stb_phys(T0, T1);
558
                break;
559
            case 2:
560
                stw_phys(T0 & ~1, T1);
561
                break;
562
            case 4:
563
                stl_phys(T0 & ~3, T1);
564
                break;
565
            case 8:
566
            default:
567
                stq_phys(T0 & ~7, T1);
568
                break;
569
            }
570
        }
571
        return;
572
    case 0x04: // Nucleus
573
    case 0x0c: // Nucleus Little Endian (LE)
574
    case 0x10: // As if user primary
575
    case 0x11: // As if user secondary
576
    case 0x18: // As if user primary LE
577
    case 0x19: // As if user secondary LE
578
    case 0x1c: // Bypass LE
579
    case 0x1d: // Bypass, non-cacheable LE
580
    case 0x24: // Nucleus quad LDD 128 bit atomic
581
    case 0x2c: // Nucleus quad LDD 128 bit atomic
582
    case 0x4a: // UPA config
583
    case 0x88: // Primary LE
584
    case 0x89: // Secondary LE
585
        // XXX
586
        return;
587
    case 0x45: // LSU
588
        {
589
            uint64_t oldreg;
590

    
591
            oldreg = env->lsu;
592
            env->lsu = T1 & (DMMU_E | IMMU_E);
593
            // Mappings generated during D/I MMU disabled mode are
594
            // invalid in normal mode
595
            if (oldreg != env->lsu) {
596
#ifdef DEBUG_MMU
597
                printf("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
598
                dump_mmu(env);
599
#endif
600
                tlb_flush(env, 1);
601
            }
602
            return;
603
        }
604
    case 0x50: // I-MMU regs
605
        {
606
            int reg = (T0 >> 3) & 0xf;
607
            uint64_t oldreg;
608
            
609
            oldreg = env->immuregs[reg];
610
            switch(reg) {
611
            case 0: // RO
612
            case 4:
613
                return;
614
            case 1: // Not in I-MMU
615
            case 2:
616
            case 7:
617
            case 8:
618
                return;
619
            case 3: // SFSR
620
                if ((T1 & 1) == 0)
621
                    T1 = 0; // Clear SFSR
622
                break;
623
            case 5: // TSB access
624
            case 6: // Tag access
625
            default:
626
                break;
627
            }
628
            env->immuregs[reg] = T1;
629
#ifdef DEBUG_MMU
630
            if (oldreg != env->immuregs[reg]) {
631
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
632
            }
633
            dump_mmu(env);
634
#endif
635
            return;
636
        }
637
    case 0x54: // I-MMU data in
638
        {
639
            unsigned int i;
640

    
641
            // Try finding an invalid entry
642
            for (i = 0; i < 64; i++) {
643
                if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
644
                    env->itlb_tag[i] = env->immuregs[6];
645
                    env->itlb_tte[i] = T1;
646
                    return;
647
                }
648
            }
649
            // Try finding an unlocked entry
650
            for (i = 0; i < 64; i++) {
651
                if ((env->itlb_tte[i] & 0x40) == 0) {
652
                    env->itlb_tag[i] = env->immuregs[6];
653
                    env->itlb_tte[i] = T1;
654
                    return;
655
                }
656
            }
657
            // error state?
658
            return;
659
        }
660
    case 0x55: // I-MMU data access
661
        {
662
            unsigned int i = (T0 >> 3) & 0x3f;
663

    
664
            env->itlb_tag[i] = env->immuregs[6];
665
            env->itlb_tte[i] = T1;
666
            return;
667
        }
668
    case 0x57: // I-MMU demap
669
        // XXX
670
        return;
671
    case 0x58: // D-MMU regs
672
        {
673
            int reg = (T0 >> 3) & 0xf;
674
            uint64_t oldreg;
675
            
