Statistics
| Branch: | Revision:

root / block / qed.c @ 1de7afc9

History | View | Annotate | Download (46 kB)

1
/*
2
 * QEMU Enhanced Disk Format
3
 *
4
 * Copyright IBM, Corp. 2010
5
 *
6
 * Authors:
7
 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11
 * See the COPYING.LIB file in the top-level directory.
12
 *
13
 */
14

    
15
#include "qemu/timer.h"
16
#include "trace.h"
17
#include "qed.h"
18
#include "qapi/qmp/qerror.h"
19
#include "migration/migration.h"
20

    
21
static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
22
{
23
    QEDAIOCB *acb = (QEDAIOCB *)blockacb;
24
    bool finished = false;
25

    
26
    /* Wait for the request to finish */
27
    acb->finished = &finished;
28
    while (!finished) {
29
        qemu_aio_wait();
30
    }
31
}
32

    
33
static const AIOCBInfo qed_aiocb_info = {
34
    .aiocb_size         = sizeof(QEDAIOCB),
35
    .cancel             = qed_aio_cancel,
36
};
37

    
38
static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
39
                          const char *filename)
40
{
41
    const QEDHeader *header = (const QEDHeader *)buf;
42

    
43
    if (buf_size < sizeof(*header)) {
44
        return 0;
45
    }
46
    if (le32_to_cpu(header->magic) != QED_MAGIC) {
47
        return 0;
48
    }
49
    return 100;
50
}
51

    
52
/**
53
 * Check whether an image format is raw
54
 *
55
 * @fmt:    Backing file format, may be NULL
56
 */
57
static bool qed_fmt_is_raw(const char *fmt)
58
{
59
    return fmt && strcmp(fmt, "raw") == 0;
60
}
61

    
62
static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
63
{
64
    cpu->magic = le32_to_cpu(le->magic);
65
    cpu->cluster_size = le32_to_cpu(le->cluster_size);
66
    cpu->table_size = le32_to_cpu(le->table_size);
67
    cpu->header_size = le32_to_cpu(le->header_size);
68
    cpu->features = le64_to_cpu(le->features);
69
    cpu->compat_features = le64_to_cpu(le->compat_features);
70
    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
71
    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
72
    cpu->image_size = le64_to_cpu(le->image_size);
73
    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
74
    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
75
}
76

    
77
static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
78
{
79
    le->magic = cpu_to_le32(cpu->magic);
80
    le->cluster_size = cpu_to_le32(cpu->cluster_size);
81
    le->table_size = cpu_to_le32(cpu->table_size);
82
    le->header_size = cpu_to_le32(cpu->header_size);
83
    le->features = cpu_to_le64(cpu->features);
84
    le->compat_features = cpu_to_le64(cpu->compat_features);
85
    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
86
    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
87
    le->image_size = cpu_to_le64(cpu->image_size);
88
    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
89
    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
90
}
91

    
92
int qed_write_header_sync(BDRVQEDState *s)
93
{
94
    QEDHeader le;
95
    int ret;
96

    
97
    qed_header_cpu_to_le(&s->header, &le);
98
    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
99
    if (ret != sizeof(le)) {
100
        return ret;
101
    }
102
    return 0;
103
}
104

    
105
typedef struct {
106
    GenericCB gencb;
107
    BDRVQEDState *s;
108
    struct iovec iov;
109
    QEMUIOVector qiov;
110
    int nsectors;
111
    uint8_t *buf;
112
} QEDWriteHeaderCB;
113

    
114
static void qed_write_header_cb(void *opaque, int ret)
115
{
116
    QEDWriteHeaderCB *write_header_cb = opaque;
117

    
118
    qemu_vfree(write_header_cb->buf);
119
    gencb_complete(write_header_cb, ret);
120
}
121

    
122
static void qed_write_header_read_cb(void *opaque, int ret)
123
{
124
    QEDWriteHeaderCB *write_header_cb = opaque;
125
    BDRVQEDState *s = write_header_cb->s;
126

    
127
    if (ret) {
128
        qed_write_header_cb(write_header_cb, ret);
129
        return;
130
    }
131

    
132
    /* Update header */
133
    qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134

    
135
    bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136
                    write_header_cb->nsectors, qed_write_header_cb,
137
                    write_header_cb);
138
}
139

    
140
/**
141
 * Update header in-place (does not rewrite backing filename or other strings)
142
 *
143
 * This function only updates known header fields in-place and does not affect
144
 * extra data after the QED header.
145
 */
146
static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
147
                             void *opaque)
148
{
149
    /* We must write full sectors for O_DIRECT but cannot necessarily generate
150
     * the data following the header if an unrecognized compat feature is
151
     * active.  Therefore, first read the sectors containing the header, update
152
     * them, and write back.
153
     */
154

    
155
    int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
156
                   BDRV_SECTOR_SIZE;
157
    size_t len = nsectors * BDRV_SECTOR_SIZE;
158
    QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
159
                                                    cb, opaque);
160

    
161
    write_header_cb->s = s;
162
    write_header_cb->nsectors = nsectors;
163
    write_header_cb->buf = qemu_blockalign(s->bs, len);
164
    write_header_cb->iov.iov_base = write_header_cb->buf;
165
    write_header_cb->iov.iov_len = len;
166
    qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
167

    
168
    bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
169
                   qed_write_header_read_cb, write_header_cb);
170
}
171

    
172
static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
173
{
174
    uint64_t table_entries;
175
    uint64_t l2_size;
176

    
177
    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
178
    l2_size = table_entries * cluster_size;
179

    
180
    return l2_size * table_entries;
181
}
182

    
183
static bool qed_is_cluster_size_valid(uint32_t cluster_size)
184
{
185
    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
186
        cluster_size > QED_MAX_CLUSTER_SIZE) {
187
        return false;
188
    }
189
    if (cluster_size & (cluster_size - 1)) {
190
        return false; /* not power of 2 */
191
    }
192
    return true;
193
}
194

    
195
static bool qed_is_table_size_valid(uint32_t table_size)
196
{
197
    if (table_size < QED_MIN_TABLE_SIZE ||
198
        table_size > QED_MAX_TABLE_SIZE) {
199
        return false;
200
    }
201
    if (table_size & (table_size - 1)) {
202
        return false; /* not power of 2 */
203
    }
204
    return true;
205
}
206

