Statistics
| Branch: | Revision:

root / hw / pc.c @ 1de7afc9

History | View | Annotate | Download (31.5 kB)

1
/*
2
 * QEMU PC System Emulator
3
 *
4
 * Copyright (c) 2003-2004 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "pc.h"
26
#include "serial.h"
27
#include "apic.h"
28
#include "fdc.h"
29
#include "ide.h"
30
#include "pci/pci.h"
31
#include "monitor/monitor.h"
32
#include "fw_cfg.h"
33
#include "hpet_emul.h"
34
#include "smbios.h"
35
#include "loader.h"
36
#include "elf.h"
37
#include "multiboot.h"
38
#include "mc146818rtc.h"
39
#include "i8254.h"
40
#include "pcspk.h"
41
#include "pci/msi.h"
42
#include "sysbus.h"
43
#include "sysemu.h"
44
#include "kvm.h"
45
#include "kvm_i386.h"
46
#include "xen.h"
47
#include "blockdev.h"
48
#include "hw/block-common.h"
49
#include "ui/qemu-spice.h"
50
#include "exec/memory.h"
51
#include "exec/address-spaces.h"
52
#include "arch_init.h"
53
#include "qemu/bitmap.h"
54

    
55
/* debug PC/ISA interrupts */
56
//#define DEBUG_IRQ
57

    
58
#ifdef DEBUG_IRQ
59
#define DPRINTF(fmt, ...)                                       \
60
    do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
61
#else
62
#define DPRINTF(fmt, ...)
63
#endif
64

    
65
/* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables.  */
66
#define ACPI_DATA_SIZE       0x10000
67
#define BIOS_CFG_IOPORT 0x510
68
#define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
69
#define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
70
#define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
71
#define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
72
#define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
73

    
74
#define E820_NR_ENTRIES                16
75

    
76
struct e820_entry {
77
    uint64_t address;
78
    uint64_t length;
79
    uint32_t type;
80
} QEMU_PACKED __attribute((__aligned__(4)));
81

    
82
struct e820_table {
83
    uint32_t count;
84
    struct e820_entry entry[E820_NR_ENTRIES];
85
} QEMU_PACKED __attribute((__aligned__(4)));
86

    
87
static struct e820_table e820_table;
88
struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
89

    
90
void gsi_handler(void *opaque, int n, int level)
91
{
92
    GSIState *s = opaque;
93

    
94
    DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
95
    if (n < ISA_NUM_IRQS) {
96
        qemu_set_irq(s->i8259_irq[n], level);
97
    }
98
    qemu_set_irq(s->ioapic_irq[n], level);
99
}
100

    
101
static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
102
                           unsigned size)
103
{
104
}
105

    
106
/* MSDOS compatibility mode FPU exception support */
107
static qemu_irq ferr_irq;
108

    
109
void pc_register_ferr_irq(qemu_irq irq)
110
{
111
    ferr_irq = irq;
112
}
113

    
114
/* XXX: add IGNNE support */
115
void cpu_set_ferr(CPUX86State *s)
116
{
117
    qemu_irq_raise(ferr_irq);
118
}
119

    
120
static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
121
                           unsigned size)
122
{
123
    qemu_irq_lower(ferr_irq);
124
}
125

    
126
/* TSC handling */
127
uint64_t cpu_get_tsc(CPUX86State *env)
128
{
129
    return cpu_get_ticks();
130
}
131

    
132
/* SMM support */
133

    
134
static cpu_set_smm_t smm_set;
135
static void *smm_arg;
136

    
137
void cpu_smm_register(cpu_set_smm_t callback, void *arg)
138
{
139
    assert(smm_set == NULL);
140
    assert(smm_arg == NULL);
141
    smm_set = callback;
142
    smm_arg = arg;
143
}
144

    
145
void cpu_smm_update(CPUX86State *env)
146
{
147
    if (smm_set && smm_arg && env == first_cpu)
148
        smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg);
149
}
150

    
151

    
152
/* IRQ handling */
153
int cpu_get_pic_interrupt(CPUX86State *env)
154
{
155
    int intno;
156

    
157
    intno = apic_get_interrupt(env->apic_state);
158
    if (intno >= 0) {
159
        return intno;
160
    }
161
    /* read the irq from the PIC */
162
    if (!apic_accept_pic_intr(env->apic_state)) {
163
        return -1;
164
    }
165

    
166
    intno = pic_read_irq(isa_pic);
167
    return intno;
168
}
169

    
170
static void pic_irq_request(void *opaque, int irq, int level)
171
{
172
    CPUX86State *env = first_cpu;
173

