Revision 1ba13a5d

b/hw/etraxfs_dma.c
1
/*
2
 * QEMU ETRAX DMA Controller.
3
 *
4
 * Copyright (c) 2008 Edgar E. Iglesias, Axis Communications AB.
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdio.h>
25
#include <sys/time.h>
26
#include "hw.h"
27

  
28
#include "etraxfs_dma.h"
29

  
30
#define D(x)
31

  
32
#define RW_DATA           0x0
33
#define RW_SAVED_DATA     0x58
34
#define RW_SAVED_DATA_BUF 0x5c
35
#define RW_GROUP          0x60
36
#define RW_GROUP_DOWN     0x7c
37
#define RW_CMD            0x80
38
#define RW_CFG            0x84
39
#define RW_STAT           0x88
40
#define RW_INTR_MASK      0x8c
41
#define RW_ACK_INTR       0x90
42
#define R_INTR            0x94
43
#define R_MASKED_INTR     0x98
44
#define RW_STREAM_CMD     0x9c
45

  
46
#define DMA_REG_MAX   0x100
47

  
48
/* descriptors */
49

  
50
// ------------------------------------------------------------ dma_descr_group
51
typedef struct dma_descr_group {
52
  struct dma_descr_group       *next;
53
  unsigned                      eol        : 1;
54
  unsigned                      tol        : 1;
55
  unsigned                      bol        : 1;
56
  unsigned                                 : 1;
57
  unsigned                      intr       : 1;
58
  unsigned                                 : 2;
59
  unsigned                      en         : 1;
60
  unsigned                                 : 7;
61
  unsigned                      dis        : 1;
62
  unsigned                      md         : 16;
63
  struct dma_descr_group       *up;
64
  union {
65
    struct dma_descr_context   *context;
66
    struct dma_descr_group     *group;
67
  }                             down;
68
} dma_descr_group;
69

  
70
// ---------------------------------------------------------- dma_descr_context
71
typedef struct dma_descr_context {
72
  struct dma_descr_context     *next;
73
  unsigned                      eol        : 1;
74
  unsigned                                 : 3;
75
  unsigned                      intr       : 1;
76
  unsigned                                 : 1;
77
  unsigned                      store_mode : 1;
78
  unsigned                      en         : 1;
79
  unsigned                                 : 7;
80
  unsigned                      dis        : 1;
81
  unsigned                      md0        : 16;
82
  unsigned                      md1;
83
  unsigned                      md2;
84
  unsigned                      md3;
85
  unsigned                      md4;
86
  struct dma_descr_data        *saved_data;
87
  char                         *saved_data_buf;
88
} dma_descr_context;
89

  
90
// ------------------------------------------------------------- dma_descr_data
91
typedef struct dma_descr_data {
92
  struct dma_descr_data        *next;
93
  char                         *buf;
94
  unsigned                      eol        : 1;
95
  unsigned                                 : 2;
96
  unsigned                      out_eop    : 1;
97
  unsigned                      intr       : 1;
98
  unsigned                      wait       : 1;
99
  unsigned                                 : 2;
100
  unsigned                                 : 3;
101
  unsigned                      in_eop     : 1;
102
  unsigned                                 : 4;
103
  unsigned                      md         : 16;
104
  char                         *after;
105
} dma_descr_data;
106