    
207
static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
208
                                    uint32_t table_size)
209
{
210
    if (image_size % BDRV_SECTOR_SIZE != 0) {
211
        return false; /* not multiple of sector size */
212
    }
213
    if (image_size > qed_max_image_size(cluster_size, table_size)) {
214
        return false; /* image is too large */
215
    }
216
    return true;
217
}
218

    
219
/**
220
 * Read a string of known length from the image file
221
 *
222
 * @file:       Image file
223
 * @offset:     File offset to start of string, in bytes
224
 * @n:          String length in bytes
225
 * @buf:        Destination buffer
226
 * @buflen:     Destination buffer length in bytes
227
 * @ret:        0 on success, -errno on failure
228
 *
229
 * The string is NUL-terminated.
230
 */
231
static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
232
                           char *buf, size_t buflen)
233
{
234
    int ret;
235
    if (n >= buflen) {
236
        return -EINVAL;
237
    }
238
    ret = bdrv_pread(file, offset, buf, n);
239
    if (ret < 0) {
240
        return ret;
241
    }
242
    buf[n] = '\0';
243
    return 0;
244
}
245

    
246
/**
247
 * Allocate new clusters
248
 *
249
 * @s:          QED state
250
 * @n:          Number of contiguous clusters to allocate
251
 * @ret:        Offset of first allocated cluster
252
 *
253
 * This function only produces the offset where the new clusters should be
254
 * written.  It updates BDRVQEDState but does not make any changes to the image
255
 * file.
256
 */
257
static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
258
{
259
    uint64_t offset = s->file_size;
260
    s->file_size += n * s->header.cluster_size;
261
    return offset;
262
}
263

    
264
QEDTable *qed_alloc_table(BDRVQEDState *s)
265
{
266
    /* Honor O_DIRECT memory alignment requirements */
267
    return qemu_blockalign(s->bs,
268
                           s->header.cluster_size * s->header.table_size);
269
}
270

    
271
/**
272
 * Allocate a new zeroed L2 table
273
 */
274
static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
275
{
276
    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
277

    
278
    l2_table->table = qed_alloc_table(s);
279
    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
280

    
281
    memset(l2_table->table->offsets, 0,
282
           s->header.cluster_size * s->header.table_size);
283
    return l2_table;
284
}
285

    
286
static void qed_aio_next_io(void *opaque, int ret);
287

    
288
static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
289
{
290
    assert(!s->allocating_write_reqs_plugged);
291

    
292
    s->allocating_write_reqs_plugged = true;
293
}
294

    
295
static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
296
{
297
    QEDAIOCB *acb;
298

    
299
    assert(s->allocating_write_reqs_plugged);
300

    
301
    s->allocating_write_reqs_plugged = false;
302

    
303
    acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
304
    if (acb) {
305
        qed_aio_next_io(acb, 0);
306
    }
307
}
308

    
309
static void qed_finish_clear_need_check(void *opaque, int ret)
310
{
311
    /* Do nothing */
312
}
313

    
314
static void qed_flush_after_clear_need_check(void *opaque, int ret)
315
{
316
    BDRVQEDState *s = opaque;
317

    
318
    bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
319

    
320
    /* No need to wait until flush completes */
321
    qed_unplug_allocating_write_reqs(s);
322
}
323

    
324
static void qed_clear_need_check(void *opaque, int ret)
325
{
326
    BDRVQEDState *s = opaque;
327

    
328
    if (ret) {
329
        qed_unplug_allocating_write_reqs(s);
330
        return;
331
    }
332

    
333
    s->header.features &= ~QED_F_NEED_CHECK;
334
    qed_write_header(s, qed_flush_after_clear_need_check, s);
335
}
336

    
337
static void qed_need_check_timer_cb(void *opaque)
338
{
339
    BDRVQEDState *s = opaque;
340

    
341
    /* The timer should only fire when allocating writes have drained */
342
    assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
343

    
344
    trace_qed_need_check_timer_cb(s);
345

    
346
    qed_plug_allocating_write_reqs(s);
347

    
348
    /* Ensure writes are on disk before clearing flag */
349
    bdrv_aio_flush(s->bs, qed_clear_need_check, s);
350
}
351

    
352
static void qed_start_need_check_timer(BDRVQEDState *s)
353
{
354
    trace_qed_start_need_check_timer(s);
355

    
356
    /* Use vm_clock so we don't alter the image file while suspended for
357
     * migration.
358
     */
359
    qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
360
                   get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
361
}
362

    
363
/* It's okay to call this multiple times or when no timer is started */
364
static void qed_cancel_need_check_timer(BDRVQEDState *s)
365
{
366
    trace_qed_cancel_need_check_timer(s);
367
    qemu_del_timer(s->need_check_timer);
368
}
369

    
370
static void bdrv_qed_rebind(BlockDriverState *bs)
371
{
372
    BDRVQEDState *s = bs->opaque;
373
    s->bs = bs;
374
}
375

    
376
static int bdrv_qed_open(BlockDriverState *bs, int flags)
377
{
378
    BDRVQEDState *s = bs->opaque;
379
    QEDHeader le_header;
380
    int64_t file_size;
381
    int ret;
382

    
383
    s->bs = bs;
384
    QSIMPLEQ_INIT(&s->allocating_write_reqs);
385

    
386
    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
387
    if (ret < 0) {
388
        return ret;
389
    }
390
    qed_header_le_to_cpu(&le_header, &s->header);
391

    
392
    if (s->header.magic != QED_MAGIC) {
393
        return -EINVAL;
394
    }
395
    if (s->header.features & ~QED_FEATURE_MASK) {
396
        /* image uses unsupported feature bits */
397
        char buf[64];
398
        snprintf(buf, sizeof(buf), "%" PRIx64,
399
            s->header.features & ~QED_FEATURE_MASK);
400
        qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
401
            bs->device_name, "QED", buf);
402
        return -ENOTSUP;
403
    }
404
    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
405
        return -EINVAL;
406
    }
407

    
408
    /* Round down file size to the last cluster */
409
    file_size = bdrv_getlength(bs->file);
410
    if (file_size < 0) {
411
        return file_size;
412
    }
413
    s->file_size = qed_start_of_cluster(s, file_size);
414

    
415
    if (!qed_is_table_size_valid(s->header.table_size)) {
416
        return -EINVAL;
417
    }
418
    if (!qed_is_image_size_valid(s->header.image_size,
419
                                 s->header.cluster_size,
420
                                 s->header.table_size)) {
421
        return -EINVAL;
422
    }
423
    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
424
        return -EINVAL;
425
    }
426

