Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 1d45f8b5

History | View | Annotate | Download (74.1 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4

    
5
@documentlanguage en
6
@documentencoding UTF-8
7

    
8
@settitle QEMU Emulator User Documentation
9
@exampleindent 0
10
@paragraphindent 0
11
@c %**end of header
12

    
13
@ifinfo
14
@direntry
15
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16
@end direntry
17
@end ifinfo
18

    
19
@iftex
20
@titlepage
21
@sp 7
22
@center @titlefont{QEMU Emulator}
23
@sp 1
24
@center @titlefont{User Documentation}
25
@sp 3
26
@end titlepage
27
@end iftex
28

    
29
@ifnottex
30
@node Top
31
@top
32

    
33
@menu
34
* Introduction::
35
* Installation::
36
* QEMU PC System emulator::
37
* QEMU System emulator for non PC targets::
38
* QEMU User space emulator::
39
* compilation:: Compilation from the sources
40
* License::
41
* Index::
42
@end menu
43
@end ifnottex
44

    
45
@contents
46

    
47
@node Introduction
48
@chapter Introduction
49

    
50
@menu
51
* intro_features:: Features
52
@end menu
53

    
54
@node intro_features
55
@section Features
56

    
57
QEMU is a FAST! processor emulator using dynamic translation to
58
achieve good emulation speed.
59

    
60
QEMU has two operating modes:
61

    
62
@itemize
63
@cindex operating modes
64

    
65
@item
66
@cindex system emulation
67
Full system emulation. In this mode, QEMU emulates a full system (for
68
example a PC), including one or several processors and various
69
peripherals. It can be used to launch different Operating Systems
70
without rebooting the PC or to debug system code.
71

    
72
@item
73
@cindex user mode emulation
74
User mode emulation. In this mode, QEMU can launch
75
processes compiled for one CPU on another CPU. It can be used to
76
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77
to ease cross-compilation and cross-debugging.
78

    
79
@end itemize
80

    
81
QEMU can run without an host kernel driver and yet gives acceptable
82
performance.
83

    
84
For system emulation, the following hardware targets are supported:
85
@itemize
86
@cindex emulated target systems
87
@cindex supported target systems
88
@item PC (x86 or x86_64 processor)
89
@item ISA PC (old style PC without PCI bus)
90
@item PREP (PowerPC processor)
91
@item G3 Beige PowerMac (PowerPC processor)
92
@item Mac99 PowerMac (PowerPC processor, in progress)
93
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95
@item Malta board (32-bit and 64-bit MIPS processors)
96
@item MIPS Magnum (64-bit MIPS processor)
97
@item ARM Integrator/CP (ARM)
98
@item ARM Versatile baseboard (ARM)
99
@item ARM RealView Emulation/Platform baseboard (ARM)
100
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103
@item Freescale MCF5208EVB (ColdFire V2).
104
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105
@item Palm Tungsten|E PDA (OMAP310 processor)
106
@item N800 and N810 tablets (OMAP2420 processor)
107
@item MusicPal (MV88W8618 ARM processor)
108
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109
@item Siemens SX1 smartphone (OMAP310 processor)
110
@item Syborg SVP base model (ARM Cortex-A8).
111
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113
@end itemize
114

    
115
@cindex supported user mode targets
116
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119

    
120
@node Installation
121
@chapter Installation
122

    
123
If you want to compile QEMU yourself, see @ref{compilation}.
124

    
125
@menu
126
* install_linux::   Linux
127
* install_windows:: Windows
128
* install_mac::     Macintosh
129
@end menu
130

    
131
@node install_linux
132
@section Linux
133
@cindex installation (Linux)
134

    
135
If a precompiled package is available for your distribution - you just
136
have to install it. Otherwise, see @ref{compilation}.
137

    
138
@node install_windows
139
@section Windows
140
@cindex installation (Windows)
141

    
142
Download the experimental binary installer at
143
@url{http://www.free.oszoo.org/@/download.html}.
144
TODO (no longer available)
145

    
146
@node install_mac
147
@section Mac OS X
148

    
149
Download the experimental binary installer at
150
@url{http://www.free.oszoo.org/@/download.html}.
151
TODO (no longer available)
152

    
153
@node QEMU PC System emulator
154
@chapter QEMU PC System emulator
155
@cindex system emulation (PC)
156

    
157
@menu
158
* pcsys_introduction:: Introduction
159
* pcsys_quickstart::   Quick Start
160
* sec_invocation::     Invocation
161
* pcsys_keys::         Keys
162
* pcsys_monitor::      QEMU Monitor
163
* disk_images::        Disk Images
164
* pcsys_network::      Network emulation
165
* direct_linux_boot::  Direct Linux Boot
166
* pcsys_usb::          USB emulation
167
* vnc_security::       VNC security
168
* gdb_usage::          GDB usage
169
* pcsys_os_specific::  Target OS specific information
170
@end menu
171

    
172
@node pcsys_introduction
173
@section Introduction
174

    
175
@c man begin DESCRIPTION
176

    
177
The QEMU PC System emulator simulates the
178
following peripherals:
179

    
180
@itemize @minus
181
@item
182
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
183
@item
184
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
185
extensions (hardware level, including all non standard modes).
186
@item
187
PS/2 mouse and keyboard
188
@item
189
2 PCI IDE interfaces with hard disk and CD-ROM support
190
@item
191
Floppy disk
192
@item
193
PCI and ISA network adapters
194
@item
195
Serial ports
196
@item
197
Creative SoundBlaster 16 sound card
198
@item
199
ENSONIQ AudioPCI ES1370 sound card
200
@item
201
Intel 82801AA AC97 Audio compatible sound card
202
@item
203
Adlib(OPL2) - Yamaha YM3812 compatible chip
204
@item
205
Gravis Ultrasound GF1 sound card
206
@item
207
CS4231A compatible sound card
208
@item
209
PCI UHCI USB controller and a virtual USB hub.
210
@end itemize
211

    
212
SMP is supported with up to 255 CPUs.
213

    
214
Note that adlib, gus and cs4231a are only available when QEMU was
215
configured with --audio-card-list option containing the name(s) of
216
required card(s).
217

    
218
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
219
VGA BIOS.
220

    
221
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
222

    
223
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
224
by Tibor "TS" Schütz.
225

    
226
Not that, by default, GUS shares IRQ(7) with parallel ports and so
227
qemu must be told to not have parallel ports to have working GUS
228

    
229
@example
230
qemu dos.img -soundhw gus -parallel none
231
@end example
232

    
233
Alternatively:
234
@example
235
qemu dos.img -device gus,irq=5
236
@end example
237

    
238
Or some other unclaimed IRQ.
239

    
240
CS4231A is the chip used in Windows Sound System and GUSMAX products
241

    
242
@c man end
243

    
244
@node pcsys_quickstart
245
@section Quick Start
246
@cindex quick start
247

    
248
Download and uncompress the linux image (@file{linux.img}) and type:
249

    
250
@example
251
qemu linux.img
252
@end example
253

    
254
Linux should boot and give you a prompt.
255

    
256
@node sec_invocation
257
@section Invocation
258

    
259
@example
260
@c man begin SYNOPSIS
261
usage: qemu [options] [@var{disk_image}]
262
@c man end
263
@end example
264

    
265
@c man begin OPTIONS
266
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
267
targets do not need a disk image.
268

    
269
@include qemu-options.texi
270

    
271
@c man end
272

    
273
@node pcsys_keys
274
@section Keys
275

    
276
@c man begin OPTIONS
277

    
278
During the graphical emulation, you can use the following keys:
279
@table @key
280
@item Ctrl-Alt-f
281
@kindex Ctrl-Alt-f
282
Toggle full screen
283

    
284
@item Ctrl-Alt-u
285
@kindex Ctrl-Alt-u
286
Restore the screen's un-scaled dimensions
287

    
288
@item Ctrl-Alt-n
289
@kindex Ctrl-Alt-n
290
Switch to virtual console 'n'. Standard console mappings are:
291
@table @emph
292
@item 1
293
Target system display
294
@item 2
295
Monitor
296
@item 3
297
Serial port
298
@end table
299

    
300
@item Ctrl-Alt
301
@kindex Ctrl-Alt
302
Toggle mouse and keyboard grab.
303
@end table
304

    
305
@kindex Ctrl-Up
306
@kindex Ctrl-Down
307
@kindex Ctrl-PageUp
308
@kindex Ctrl-PageDown
309
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
310
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
311

    
312
@kindex Ctrl-a h
313
During emulation, if you are using the @option{-nographic} option, use
314
@key{Ctrl-a h} to get terminal commands:
315

    
316
@table @key
317
@item Ctrl-a h
318
@kindex Ctrl-a h
319
@item Ctrl-a ?
320
@kindex Ctrl-a ?
321
Print this help
322
@item Ctrl-a x
323
@kindex Ctrl-a x
324
Exit emulator
325
@item Ctrl-a s
326
@kindex Ctrl-a s
327
Save disk data back to file (if -snapshot)
328
@item Ctrl-a t
329
@kindex Ctrl-a t
330
Toggle console timestamps
331
@item Ctrl-a b
332
@kindex Ctrl-a b
333
Send break (magic sysrq in Linux)
334
@item Ctrl-a c
335
@kindex Ctrl-a c
336
Switch between console and monitor
337
@item Ctrl-a Ctrl-a
338
@kindex Ctrl-a a
339
Send Ctrl-a
340
@end table
341
@c man end
342

    
343
@ignore
344

    
345
@c man begin SEEALSO
346
The HTML documentation of QEMU for more precise information and Linux
347
user mode emulator invocation.
348
@c man end
349

    
350
@c man begin AUTHOR
351
Fabrice Bellard
352
@c man end
353

    
354
@end ignore
355

    
356
@node pcsys_monitor
357
@section QEMU Monitor
358
@cindex QEMU monitor
359

    
360
The QEMU monitor is used to give complex commands to the QEMU
361
emulator. You can use it to:
362

    
363
@itemize @minus
364

    
365
@item
366
Remove or insert removable media images
367
(such as CD-ROM or floppies).
368