  
107
/* Constants */
108
enum {
109
  regk_dma_ack_pkt                         = 0x00000100,
110
  regk_dma_anytime                         = 0x00000001,
111
  regk_dma_array                           = 0x00000008,
112
  regk_dma_burst                           = 0x00000020,
113
  regk_dma_client                          = 0x00000002,
114
  regk_dma_copy_next                       = 0x00000010,
115
  regk_dma_copy_up                         = 0x00000020,
116
  regk_dma_data_at_eol                     = 0x00000001,
117
  regk_dma_dis_c                           = 0x00000010,
118
  regk_dma_dis_g                           = 0x00000020,
119
  regk_dma_idle                            = 0x00000001,
120
  regk_dma_intern                          = 0x00000004,
121
  regk_dma_load_c                          = 0x00000200,
122
  regk_dma_load_c_n                        = 0x00000280,
123
  regk_dma_load_c_next                     = 0x00000240,
124
  regk_dma_load_d                          = 0x00000140,
125
  regk_dma_load_g                          = 0x00000300,
126
  regk_dma_load_g_down                     = 0x000003c0,
127
  regk_dma_load_g_next                     = 0x00000340,
128
  regk_dma_load_g_up                       = 0x00000380,
129
  regk_dma_next_en                         = 0x00000010,
130
  regk_dma_next_pkt                        = 0x00000010,
131
  regk_dma_no                              = 0x00000000,
132
  regk_dma_only_at_wait                    = 0x00000000,
133
  regk_dma_restore                         = 0x00000020,
134
  regk_dma_rst                             = 0x00000001,
135
  regk_dma_running                         = 0x00000004,
136
  regk_dma_rw_cfg_default                  = 0x00000000,
137
  regk_dma_rw_cmd_default                  = 0x00000000,
138
  regk_dma_rw_intr_mask_default            = 0x00000000,
139
  regk_dma_rw_stat_default                 = 0x00000101,
140
  regk_dma_rw_stream_cmd_default           = 0x00000000,
141
  regk_dma_save_down                       = 0x00000020,
142
  regk_dma_save_up                         = 0x00000020,
143
  regk_dma_set_reg                         = 0x00000050,
144
  regk_dma_set_w_size1                     = 0x00000190,
145
  regk_dma_set_w_size2                     = 0x000001a0,
146
  regk_dma_set_w_size4                     = 0x000001c0,
147
  regk_dma_stopped                         = 0x00000002,
148
  regk_dma_store_c                         = 0x00000002,
149
  regk_dma_store_descr                     = 0x00000000,
150
  regk_dma_store_g                         = 0x00000004,
151
  regk_dma_store_md                        = 0x00000001,
152
  regk_dma_sw                              = 0x00000008,
153
  regk_dma_update_down                     = 0x00000020,
154
  regk_dma_yes                             = 0x00000001
155
};
156

  
157
enum dma_ch_state
158
{
159
	RST = 0,
160
	STOPPED = 2,
161
	RUNNING = 4
162
};
163

  
164
struct fs_dma_channel
165
{
166
	int regmap;
167
	qemu_irq *irq;
168
	struct etraxfs_dma_client *client;
169

  
170

  
171
	/* Internal status.  */
172
	int stream_cmd_src;
173
	enum dma_ch_state state;
174

  
175
	unsigned int input : 1;
176
	unsigned int eol : 1;
177

  
178
	struct dma_descr_group current_g;
179
	struct dma_descr_context current_c;
180
	struct dma_descr_data current_d;
181

  
182
	/* Controll registers.  */
183
	uint32_t regs[DMA_REG_MAX];
184
};
185

  
186
struct fs_dma_ctrl
187
{
188
	CPUState *env;
189
	target_phys_addr_t base;
190

  
191
	int nr_channels;
192
	struct fs_dma_channel *channels;
193
};
194

  
195
static inline uint32_t channel_reg(struct fs_dma_ctrl *ctrl, int c, int reg)
196
{
197
	return ctrl->channels[c].regs[reg];
198
}
199

  
200
static inline int channel_stopped(struct fs_dma_ctrl *ctrl, int c)
201
{
202
	return channel_reg(ctrl, c, RW_CFG) & 2;
203
}
204

  
205
static inline int channel_en(struct fs_dma_ctrl *ctrl, int c)
206
{
207
	return (channel_reg(ctrl, c, RW_CFG) & 1)
208
		&& ctrl->channels[c].client;
209
}
210

  
211
static inline int fs_channel(target_phys_addr_t base, target_phys_addr_t addr)
212
{
213
	/* Every channel has a 0x2000 ctrl register map.  */
214
	return (addr - base) >> 13;
215
}
216