    
174
    DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
175
    if (env->apic_state) {
176
        while (env) {
177
            if (apic_accept_pic_intr(env->apic_state)) {
178
                apic_deliver_pic_intr(env->apic_state, level);
179
            }
180
            env = env->next_cpu;
181
        }
182
    } else {
183
        if (level)
184
            cpu_interrupt(env, CPU_INTERRUPT_HARD);
185
        else
186
            cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
187
    }
188
}
189

    
190
/* PC cmos mappings */
191

    
192
#define REG_EQUIPMENT_BYTE          0x14
193

    
194
static int cmos_get_fd_drive_type(FDriveType fd0)
195
{
196
    int val;
197

    
198
    switch (fd0) {
199
    case FDRIVE_DRV_144:
200
        /* 1.44 Mb 3"5 drive */
201
        val = 4;
202
        break;
203
    case FDRIVE_DRV_288:
204
        /* 2.88 Mb 3"5 drive */
205
        val = 5;
206
        break;
207
    case FDRIVE_DRV_120:
208
        /* 1.2 Mb 5"5 drive */
209
        val = 2;
210
        break;
211
    case FDRIVE_DRV_NONE:
212
    default:
213
        val = 0;
214
        break;
215
    }
216
    return val;
217
}
218

    
219
static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
220
                         int16_t cylinders, int8_t heads, int8_t sectors)
221
{
222
    rtc_set_memory(s, type_ofs, 47);
223
    rtc_set_memory(s, info_ofs, cylinders);
224
    rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
225
    rtc_set_memory(s, info_ofs + 2, heads);
226
    rtc_set_memory(s, info_ofs + 3, 0xff);
227
    rtc_set_memory(s, info_ofs + 4, 0xff);
228
    rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
229
    rtc_set_memory(s, info_ofs + 6, cylinders);
230
    rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
231
    rtc_set_memory(s, info_ofs + 8, sectors);
232
}
233

    
234
/* convert boot_device letter to something recognizable by the bios */
235
static int boot_device2nibble(char boot_device)
236
{
237
    switch(boot_device) {
238
    case 'a':
239
    case 'b':
240
        return 0x01; /* floppy boot */
241
    case 'c':
242
        return 0x02; /* hard drive boot */
243
    case 'd':
244
        return 0x03; /* CD-ROM boot */
245
    case 'n':
246
        return 0x04; /* Network boot */
247
    }
248
    return 0;
249
}
250

    
251
static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk)
252
{
253
#define PC_MAX_BOOT_DEVICES 3
254
    int nbds, bds[3] = { 0, };
255
    int i;
256

    
257
    nbds = strlen(boot_device);
258
    if (nbds > PC_MAX_BOOT_DEVICES) {
259
        error_report("Too many boot devices for PC");
260
        return(1);
261
    }
262
    for (i = 0; i < nbds; i++) {
263
        bds[i] = boot_device2nibble(boot_device[i]);
264
        if (bds[i] == 0) {
265
            error_report("Invalid boot device for PC: '%c'",
266
                         boot_device[i]);
267
            return(1);
268
        }
269
    }
270
    rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
271
    rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
272
    return(0);
273
}
274

    
275
static int pc_boot_set(void *opaque, const char *boot_device)
276
{
277
    return set_boot_dev(opaque, boot_device, 0);
278
}
279

    
280
typedef struct pc_cmos_init_late_arg {
281
    ISADevice *rtc_state;
282
    BusState *idebus[2];
283
} pc_cmos_init_late_arg;
284

    
285
static void pc_cmos_init_late(void *opaque)
286
{
287
    pc_cmos_init_late_arg *arg = opaque;
288
    ISADevice *s = arg->rtc_state;
289
    int16_t cylinders;
290
    int8_t heads, sectors;
291
    int val;
292
    int i, trans;
293

    
294
    val = 0;
295
    if (ide_get_geometry(arg->idebus[0], 0,
296
                         &cylinders, &heads, &sectors) >= 0) {
297
        cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
298
        val |= 0xf0;
299
    }
300
    if (ide_get_geometry(arg->idebus[0], 1,
301
                         &cylinders, &heads, &sectors) >= 0) {
302
        cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
303
        val |= 0x0f;
304
    }
305
    rtc_set_memory(s, 0x12, val);
306

    
307
    val = 0;
308
    for (i = 0; i < 4; i++) {
309
        /* NOTE: ide_get_geometry() returns the physical
310
           geometry.  It is always such that: 1 <= sects <= 63, 1
311
           <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
312
           geometry can be different if a translation is done. */
313
        if (ide_get_geometry(arg->idebus[i / 2], i % 2,
314
                             &cylinders, &heads, &sectors) >= 0) {
315
            trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
316
            assert((trans & ~3) == 0);
317
            val |= trans << (i * 2);
318
        }
319
    }
320
    rtc_set_memory(s, 0x39, val);
321