    
427
    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
428
                      sizeof(uint64_t);
429
    s->l2_shift = ffs(s->header.cluster_size) - 1;
430
    s->l2_mask = s->table_nelems - 1;
431
    s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
432

    
433
    if ((s->header.features & QED_F_BACKING_FILE)) {
434
        if ((uint64_t)s->header.backing_filename_offset +
435
            s->header.backing_filename_size >
436
            s->header.cluster_size * s->header.header_size) {
437
            return -EINVAL;
438
        }
439

    
440
        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
441
                              s->header.backing_filename_size, bs->backing_file,
442
                              sizeof(bs->backing_file));
443
        if (ret < 0) {
444
            return ret;
445
        }
446

    
447
        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
448
            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
449
        }
450
    }
451

    
452
    /* Reset unknown autoclear feature bits.  This is a backwards
453
     * compatibility mechanism that allows images to be opened by older
454
     * programs, which "knock out" unknown feature bits.  When an image is
455
     * opened by a newer program again it can detect that the autoclear
456
     * feature is no longer valid.
457
     */
458
    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
459
        !bdrv_is_read_only(bs->file) && !(flags & BDRV_O_INCOMING)) {
460
        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
461

    
462
        ret = qed_write_header_sync(s);
463
        if (ret) {
464
            return ret;
465
        }
466

    
467
        /* From here on only known autoclear feature bits are valid */
468
        bdrv_flush(bs->file);
469
    }
470

    
471
    s->l1_table = qed_alloc_table(s);
472
    qed_init_l2_cache(&s->l2_cache);
473

    
474
    ret = qed_read_l1_table_sync(s);
475
    if (ret) {
476
        goto out;
477
    }
478

    
479
    /* If image was not closed cleanly, check consistency */
480
    if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
481
        /* Read-only images cannot be fixed.  There is no risk of corruption
482
         * since write operations are not possible.  Therefore, allow
483
         * potentially inconsistent images to be opened read-only.  This can
484
         * aid data recovery from an otherwise inconsistent image.
485
         */
486
        if (!bdrv_is_read_only(bs->file) &&
487
            !(flags & BDRV_O_INCOMING)) {
488
            BdrvCheckResult result = {0};
489

    
490
            ret = qed_check(s, &result, true);
491
            if (ret) {
492
                goto out;
493
            }
494
        }
495
    }
496

    
497
    s->need_check_timer = qemu_new_timer_ns(vm_clock,
498
                                            qed_need_check_timer_cb, s);
499

    
500
out:
501
    if (ret) {
502
        qed_free_l2_cache(&s->l2_cache);
503
        qemu_vfree(s->l1_table);
504
    }
505
    return ret;
506
}
507

    
508
/* We have nothing to do for QED reopen, stubs just return
509
 * success */
510
static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
511
                                   BlockReopenQueue *queue, Error **errp)
512
{
513
    return 0;
514
}
515

    
516
static void bdrv_qed_close(BlockDriverState *bs)
517
{
518
    BDRVQEDState *s = bs->opaque;
519

    
520
    qed_cancel_need_check_timer(s);
521
    qemu_free_timer(s->need_check_timer);
522

    
523
    /* Ensure writes reach stable storage */
524
    bdrv_flush(bs->file);
525

    
526
    /* Clean shutdown, no check required on next open */
527
    if (s->header.features & QED_F_NEED_CHECK) {
528
        s->header.features &= ~QED_F_NEED_CHECK;
529
        qed_write_header_sync(s);
530
    }
531

    
532
    qed_free_l2_cache(&s->l2_cache);
533
    qemu_vfree(s->l1_table);
534
}
535

    
536
static int qed_create(const char *filename, uint32_t cluster_size,
537
                      uint64_t image_size, uint32_t table_size,
538
                      const char *backing_file, const char *backing_fmt)
539
{
540
    QEDHeader header = {
541
        .magic = QED_MAGIC,
542
        .cluster_size = cluster_size,
543
        .table_size = table_size,
544
        .header_size = 1,
545
        .features = 0,
546
        .compat_features = 0,
547
        .l1_table_offset = cluster_size,
548
        .image_size = image_size,
549
    };
550
    QEDHeader le_header;
551
    uint8_t *l1_table = NULL;
552
    size_t l1_size = header.cluster_size * header.table_size;
553
    int ret = 0;
554
    BlockDriverState *bs = NULL;
555

    
556
    ret = bdrv_create_file(filename, NULL);
557
    if (ret < 0) {
558
        return ret;
559
    }
560

    
561
    ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
562
    if (ret < 0) {
563
        return ret;
564
    }
565

    
566
    /* File must start empty and grow, check truncate is supported */
567
    ret = bdrv_truncate(bs, 0);
568
    if (ret < 0) {
569
        goto out;
570
    }
571

    
572
    if (backing_file) {
573
        header.features |= QED_F_BACKING_FILE;
574
        header.backing_filename_offset = sizeof(le_header);
575
        header.backing_filename_size = strlen(backing_file);
576

    
577
        if (qed_fmt_is_raw(backing_fmt)) {
578
            header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
579
        }
580
    }
581

    
582
    qed_header_cpu_to_le(&header, &le_header);
583
    ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
584
    if (ret < 0) {
585
        goto out;
586
    }
587
    ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
588
                      header.backing_filename_size);
589
    if (ret < 0) {
590
        goto out;
591
    }
592

    
593
    l1_table = g_malloc0(l1_size);
594
    ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
595
    if (ret < 0) {
596
        goto out;
597
    }
598

    
599
    ret = 0; /* success */
600
out:
601
    g_free(l1_table);
602
    bdrv_delete(bs);
603
    return ret;
604
}
605

    
606
static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
607
{
608
    uint64_t image_size = 0;
609
    uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
610
    uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
611
    const char *backing_file = NULL;
612
    const char *backing_fmt = NULL;
613

    
614
    while (options && options->name) {
615
        if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
616
            image_size = options->value.n;
617
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
618
            backing_file = options->value.s;
619
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
620
            backing_fmt = options->value.s;
621
        } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
622
            if (options->value.n) {
623
                cluster_size = options->value.n;
624
            }
625
        } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
626
            if (options->value.n) {
627
                table_size = options->value.n;
628
            }
629
        }
630
        options++;
631
    }
632