    
369
@item
370
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
371
from a disk file.
372

    
373
@item Inspect the VM state without an external debugger.
374

    
375
@end itemize
376

    
377
@subsection Commands
378

    
379
The following commands are available:
380

    
381
@include qemu-monitor.texi
382

    
383
@subsection Integer expressions
384

    
385
The monitor understands integers expressions for every integer
386
argument. You can use register names to get the value of specifics
387
CPU registers by prefixing them with @emph{$}.
388

    
389
@node disk_images
390
@section Disk Images
391

    
392
Since version 0.6.1, QEMU supports many disk image formats, including
393
growable disk images (their size increase as non empty sectors are
394
written), compressed and encrypted disk images. Version 0.8.3 added
395
the new qcow2 disk image format which is essential to support VM
396
snapshots.
397

    
398
@menu
399
* disk_images_quickstart::    Quick start for disk image creation
400
* disk_images_snapshot_mode:: Snapshot mode
401
* vm_snapshots::              VM snapshots
402
* qemu_img_invocation::       qemu-img Invocation
403
* qemu_nbd_invocation::       qemu-nbd Invocation
404
* host_drives::               Using host drives
405
* disk_images_fat_images::    Virtual FAT disk images
406
* disk_images_nbd::           NBD access
407
@end menu
408

    
409
@node disk_images_quickstart
410
@subsection Quick start for disk image creation
411

    
412
You can create a disk image with the command:
413
@example
414
qemu-img create myimage.img mysize
415
@end example
416
where @var{myimage.img} is the disk image filename and @var{mysize} is its
417
size in kilobytes. You can add an @code{M} suffix to give the size in
418
megabytes and a @code{G} suffix for gigabytes.
419

    
420
See @ref{qemu_img_invocation} for more information.
421

    
422
@node disk_images_snapshot_mode
423
@subsection Snapshot mode
424

    
425
If you use the option @option{-snapshot}, all disk images are
426
considered as read only. When sectors in written, they are written in
427
a temporary file created in @file{/tmp}. You can however force the
428
write back to the raw disk images by using the @code{commit} monitor
429
command (or @key{C-a s} in the serial console).
430

    
431
@node vm_snapshots
432
@subsection VM snapshots
433

    
434
VM snapshots are snapshots of the complete virtual machine including
435
CPU state, RAM, device state and the content of all the writable
436
disks. In order to use VM snapshots, you must have at least one non
437
removable and writable block device using the @code{qcow2} disk image
438
format. Normally this device is the first virtual hard drive.
439

    
440
Use the monitor command @code{savevm} to create a new VM snapshot or
441
replace an existing one. A human readable name can be assigned to each
442
snapshot in addition to its numerical ID.
443

    
444
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
445
a VM snapshot. @code{info snapshots} lists the available snapshots
446
with their associated information:
447

    
448
@example
449
(qemu) info snapshots
450
Snapshot devices: hda
451
Snapshot list (from hda):
452
ID        TAG                 VM SIZE                DATE       VM CLOCK
453
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
454
2                                 40M 2006-08-06 12:43:29   00:00:18.633
455
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
456
@end example
457

    
458
A VM snapshot is made of a VM state info (its size is shown in
459
@code{info snapshots}) and a snapshot of every writable disk image.
460
The VM state info is stored in the first @code{qcow2} non removable
461
and writable block device. The disk image snapshots are stored in
462
every disk image. The size of a snapshot in a disk image is difficult
463
to evaluate and is not shown by @code{info snapshots} because the
464
associated disk sectors are shared among all the snapshots to save
465
disk space (otherwise each snapshot would need a full copy of all the
466
disk images).
467

    
468
When using the (unrelated) @code{-snapshot} option
469
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
470
but they are deleted as soon as you exit QEMU.
471

    
472
VM snapshots currently have the following known limitations:
473
@itemize
474
@item
475
They cannot cope with removable devices if they are removed or
476
inserted after a snapshot is done.
477
@item
478
A few device drivers still have incomplete snapshot support so their
479
state is not saved or restored properly (in particular USB).
480
@end itemize
481

    
482
@node qemu_img_invocation
483
@subsection @code{qemu-img} Invocation
484

    
485
@include qemu-img.texi
486

    
487
@node qemu_nbd_invocation
488
@subsection @code{qemu-nbd} Invocation
489

    
490
@include qemu-nbd.texi
491

    
492
@node host_drives
493
@subsection Using host drives
494

    
495
In addition to disk image files, QEMU can directly access host
496
devices. We describe here the usage for QEMU version >= 0.8.3.
497

    
498
@subsubsection Linux
499

    
500
On Linux, you can directly use the host device filename instead of a
501
disk image filename provided you have enough privileges to access
502
it. For example, use @file{/dev/cdrom} to access to the CDROM or
503
@file{/dev/fd0} for the floppy.
504

    
505
@table @code
506
@item CD
507
You can specify a CDROM device even if no CDROM is loaded. QEMU has
508
specific code to detect CDROM insertion or removal. CDROM ejection by
509
the guest OS is supported. Currently only data CDs are supported.
510
@item Floppy
511
You can specify a floppy device even if no floppy is loaded. Floppy
512
removal is currently not detected accurately (if you change floppy
513
without doing floppy access while the floppy is not loaded, the guest
514
OS will think that the same floppy is loaded).
515
@item Hard disks
516
Hard disks can be used. Normally you must specify the whole disk
517
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
518
see it as a partitioned disk. WARNING: unless you know what you do, it
519
is better to only make READ-ONLY accesses to the hard disk otherwise
520
you may corrupt your host data (use the @option{-snapshot} command
521
line option or modify the device permissions accordingly).
522
@end table
523

    
524
@subsubsection Windows
525

    
526
@table @code
527
@item CD
528
The preferred syntax is the drive letter (e.g. @file{d:}). The
529
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
530
supported as an alias to the first CDROM drive.
531

    
532
Currently there is no specific code to handle removable media, so it
533
is better to use the @code{change} or @code{eject} monitor commands to
534
change or eject media.
535
@item Hard disks
536
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
537
where @var{N} is the drive number (0 is the first hard disk).
538

    
539
WARNING: unless you know what you do, it is better to only make
540
READ-ONLY accesses to the hard disk otherwise you may corrupt your
541
host data (use the @option{-snapshot} command line so that the
542
modifications are written in a temporary file).
543
@end table
544

    
545

    
546
@subsubsection Mac OS X
547

    
548
@file{/dev/cdrom} is an alias to the first CDROM.
549

    
550
Currently there is no specific code to handle removable media, so it
551
is better to use the @code{change} or @code{eject} monitor commands to
552
change or eject media.
553

    
554
@node disk_images_fat_images
555
@subsection Virtual FAT disk images
556

    
557
QEMU can automatically create a virtual FAT disk image from a
558
directory tree. In order to use it, just type:
559

    
560
@example
561
qemu linux.img -hdb fat:/my_directory
562
@end example
563

    
564
Then you access access to all the files in the @file{/my_directory}
565
directory without having to copy them in a disk image or to export
566
them via SAMBA or NFS. The default access is @emph{read-only}.
567

    
568
Floppies can be emulated with the @code{:floppy:} option:
569

    
570
@example
571
qemu linux.img -fda fat:floppy:/my_directory
572
@end example
573

    
574
A read/write support is available for testing (beta stage) with the
575
@code{:rw:} option:
576

    
577
@example
578
qemu linux.img -fda fat:floppy:rw:/my_directory
579
@end example
580

    
581
What you should @emph{never} do:
582
@itemize
583
@item use non-ASCII filenames ;
584
@item use "-snapshot" together with ":rw:" ;
585
@item expect it to work when loadvm'ing ;
586
@item write to the FAT directory on the host system while accessing it with the guest system.
587
@end itemize
588

    
589
@node disk_images_nbd
590
@subsection NBD access
591

    
592
QEMU can access directly to block device exported using the Network Block Device
593
protocol.
594

    
595
@example
596
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
597
@end example
598

    
599
If the NBD server is located on the same host, you can use an unix socket instead
600
of an inet socket:
601

    
602
@example
603
qemu linux.img -hdb nbd:unix:/tmp/my_socket
604
@end example
605

    
606
In this case, the block device must be exported using qemu-nbd:
607

    
608
@example
609
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
610
@end example
611

    
612
The use of qemu-nbd allows to share a disk between several guests:
613
@example
614
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
615
@end example
616

    
617
and then you can use it with two guests:
618
@example
619
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
620
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
621
@end example
622

    
623
If the nbd-server uses named exports (since NBD 2.9.18), you must use the
624
"exportname" option:
625
@example
626
qemu -cdrom nbd:localhost:exportname=debian-500-ppc-netinst
627
qemu -cdrom nbd:localhost:exportname=openSUSE-11.1-ppc-netinst
628
@end example
629

    
630
@node pcsys_network
631
@section Network emulation
632

    
633
QEMU can simulate several network cards (PCI or ISA cards on the PC
634
target) and can connect them to an arbitrary number of Virtual Local
635
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
636
VLAN. VLAN can be connected between separate instances of QEMU to
637
simulate large networks. For simpler usage, a non privileged user mode
638
network stack can replace the TAP device to have a basic network
639
connection.
640

    
641
@subsection VLANs
642

    
643
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
644
connection between several network devices. These devices can be for
645
example QEMU virtual Ethernet cards or virtual Host ethernet devices
646
(TAP devices).
647

    
648
@subsection Using TAP network interfaces
649

    
650
This is the standard way to connect QEMU to a real network. QEMU adds
651
a virtual network device on your host (called @code{tapN}), and you
652
can then configure it as if it was a real ethernet card.
653