  
217
static void channel_load_g(struct fs_dma_ctrl *ctrl, int c)
218
{
219
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP);
220

  
221
	/* Load and decode. FIXME: handle endianness.  */
222
	cpu_physical_memory_read (addr, 
223
				  (void *) &ctrl->channels[c].current_g, 
224
				  sizeof ctrl->channels[c].current_g);
225
}
226

  
227
static void dump_c(int ch, struct dma_descr_context *c)
228
{
229
	printf("%s ch=%d\n", __func__, ch);
230
	printf("next=%x\n", (uint32_t) c->next);
231
	printf("saved_data=%x\n", (uint32_t) c->saved_data);
232
	printf("saved_data_buf=%x\n", (uint32_t) c->saved_data_buf);
233
	printf("eol=%x\n", (uint32_t) c->eol);
234
}
235

  
236
static void dump_d(int ch, struct dma_descr_data *d)
237
{
238
	printf("%s ch=%d\n", __func__, ch);
239
	printf("next=%x\n", (uint32_t) d->next);
240
	printf("buf=%x\n", (uint32_t) d->buf);
241
	printf("after=%x\n", (uint32_t) d->after);
242
	printf("intr=%x\n", (uint32_t) d->intr);
243
	printf("out_eop=%x\n", (uint32_t) d->out_eop);
244
	printf("in_eop=%x\n", (uint32_t) d->in_eop);
245
	printf("eol=%x\n", (uint32_t) d->eol);
246
}
247

  
248
static void channel_load_c(struct fs_dma_ctrl *ctrl, int c)
249
{
250
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_GROUP_DOWN);
251

  
252
	/* Load and decode. FIXME: handle endianness.  */
253
	cpu_physical_memory_read (addr, 
254
				  (void *) &ctrl->channels[c].current_c, 
255
				  sizeof ctrl->channels[c].current_c);
256

  
257
	D(dump_c(c, &ctrl->channels[c].current_c));
258
	/* I guess this should update the current pos.  */
259
	ctrl->channels[c].regs[RW_SAVED_DATA] = 
260
		(uint32_t)ctrl->channels[c].current_c.saved_data;
261
	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
262
		(uint32_t)ctrl->channels[c].current_c.saved_data_buf;
263
}
264

  
265
static void channel_load_d(struct fs_dma_ctrl *ctrl, int c)
266
{
267
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
268

  
269
	/* Load and decode. FIXME: handle endianness.  */
270
	D(printf("%s addr=%x\n", __func__, addr));
271
	cpu_physical_memory_read (addr,
272
				  (void *) &ctrl->channels[c].current_d, 
273
				  sizeof ctrl->channels[c].current_d);
274

  
275
	D(dump_d(c, &ctrl->channels[c].current_d));
276
	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] =
277
		(uint32_t)ctrl->channels[c].current_d.buf;
278
}
279

  
280
static void channel_store_d(struct fs_dma_ctrl *ctrl, int c)
281
{
282
	target_phys_addr_t addr = channel_reg(ctrl, c, RW_SAVED_DATA);
283

  
284
	/* Load and decode. FIXME: handle endianness.  */
285
	D(printf("%s addr=%x\n", __func__, addr));
286
	cpu_physical_memory_write (addr,
287
				  (void *) &ctrl->channels[c].current_d, 
288
				  sizeof ctrl->channels[c].current_d);
289
}
290

  
291
static inline void channel_stop(struct fs_dma_ctrl *ctrl, int c)
292
{
293
	/* FIXME:  */
294
}
295

  
296
static inline void channel_start(struct fs_dma_ctrl *ctrl, int c)
297
{
298
	if (ctrl->channels[c].client)
299
	{
300
		ctrl->channels[c].eol = 0;
301
		ctrl->channels[c].state = RUNNING;
302
	} else
303
		printf("WARNING: starting DMA ch %d with no client\n", c);
304
}
305