    
633
    if (!qed_is_cluster_size_valid(cluster_size)) {
634
        fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
635
                QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
636
        return -EINVAL;
637
    }
638
    if (!qed_is_table_size_valid(table_size)) {
639
        fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
640
                QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
641
        return -EINVAL;
642
    }
643
    if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
644
        fprintf(stderr, "QED image size must be a non-zero multiple of "
645
                        "cluster size and less than %" PRIu64 " bytes\n",
646
                qed_max_image_size(cluster_size, table_size));
647
        return -EINVAL;
648
    }
649

    
650
    return qed_create(filename, cluster_size, image_size, table_size,
651
                      backing_file, backing_fmt);
652
}
653

    
654
typedef struct {
655
    Coroutine *co;
656
    int is_allocated;
657
    int *pnum;
658
} QEDIsAllocatedCB;
659

    
660
static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
661
{
662
    QEDIsAllocatedCB *cb = opaque;
663
    *cb->pnum = len / BDRV_SECTOR_SIZE;
664
    cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
665
    if (cb->co) {
666
        qemu_coroutine_enter(cb->co, NULL);
667
    }
668
}
669

    
670
static int coroutine_fn bdrv_qed_co_is_allocated(BlockDriverState *bs,
671
                                                 int64_t sector_num,
672
                                                 int nb_sectors, int *pnum)
673
{
674
    BDRVQEDState *s = bs->opaque;
675
    uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
676
    size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
677
    QEDIsAllocatedCB cb = {
678
        .is_allocated = -1,
679
        .pnum = pnum,
680
    };
681
    QEDRequest request = { .l2_table = NULL };
682

    
683
    qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
684

    
685
    /* Now sleep if the callback wasn't invoked immediately */
686
    while (cb.is_allocated == -1) {
687
        cb.co = qemu_coroutine_self();
688
        qemu_coroutine_yield();
689
    }
690

    
691
    qed_unref_l2_cache_entry(request.l2_table);
692

    
693
    return cb.is_allocated;
694
}
695

    
696
static int bdrv_qed_make_empty(BlockDriverState *bs)
697
{
698
    return -ENOTSUP;
699
}
700

    
701
static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
702
{
703
    return acb->common.bs->opaque;
704
}
705

    
706
/**
707
 * Read from the backing file or zero-fill if no backing file
708
 *
709
 * @s:          QED state
710
 * @pos:        Byte position in device
711
 * @qiov:       Destination I/O vector
712
 * @cb:         Completion function
713
 * @opaque:     User data for completion function
714
 *
715
 * This function reads qiov->size bytes starting at pos from the backing file.
716
 * If there is no backing file then zeroes are read.
717
 */
718
static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
719
                                  QEMUIOVector *qiov,
720
                                  BlockDriverCompletionFunc *cb, void *opaque)
721
{
722
    uint64_t backing_length = 0;
723
    size_t size;
724

    
725
    /* If there is a backing file, get its length.  Treat the absence of a
726
     * backing file like a zero length backing file.
727
     */
728
    if (s->bs->backing_hd) {
729
        int64_t l = bdrv_getlength(s->bs->backing_hd);
730
        if (l < 0) {
731
            cb(opaque, l);
732
            return;
733
        }
734
        backing_length = l;
735
    }
736

    
737
    /* Zero all sectors if reading beyond the end of the backing file */
738
    if (pos >= backing_length ||
739
        pos + qiov->size > backing_length) {
740
        qemu_iovec_memset(qiov, 0, 0, qiov->size);
741
    }
742

    
743
    /* Complete now if there are no backing file sectors to read */
744
    if (pos >= backing_length) {
745
        cb(opaque, 0);
746
        return;
747
    }
748

    
749
    /* If the read straddles the end of the backing file, shorten it */
750
    size = MIN((uint64_t)backing_length - pos, qiov->size);
751

    
752
    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
753
    bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
754
                   qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
755
}
756

    
757
typedef struct {
758
    GenericCB gencb;
759
    BDRVQEDState *s;
760
    QEMUIOVector qiov;
761
    struct iovec iov;
762
    uint64_t offset;
763
} CopyFromBackingFileCB;
764

    
765
static void qed_copy_from_backing_file_cb(void *opaque, int ret)
766
{
767
    CopyFromBackingFileCB *copy_cb = opaque;
768
    qemu_vfree(copy_cb->iov.iov_base);
769
    gencb_complete(&copy_cb->gencb, ret);
770
}
771

    
772
static void qed_copy_from_backing_file_write(void *opaque, int ret)
773
{
774
    CopyFromBackingFileCB *copy_cb = opaque;
775
    BDRVQEDState *s = copy_cb->s;
776

    
777
    if (ret) {
778
        qed_copy_from_backing_file_cb(copy_cb, ret);
779
        return;
780
    }
781

    
782
    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
783
    bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
784
                    &copy_cb->qiov, copy_cb->qiov.size / BDRV_SECTOR_SIZE,
785
                    qed_copy_from_backing_file_cb, copy_cb);
786
}
787

    
788
/**
789
 * Copy data from backing file into the image
790
 *
791
 * @s:          QED state
792
 * @pos:        Byte position in device
793
 * @len:        Number of bytes
794
 * @offset:     Byte offset in image file
795
 * @cb:         Completion function
796
 * @opaque:     User data for completion function
797
 */
798
static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
799
                                       uint64_t len, uint64_t offset,
800
                                       BlockDriverCompletionFunc *cb,
801
                                       void *opaque)
802
{
803
    CopyFromBackingFileCB *copy_cb;
804

    
805
    /* Skip copy entirely if there is no work to do */
806
    if (len == 0) {
807
        cb(opaque, 0);
808
        return;
809
    }
810

    
811
    copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
812
    copy_cb->s = s;
813
    copy_cb->offset = offset;
814
    copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
815
    copy_cb->iov.iov_len = len;
816
    qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
817

    
818
    qed_read_backing_file(s, pos, &copy_cb->qiov,
819
                          qed_copy_from_backing_file_write, copy_cb);
820
}
821

    
822
/**
823
 * Link one or more contiguous clusters into a table
824
 *
825
 * @s:              QED state
826
 * @table:          L2 table
827
 * @index:          First cluster index
828
 * @n:              Number of contiguous clusters
829
 * @cluster:        First cluster offset
830
 *
831
 * The cluster offset may be an allocated byte offset in the image file, the
832
 * zero cluster marker, or the unallocated cluster marker.
833
 */
834
static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
835
                                unsigned int n, uint64_t cluster)
836
{
837
    int i;
838
    for (i = index; i < index + n; i++) {
839
        table->offsets[i] = cluster;
840
        if (!qed_offset_is_unalloc_cluster(cluster) &&
841
            !qed_offset_is_zero_cluster(cluster)) {
842
            cluster += s->header.cluster_size;
843
        }
844
    }
845
}
846