    
654
@subsubsection Linux host
655

    
656
As an example, you can download the @file{linux-test-xxx.tar.gz}
657
archive and copy the script @file{qemu-ifup} in @file{/etc} and
658
configure properly @code{sudo} so that the command @code{ifconfig}
659
contained in @file{qemu-ifup} can be executed as root. You must verify
660
that your host kernel supports the TAP network interfaces: the
661
device @file{/dev/net/tun} must be present.
662

    
663
See @ref{sec_invocation} to have examples of command lines using the
664
TAP network interfaces.
665

    
666
@subsubsection Windows host
667

    
668
There is a virtual ethernet driver for Windows 2000/XP systems, called
669
TAP-Win32. But it is not included in standard QEMU for Windows,
670
so you will need to get it separately. It is part of OpenVPN package,
671
so download OpenVPN from : @url{http://openvpn.net/}.
672

    
673
@subsection Using the user mode network stack
674

    
675
By using the option @option{-net user} (default configuration if no
676
@option{-net} option is specified), QEMU uses a completely user mode
677
network stack (you don't need root privilege to use the virtual
678
network). The virtual network configuration is the following:
679

    
680
@example
681

    
682
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
683
                           |          (10.0.2.2)
684
                           |
685
                           ---->  DNS server (10.0.2.3)
686
                           |
687
                           ---->  SMB server (10.0.2.4)
688
@end example
689

    
690
The QEMU VM behaves as if it was behind a firewall which blocks all
691
incoming connections. You can use a DHCP client to automatically
692
configure the network in the QEMU VM. The DHCP server assign addresses
693
to the hosts starting from 10.0.2.15.
694

    
695
In order to check that the user mode network is working, you can ping
696
the address 10.0.2.2 and verify that you got an address in the range
697
10.0.2.x from the QEMU virtual DHCP server.
698

    
699
Note that @code{ping} is not supported reliably to the internet as it
700
would require root privileges. It means you can only ping the local
701
router (10.0.2.2).
702

    
703
When using the built-in TFTP server, the router is also the TFTP
704
server.
705

    
706
When using the @option{-redir} option, TCP or UDP connections can be
707
redirected from the host to the guest. It allows for example to
708
redirect X11, telnet or SSH connections.
709

    
710
@subsection Connecting VLANs between QEMU instances
711

    
712
Using the @option{-net socket} option, it is possible to make VLANs
713
that span several QEMU instances. See @ref{sec_invocation} to have a
714
basic example.
715

    
716
@section Other Devices
717

    
718
@subsection Inter-VM Shared Memory device
719

    
720
With KVM enabled on a Linux host, a shared memory device is available.  Guests
721
map a POSIX shared memory region into the guest as a PCI device that enables
722
zero-copy communication to the application level of the guests.  The basic
723
syntax is:
724

    
725
@example
726
qemu -device ivshmem,size=<size in format accepted by -m>[,shm=<shm name>]
727
@end example
728

    
729
If desired, interrupts can be sent between guest VMs accessing the same shared
730
memory region.  Interrupt support requires using a shared memory server and
731
using a chardev socket to connect to it.  The code for the shared memory server
732
is qemu.git/contrib/ivshmem-server.  An example syntax when using the shared
733
memory server is:
734

    
735
@example
736
qemu -device ivshmem,size=<size in format accepted by -m>[,chardev=<id>]
737
                        [,msi=on][,ioeventfd=on][,vectors=n][,role=peer|master]
738
qemu -chardev socket,path=<path>,id=<id>
739
@end example
740

    
741
When using the server, the guest will be assigned a VM ID (>=0) that allows guests
742
using the same server to communicate via interrupts.  Guests can read their
743
VM ID from a device register (see example code).  Since receiving the shared
744
memory region from the server is asynchronous, there is a (small) chance the
745
guest may boot before the shared memory is attached.  To allow an application
746
to ensure shared memory is attached, the VM ID register will return -1 (an
747
invalid VM ID) until the memory is attached.  Once the shared memory is
748
attached, the VM ID will return the guest's valid VM ID.  With these semantics,
749
the guest application can check to ensure the shared memory is attached to the
750
guest before proceeding.
751

    
752
The @option{role} argument can be set to either master or peer and will affect
753
how the shared memory is migrated.  With @option{role=master}, the guest will
754
copy the shared memory on migration to the destination host.  With
755
@option{role=peer}, the guest will not be able to migrate with the device attached.
756
With the @option{peer} case, the device should be detached and then reattached
757
after migration using the PCI hotplug support.
758

    
759
@node direct_linux_boot
760
@section Direct Linux Boot
761

    
762
This section explains how to launch a Linux kernel inside QEMU without
763
having to make a full bootable image. It is very useful for fast Linux
764
kernel testing.
765

    
766
The syntax is:
767
@example
768
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
769
@end example
770

    
771
Use @option{-kernel} to provide the Linux kernel image and
772
@option{-append} to give the kernel command line arguments. The
773
@option{-initrd} option can be used to provide an INITRD image.
774

    
775
When using the direct Linux boot, a disk image for the first hard disk
776
@file{hda} is required because its boot sector is used to launch the
777
Linux kernel.
778

    
779
If you do not need graphical output, you can disable it and redirect
780
the virtual serial port and the QEMU monitor to the console with the
781
@option{-nographic} option. The typical command line is:
782
@example
783
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
784
     -append "root=/dev/hda console=ttyS0" -nographic
785
@end example
786

    
787
Use @key{Ctrl-a c} to switch between the serial console and the
788
monitor (@pxref{pcsys_keys}).
789

    
790
@node pcsys_usb
791
@section USB emulation
792

    
793
QEMU emulates a PCI UHCI USB controller. You can virtually plug
794
virtual USB devices or real host USB devices (experimental, works only
795
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
796
as necessary to connect multiple USB devices.
797

    
798
@menu
799
* usb_devices::
800
* host_usb_devices::
801
@end menu
802
@node usb_devices
803
@subsection Connecting USB devices
804

    
805
USB devices can be connected with the @option{-usbdevice} commandline option
806
or the @code{usb_add} monitor command.  Available devices are:
807

    
808
@table @code
809
@item mouse
810
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
811
@item tablet
812
Pointer device that uses absolute coordinates (like a touchscreen).
813
This means qemu is able to report the mouse position without having
814
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
815
@item disk:@var{file}
816
Mass storage device based on @var{file} (@pxref{disk_images})
817
@item host:@var{bus.addr}
818
Pass through the host device identified by @var{bus.addr}
819
(Linux only)
820
@item host:@var{vendor_id:product_id}
821
Pass through the host device identified by @var{vendor_id:product_id}
822
(Linux only)
823
@item wacom-tablet
824
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
825
above but it can be used with the tslib library because in addition to touch
826
coordinates it reports touch pressure.
827
@item keyboard
828
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
829
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
830
Serial converter. This emulates an FTDI FT232BM chip connected to host character
831
device @var{dev}. The available character devices are the same as for the
832
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
833
used to override the default 0403:6001. For instance, 
834
@example
835
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
836
@end example
837
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
838
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
839
@item braille
840
Braille device.  This will use BrlAPI to display the braille output on a real
841
or fake device.
842
@item net:@var{options}
843
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
844
specifies NIC options as with @code{-net nic,}@var{options} (see description).
845
For instance, user-mode networking can be used with
846
@example
847
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
848
@end example
849
Currently this cannot be used in machines that support PCI NICs.
850
@item bt[:@var{hci-type}]
851
Bluetooth dongle whose type is specified in the same format as with
852
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
853
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
854
This USB device implements the USB Transport Layer of HCI.  Example
855
usage:
856
@example
857
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
858
@end example
859
@end table
860

    
861
@node host_usb_devices
862
@subsection Using host USB devices on a Linux host
863

    
864
WARNING: this is an experimental feature. QEMU will slow down when
865
using it. USB devices requiring real time streaming (i.e. USB Video
866
Cameras) are not supported yet.
867

    
868
@enumerate
869
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
870
is actually using the USB device. A simple way to do that is simply to
871
disable the corresponding kernel module by renaming it from @file{mydriver.o}
872
to @file{mydriver.o.disabled}.
873

    
874
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
875
@example
876
ls /proc/bus/usb
877
001  devices  drivers
878
@end example
879

    
880
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
881
@example
882
chown -R myuid /proc/bus/usb
883
@end example
884

    
885
@item Launch QEMU and do in the monitor:
886
@example
887
info usbhost
888
  Device 1.2, speed 480 Mb/s
889
    Class 00: USB device 1234:5678, USB DISK
890
@end example
891
You should see the list of the devices you can use (Never try to use
892
hubs, it won't work).
893

    
894
@item Add the device in QEMU by using:
895
@example
896
usb_add host:1234:5678
897
@end example
898

    
899
Normally the guest OS should report that a new USB device is
900
plugged. You can use the option @option{-usbdevice} to do the same.
901

    
902
@item Now you can try to use the host USB device in QEMU.
903

    
904
@end enumerate
905

    
906
When relaunching QEMU, you may have to unplug and plug again the USB
907
device to make it work again (this is a bug).
908

    
909
@node vnc_security
910
@section VNC security
911

    
912
The VNC server capability provides access to the graphical console
913
of the guest VM across the network. This has a number of security
914
considerations depending on the deployment scenarios.
915

    
916
@menu
917
* vnc_sec_none::
918
* vnc_sec_password::
919
* vnc_sec_certificate::
920
* vnc_sec_certificate_verify::
921
* vnc_sec_certificate_pw::
922
* vnc_sec_sasl::
923
* vnc_sec_certificate_sasl::
924
* vnc_generate_cert::
925
* vnc_setup_sasl::
926
@end menu
927
@node vnc_sec_none
928
@subsection Without passwords
929

    
930
The simplest VNC server setup does not include any form of authentication.
931
For this setup it is recommended to restrict it to listen on a UNIX domain
932
socket only. For example
933

    
934
@example
935
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
936
@end example
937