676
            oldreg = env->dmmuregs[reg];
677
            switch(reg) {
678
            case 0: // RO
679
            case 4:
680
                return;
681
            case 3: // SFSR
682
                if ((T1 & 1) == 0) {
683
                    T1 = 0; // Clear SFSR, Fault address
684
                    env->dmmuregs[4] = 0;
685
                }
686
                env->dmmuregs[reg] = T1;
687
                break;
688
            case 1: // Primary context
689
            case 2: // Secondary context
690
            case 5: // TSB access
691
            case 6: // Tag access
692
            case 7: // Virtual Watchpoint
693
            case 8: // Physical Watchpoint
694
            default:
695
                break;
696
            }
697
            env->dmmuregs[reg] = T1;
698
#ifdef DEBUG_MMU
699
            if (oldreg != env->dmmuregs[reg]) {
700
                printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
701
            }
702
            dump_mmu(env);
703
#endif
704
            return;
705
        }
706
    case 0x5c: // D-MMU data in
707
        {
708
            unsigned int i;
709

    
710
            // Try finding an invalid entry
711
            for (i = 0; i < 64; i++) {
712
                if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
713
                    env->dtlb_tag[i] = env->dmmuregs[6];
714
                    env->dtlb_tte[i] = T1;
715
                    return;
716
                }
717
            }
718
            // Try finding an unlocked entry
719
            for (i = 0; i < 64; i++) {
720
                if ((env->dtlb_tte[i] & 0x40) == 0) {
721
                    env->dtlb_tag[i] = env->dmmuregs[6];
722
                    env->dtlb_tte[i] = T1;
723
                    return;
724
                }
725
            }
726
            // error state?
727
            return;
728
        }
729
    case 0x5d: // D-MMU data access
730
        {
731
            unsigned int i = (T0 >> 3) & 0x3f;
732

    
733
            env->dtlb_tag[i] = env->dmmuregs[6];
734
            env->dtlb_tte[i] = T1;
735
            return;
736
        }
737
    case 0x5f: // D-MMU demap
738
    case 0x49: // Interrupt data receive
739
        // XXX
740
        return;
741
    case 0x51: // I-MMU 8k TSB pointer, RO
742
    case 0x52: // I-MMU 64k TSB pointer, RO
743
    case 0x56: // I-MMU tag read, RO
744
    case 0x59: // D-MMU 8k TSB pointer, RO
745
    case 0x5a: // D-MMU 64k TSB pointer, RO
746
    case 0x5b: // D-MMU data pointer, RO
747
    case 0x5e: // D-MMU tag read, RO
748
    case 0x48: // Interrupt dispatch, RO
749
    case 0x7f: // Incoming interrupt vector, RO
750
    case 0x82: // Primary no-fault, RO
751
    case 0x83: // Secondary no-fault, RO
752
    case 0x8a: // Primary no-fault LE, RO
753
    case 0x8b: // Secondary no-fault LE, RO
754
    default:
755
        do_unassigned_access(T0, 1, 0, 1);
756
        return;
757
    }
758
}
759
#endif
760
#endif /* !CONFIG_USER_ONLY */
761

    
762
#ifndef TARGET_SPARC64
763
void helper_rett()
764
{
765
    unsigned int cwp;
766

    
767
    if (env->psret == 1)
768
        raise_exception(TT_ILL_INSN);
769

    
770
    env->psret = 1;
771
    cwp = (env->cwp + 1) & (NWINDOWS - 1); 
772
    if (env->wim & (1 << cwp)) {
773
        raise_exception(TT_WIN_UNF);
774
    }
775
    set_cwp(cwp);
776
    env->psrs = env->psrps;
777
}
778
#endif
779

    
780
void helper_ldfsr(void)
781
{
782
    int rnd_mode;
783
    switch (env->fsr & FSR_RD_MASK) {
784
    case FSR_RD_NEAREST:
785
        rnd_mode = float_round_nearest_even;
786
        break;
787
    default:
788
    case FSR_RD_ZERO:
789
        rnd_mode = float_round_to_zero;
790
        break;
791
    case FSR_RD_POS:
792
        rnd_mode = float_round_up;
793
        break;
794
    case FSR_RD_NEG:
795
        rnd_mode = float_round_down;
796
        break;
797
    }
798
    set_float_rounding_mode(rnd_mode, &env->fp_status);
799
}
800