    
847
static void qed_aio_complete_bh(void *opaque)
848
{
849
    QEDAIOCB *acb = opaque;
850
    BlockDriverCompletionFunc *cb = acb->common.cb;
851
    void *user_opaque = acb->common.opaque;
852
    int ret = acb->bh_ret;
853
    bool *finished = acb->finished;
854

    
855
    qemu_bh_delete(acb->bh);
856
    qemu_aio_release(acb);
857

    
858
    /* Invoke callback */
859
    cb(user_opaque, ret);
860

    
861
    /* Signal cancel completion */
862
    if (finished) {
863
        *finished = true;
864
    }
865
}
866

    
867
static void qed_aio_complete(QEDAIOCB *acb, int ret)
868
{
869
    BDRVQEDState *s = acb_to_s(acb);
870

    
871
    trace_qed_aio_complete(s, acb, ret);
872

    
873
    /* Free resources */
874
    qemu_iovec_destroy(&acb->cur_qiov);
875
    qed_unref_l2_cache_entry(acb->request.l2_table);
876

    
877
    /* Free the buffer we may have allocated for zero writes */
878
    if (acb->flags & QED_AIOCB_ZERO) {
879
        qemu_vfree(acb->qiov->iov[0].iov_base);
880
        acb->qiov->iov[0].iov_base = NULL;
881
    }
882

    
883
    /* Arrange for a bh to invoke the completion function */
884
    acb->bh_ret = ret;
885
    acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
886
    qemu_bh_schedule(acb->bh);
887

    
888
    /* Start next allocating write request waiting behind this one.  Note that
889
     * requests enqueue themselves when they first hit an unallocated cluster
890
     * but they wait until the entire request is finished before waking up the
891
     * next request in the queue.  This ensures that we don't cycle through
892
     * requests multiple times but rather finish one at a time completely.
893
     */
894
    if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
895
        QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
896
        acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
897
        if (acb) {
898
            qed_aio_next_io(acb, 0);
899
        } else if (s->header.features & QED_F_NEED_CHECK) {
900
            qed_start_need_check_timer(s);
901
        }
902
    }
903
}
904

    
905
/**
906
 * Commit the current L2 table to the cache
907
 */
908
static void qed_commit_l2_update(void *opaque, int ret)
909
{
910
    QEDAIOCB *acb = opaque;
911
    BDRVQEDState *s = acb_to_s(acb);
912
    CachedL2Table *l2_table = acb->request.l2_table;
913
    uint64_t l2_offset = l2_table->offset;
914

    
915
    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
916

    
917
    /* This is guaranteed to succeed because we just committed the entry to the
918
     * cache.
919
     */
920
    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
921
    assert(acb->request.l2_table != NULL);
922

    
923
    qed_aio_next_io(opaque, ret);
924
}
925

    
926
/**
927
 * Update L1 table with new L2 table offset and write it out
928
 */
929
static void qed_aio_write_l1_update(void *opaque, int ret)
930
{
931
    QEDAIOCB *acb = opaque;
932
    BDRVQEDState *s = acb_to_s(acb);
933
    int index;
934

    
935
    if (ret) {
936
        qed_aio_complete(acb, ret);
937
        return;
938
    }
939

    
940
    index = qed_l1_index(s, acb->cur_pos);
941
    s->l1_table->offsets[index] = acb->request.l2_table->offset;
942

    
943
    qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
944
}
945

    
946
/**
947
 * Update L2 table with new cluster offsets and write them out
948
 */
949
static void qed_aio_write_l2_update(QEDAIOCB *acb, int ret, uint64_t offset)
950
{
951
    BDRVQEDState *s = acb_to_s(acb);
952
    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
953
    int index;
954

    
955
    if (ret) {
956
        goto err;
957
    }
958

    
959
    if (need_alloc) {
960
        qed_unref_l2_cache_entry(acb->request.l2_table);
961
        acb->request.l2_table = qed_new_l2_table(s);
962
    }
963

    
964
    index = qed_l2_index(s, acb->cur_pos);
965
    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
966
                         offset);
967

    
968
    if (need_alloc) {
969
        /* Write out the whole new L2 table */
970
        qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
971
                            qed_aio_write_l1_update, acb);
972
    } else {
973
        /* Write out only the updated part of the L2 table */
974
        qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
975
                            qed_aio_next_io, acb);
976
    }
977
    return;
978

    
979
err:
980
    qed_aio_complete(acb, ret);
981
}
982

    
983
static void qed_aio_write_l2_update_cb(void *opaque, int ret)
984
{
985
    QEDAIOCB *acb = opaque;
986
    qed_aio_write_l2_update(acb, ret, acb->cur_cluster);
987
}
988

    
989
/**
990
 * Flush new data clusters before updating the L2 table
991
 *
992
 * This flush is necessary when a backing file is in use.  A crash during an
993
 * allocating write could result in empty clusters in the image.  If the write
994
 * only touched a subregion of the cluster, then backing image sectors have
995
 * been lost in the untouched region.  The solution is to flush after writing a
996
 * new data cluster and before updating the L2 table.
997
 */
998
static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
999
{
1000
    QEDAIOCB *acb = opaque;
1001
    BDRVQEDState *s = acb_to_s(acb);
1002

    
1003
    if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update_cb, opaque)) {
1004
        qed_aio_complete(acb, -EIO);
1005
    }
1006
}
1007

    
1008
/**
1009
 * Write data to the image file
1010
 */
1011
static void qed_aio_write_main(void *opaque, int ret)
1012
{
1013
    QEDAIOCB *acb = opaque;
1014
    BDRVQEDState *s = acb_to_s(acb);
1015
    uint64_t offset = acb->cur_cluster +
1016
                      qed_offset_into_cluster(s, acb->cur_pos);
1017
    BlockDriverCompletionFunc *next_fn;
1018

    
1019
    trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1020

    
1021
    if (ret) {
1022
        qed_aio_complete(acb, ret);
1023
        return;
1024
    }
1025

    
1026
    if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1027
        next_fn = qed_aio_next_io;
1028
    } else {
1029
        if (s->bs->backing_hd) {
1030
            next_fn = qed_aio_write_flush_before_l2_update;
1031
        } else {
1032
            next_fn = qed_aio_write_l2_update_cb;
1033
        }
1034
    }
1035