  
306
static void channel_continue(struct fs_dma_ctrl *ctrl, int c)
307
{
308
	if (!channel_en(ctrl, c) 
309
	    || channel_stopped(ctrl, c)
310
	    || ctrl->channels[c].state != RUNNING
311
	    /* Only reload the current data descriptor if it has eol set.  */
312
	    || !ctrl->channels[c].current_d.eol) {
313
		D(printf("continue failed ch=%d state=%d stopped=%d en=%d eol=%d\n", 
314
			 c, ctrl->channels[c].state,
315
			 channel_stopped(ctrl, c),
316
			 channel_en(ctrl,c),
317
			 ctrl->channels[c].eol));
318
		D(dump_d(c, &ctrl->channels[c].current_d));
319
		return;
320
	}
321

  
322
	/* Reload the current descriptor.  */
323
	channel_load_d(ctrl, c);
324

  
325
	/* If the current descriptor cleared the eol flag and we had already
326
	   reached eol state, do the continue.  */
327
	if (!ctrl->channels[c].current_d.eol && ctrl->channels[c].eol) {
328
		D(printf("continue %d ok %x\n", c,
329
			 ctrl->channels[c].current_d.next));
330
		ctrl->channels[c].regs[RW_SAVED_DATA] =
331
			(uint32_t) ctrl->channels[c].current_d.next;
332
		channel_load_d(ctrl, c);
333
		channel_start(ctrl, c);
334
	}
335
}
336

  
337
static void channel_stream_cmd(struct fs_dma_ctrl *ctrl, int c, uint32_t v)
338
{
339
	unsigned int cmd = v & ((1 << 10) - 1);
340

  
341
	D(printf("%s cmd=%x\n", __func__, cmd));
342
	if (cmd & regk_dma_load_d) {
343
		channel_load_d(ctrl, c);
344
		if (cmd & regk_dma_burst)
345
			channel_start(ctrl, c);
346
	}
347

  
348
	if (cmd & regk_dma_load_c) {
349
		channel_load_c(ctrl, c);
350
	}
351
}
352

  
353
static void channel_update_irq(struct fs_dma_ctrl *ctrl, int c)
354
{
355
	D(printf("%s %d\n", __func__, c));
356
        ctrl->channels[c].regs[R_INTR] &=
357
		~(ctrl->channels[c].regs[RW_ACK_INTR]);
358

  
359
        ctrl->channels[c].regs[R_MASKED_INTR] =
360
		ctrl->channels[c].regs[R_INTR]
361
		& ctrl->channels[c].regs[RW_INTR_MASK];
362

  
363
	D(printf("%s: chan=%d masked_intr=%x\n", __func__, 
364
		 c,
365
		 ctrl->channels[c].regs[R_MASKED_INTR]));
366

  
367
        if (ctrl->channels[c].regs[R_MASKED_INTR])
368
                qemu_irq_raise(ctrl->channels[c].irq[0]);
369
        else
370
                qemu_irq_lower(ctrl->channels[c].irq[0]);
371
}
372

  
373
static void channel_out_run(struct fs_dma_ctrl *ctrl, int c)
374
{
375
	uint32_t len;
376
	uint32_t saved_data_buf;
377
	unsigned char buf[2 * 1024];
378

  
379
	if (ctrl->channels[c].eol == 1)
380
		return;
381

  
382
	saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
383

  
384
	D(printf("buf=%x after=%x saved_data_buf=%x\n",
385
		 (uint32_t)ctrl->channels[c].current_d.buf,
386
		 (uint32_t)ctrl->channels[c].current_d.after,
387
		 saved_data_buf));
388