    
801
void helper_debug()
802
{
803
    env->exception_index = EXCP_DEBUG;
804
    cpu_loop_exit();
805
}
806

    
807
#ifndef TARGET_SPARC64
808
void do_wrpsr()
809
{
810
    if ((T0 & PSR_CWP) >= NWINDOWS)
811
        raise_exception(TT_ILL_INSN);
812
    else
813
        PUT_PSR(env, T0);
814
}
815

    
816
void do_rdpsr()
817
{
818
    T0 = GET_PSR(env);
819
}
820

    
821
#else
822

    
823
void do_popc()
824
{
825
    T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
826
    T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
827
    T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
828
    T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
829
    T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
830
    T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
831
}
832

    
833
static inline uint64_t *get_gregset(uint64_t pstate)
834
{
835
    switch (pstate) {
836
    default:
837
    case 0:
838
        return env->bgregs;
839
    case PS_AG:
840
        return env->agregs;
841
    case PS_MG:
842
        return env->mgregs;
843
    case PS_IG:
844
        return env->igregs;
845
    }
846
}
847

    
848
void do_wrpstate()
849
{
850
    uint64_t new_pstate, pstate_regs, new_pstate_regs;
851
    uint64_t *src, *dst;
852

    
853
    new_pstate = T0 & 0xf3f;
854
    pstate_regs = env->pstate & 0xc01;
855
    new_pstate_regs = new_pstate & 0xc01;
856
    if (new_pstate_regs != pstate_regs) {
857
        // Switch global register bank
858
        src = get_gregset(new_pstate_regs);
859
        dst = get_gregset(pstate_regs);
860
        memcpy32(dst, env->gregs);
861
        memcpy32(env->gregs, src);
862
    }
863
    env->pstate = new_pstate;
864
}
865

    
866
void do_done(void)
867
{
868
    env->tl--;
869
    env->pc = env->tnpc[env->tl];
870
    env->npc = env->tnpc[env->tl] + 4;
871
    PUT_CCR(env, env->tstate[env->tl] >> 32);
872
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
873
    env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
874
    set_cwp(env->tstate[env->tl] & 0xff);
875
}
876

    
877
void do_retry(void)
878
{
879
    env->tl--;
880
    env->pc = env->tpc[env->tl];
881
    env->npc = env->tnpc[env->tl];
882
    PUT_CCR(env, env->tstate[env->tl] >> 32);
883
    env->asi = (env->tstate[env->tl] >> 24) & 0xff;
884
    env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
885
    set_cwp(env->tstate[env->tl] & 0xff);
886
}
887
#endif
888

    
889
void set_cwp(int new_cwp)
890
{
891
    /* put the modified wrap registers at their proper location */
892
    if (env->cwp == (NWINDOWS - 1))
893
        memcpy32(env->regbase, env->regbase + NWINDOWS * 16);
894
    env->cwp = new_cwp;
895
    /* put the wrap registers at their temporary location */
896
    if (new_cwp == (NWINDOWS - 1))
897
        memcpy32(env->regbase + NWINDOWS * 16, env->regbase);
898
    env->regwptr = env->regbase + (new_cwp * 16);
899
    REGWPTR = env->regwptr;
900
}
901

    
902
void cpu_set_cwp(CPUState *env1, int new_cwp)
903
{
904
    CPUState *saved_env;
905
#ifdef reg_REGWPTR
906
    target_ulong *saved_regwptr;
907
#endif
908

    
909
    saved_env = env;
910
#ifdef reg_REGWPTR
911
    saved_regwptr = REGWPTR;
912
#endif
913
    env = env1;
914
    set_cwp(new_cwp);
915
    env = saved_env;
916
#ifdef reg_REGWPTR
917
    REGWPTR = saved_regwptr;
918
#endif
919
}
920