    
1036
    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1037
    bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1038
                    &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1039
                    next_fn, acb);
1040
}
1041

    
1042
/**
1043
 * Populate back untouched region of new data cluster
1044
 */
1045
static void qed_aio_write_postfill(void *opaque, int ret)
1046
{
1047
    QEDAIOCB *acb = opaque;
1048
    BDRVQEDState *s = acb_to_s(acb);
1049
    uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1050
    uint64_t len =
1051
        qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1052
    uint64_t offset = acb->cur_cluster +
1053
                      qed_offset_into_cluster(s, acb->cur_pos) +
1054
                      acb->cur_qiov.size;
1055

    
1056
    if (ret) {
1057
        qed_aio_complete(acb, ret);
1058
        return;
1059
    }
1060

    
1061
    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1062
    qed_copy_from_backing_file(s, start, len, offset,
1063
                                qed_aio_write_main, acb);
1064
}
1065

    
1066
/**
1067
 * Populate front untouched region of new data cluster
1068
 */
1069
static void qed_aio_write_prefill(void *opaque, int ret)
1070
{
1071
    QEDAIOCB *acb = opaque;
1072
    BDRVQEDState *s = acb_to_s(acb);
1073
    uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1074
    uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1075

    
1076
    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1077
    qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1078
                                qed_aio_write_postfill, acb);
1079
}
1080

    
1081
/**
1082
 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1083
 */
1084
static bool qed_should_set_need_check(BDRVQEDState *s)
1085
{
1086
    /* The flush before L2 update path ensures consistency */
1087
    if (s->bs->backing_hd) {
1088
        return false;
1089
    }
1090

    
1091
    return !(s->header.features & QED_F_NEED_CHECK);
1092
}
1093

    
1094
static void qed_aio_write_zero_cluster(void *opaque, int ret)
1095
{
1096
    QEDAIOCB *acb = opaque;
1097

    
1098
    if (ret) {
1099
        qed_aio_complete(acb, ret);
1100
        return;
1101
    }
1102

    
1103
    qed_aio_write_l2_update(acb, 0, 1);
1104
}
1105

    
1106
/**
1107
 * Write new data cluster
1108
 *
1109
 * @acb:        Write request
1110
 * @len:        Length in bytes
1111
 *
1112
 * This path is taken when writing to previously unallocated clusters.
1113
 */
1114
static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1115
{
1116
    BDRVQEDState *s = acb_to_s(acb);
1117
    BlockDriverCompletionFunc *cb;
1118

    
1119
    /* Cancel timer when the first allocating request comes in */
1120
    if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1121
        qed_cancel_need_check_timer(s);
1122
    }
1123

    
1124
    /* Freeze this request if another allocating write is in progress */
1125
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1126
        QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1127
    }
1128
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1129
        s->allocating_write_reqs_plugged) {
1130
        return; /* wait for existing request to finish */
1131
    }
1132

    
1133
    acb->cur_nclusters = qed_bytes_to_clusters(s,
1134
            qed_offset_into_cluster(s, acb->cur_pos) + len);
1135
    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1136

    
1137
    if (acb->flags & QED_AIOCB_ZERO) {
1138
        /* Skip ahead if the clusters are already zero */
1139
        if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1140
            qed_aio_next_io(acb, 0);
1141
            return;
1142
        }
1143

    
1144
        cb = qed_aio_write_zero_cluster;
1145
    } else {
1146
        cb = qed_aio_write_prefill;
1147
        acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1148
    }
1149

    
1150
    if (qed_should_set_need_check(s)) {
1151
        s->header.features |= QED_F_NEED_CHECK;
1152
        qed_write_header(s, cb, acb);
1153
    } else {
1154
        cb(acb, 0);
1155
    }
1156
}
1157

    
1158
/**
1159
 * Write data cluster in place
1160
 *
1161
 * @acb:        Write request
1162
 * @offset:     Cluster offset in bytes
1163
 * @len:        Length in bytes
1164
 *
1165
 * This path is taken when writing to already allocated clusters.
1166
 */
1167
static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1168
{
1169
    /* Allocate buffer for zero writes */
1170
    if (acb->flags & QED_AIOCB_ZERO) {
1171
        struct iovec *iov = acb->qiov->iov;
1172

    
1173
        if (!iov->iov_base) {
1174
            iov->iov_base = qemu_blockalign(acb->common.bs, iov->iov_len);
1175
            memset(iov->iov_base, 0, iov->iov_len);
1176
        }
1177
    }
1178

    
1179
    /* Calculate the I/O vector */
1180
    acb->cur_cluster = offset;
1181
    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1182

    
1183
    /* Do the actual write */
1184
    qed_aio_write_main(acb, 0);
1185
}
1186

    
1187
/**
1188
 * Write data cluster
1189
 *
1190
 * @opaque:     Write request
1191
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1192
 *              or -errno
1193
 * @offset:     Cluster offset in bytes
1194
 * @len:        Length in bytes
1195
 *
1196
 * Callback from qed_find_cluster().
1197
 */
1198
static void qed_aio_write_data(void *opaque, int ret,
1199
                               uint64_t offset, size_t len)
1200
{
1201
    QEDAIOCB *acb = opaque;
1202

    
1203
    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1204

    
1205
    acb->find_cluster_ret = ret;
1206

    
1207
    switch (ret) {
1208
    case QED_CLUSTER_FOUND:
1209
        qed_aio_write_inplace(acb, offset, len);
1210
        break;
1211

    
1212
    case QED_CLUSTER_L2:
1213
    case QED_CLUSTER_L1:
1214
    case QED_CLUSTER_ZERO:
1215
        qed_aio_write_alloc(acb, len);
1216
        break;
1217

    
1218
    default:
1219
        qed_aio_complete(acb, ret);
1220
        break;
1221
    }
1222
}
1223

    
1224
/**
1225
 * Read data cluster
1226
 *
1227
 * @opaque:     Read request
1228
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1229
 *              or -errno
1230
 * @offset:     Cluster offset in bytes
1231
 * @len:        Length in bytes
1232
 *
1233
 * Callback from qed_find_cluster().
1234
 */
1235
static void qed_aio_read_data(void *opaque, int ret,
1236
                              uint64_t offset, size_t len)
1237
{
1238
    QEDAIOCB *acb = opaque;
1239
    BDRVQEDState *s = acb_to_s(acb);
1240
    BlockDriverState *bs = acb->common.bs;
1241