    
938
This ensures that only users on local box with read/write access to that
939
path can access the VNC server. To securely access the VNC server from a
940
remote machine, a combination of netcat+ssh can be used to provide a secure
941
tunnel.
942

    
943
@node vnc_sec_password
944
@subsection With passwords
945

    
946
The VNC protocol has limited support for password based authentication. Since
947
the protocol limits passwords to 8 characters it should not be considered
948
to provide high security. The password can be fairly easily brute-forced by
949
a client making repeat connections. For this reason, a VNC server using password
950
authentication should be restricted to only listen on the loopback interface
951
or UNIX domain sockets. Password authentication is requested with the @code{password}
952
option, and then once QEMU is running the password is set with the monitor. Until
953
the monitor is used to set the password all clients will be rejected.
954

    
955
@example
956
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
957
(qemu) change vnc password
958
Password: ********
959
(qemu)
960
@end example
961

    
962
@node vnc_sec_certificate
963
@subsection With x509 certificates
964

    
965
The QEMU VNC server also implements the VeNCrypt extension allowing use of
966
TLS for encryption of the session, and x509 certificates for authentication.
967
The use of x509 certificates is strongly recommended, because TLS on its
968
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
969
support provides a secure session, but no authentication. This allows any
970
client to connect, and provides an encrypted session.
971

    
972
@example
973
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
974
@end example
975

    
976
In the above example @code{/etc/pki/qemu} should contain at least three files,
977
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
978
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
979
NB the @code{server-key.pem} file should be protected with file mode 0600 to
980
only be readable by the user owning it.
981

    
982
@node vnc_sec_certificate_verify
983
@subsection With x509 certificates and client verification
984

    
985
Certificates can also provide a means to authenticate the client connecting.
986
The server will request that the client provide a certificate, which it will
987
then validate against the CA certificate. This is a good choice if deploying
988
in an environment with a private internal certificate authority.
989

    
990
@example
991
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
992
@end example
993

    
994

    
995
@node vnc_sec_certificate_pw
996
@subsection With x509 certificates, client verification and passwords
997

    
998
Finally, the previous method can be combined with VNC password authentication
999
to provide two layers of authentication for clients.
1000

    
1001
@example
1002
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1003
(qemu) change vnc password
1004
Password: ********
1005
(qemu)
1006
@end example
1007

    
1008

    
1009
@node vnc_sec_sasl
1010
@subsection With SASL authentication
1011

    
1012
The SASL authentication method is a VNC extension, that provides an
1013
easily extendable, pluggable authentication method. This allows for
1014
integration with a wide range of authentication mechanisms, such as
1015
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
1016
The strength of the authentication depends on the exact mechanism
1017
configured. If the chosen mechanism also provides a SSF layer, then
1018
it will encrypt the datastream as well.
1019

    
1020
Refer to the later docs on how to choose the exact SASL mechanism
1021
used for authentication, but assuming use of one supporting SSF,
1022
then QEMU can be launched with:
1023

    
1024
@example
1025
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
1026
@end example
1027

    
1028
@node vnc_sec_certificate_sasl
1029
@subsection With x509 certificates and SASL authentication
1030

    
1031
If the desired SASL authentication mechanism does not supported
1032
SSF layers, then it is strongly advised to run it in combination
1033
with TLS and x509 certificates. This provides securely encrypted
1034
data stream, avoiding risk of compromising of the security
1035
credentials. This can be enabled, by combining the 'sasl' option
1036
with the aforementioned TLS + x509 options:
1037

    
1038
@example
1039
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
1040
@end example
1041

    
1042

    
1043
@node vnc_generate_cert
1044
@subsection Generating certificates for VNC
1045

    
1046
The GNU TLS packages provides a command called @code{certtool} which can
1047
be used to generate certificates and keys in PEM format. At a minimum it
1048
is neccessary to setup a certificate authority, and issue certificates to
1049
each server. If using certificates for authentication, then each client
1050
will also need to be issued a certificate. The recommendation is for the
1051
server to keep its certificates in either @code{/etc/pki/qemu} or for
1052
unprivileged users in @code{$HOME/.pki/qemu}.
1053

    
1054
@menu
1055
* vnc_generate_ca::
1056
* vnc_generate_server::
1057
* vnc_generate_client::
1058
@end menu
1059
@node vnc_generate_ca
1060
@subsubsection Setup the Certificate Authority
1061

    
1062
This step only needs to be performed once per organization / organizational
1063
unit. First the CA needs a private key. This key must be kept VERY secret
1064
and secure. If this key is compromised the entire trust chain of the certificates
1065
issued with it is lost.
1066

    
1067
@example
1068
# certtool --generate-privkey > ca-key.pem
1069
@end example
1070

    
1071
A CA needs to have a public certificate. For simplicity it can be a self-signed
1072
certificate, or one issue by a commercial certificate issuing authority. To
1073
generate a self-signed certificate requires one core piece of information, the
1074
name of the organization.
1075

    
1076
@example
1077
# cat > ca.info <<EOF
1078
cn = Name of your organization
1079
ca
1080
cert_signing_key
1081
EOF
1082
# certtool --generate-self-signed \
1083
           --load-privkey ca-key.pem
1084
           --template ca.info \
1085
           --outfile ca-cert.pem
1086
@end example
1087

    
1088
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1089
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1090

    
1091
@node vnc_generate_server
1092
@subsubsection Issuing server certificates
1093

    
1094
Each server (or host) needs to be issued with a key and certificate. When connecting
1095
the certificate is sent to the client which validates it against the CA certificate.
1096
The core piece of information for a server certificate is the hostname. This should
1097
be the fully qualified hostname that the client will connect with, since the client
1098
will typically also verify the hostname in the certificate. On the host holding the
1099
secure CA private key:
1100

    
1101
@example
1102
# cat > server.info <<EOF
1103
organization = Name  of your organization
1104
cn = server.foo.example.com
1105
tls_www_server
1106
encryption_key
1107
signing_key
1108
EOF
1109
# certtool --generate-privkey > server-key.pem
1110
# certtool --generate-certificate \
1111
           --load-ca-certificate ca-cert.pem \
1112
           --load-ca-privkey ca-key.pem \
1113
           --load-privkey server server-key.pem \
1114
           --template server.info \
1115
           --outfile server-cert.pem
1116
@end example
1117

    
1118
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1119
to the server for which they were generated. The @code{server-key.pem} is security
1120
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1121

    
1122
@node vnc_generate_client
1123
@subsubsection Issuing client certificates
1124

    
1125
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1126
certificates as its authentication mechanism, each client also needs to be issued
1127
a certificate. The client certificate contains enough metadata to uniquely identify
1128
the client, typically organization, state, city, building, etc. On the host holding
1129
the secure CA private key:
1130

    
1131
@example
1132
# cat > client.info <<EOF
1133
country = GB
1134
state = London
1135
locality = London
1136
organiazation = Name of your organization
1137
cn = client.foo.example.com
1138
tls_www_client
1139
encryption_key
1140
signing_key
1141
EOF
1142
# certtool --generate-privkey > client-key.pem
1143
# certtool --generate-certificate \
1144
           --load-ca-certificate ca-cert.pem \
1145
           --load-ca-privkey ca-key.pem \
1146
           --load-privkey client-key.pem \
1147
           --template client.info \
1148
           --outfile client-cert.pem
1149
@end example
1150

    
1151
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1152
copied to the client for which they were generated.
1153

    
1154

    
1155
@node vnc_setup_sasl
1156

    
1157
@subsection Configuring SASL mechanisms
1158

    
1159
The following documentation assumes use of the Cyrus SASL implementation on a
1160
Linux host, but the principals should apply to any other SASL impl. When SASL
1161
is enabled, the mechanism configuration will be loaded from system default
1162
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1163
unprivileged user, an environment variable SASL_CONF_PATH can be used
1164
to make it search alternate locations for the service config.
1165

    
1166
The default configuration might contain
1167

    
1168
@example
1169
mech_list: digest-md5
1170
sasldb_path: /etc/qemu/passwd.db
1171
@end example
1172

    
1173
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1174
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1175
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1176
command. While this mechanism is easy to configure and use, it is not
1177
considered secure by modern standards, so only suitable for developers /
1178
ad-hoc testing.
1179

    
1180
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1181
mechanism
1182

    
1183
@example
1184
mech_list: gssapi
1185
keytab: /etc/qemu/krb5.tab
1186
@end example
1187

    
1188
For this to work the administrator of your KDC must generate a Kerberos
1189
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1190
replacing 'somehost.example.com' with the fully qualified host name of the
1191
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1192

    
1193
Other configurations will be left as an exercise for the reader. It should
1194
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1195
encryption. For all other mechanisms, VNC should always be configured to
1196
use TLS and x509 certificates to protect security credentials from snooping.
1197

    
1198
@node gdb_usage
1199
@section GDB usage
1200

    
1201
QEMU has a primitive support to work with gdb, so that you can do
1202
'Ctrl-C' while the virtual machine is running and inspect its state.
1203

    
1204
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1205
gdb connection:
1206
@example
1207
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1208
       -append "root=/dev/hda"
1209
Connected to host network interface: tun0
1210
Waiting gdb connection on port 1234
1211
@end example
1212

    
1213
Then launch gdb on the 'vmlinux' executable:
1214
@example
1215
> gdb vmlinux
1216
@end example
1217

    
1218
In gdb, connect to QEMU:
1219
@example
1220
(gdb) target remote localhost:1234
1221
@end example
1222

    
1223
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1224
@example
1225
(gdb) c
1226
@end example
1227

    
1228
Here are some useful tips in order to use gdb on system code:
1229

    
1230
@enumerate
1231
@item
1232
Use @code{info reg} to display all the CPU registers.
1233
@item
1234
Use @code{x/10i $eip} to display the code at the PC position.
1235
@item
1236
Use @code{set architecture i8086} to dump 16 bit code. Then use
1237
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1238
@end enumerate
1239