    
921
#ifdef TARGET_SPARC64
922
void do_interrupt(int intno)
923
{
924
#ifdef DEBUG_PCALL
925
    if (loglevel & CPU_LOG_INT) {
926
        static int count;
927
        fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
928
                count, intno,
929
                env->pc,
930
                env->npc, env->regwptr[6]);
931
        cpu_dump_state(env, logfile, fprintf, 0);
932
#if 0
933
        {
934
            int i;
935
            uint8_t *ptr;
936

937
            fprintf(logfile, "       code=");
938
            ptr = (uint8_t *)env->pc;
939
            for(i = 0; i < 16; i++) {
940
                fprintf(logfile, " %02x", ldub(ptr + i));
941
            }
942
            fprintf(logfile, "\n");
943
        }
944
#endif
945
        count++;
946
    }
947
#endif
948
#if !defined(CONFIG_USER_ONLY) 
949
    if (env->tl == MAXTL) {
950
        cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
951
        return;
952
    }
953
#endif
954
    env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
955
        ((env->pstate & 0xfff) << 8) | (env->cwp & 0xff);
956
    env->tpc[env->tl] = env->pc;
957
    env->tnpc[env->tl] = env->npc;
958
    env->tt[env->tl] = intno;
959
    env->pstate = PS_PEF | PS_PRIV | PS_AG;
960
    env->tbr &= ~0x7fffULL;
961
    env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
962
    if (env->tl < MAXTL - 1) {
963
        env->tl++;
964
    } else {
965
        env->pstate |= PS_RED;
966
        if (env->tl != MAXTL)
967
            env->tl++;
968
    }
969
    env->pc = env->tbr;
970
    env->npc = env->pc + 4;
971
    env->exception_index = 0;
972
}
973
#else
974
void do_interrupt(int intno)
975
{
976
    int cwp;
977

    
978
#ifdef DEBUG_PCALL
979
    if (loglevel & CPU_LOG_INT) {
980
        static int count;
981
        fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
982
                count, intno,
983
                env->pc,
984
                env->npc, env->regwptr[6]);
985
        cpu_dump_state(env, logfile, fprintf, 0);
986
#if 0
987
        {
988
            int i;
989
            uint8_t *ptr;
990

991
            fprintf(logfile, "       code=");
992
            ptr = (uint8_t *)env->pc;
993
            for(i = 0; i < 16; i++) {
994
                fprintf(logfile, " %02x", ldub(ptr + i));
995
            }
996
            fprintf(logfile, "\n");
997
        }
998
#endif
999
        count++;
1000
    }
1001
#endif
1002
#if !defined(CONFIG_USER_ONLY) 
1003
    if (env->psret == 0) {
1004
        cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
1005
        return;
1006
    }
1007
#endif
1008
    env->psret = 0;
1009
    cwp = (env->cwp - 1) & (NWINDOWS - 1); 
1010
    set_cwp(cwp);
1011
    env->regwptr[9] = env->pc;
1012
    env->regwptr[10] = env->npc;
1013
    env->psrps = env->psrs;
1014
    env->psrs = 1;
1015
    env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
1016
    env->pc = env->tbr;
1017
    env->npc = env->pc + 4;
1018
    env->exception_index = 0;
1019
}
1020
#endif
1021

    
1022
#if !defined(CONFIG_USER_ONLY) 
1023

    
1024
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1025
                                void *retaddr);
1026

    
1027
#define MMUSUFFIX _mmu
1028
#define ALIGNED_ONLY
1029
#define GETPC() (__builtin_return_address(0))
1030

    
1031
#define SHIFT 0
1032
#include "softmmu_template.h"
1033

    
1034
#define SHIFT 1
1035
#include "softmmu_template.h"
1036

    
1037
#define SHIFT 2
1038
#include "softmmu_template.h"
1039

    
1040
#define SHIFT 3
1041
#include "softmmu_template.h"
1042

    
1043
static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
1044
                                void *retaddr)
1045
{
1046
#ifdef DEBUG_UNALIGNED
1047
    printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
1048
#endif
1049
    raise_exception(TT_UNALIGNED);
1050
}
1051