    
1242
    /* Adjust offset into cluster */
1243
    offset += qed_offset_into_cluster(s, acb->cur_pos);
1244

    
1245
    trace_qed_aio_read_data(s, acb, ret, offset, len);
1246

    
1247
    if (ret < 0) {
1248
        goto err;
1249
    }
1250

    
1251
    qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1252

    
1253
    /* Handle zero cluster and backing file reads */
1254
    if (ret == QED_CLUSTER_ZERO) {
1255
        qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1256
        qed_aio_next_io(acb, 0);
1257
        return;
1258
    } else if (ret != QED_CLUSTER_FOUND) {
1259
        qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1260
                              qed_aio_next_io, acb);
1261
        return;
1262
    }
1263

    
1264
    BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1265
    bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1266
                   &acb->cur_qiov, acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1267
                   qed_aio_next_io, acb);
1268
    return;
1269

    
1270
err:
1271
    qed_aio_complete(acb, ret);
1272
}
1273

    
1274
/**
1275
 * Begin next I/O or complete the request
1276
 */
1277
static void qed_aio_next_io(void *opaque, int ret)
1278
{
1279
    QEDAIOCB *acb = opaque;
1280
    BDRVQEDState *s = acb_to_s(acb);
1281
    QEDFindClusterFunc *io_fn = (acb->flags & QED_AIOCB_WRITE) ?
1282
                                qed_aio_write_data : qed_aio_read_data;
1283

    
1284
    trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1285

    
1286
    /* Handle I/O error */
1287
    if (ret) {
1288
        qed_aio_complete(acb, ret);
1289
        return;
1290
    }
1291

    
1292
    acb->qiov_offset += acb->cur_qiov.size;
1293
    acb->cur_pos += acb->cur_qiov.size;
1294
    qemu_iovec_reset(&acb->cur_qiov);
1295

    
1296
    /* Complete request */
1297
    if (acb->cur_pos >= acb->end_pos) {
1298
        qed_aio_complete(acb, 0);
1299
        return;
1300
    }
1301

    
1302
    /* Find next cluster and start I/O */
1303
    qed_find_cluster(s, &acb->request,
1304
                      acb->cur_pos, acb->end_pos - acb->cur_pos,
1305
                      io_fn, acb);
1306
}
1307

    
1308
static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1309
                                       int64_t sector_num,
1310
                                       QEMUIOVector *qiov, int nb_sectors,
1311
                                       BlockDriverCompletionFunc *cb,
1312
                                       void *opaque, int flags)
1313
{
1314
    QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, cb, opaque);
1315

    
1316
    trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1317
                        opaque, flags);
1318

    
1319
    acb->flags = flags;
1320
    acb->finished = NULL;
1321
    acb->qiov = qiov;
1322
    acb->qiov_offset = 0;
1323
    acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1324
    acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1325
    acb->request.l2_table = NULL;
1326
    qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1327

    
1328
    /* Start request */
1329
    qed_aio_next_io(acb, 0);
1330
    return &acb->common;
1331
}
1332

    
1333
static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1334
                                            int64_t sector_num,
1335
                                            QEMUIOVector *qiov, int nb_sectors,
1336
                                            BlockDriverCompletionFunc *cb,
1337
                                            void *opaque)
1338
{
1339
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, 0);
1340
}
1341

    
1342
static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1343
                                             int64_t sector_num,
1344
                                             QEMUIOVector *qiov, int nb_sectors,
1345
                                             BlockDriverCompletionFunc *cb,
1346
                                             void *opaque)
1347
{
1348
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb,
1349
                         opaque, QED_AIOCB_WRITE);
1350
}
1351

    
1352
typedef struct {
1353
    Coroutine *co;
1354
    int ret;
1355
    bool done;
1356
} QEDWriteZeroesCB;
1357

    
1358
static void coroutine_fn qed_co_write_zeroes_cb(void *opaque, int ret)
1359
{
1360
    QEDWriteZeroesCB *cb = opaque;
1361

    
1362
    cb->done = true;
1363
    cb->ret = ret;
1364
    if (cb->co) {
1365
        qemu_coroutine_enter(cb->co, NULL);
1366
    }
1367
}
1368

    
1369
static int coroutine_fn bdrv_qed_co_write_zeroes(BlockDriverState *bs,
1370
                                                 int64_t sector_num,
1371
                                                 int nb_sectors)
1372
{
1373
    BlockDriverAIOCB *blockacb;
1374
    BDRVQEDState *s = bs->opaque;
1375
    QEDWriteZeroesCB cb = { .done = false };
1376
    QEMUIOVector qiov;
1377
    struct iovec iov;
1378

    
1379
    /* Refuse if there are untouched backing file sectors */
1380
    if (bs->backing_hd) {
1381
        if (qed_offset_into_cluster(s, sector_num * BDRV_SECTOR_SIZE) != 0) {
1382
            return -ENOTSUP;
1383
        }
1384
        if (qed_offset_into_cluster(s, nb_sectors * BDRV_SECTOR_SIZE) != 0) {
1385
            return -ENOTSUP;
1386
        }
1387
    }
1388

    
1389
    /* Zero writes start without an I/O buffer.  If a buffer becomes necessary
1390
     * then it will be allocated during request processing.
1391
     */
1392
    iov.iov_base = NULL,
1393
    iov.iov_len  = nb_sectors * BDRV_SECTOR_SIZE,
1394

    
1395
    qemu_iovec_init_external(&qiov, &iov, 1);
1396
    blockacb = qed_aio_setup(bs, sector_num, &qiov, nb_sectors,
1397
                             qed_co_write_zeroes_cb, &cb,
1398
                             QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1399
    if (!blockacb) {
1400
        return -EIO;
1401
    }
1402
    if (!cb.done) {
1403
        cb.co = qemu_coroutine_self();
1404
        qemu_coroutine_yield();
1405
    }
1406
    assert(cb.done);
1407
    return cb.ret;
1408
}
1409

    
1410
static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1411
{
1412
    BDRVQEDState *s = bs->opaque;
1413
    uint64_t old_image_size;
1414
    int ret;
1415

    
1416
    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1417
                                 s->header.table_size)) {
1418
        return -EINVAL;
1419
    }
1420

    
1421
    /* Shrinking is currently not supported */
1422
    if ((uint64_t)offset < s->header.image_size) {
1423
        return -ENOTSUP;
1424
    }
1425