    
1240
Advanced debugging options:
1241

    
1242
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1243
@table @code
1244
@item maintenance packet qqemu.sstepbits
1245

    
1246
This will display the MASK bits used to control the single stepping IE:
1247
@example
1248
(gdb) maintenance packet qqemu.sstepbits
1249
sending: "qqemu.sstepbits"
1250
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1251
@end example
1252
@item maintenance packet qqemu.sstep
1253

    
1254
This will display the current value of the mask used when single stepping IE:
1255
@example
1256
(gdb) maintenance packet qqemu.sstep
1257
sending: "qqemu.sstep"
1258
received: "0x7"
1259
@end example
1260
@item maintenance packet Qqemu.sstep=HEX_VALUE
1261

    
1262
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1263
@example
1264
(gdb) maintenance packet Qqemu.sstep=0x5
1265
sending: "qemu.sstep=0x5"
1266
received: "OK"
1267
@end example
1268
@end table
1269

    
1270
@node pcsys_os_specific
1271
@section Target OS specific information
1272

    
1273
@subsection Linux
1274

    
1275
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1276
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1277
color depth in the guest and the host OS.
1278

    
1279
When using a 2.6 guest Linux kernel, you should add the option
1280
@code{clock=pit} on the kernel command line because the 2.6 Linux
1281
kernels make very strict real time clock checks by default that QEMU
1282
cannot simulate exactly.
1283

    
1284
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1285
not activated because QEMU is slower with this patch. The QEMU
1286
Accelerator Module is also much slower in this case. Earlier Fedora
1287
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1288
patch by default. Newer kernels don't have it.
1289

    
1290
@subsection Windows
1291

    
1292
If you have a slow host, using Windows 95 is better as it gives the
1293
best speed. Windows 2000 is also a good choice.
1294

    
1295
@subsubsection SVGA graphic modes support
1296

    
1297
QEMU emulates a Cirrus Logic GD5446 Video
1298
card. All Windows versions starting from Windows 95 should recognize
1299
and use this graphic card. For optimal performances, use 16 bit color
1300
depth in the guest and the host OS.
1301

    
1302
If you are using Windows XP as guest OS and if you want to use high
1303
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1304
1280x1024x16), then you should use the VESA VBE virtual graphic card
1305
(option @option{-std-vga}).
1306

    
1307
@subsubsection CPU usage reduction
1308

    
1309
Windows 9x does not correctly use the CPU HLT
1310
instruction. The result is that it takes host CPU cycles even when
1311
idle. You can install the utility from
1312
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1313
problem. Note that no such tool is needed for NT, 2000 or XP.
1314

    
1315
@subsubsection Windows 2000 disk full problem
1316

    
1317
Windows 2000 has a bug which gives a disk full problem during its
1318
installation. When installing it, use the @option{-win2k-hack} QEMU
1319
option to enable a specific workaround. After Windows 2000 is
1320
installed, you no longer need this option (this option slows down the
1321
IDE transfers).
1322

    
1323
@subsubsection Windows 2000 shutdown
1324

    
1325
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1326
can. It comes from the fact that Windows 2000 does not automatically
1327
use the APM driver provided by the BIOS.
1328

    
1329
In order to correct that, do the following (thanks to Struan
1330
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1331
Add/Troubleshoot a device => Add a new device & Next => No, select the
1332
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1333
(again) a few times. Now the driver is installed and Windows 2000 now
1334
correctly instructs QEMU to shutdown at the appropriate moment.
1335

    
1336
@subsubsection Share a directory between Unix and Windows
1337

    
1338
See @ref{sec_invocation} about the help of the option @option{-smb}.
1339

    
1340
@subsubsection Windows XP security problem
1341

    
1342
Some releases of Windows XP install correctly but give a security
1343
error when booting:
1344
@example
1345
A problem is preventing Windows from accurately checking the
1346
license for this computer. Error code: 0x800703e6.
1347
@end example
1348

    
1349
The workaround is to install a service pack for XP after a boot in safe
1350
mode. Then reboot, and the problem should go away. Since there is no
1351
network while in safe mode, its recommended to download the full
1352
installation of SP1 or SP2 and transfer that via an ISO or using the
1353
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1354

    
1355
@subsection MS-DOS and FreeDOS
1356

    
1357
@subsubsection CPU usage reduction
1358

    
1359
DOS does not correctly use the CPU HLT instruction. The result is that
1360
it takes host CPU cycles even when idle. You can install the utility
1361
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1362
problem.
1363

    
1364
@node QEMU System emulator for non PC targets
1365
@chapter QEMU System emulator for non PC targets
1366

    
1367
QEMU is a generic emulator and it emulates many non PC
1368
machines. Most of the options are similar to the PC emulator. The
1369
differences are mentioned in the following sections.
1370

    
1371
@menu
1372
* PowerPC System emulator::
1373
* Sparc32 System emulator::
1374
* Sparc64 System emulator::
1375
* MIPS System emulator::
1376
* ARM System emulator::
1377
* ColdFire System emulator::
1378
* Cris System emulator::
1379
* Microblaze System emulator::
1380
* SH4 System emulator::
1381
@end menu
1382

    
1383
@node PowerPC System emulator
1384
@section PowerPC System emulator
1385
@cindex system emulation (PowerPC)
1386

    
1387
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1388
or PowerMac PowerPC system.
1389

    
1390
QEMU emulates the following PowerMac peripherals:
1391

    
1392
@itemize @minus
1393
@item
1394
UniNorth or Grackle PCI Bridge
1395
@item
1396
PCI VGA compatible card with VESA Bochs Extensions
1397
@item
1398
2 PMAC IDE interfaces with hard disk and CD-ROM support
1399
@item
1400
NE2000 PCI adapters
1401
@item
1402
Non Volatile RAM
1403
@item
1404
VIA-CUDA with ADB keyboard and mouse.
1405
@end itemize
1406

    
1407
QEMU emulates the following PREP peripherals:
1408

    
1409
@itemize @minus
1410
@item
1411
PCI Bridge
1412
@item
1413
PCI VGA compatible card with VESA Bochs Extensions
1414
@item
1415
2 IDE interfaces with hard disk and CD-ROM support
1416
@item
1417
Floppy disk
1418
@item
1419
NE2000 network adapters
1420
@item
1421
Serial port
1422
@item
1423
PREP Non Volatile RAM
1424
@item
1425
PC compatible keyboard and mouse.
1426
@end itemize
1427

    
1428
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1429
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1430

    
1431
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1432
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1433
v2) portable firmware implementation. The goal is to implement a 100%
1434
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1435

    
1436
@c man begin OPTIONS
1437

    
1438
The following options are specific to the PowerPC emulation:
1439

    
1440
@table @option
1441

    
1442
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1443

    
1444
Set the initial VGA graphic mode. The default is 800x600x15.
1445

    
1446
@item -prom-env @var{string}
1447

    
1448
Set OpenBIOS variables in NVRAM, for example:
1449

    
1450
@example
1451
qemu-system-ppc -prom-env 'auto-boot?=false' \
1452
 -prom-env 'boot-device=hd:2,\yaboot' \
1453
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1454
@end example
1455

    
1456
These variables are not used by Open Hack'Ware.
1457

    
1458
@end table
1459

    
1460
@c man end
1461

    
1462

    
1463
More information is available at
1464
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1465

    
1466
@node Sparc32 System emulator
1467
@section Sparc32 System emulator
1468
@cindex system emulation (Sparc32)
1469

    
1470
Use the executable @file{qemu-system-sparc} to simulate the following
1471
Sun4m architecture machines:
1472
@itemize @minus
1473
@item
1474
SPARCstation 4
1475
@item
1476
SPARCstation 5
1477
@item
1478
SPARCstation 10
1479
@item
1480
SPARCstation 20
1481
@item
1482
SPARCserver 600MP
1483
@item
1484
SPARCstation LX
1485
@item
1486
SPARCstation Voyager
1487
@item
1488
SPARCclassic
1489
@item
1490
SPARCbook
1491
@end itemize
1492

    
1493
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1494
but Linux limits the number of usable CPUs to 4.
1495

    
1496
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1497
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1498
emulators are not usable yet.
1499

    
1500
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1501

    
1502
@itemize @minus
1503
@item
1504
IOMMU or IO-UNITs
1505
@item
1506
TCX Frame buffer
1507
@item
1508
Lance (Am7990) Ethernet
1509
@item
1510
Non Volatile RAM M48T02/M48T08
1511
@item
1512
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1513
and power/reset logic
1514
@item
1515
ESP SCSI controller with hard disk and CD-ROM support
1516
@item
1517
Floppy drive (not on SS-600MP)
1518
@item
1519
CS4231 sound device (only on SS-5, not working yet)
1520
@end itemize
1521

    
1522
The number of peripherals is fixed in the architecture.  Maximum
1523
memory size depends on the machine type, for SS-5 it is 256MB and for
1524
others 2047MB.
1525

    
1526
Since version 0.8.2, QEMU uses OpenBIOS
1527
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1528
firmware implementation. The goal is to implement a 100% IEEE
1529
1275-1994 (referred to as Open Firmware) compliant firmware.
1530

    
1531
A sample Linux 2.6 series kernel and ram disk image are available on
1532
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1533
some kernel versions work. Please note that currently Solaris kernels
1534
don't work probably due to interface issues between OpenBIOS and
1535
Solaris.
1536

    
1537
@c man begin OPTIONS
1538

    
1539
The following options are specific to the Sparc32 emulation:
1540

    
1541
@table @option
1542

    
1543
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1544

    
1545
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1546
the only other possible mode is 1024x768x24.
1547

    
1548
@item -prom-env @var{string}
1549

    
1550
Set OpenBIOS variables in NVRAM, for example:
1551

    
1552
@example
1553
qemu-system-sparc -prom-env 'auto-boot?=false' \
1554
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1555
@end example
1556