    
1052
/* try to fill the TLB and return an exception if error. If retaddr is
1053
   NULL, it means that the function was called in C code (i.e. not
1054
   from generated code or from helper.c) */
1055
/* XXX: fix it to restore all registers */
1056
void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
1057
{
1058
    TranslationBlock *tb;
1059
    int ret;
1060
    unsigned long pc;
1061
    CPUState *saved_env;
1062

    
1063
    /* XXX: hack to restore env in all cases, even if not called from
1064
       generated code */
1065
    saved_env = env;
1066
    env = cpu_single_env;
1067

    
1068
    ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
1069
    if (ret) {
1070
        if (retaddr) {
1071
            /* now we have a real cpu fault */
1072
            pc = (unsigned long)retaddr;
1073
            tb = tb_find_pc(pc);
1074
            if (tb) {
1075
                /* the PC is inside the translated code. It means that we have
1076
                   a virtual CPU fault */
1077
                cpu_restore_state(tb, env, pc, (void *)T2);
1078
            }
1079
        }
1080
        cpu_loop_exit();
1081
    }
1082
    env = saved_env;
1083
}
1084

    
1085
#endif
1086

    
1087
#ifndef TARGET_SPARC64
1088
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1089
                          int is_asi)
1090
{
1091
    CPUState *saved_env;
1092

    
1093
    /* XXX: hack to restore env in all cases, even if not called from
1094
       generated code */
1095
    saved_env = env;
1096
    env = cpu_single_env;
1097
    if (env->mmuregs[3]) /* Fault status register */
1098
        env->mmuregs[3] = 1; /* overflow (not read before another fault) */
1099
    if (is_asi)
1100
        env->mmuregs[3] |= 1 << 16;
1101
    if (env->psrs)
1102
        env->mmuregs[3] |= 1 << 5;
1103
    if (is_exec)
1104
        env->mmuregs[3] |= 1 << 6;
1105
    if (is_write)
1106
        env->mmuregs[3] |= 1 << 7;
1107
    env->mmuregs[3] |= (5 << 2) | 2;
1108
    env->mmuregs[4] = addr; /* Fault address register */
1109
    if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
1110
#ifdef DEBUG_UNASSIGNED
1111
        printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
1112
               "\n", addr, env->pc);
1113
#endif
1114
        if (is_exec)
1115
            raise_exception(TT_CODE_ACCESS);
1116
        else
1117
            raise_exception(TT_DATA_ACCESS);
1118
    }
1119
    env = saved_env;
1120
}
1121
#else
1122
void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1123
                          int is_asi)
1124
{
1125
#ifdef DEBUG_UNASSIGNED
1126
    CPUState *saved_env;
1127

    
1128
    /* XXX: hack to restore env in all cases, even if not called from
1129
       generated code */
1130
    saved_env = env;
1131
    env = cpu_single_env;
1132
    printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
1133
           addr, env->pc);
1134
    env = saved_env;
1135
#endif
1136
    if (is_exec)
1137
        raise_exception(TT_CODE_ACCESS);
1138
    else
1139
        raise_exception(TT_DATA_ACCESS);
1140
}
1141
#endif
1142

    
1143
#ifdef TARGET_SPARC64
1144
void do_tick_set_count(void *opaque, uint64_t count)
1145
{
1146
    ptimer_set_count(opaque, -count);
1147
}
1148

    
1149
uint64_t do_tick_get_count(void *opaque)
1150
{
1151
    return -ptimer_get_count(opaque);
1152
}
1153

    
1154
void do_tick_set_limit(void *opaque, uint64_t limit)
1155
{
1156
    ptimer_set_limit(opaque, -limit, 0);
1157
}
1158
#endif