  
389
	if (saved_data_buf == (uint32_t)ctrl->channels[c].current_d.after) {
390
		/* Done. Step to next.  */
391
		if (ctrl->channels[c].current_d.out_eop) {
392
			/* TODO: signal eop to the client.  */
393
			D(printf("signal eop\n"));
394
		}
395
		if (ctrl->channels[c].current_d.intr) {
396
			/* TODO: signal eop to the client.  */
397
			/* data intr.  */
398
			D(printf("signal intr\n"));
399
			ctrl->channels[c].regs[R_INTR] |= (1 << 2);
400
			channel_update_irq(ctrl, c);
401
		}
402
		if (ctrl->channels[c].current_d.eol) {
403
			D(printf("channel %d EOL\n", c));
404
			ctrl->channels[c].eol = 1;
405
			channel_stop(ctrl, c);
406
		} else {
407
			ctrl->channels[c].regs[RW_SAVED_DATA] =
408
				(uint32_t) ctrl->channels[c].current_d.next;
409
			/* Load new descriptor.  */
410
			channel_load_d(ctrl, c);
411
		}
412

  
413
		channel_store_d(ctrl, c);
414
		D(dump_d(c, &ctrl->channels[c].current_d));
415
		return;
416
	}
417

  
418
	len = (uint32_t) ctrl->channels[c].current_d.after;
419
	len -= saved_data_buf;
420

  
421
	if (len > sizeof buf)
422
		len = sizeof buf;
423
	cpu_physical_memory_read (saved_data_buf, buf, len);
424

  
425
	D(printf("channel %d pushes %x %u bytes\n", c, 
426
		 saved_data_buf, len));
427
	/* TODO: Push content.  */
428
	if (ctrl->channels[c].client->client.push)
429
		ctrl->channels[c].client->client.push(
430
			ctrl->channels[c].client->client.opaque, buf, len);
431
	else
432
		printf("WARNING: DMA ch%d dataloss, no attached client.\n", c);
433

  
434
	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] += len;
435
}
436

  
437
static int channel_in_process(struct fs_dma_ctrl *ctrl, int c, 
438
			      unsigned char *buf, int buflen, int eop)
439
{
440
	uint32_t len;
441
	uint32_t saved_data_buf;
442

  
443
	if (ctrl->channels[c].eol == 1)
444
		return 0;
445

  
446
	saved_data_buf = channel_reg(ctrl, c, RW_SAVED_DATA_BUF);
447
	len = (uint32_t) ctrl->channels[c].current_d.after;
448
	len -= saved_data_buf;
449
	
450
	if (len > buflen)
451
		len = buflen;
452

  
453
	cpu_physical_memory_write (saved_data_buf, buf, len);
454
	saved_data_buf += len;
455

  
456
	if (saved_data_buf == (uint32_t)ctrl->channels[c].current_d.after
457
	    || eop) {
458
		uint32_t r_intr = ctrl->channels[c].regs[R_INTR];
459

  
460
		D(printf("in dscr end len=%d\n", 
461
			 ctrl->channels[c].current_d.after
462
			 - ctrl->channels[c].current_d.buf));
463
		ctrl->channels[c].current_d.after = 
464
			(void *) saved_data_buf;
465

  
466
		/* Done. Step to next.  */
467
		if (ctrl->channels[c].current_d.intr) {
468
			/* TODO: signal eop to the client.  */
469
			/* data intr.  */
470
			ctrl->channels[c].regs[R_INTR] |= 3;
471
		}
472
		if (eop) {
473
			ctrl->channels[c].current_d.in_eop = 1;
474
			ctrl->channels[c].regs[R_INTR] |= 8;
475
		}
476
		if (r_intr != ctrl->channels[c].regs[R_INTR])
477
			channel_update_irq(ctrl, c);
478

  
479
		channel_store_d(ctrl, c);
480
		D(dump_d(c, &ctrl->channels[c].current_d));
481