    
1557
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1558

    
1559
Set the emulated machine type. Default is SS-5.
1560

    
1561
@end table
1562

    
1563
@c man end
1564

    
1565
@node Sparc64 System emulator
1566
@section Sparc64 System emulator
1567
@cindex system emulation (Sparc64)
1568

    
1569
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1570
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1571
Niagara (T1) machine. The emulator is not usable for anything yet, but
1572
it can launch some kernels.
1573

    
1574
QEMU emulates the following peripherals:
1575

    
1576
@itemize @minus
1577
@item
1578
UltraSparc IIi APB PCI Bridge
1579
@item
1580
PCI VGA compatible card with VESA Bochs Extensions
1581
@item
1582
PS/2 mouse and keyboard
1583
@item
1584
Non Volatile RAM M48T59
1585
@item
1586
PC-compatible serial ports
1587
@item
1588
2 PCI IDE interfaces with hard disk and CD-ROM support
1589
@item
1590
Floppy disk
1591
@end itemize
1592

    
1593
@c man begin OPTIONS
1594

    
1595
The following options are specific to the Sparc64 emulation:
1596

    
1597
@table @option
1598

    
1599
@item -prom-env @var{string}
1600

    
1601
Set OpenBIOS variables in NVRAM, for example:
1602

    
1603
@example
1604
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1605
@end example
1606

    
1607
@item -M [sun4u|sun4v|Niagara]
1608

    
1609
Set the emulated machine type. The default is sun4u.
1610

    
1611
@end table
1612

    
1613
@c man end
1614

    
1615
@node MIPS System emulator
1616
@section MIPS System emulator
1617
@cindex system emulation (MIPS)
1618

    
1619
Four executables cover simulation of 32 and 64-bit MIPS systems in
1620
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1621
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1622
Five different machine types are emulated:
1623

    
1624
@itemize @minus
1625
@item
1626
A generic ISA PC-like machine "mips"
1627
@item
1628
The MIPS Malta prototype board "malta"
1629
@item
1630
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1631
@item
1632
MIPS emulator pseudo board "mipssim"
1633
@item
1634
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1635
@end itemize
1636

    
1637
The generic emulation is supported by Debian 'Etch' and is able to
1638
install Debian into a virtual disk image. The following devices are
1639
emulated:
1640

    
1641
@itemize @minus
1642
@item
1643
A range of MIPS CPUs, default is the 24Kf
1644
@item
1645
PC style serial port
1646
@item
1647
PC style IDE disk
1648
@item
1649
NE2000 network card
1650
@end itemize
1651

    
1652
The Malta emulation supports the following devices:
1653

    
1654
@itemize @minus
1655
@item
1656
Core board with MIPS 24Kf CPU and Galileo system controller
1657
@item
1658
PIIX4 PCI/USB/SMbus controller
1659
@item
1660
The Multi-I/O chip's serial device
1661
@item
1662
PCI network cards (PCnet32 and others)
1663
@item
1664
Malta FPGA serial device
1665
@item
1666
Cirrus (default) or any other PCI VGA graphics card
1667
@end itemize
1668

    
1669
The ACER Pica emulation supports:
1670

    
1671
@itemize @minus
1672
@item
1673
MIPS R4000 CPU
1674
@item
1675
PC-style IRQ and DMA controllers
1676
@item
1677
PC Keyboard
1678
@item
1679
IDE controller
1680
@end itemize
1681

    
1682
The mipssim pseudo board emulation provides an environment similiar
1683
to what the proprietary MIPS emulator uses for running Linux.
1684
It supports:
1685

    
1686
@itemize @minus
1687
@item
1688
A range of MIPS CPUs, default is the 24Kf
1689
@item
1690
PC style serial port
1691
@item
1692
MIPSnet network emulation
1693
@end itemize
1694

    
1695
The MIPS Magnum R4000 emulation supports:
1696

    
1697
@itemize @minus
1698
@item
1699
MIPS R4000 CPU
1700
@item
1701
PC-style IRQ controller
1702
@item
1703
PC Keyboard
1704
@item
1705
SCSI controller
1706
@item
1707
G364 framebuffer
1708
@end itemize
1709

    
1710

    
1711
@node ARM System emulator
1712
@section ARM System emulator
1713
@cindex system emulation (ARM)
1714

    
1715
Use the executable @file{qemu-system-arm} to simulate a ARM
1716
machine. The ARM Integrator/CP board is emulated with the following
1717
devices:
1718

    
1719
@itemize @minus
1720
@item
1721
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1722
@item
1723
Two PL011 UARTs
1724
@item
1725
SMC 91c111 Ethernet adapter
1726
@item
1727
PL110 LCD controller
1728
@item
1729
PL050 KMI with PS/2 keyboard and mouse.
1730
@item
1731
PL181 MultiMedia Card Interface with SD card.
1732
@end itemize
1733

    
1734
The ARM Versatile baseboard is emulated with the following devices:
1735

    
1736
@itemize @minus
1737
@item
1738
ARM926E, ARM1136 or Cortex-A8 CPU
1739
@item
1740
PL190 Vectored Interrupt Controller
1741
@item
1742
Four PL011 UARTs
1743
@item
1744
SMC 91c111 Ethernet adapter
1745
@item
1746
PL110 LCD controller
1747
@item
1748
PL050 KMI with PS/2 keyboard and mouse.
1749
@item
1750
PCI host bridge.  Note the emulated PCI bridge only provides access to
1751
PCI memory space.  It does not provide access to PCI IO space.
1752
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1753
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1754
mapped control registers.
1755
@item
1756
PCI OHCI USB controller.
1757
@item
1758
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1759
@item
1760
PL181 MultiMedia Card Interface with SD card.
1761
@end itemize
1762

    
1763
Several variants of the ARM RealView baseboard are emulated,
1764
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1765
bootloader, only certain Linux kernel configurations work out
1766
of the box on these boards.
1767

    
1768
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1769
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1770
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1771
disabled and expect 1024M RAM.
1772

    
1773
The following devices are emuilated:
1774

    
1775
@itemize @minus
1776
@item
1777
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1778
@item
1779
ARM AMBA Generic/Distributed Interrupt Controller
1780
@item
1781
Four PL011 UARTs
1782
@item
1783
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1784
@item
1785
PL110 LCD controller
1786
@item
1787
PL050 KMI with PS/2 keyboard and mouse
1788
@item
1789
PCI host bridge
1790
@item
1791
PCI OHCI USB controller
1792
@item
1793
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1794
@item
1795
PL181 MultiMedia Card Interface with SD card.
1796
@end itemize
1797

    
1798
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1799
and "Terrier") emulation includes the following peripherals:
1800

    
1801
@itemize @minus
1802
@item
1803
Intel PXA270 System-on-chip (ARM V5TE core)
1804
@item
1805
NAND Flash memory
1806
@item
1807
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1808
@item
1809
On-chip OHCI USB controller
1810
@item
1811
On-chip LCD controller
1812
@item
1813
On-chip Real Time Clock
1814
@item
1815
TI ADS7846 touchscreen controller on SSP bus
1816
@item
1817
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1818
@item
1819
GPIO-connected keyboard controller and LEDs
1820
@item
1821
Secure Digital card connected to PXA MMC/SD host
1822
@item
1823
Three on-chip UARTs
1824
@item
1825
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1826
@end itemize
1827

    
1828
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1829
following elements:
1830

    
1831
@itemize @minus
1832
@item
1833
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1834
@item
1835
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1836
@item
1837
On-chip LCD controller
1838
@item
1839
On-chip Real Time Clock
1840
@item
1841
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1842
CODEC, connected through MicroWire and I@math{^2}S busses
1843
@item
1844
GPIO-connected matrix keypad
1845
@item
1846
Secure Digital card connected to OMAP MMC/SD host
1847
@item
1848
Three on-chip UARTs
1849
@end itemize
1850

    
1851
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1852
emulation supports the following elements:
1853

    
1854
@itemize @minus
1855
@item
1856
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1857
@item
1858
RAM and non-volatile OneNAND Flash memories
1859
@item
1860
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1861
display controller and a LS041y3 MIPI DBI-C controller
1862
@item
1863
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1864
driven through SPI bus
1865
@item
1866
National Semiconductor LM8323-controlled qwerty keyboard driven
1867
through I@math{^2}C bus
1868
@item
1869
Secure Digital card connected to OMAP MMC/SD host
1870
@item
1871
Three OMAP on-chip UARTs and on-chip STI debugging console
1872
@item
1873
A Bluetooth(R) transciever and HCI connected to an UART
1874
@item
1875
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1876
TUSB6010 chip - only USB host mode is supported
1877
@item
1878
TI TMP105 temperature sensor driven through I@math{^2}C bus
1879
@item
1880
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1881
@item
1882
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1883
through CBUS
1884
@end itemize
1885

    
1886
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1887
devices:
1888

    
1889
@itemize @minus
1890
@item
1891
Cortex-M3 CPU core.
1892
@item
1893
64k Flash and 8k SRAM.
1894
@item
1895
Timers, UARTs, ADC and I@math{^2}C interface.
1896
@item
1897
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1898
@end itemize
1899

    
1900
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1901
devices:
1902

    
1903
@itemize @minus
1904
@item
1905
Cortex-M3 CPU core.
1906
@item
1907
256k Flash and 64k SRAM.
1908
@item
1909
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1910
@item
1911
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1912
@end itemize
1913

    
1914
The Freecom MusicPal internet radio emulation includes the following
1915
elements:
1916

    
1917
@itemize @minus
1918
@item
1919
Marvell MV88W8618 ARM core.
1920
@item
1921
32 MB RAM, 256 KB SRAM, 8 MB flash.
1922
@item
1923
Up to 2 16550 UARTs
1924
@item
1925
MV88W8xx8 Ethernet controller
1926
@item
1927
MV88W8618 audio controller, WM8750 CODEC and mixer
1928
@item
1929
128×64 display with brightness control
1930
@item
1931
2 buttons, 2 navigation wheels with button function
1932
@end itemize
1933