    
1426
    old_image_size = s->header.image_size;
1427
    s->header.image_size = offset;
1428
    ret = qed_write_header_sync(s);
1429
    if (ret < 0) {
1430
        s->header.image_size = old_image_size;
1431
    }
1432
    return ret;
1433
}
1434

    
1435
static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1436
{
1437
    BDRVQEDState *s = bs->opaque;
1438
    return s->header.image_size;
1439
}
1440

    
1441
static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1442
{
1443
    BDRVQEDState *s = bs->opaque;
1444

    
1445
    memset(bdi, 0, sizeof(*bdi));
1446
    bdi->cluster_size = s->header.cluster_size;
1447
    bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1448
    return 0;
1449
}
1450

    
1451
static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1452
                                        const char *backing_file,
1453
                                        const char *backing_fmt)
1454
{
1455
    BDRVQEDState *s = bs->opaque;
1456
    QEDHeader new_header, le_header;
1457
    void *buffer;
1458
    size_t buffer_len, backing_file_len;
1459
    int ret;
1460

    
1461
    /* Refuse to set backing filename if unknown compat feature bits are
1462
     * active.  If the image uses an unknown compat feature then we may not
1463
     * know the layout of data following the header structure and cannot safely
1464
     * add a new string.
1465
     */
1466
    if (backing_file && (s->header.compat_features &
1467
                         ~QED_COMPAT_FEATURE_MASK)) {
1468
        return -ENOTSUP;
1469
    }
1470

    
1471
    memcpy(&new_header, &s->header, sizeof(new_header));
1472

    
1473
    new_header.features &= ~(QED_F_BACKING_FILE |
1474
                             QED_F_BACKING_FORMAT_NO_PROBE);
1475

    
1476
    /* Adjust feature flags */
1477
    if (backing_file) {
1478
        new_header.features |= QED_F_BACKING_FILE;
1479

    
1480
        if (qed_fmt_is_raw(backing_fmt)) {
1481
            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1482
        }
1483
    }
1484

    
1485
    /* Calculate new header size */
1486
    backing_file_len = 0;
1487

    
1488
    if (backing_file) {
1489
        backing_file_len = strlen(backing_file);
1490
    }
1491

    
1492
    buffer_len = sizeof(new_header);
1493
    new_header.backing_filename_offset = buffer_len;
1494
    new_header.backing_filename_size = backing_file_len;
1495
    buffer_len += backing_file_len;
1496

    
1497
    /* Make sure we can rewrite header without failing */
1498
    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1499
        return -ENOSPC;
1500
    }
1501

    
1502
    /* Prepare new header */
1503
    buffer = g_malloc(buffer_len);
1504

    
1505
    qed_header_cpu_to_le(&new_header, &le_header);
1506
    memcpy(buffer, &le_header, sizeof(le_header));
1507
    buffer_len = sizeof(le_header);
1508

    
1509
    if (backing_file) {
1510
        memcpy(buffer + buffer_len, backing_file, backing_file_len);
1511
        buffer_len += backing_file_len;
1512
    }
1513

    
1514
    /* Write new header */
1515
    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1516
    g_free(buffer);
1517
    if (ret == 0) {
1518
        memcpy(&s->header, &new_header, sizeof(new_header));
1519
    }
1520
    return ret;
1521
}
1522

    
1523
static void bdrv_qed_invalidate_cache(BlockDriverState *bs)
1524
{
1525
    BDRVQEDState *s = bs->opaque;
1526

    
1527
    bdrv_qed_close(bs);
1528
    memset(s, 0, sizeof(BDRVQEDState));
1529
    bdrv_qed_open(bs, bs->open_flags);
1530
}
1531

    
1532
static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1533
                          BdrvCheckMode fix)
1534
{
1535
    BDRVQEDState *s = bs->opaque;
1536

    
1537
    return qed_check(s, result, !!fix);
1538
}
1539

    
1540
static QEMUOptionParameter qed_create_options[] = {
1541
    {
1542
        .name = BLOCK_OPT_SIZE,
1543
        .type = OPT_SIZE,
1544
        .help = "Virtual disk size (in bytes)"
1545
    }, {
1546
        .name = BLOCK_OPT_BACKING_FILE,
1547
        .type = OPT_STRING,
1548
        .help = "File name of a base image"
1549
    }, {
1550
        .name = BLOCK_OPT_BACKING_FMT,
1551
        .type = OPT_STRING,
1552
        .help = "Image format of the base image"
1553
    }, {
1554
        .name = BLOCK_OPT_CLUSTER_SIZE,
1555
        .type = OPT_SIZE,
1556
        .help = "Cluster size (in bytes)",
1557
        .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1558
    }, {
1559
        .name = BLOCK_OPT_TABLE_SIZE,
1560
        .type = OPT_SIZE,
1561
        .help = "L1/L2 table size (in clusters)"
1562
    },
1563
    { /* end of list */ }
1564
};
1565

    
1566
static BlockDriver bdrv_qed = {
1567
    .format_name              = "qed",
1568
    .instance_size            = sizeof(BDRVQEDState),
1569
    .create_options           = qed_create_options,
1570

    
1571
    .bdrv_probe               = bdrv_qed_probe,
1572
    .bdrv_rebind              = bdrv_qed_rebind,
1573
    .bdrv_open                = bdrv_qed_open,
1574
    .bdrv_close               = bdrv_qed_close,
1575
    .bdrv_reopen_prepare      = bdrv_qed_reopen_prepare,
1576
    .bdrv_create              = bdrv_qed_create,
1577
    .bdrv_co_is_allocated     = bdrv_qed_co_is_allocated,
1578
    .bdrv_make_empty          = bdrv_qed_make_empty,
1579
    .bdrv_aio_readv           = bdrv_qed_aio_readv,
1580
    .bdrv_aio_writev          = bdrv_qed_aio_writev,
1581
    .bdrv_co_write_zeroes     = bdrv_qed_co_write_zeroes,
1582
    .bdrv_truncate            = bdrv_qed_truncate,
1583
    .bdrv_getlength           = bdrv_qed_getlength,
1584
    .bdrv_get_info            = bdrv_qed_get_info,
1585
    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1586
    .bdrv_invalidate_cache    = bdrv_qed_invalidate_cache,
1587
    .bdrv_check               = bdrv_qed_check,
1588
};
1589

    
1590
static void bdrv_qed_init(void)
1591
{
1592
    bdrv_register(&bdrv_qed);
1593
}
1594

    
1595
block_init(bdrv_qed_init);