  
482
		if (ctrl->channels[c].current_d.eol) {
483
			D(printf("channel %d EOL\n", c));
484
			ctrl->channels[c].eol = 1;
485
			channel_stop(ctrl, c);
486
		} else {
487
			ctrl->channels[c].regs[RW_SAVED_DATA] =
488
				(uint32_t) ctrl->channels[c].current_d.next;
489
			/* Load new descriptor.  */
490
			channel_load_d(ctrl, c);
491
			saved_data_buf =
492
				ctrl->channels[c].regs[RW_SAVED_DATA_BUF];
493
		}
494
	}
495

  
496
	ctrl->channels[c].regs[RW_SAVED_DATA_BUF] = saved_data_buf;
497
	return len;
498
}
499

  
500
static inline void channel_in_run(struct fs_dma_ctrl *ctrl, int c)
501
{
502
	if (ctrl->channels[c].client->client.pull)
503
		ctrl->channels[c].client->client.pull(
504
			ctrl->channels[c].client->client.opaque);
505
}
506

  
507
static uint32_t dma_rinvalid (void *opaque, target_phys_addr_t addr)
508
{
509
        struct fs_dma_ctrl *ctrl = opaque;
510
        CPUState *env = ctrl->env;
511
        cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
512
                  addr, env->pc);
513
        return 0;
514
}
515

  
516
static uint32_t
517
dma_readl (void *opaque, target_phys_addr_t addr)
518
{
519
        struct fs_dma_ctrl *ctrl = opaque;
520
	int c;
521
	uint32_t r = 0;
522

  
523
	/* Make addr relative to this instances base.  */
524
	c = fs_channel(ctrl->base, addr);
525
        addr &= 0x1fff;
526
	switch (addr)
527
        {
528
		case RW_STAT:
529
			r = ctrl->channels[c].state & 7;
530
			r |= ctrl->channels[c].eol << 5;
531
			r |= ctrl->channels[c].stream_cmd_src << 8;
532
			break;
533

  
534
                default:
535
			r = ctrl->channels[c].regs[addr];
536
			D(printf ("%s c=%d addr=%x pc=%x\n",
537
				 __func__, c, addr, env->pc));
538
                        break;
539
        }
540
	return r;
541
}
542

  
543
static void
544
dma_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
545
{
546
        struct fs_dma_ctrl *ctrl = opaque;
547
        CPUState *env = ctrl->env;
548
        cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n", 
549
                  addr, env->pc);
550
}
551

  
552
static void
553
dma_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
554
{
555
        struct fs_dma_ctrl *ctrl = opaque;
556
	int c;
557

  
558
        /* Make addr relative to this instances base.  */
559
	c = fs_channel(ctrl->base, addr);
560
        addr &= 0x1fff;
561
        switch (addr)
562
        {
563
		case RW_DATA:
564
			printf("RW_DATA=%x\n", value);			
565
			break;
566

  
567
		case RW_CFG:
568
			ctrl->channels[c].regs[addr] = value;
569
			break;
570
		case RW_CMD:
571
			/* continue.  */
572
			ctrl->channels[c].regs[addr] = value;
573
			channel_continue(ctrl, c);
574
			break;
575

  
576
		case RW_SAVED_DATA:
577
		case RW_SAVED_DATA_BUF:
578
		case RW_GROUP:
579
		case RW_GROUP_DOWN:
580
			ctrl->channels[c].regs[addr] = value;
581
			break;
582

  
583
		case RW_ACK_INTR:
584
		case RW_INTR_MASK:
585
			ctrl->channels[c].regs[addr] = value;
586
			channel_update_irq(ctrl, c);
587
			if (addr == RW_ACK_INTR)
588
				ctrl->channels[c].regs[RW_ACK_INTR] = 0;
589
			break;
590

  
591
		case RW_STREAM_CMD:
592
			ctrl->channels[c].regs[addr] = value;
593
			channel_stream_cmd(ctrl, c, value);
594
			break;
595

  
596
                default:
597
                        D(printf ("%s c=%d %x %x pc=%x\n",
598
				  __func__, c, addr, value, env->pc));
599
                        break;
600
        }
601
}
602