    
1934
The Siemens SX1 models v1 and v2 (default) basic emulation.
1935
The emulaton includes the following elements:
1936

    
1937
@itemize @minus
1938
@item
1939
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1940
@item
1941
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1942
V1
1943
1 Flash of 16MB and 1 Flash of 8MB
1944
V2
1945
1 Flash of 32MB
1946
@item
1947
On-chip LCD controller
1948
@item
1949
On-chip Real Time Clock
1950
@item
1951
Secure Digital card connected to OMAP MMC/SD host
1952
@item
1953
Three on-chip UARTs
1954
@end itemize
1955

    
1956
The "Syborg" Symbian Virtual Platform base model includes the following
1957
elements:
1958

    
1959
@itemize @minus
1960
@item
1961
ARM Cortex-A8 CPU
1962
@item
1963
Interrupt controller
1964
@item
1965
Timer
1966
@item
1967
Real Time Clock
1968
@item
1969
Keyboard
1970
@item
1971
Framebuffer
1972
@item
1973
Touchscreen
1974
@item
1975
UARTs
1976
@end itemize
1977

    
1978
A Linux 2.6 test image is available on the QEMU web site. More
1979
information is available in the QEMU mailing-list archive.
1980

    
1981
@c man begin OPTIONS
1982

    
1983
The following options are specific to the ARM emulation:
1984

    
1985
@table @option
1986

    
1987
@item -semihosting
1988
Enable semihosting syscall emulation.
1989

    
1990
On ARM this implements the "Angel" interface.
1991

    
1992
Note that this allows guest direct access to the host filesystem,
1993
so should only be used with trusted guest OS.
1994

    
1995
@end table
1996

    
1997
@node ColdFire System emulator
1998
@section ColdFire System emulator
1999
@cindex system emulation (ColdFire)
2000
@cindex system emulation (M68K)
2001

    
2002
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2003
The emulator is able to boot a uClinux kernel.
2004

    
2005
The M5208EVB emulation includes the following devices:
2006

    
2007
@itemize @minus
2008
@item
2009
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2010
@item
2011
Three Two on-chip UARTs.
2012
@item
2013
Fast Ethernet Controller (FEC)
2014
@end itemize
2015

    
2016
The AN5206 emulation includes the following devices:
2017

    
2018
@itemize @minus
2019
@item
2020
MCF5206 ColdFire V2 Microprocessor.
2021
@item
2022
Two on-chip UARTs.
2023
@end itemize
2024

    
2025
@c man begin OPTIONS
2026

    
2027
The following options are specific to the ColdFire emulation:
2028

    
2029
@table @option
2030

    
2031
@item -semihosting
2032
Enable semihosting syscall emulation.
2033

    
2034
On M68K this implements the "ColdFire GDB" interface used by libgloss.
2035

    
2036
Note that this allows guest direct access to the host filesystem,
2037
so should only be used with trusted guest OS.
2038

    
2039
@end table
2040

    
2041
@node Cris System emulator
2042
@section Cris System emulator
2043
@cindex system emulation (Cris)
2044

    
2045
TODO
2046

    
2047
@node Microblaze System emulator
2048
@section Microblaze System emulator
2049
@cindex system emulation (Microblaze)
2050

    
2051
TODO
2052

    
2053
@node SH4 System emulator
2054
@section SH4 System emulator
2055
@cindex system emulation (SH4)
2056

    
2057
TODO
2058

    
2059
@node QEMU User space emulator
2060
@chapter QEMU User space emulator
2061

    
2062
@menu
2063
* Supported Operating Systems ::
2064
* Linux User space emulator::
2065
* Mac OS X/Darwin User space emulator ::
2066
* BSD User space emulator ::
2067
@end menu
2068

    
2069
@node Supported Operating Systems
2070
@section Supported Operating Systems
2071

    
2072
The following OS are supported in user space emulation:
2073

    
2074
@itemize @minus
2075
@item
2076
Linux (referred as qemu-linux-user)
2077
@item
2078
Mac OS X/Darwin (referred as qemu-darwin-user)
2079
@item
2080
BSD (referred as qemu-bsd-user)
2081
@end itemize
2082

    
2083
@node Linux User space emulator
2084
@section Linux User space emulator
2085

    
2086
@menu
2087
* Quick Start::
2088
* Wine launch::
2089
* Command line options::
2090
* Other binaries::
2091
@end menu
2092

    
2093
@node Quick Start
2094
@subsection Quick Start
2095

    
2096
In order to launch a Linux process, QEMU needs the process executable
2097
itself and all the target (x86) dynamic libraries used by it.
2098

    
2099
@itemize
2100

    
2101
@item On x86, you can just try to launch any process by using the native
2102
libraries:
2103

    
2104
@example
2105
qemu-i386 -L / /bin/ls
2106
@end example
2107

    
2108
@code{-L /} tells that the x86 dynamic linker must be searched with a
2109
@file{/} prefix.
2110

    
2111
@item Since QEMU is also a linux process, you can launch qemu with
2112
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2113

    
2114
@example
2115
qemu-i386 -L / qemu-i386 -L / /bin/ls
2116
@end example
2117

    
2118
@item On non x86 CPUs, you need first to download at least an x86 glibc
2119
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2120
@code{LD_LIBRARY_PATH} is not set:
2121

    
2122
@example
2123
unset LD_LIBRARY_PATH
2124
@end example
2125

    
2126
Then you can launch the precompiled @file{ls} x86 executable:
2127

    
2128
@example
2129
qemu-i386 tests/i386/ls
2130
@end example
2131
You can look at @file{qemu-binfmt-conf.sh} so that
2132
QEMU is automatically launched by the Linux kernel when you try to
2133
launch x86 executables. It requires the @code{binfmt_misc} module in the
2134
Linux kernel.
2135

    
2136
@item The x86 version of QEMU is also included. You can try weird things such as:
2137
@example
2138
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2139
          /usr/local/qemu-i386/bin/ls-i386
2140
@end example
2141

    
2142
@end itemize
2143

    
2144
@node Wine launch
2145
@subsection Wine launch
2146

    
2147
@itemize
2148

    
2149
@item Ensure that you have a working QEMU with the x86 glibc
2150
distribution (see previous section). In order to verify it, you must be
2151
able to do:
2152

    
2153
@example
2154
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2155
@end example
2156

    
2157
@item Download the binary x86 Wine install
2158
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2159

    
2160
@item Configure Wine on your account. Look at the provided script
2161
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2162
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2163

    
2164
@item Then you can try the example @file{putty.exe}:
2165

    
2166
@example
2167
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2168
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2169
@end example
2170

    
2171
@end itemize
2172

    
2173
@node Command line options
2174
@subsection Command line options
2175

    
2176
@example
2177
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2178
@end example
2179

    
2180
@table @option
2181
@item -h
2182
Print the help
2183
@item -L path
2184
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2185
@item -s size
2186
Set the x86 stack size in bytes (default=524288)
2187
@item -cpu model
2188
Select CPU model (-cpu ? for list and additional feature selection)
2189
@item -B offset
2190
Offset guest address by the specified number of bytes.  This is useful when
2191
the address region required by guest applications is reserved on the host.
2192
This option is currently only supported on some hosts.
2193
@item -R size
2194
Pre-allocate a guest virtual address space of the given size (in bytes).
2195
"G", "M", and "k" suffixes may be used when specifying the size.  
2196
@end table
2197

    
2198
Debug options:
2199

    
2200
@table @option
2201
@item -d
2202
Activate log (logfile=/tmp/qemu.log)
2203
@item -p pagesize
2204
Act as if the host page size was 'pagesize' bytes
2205
@item -g port
2206
Wait gdb connection to port
2207
@item -singlestep
2208
Run the emulation in single step mode.
2209
@end table
2210

    
2211
Environment variables:
2212

    
2213
@table @env
2214
@item QEMU_STRACE
2215
Print system calls and arguments similar to the 'strace' program
2216
(NOTE: the actual 'strace' program will not work because the user
2217
space emulator hasn't implemented ptrace).  At the moment this is
2218
incomplete.  All system calls that don't have a specific argument
2219
format are printed with information for six arguments.  Many
2220
flag-style arguments don't have decoders and will show up as numbers.
2221
@end table
2222

    
2223
@node Other binaries
2224
@subsection Other binaries
2225

    
2226
@cindex user mode (Alpha)
2227
@command{qemu-alpha} TODO.
2228

    
2229
@cindex user mode (ARM)
2230
@command{qemu-armeb} TODO.
2231

    
2232
@cindex user mode (ARM)
2233
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2234
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2235
configurations), and arm-uclinux bFLT format binaries.
2236

    
2237
@cindex user mode (ColdFire)
2238
@cindex user mode (M68K)
2239
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2240
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2241
coldfire uClinux bFLT format binaries.
2242

    
2243
The binary format is detected automatically.
2244

    
2245
@cindex user mode (Cris)
2246
@command{qemu-cris} TODO.
2247

    
2248
@cindex user mode (i386)
2249
@command{qemu-i386} TODO.
2250
@command{qemu-x86_64} TODO.
2251

    
2252
@cindex user mode (Microblaze)
2253
@command{qemu-microblaze} TODO.
2254

    
2255
@cindex user mode (MIPS)
2256
@command{qemu-mips} TODO.
2257
@command{qemu-mipsel} TODO.
2258

    
2259
@cindex user mode (PowerPC)
2260
@command{qemu-ppc64abi32} TODO.
2261
@command{qemu-ppc64} TODO.
2262
@command{qemu-ppc} TODO.
2263

    
2264
@cindex user mode (SH4)
2265
@command{qemu-sh4eb} TODO.
2266
@command{qemu-sh4} TODO.
2267

    
2268
@cindex user mode (SPARC)
2269
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2270

    
2271
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2272
(Sparc64 CPU, 32 bit ABI).
2273