  
603
static CPUReadMemoryFunc *dma_read[] = {
604
	&dma_rinvalid,
605
	&dma_rinvalid,
606
	&dma_readl,
607
};
608

  
609
static CPUWriteMemoryFunc *dma_write[] = {
610
	&dma_winvalid,
611
	&dma_winvalid,
612
	&dma_writel,
613
};
614

  
615
void etraxfs_dmac_run(void *opaque)
616
{
617
	struct fs_dma_ctrl *ctrl = opaque;
618
	int i;
619
	int p = 0;
620

  
621
	for (i = 0; 
622
	     i < ctrl->nr_channels;
623
	     i++)
624
	{
625
		if (ctrl->channels[i].state == RUNNING)
626
		{
627
			p++;
628
			if (ctrl->channels[i].input)
629
				channel_in_run(ctrl, i);
630
			else
631
				channel_out_run(ctrl, i);
632
		}
633
	}
634
}
635

  
636
int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
637
		       void *buf, int len, int eop)
638
{
639
	return channel_in_process(client->ctrl, client->channel, 
640
				  buf, len, eop);
641
}
642

  
643
/* Connect an IRQ line with a channel.  */
644
void etraxfs_dmac_connect(void *opaque, int c, qemu_irq *line, int input)
645
{
646
	struct fs_dma_ctrl *ctrl = opaque;
647
	ctrl->channels[c].irq = line;
648
	ctrl->channels[c].input = input;
649
}
650

  
651
void etraxfs_dmac_connect_client(void *opaque, int c, 
652
				 struct etraxfs_dma_client *cl)
653
{
654
	struct fs_dma_ctrl *ctrl = opaque;
655
	cl->ctrl = ctrl;
656
	cl->channel = c;
657
	ctrl->channels[c].client = cl;
658
}
659

  
660

  
661
void *etraxfs_dmac_init(CPUState *env, 
662
			target_phys_addr_t base, int nr_channels)
663
{
664
	struct fs_dma_ctrl *ctrl = NULL;
665
	int i;
666

  
667
	ctrl = qemu_mallocz(sizeof *ctrl);
668
	if (!ctrl)
669
		return NULL;
670

  
671
	ctrl->base = base;
672
	ctrl->env = env;
673
	ctrl->nr_channels = nr_channels;
674
	ctrl->channels = qemu_mallocz(sizeof ctrl->channels[0] * nr_channels);
675
	if (!ctrl->channels)
676
		goto err;
677

  
678
	for (i = 0; i < nr_channels; i++)
679
	{
680
		ctrl->channels[i].regmap = cpu_register_io_memory(0,
681
								  dma_read, 
682
								  dma_write, 
683
								  ctrl);
684
		cpu_register_physical_memory (base + i * 0x2000,
685
					      sizeof ctrl->channels[i].regs, 
686
					      ctrl->channels[i].regmap);
687
	}
688

  
689
	return ctrl;
690
  err:
691
	qemu_free(ctrl->channels);
692
	qemu_free(ctrl);
693
	return NULL;
694
}
b/hw/etraxfs_dma.h
1
struct etraxfs_dma_client
2
{
3
	/* DMA controller. */
4
	int channel;
5
	void *ctrl;
6

  
7
	/* client.  */
8
	struct
9
	{
10
		int (*push)(void *opaque, unsigned char *buf, int len);
11
		void (*pull)(void *opaque);
12
		void *opaque;
13
	} client;
14
};
15

  
16
void *etraxfs_dmac_init(CPUState *env, target_phys_addr_t base, 
17
			int nr_channels);
18
void etraxfs_dmac_connect(void *opaque, int channel, qemu_irq *line,
19
			  int input);
20
void etraxfs_dmac_connect_client(void *opaque, int c, 
21
				 struct etraxfs_dma_client *cl);
22
void etraxfs_dmac_run(void *opaque);
23
int etraxfs_dmac_input(struct etraxfs_dma_client *client, 
24
		       void *buf, int len, int eop);

Also available in: Unified diff