    
2274
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2275
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2276

    
2277
@node Mac OS X/Darwin User space emulator
2278
@section Mac OS X/Darwin User space emulator
2279

    
2280
@menu
2281
* Mac OS X/Darwin Status::
2282
* Mac OS X/Darwin Quick Start::
2283
* Mac OS X/Darwin Command line options::
2284
@end menu
2285

    
2286
@node Mac OS X/Darwin Status
2287
@subsection Mac OS X/Darwin Status
2288

    
2289
@itemize @minus
2290
@item
2291
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2292
@item
2293
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2294
@item
2295
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2296
@item
2297
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2298
@end itemize
2299

    
2300
[1] If you're host commpage can be executed by qemu.
2301

    
2302
@node Mac OS X/Darwin Quick Start
2303
@subsection Quick Start
2304

    
2305
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2306
itself and all the target dynamic libraries used by it. If you don't have the FAT
2307
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2308
CD or compile them by hand.
2309

    
2310
@itemize
2311

    
2312
@item On x86, you can just try to launch any process by using the native
2313
libraries:
2314

    
2315
@example
2316
qemu-i386 /bin/ls
2317
@end example
2318

    
2319
or to run the ppc version of the executable:
2320

    
2321
@example
2322
qemu-ppc /bin/ls
2323
@end example
2324

    
2325
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2326
are installed:
2327

    
2328
@example
2329
qemu-i386 -L /opt/x86_root/ /bin/ls
2330
@end example
2331

    
2332
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2333
@file{/opt/x86_root/usr/bin/dyld}.
2334

    
2335
@end itemize
2336

    
2337
@node Mac OS X/Darwin Command line options
2338
@subsection Command line options
2339

    
2340
@example
2341
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2342
@end example
2343

    
2344
@table @option
2345
@item -h
2346
Print the help
2347
@item -L path
2348
Set the library root path (default=/)
2349
@item -s size
2350
Set the stack size in bytes (default=524288)
2351
@end table
2352

    
2353
Debug options:
2354

    
2355
@table @option
2356
@item -d
2357
Activate log (logfile=/tmp/qemu.log)
2358
@item -p pagesize
2359
Act as if the host page size was 'pagesize' bytes
2360
@item -singlestep
2361
Run the emulation in single step mode.
2362
@end table
2363

    
2364
@node BSD User space emulator
2365
@section BSD User space emulator
2366

    
2367
@menu
2368
* BSD Status::
2369
* BSD Quick Start::
2370
* BSD Command line options::
2371
@end menu
2372

    
2373
@node BSD Status
2374
@subsection BSD Status
2375

    
2376
@itemize @minus
2377
@item
2378
target Sparc64 on Sparc64: Some trivial programs work.
2379
@end itemize
2380

    
2381
@node BSD Quick Start
2382
@subsection Quick Start
2383

    
2384
In order to launch a BSD process, QEMU needs the process executable
2385
itself and all the target dynamic libraries used by it.
2386

    
2387
@itemize
2388

    
2389
@item On Sparc64, you can just try to launch any process by using the native
2390
libraries:
2391

    
2392
@example
2393
qemu-sparc64 /bin/ls
2394
@end example
2395

    
2396
@end itemize
2397

    
2398
@node BSD Command line options
2399
@subsection Command line options
2400

    
2401
@example
2402
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2403
@end example
2404

    
2405
@table @option
2406
@item -h
2407
Print the help
2408
@item -L path
2409
Set the library root path (default=/)
2410
@item -s size
2411
Set the stack size in bytes (default=524288)
2412
@item -bsd type
2413
Set the type of the emulated BSD Operating system. Valid values are
2414
FreeBSD, NetBSD and OpenBSD (default).
2415
@end table
2416

    
2417
Debug options:
2418

    
2419
@table @option
2420
@item -d
2421
Activate log (logfile=/tmp/qemu.log)
2422
@item -p pagesize
2423
Act as if the host page size was 'pagesize' bytes
2424
@item -singlestep
2425
Run the emulation in single step mode.
2426
@end table
2427

    
2428
@node compilation
2429
@chapter Compilation from the sources
2430

    
2431
@menu
2432
* Linux/Unix::
2433
* Windows::
2434
* Cross compilation for Windows with Linux::
2435
* Mac OS X::
2436
* Make targets::
2437
@end menu
2438

    
2439
@node Linux/Unix
2440
@section Linux/Unix
2441

    
2442
@subsection Compilation
2443

    
2444
First you must decompress the sources:
2445
@example
2446
cd /tmp
2447
tar zxvf qemu-x.y.z.tar.gz
2448
cd qemu-x.y.z
2449
@end example
2450

    
2451
Then you configure QEMU and build it (usually no options are needed):
2452
@example
2453
./configure
2454
make
2455
@end example
2456

    
2457
Then type as root user:
2458
@example
2459
make install
2460
@end example
2461
to install QEMU in @file{/usr/local}.
2462

    
2463
@node Windows
2464
@section Windows
2465

    
2466
@itemize
2467
@item Install the current versions of MSYS and MinGW from
2468
@url{http://www.mingw.org/}. You can find detailed installation
2469
instructions in the download section and the FAQ.
2470

    
2471
@item Download
2472
the MinGW development library of SDL 1.2.x
2473
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2474
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2475
edit the @file{sdl-config} script so that it gives the
2476
correct SDL directory when invoked.
2477

    
2478
@item Install the MinGW version of zlib and make sure
2479
@file{zlib.h} and @file{libz.dll.a} are in
2480
MingGW's default header and linker search paths.
2481

    
2482
@item Extract the current version of QEMU.
2483

    
2484
@item Start the MSYS shell (file @file{msys.bat}).
2485

    
2486
@item Change to the QEMU directory. Launch @file{./configure} and
2487
@file{make}.  If you have problems using SDL, verify that
2488
@file{sdl-config} can be launched from the MSYS command line.
2489

    
2490
@item You can install QEMU in @file{Program Files/Qemu} by typing
2491
@file{make install}. Don't forget to copy @file{SDL.dll} in
2492
@file{Program Files/Qemu}.
2493

    
2494
@end itemize
2495

    
2496
@node Cross compilation for Windows with Linux
2497
@section Cross compilation for Windows with Linux
2498

    
2499
@itemize
2500
@item
2501
Install the MinGW cross compilation tools available at
2502
@url{http://www.mingw.org/}.
2503

    
2504
@item Download
2505
the MinGW development library of SDL 1.2.x
2506
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2507
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2508
edit the @file{sdl-config} script so that it gives the
2509
correct SDL directory when invoked.  Set up the @code{PATH} environment
2510
variable so that @file{sdl-config} can be launched by
2511
the QEMU configuration script.
2512

    
2513
@item Install the MinGW version of zlib and make sure
2514
@file{zlib.h} and @file{libz.dll.a} are in
2515
MingGW's default header and linker search paths.
2516

    
2517
@item
2518
Configure QEMU for Windows cross compilation:
2519
@example
2520
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2521
@end example
2522
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2523
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2524
We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2525
use --cross-prefix to specify the name of the cross compiler.
2526
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2527

    
2528
Under Fedora Linux, you can run:
2529
@example
2530
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2531
@end example
2532
to get a suitable cross compilation environment.
2533

    
2534
@item You can install QEMU in the installation directory by typing
2535
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2536
installation directory.
2537

    
2538
@end itemize
2539

    
2540
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2541

    
2542
@node Mac OS X
2543
@section Mac OS X
2544

    
2545
The Mac OS X patches are not fully merged in QEMU, so you should look
2546
at the QEMU mailing list archive to have all the necessary
2547
information.
2548

    
2549
@node Make targets
2550
@section Make targets
2551

    
2552
@table @code
2553

    
2554
@item make
2555
@item make all
2556
Make everything which is typically needed.
2557

    
2558
@item install
2559
TODO
2560

    
2561
@item install-doc
2562
TODO
2563

    
2564
@item make clean
2565
Remove most files which were built during make.
2566

    
2567
@item make distclean
2568
Remove everything which was built during make.
2569

    
2570
@item make dvi
2571
@item make html
2572
@item make info
2573
@item make pdf
2574
Create documentation in dvi, html, info or pdf format.
2575

    
2576
@item make cscope
2577
TODO
2578

    
2579
@item make defconfig
2580
(Re-)create some build configuration files.
2581
User made changes will be overwritten.
2582

    
2583
@item tar
2584
@item tarbin
2585
TODO
2586

    
2587
@end table
2588

    
2589
@node License
2590
@appendix License
2591

    
2592
QEMU is a trademark of Fabrice Bellard.
2593

    
2594
QEMU is released under the GNU General Public License (TODO: add link).
2595
Parts of QEMU have specific licenses, see file LICENSE.
2596

    
2597
TODO (refer to file LICENSE, include it, include the GPL?)
2598

    
2599
@node Index
2600
@appendix Index
2601
@menu
2602
* Concept Index::
2603
* Function Index::
2604
* Keystroke Index::
2605
* Program Index::
2606
* Data Type Index::
2607
* Variable Index::
2608
@end menu
2609

    
2610
@node Concept Index
2611
@section Concept Index
2612
This is the main index. Should we combine all keywords in one index? TODO
2613
@printindex cp
2614

    
2615
@node Function Index
2616
@section Function Index
2617
This index could be used for command line options and monitor functions.
2618
@printindex fn
2619

    
2620
@node Keystroke Index
2621
@section Keystroke Index
2622

    
2623
This is a list of all keystrokes which have a special function
2624
in system emulation.
2625

    
2626
@printindex ky
2627

    
2628
@node Program Index
2629
@section Program Index
2630
@printindex pg
2631

    
2632
@node Data Type Index
2633
@section Data Type Index
2634

    
2635
This index could be used for qdev device names and options.
2636

    
2637
@printindex tp
2638

    
2639
@node Variable Index
2640
@section Variable Index
2641
@printindex vr
2642

    
2643
@bye