    
322
    qemu_unregister_reset(pc_cmos_init_late, opaque);
323
}
324

    
325
void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size,
326
                  const char *boot_device,
327
                  ISADevice *floppy, BusState *idebus0, BusState *idebus1,
328
                  ISADevice *s)
329
{
330
    int val, nb, i;
331
    FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE };
332
    static pc_cmos_init_late_arg arg;
333

    
334
    /* various important CMOS locations needed by PC/Bochs bios */
335

    
336
    /* memory size */
337
    /* base memory (first MiB) */
338
    val = MIN(ram_size / 1024, 640);
339
    rtc_set_memory(s, 0x15, val);
340
    rtc_set_memory(s, 0x16, val >> 8);
341
    /* extended memory (next 64MiB) */
342
    if (ram_size > 1024 * 1024) {
343
        val = (ram_size - 1024 * 1024) / 1024;
344
    } else {
345
        val = 0;
346
    }
347
    if (val > 65535)
348
        val = 65535;
349
    rtc_set_memory(s, 0x17, val);
350
    rtc_set_memory(s, 0x18, val >> 8);
351
    rtc_set_memory(s, 0x30, val);
352
    rtc_set_memory(s, 0x31, val >> 8);
353
    /* memory between 16MiB and 4GiB */
354
    if (ram_size > 16 * 1024 * 1024) {
355
        val = (ram_size - 16 * 1024 * 1024) / 65536;
356
    } else {
357
        val = 0;
358
    }
359
    if (val > 65535)
360
        val = 65535;
361
    rtc_set_memory(s, 0x34, val);
362
    rtc_set_memory(s, 0x35, val >> 8);
363
    /* memory above 4GiB */
364
    val = above_4g_mem_size / 65536;
365
    rtc_set_memory(s, 0x5b, val);
366
    rtc_set_memory(s, 0x5c, val >> 8);
367
    rtc_set_memory(s, 0x5d, val >> 16);
368

    
369
    /* set the number of CPU */
370
    rtc_set_memory(s, 0x5f, smp_cpus - 1);
371

    
372
    /* set boot devices, and disable floppy signature check if requested */
373
    if (set_boot_dev(s, boot_device, fd_bootchk)) {
374
        exit(1);
375
    }
376

    
377
    /* floppy type */
378
    if (floppy) {
379
        for (i = 0; i < 2; i++) {
380
            fd_type[i] = isa_fdc_get_drive_type(floppy, i);
381
        }
382
    }
383
    val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
384
        cmos_get_fd_drive_type(fd_type[1]);
385
    rtc_set_memory(s, 0x10, val);
386

    
387
    val = 0;
388
    nb = 0;
389
    if (fd_type[0] < FDRIVE_DRV_NONE) {
390
        nb++;
391
    }
392
    if (fd_type[1] < FDRIVE_DRV_NONE) {
393
        nb++;
394
    }
395
    switch (nb) {
396
    case 0:
397
        break;
398
    case 1:
399
        val |= 0x01; /* 1 drive, ready for boot */
400
        break;
401
    case 2:
402
        val |= 0x41; /* 2 drives, ready for boot */
403
        break;
404
    }
405
    val |= 0x02; /* FPU is there */
406
    val |= 0x04; /* PS/2 mouse installed */
407
    rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
408

    
409
    /* hard drives */
410
    arg.rtc_state = s;
411
    arg.idebus[0] = idebus0;
412
    arg.idebus[1] = idebus1;
413
    qemu_register_reset(pc_cmos_init_late, &arg);
414
}
415

    
416
/* port 92 stuff: could be split off */
417
typedef struct Port92State {
418
    ISADevice dev;
419
    MemoryRegion io;
420
    uint8_t outport;
421
    qemu_irq *a20_out;
422
} Port92State;
423

    
424
static void port92_write(void *opaque, hwaddr addr, uint64_t val,
425
                         unsigned size)
426
{
427
    Port92State *s = opaque;
428

    
429
    DPRINTF("port92: write 0x%02x\n", val);
430
    s->outport = val;
431
    qemu_set_irq(*s->a20_out, (val >> 1) & 1);
432
    if (val & 1) {
433
        qemu_system_reset_request();
434
    }
435
}
436

    
437
static uint64_t port92_read(void *opaque, hwaddr addr,
438
                            unsigned size)
439
{
440
    Port92State *s = opaque;
441
    uint32_t ret;
442

    
443
    ret = s->outport;
444
    DPRINTF("port92: read 0x%02x\n", ret);
445
    return ret;
446
}
447

    
448
static void port92_init(ISADevice *dev, qemu_irq *a20_out)
449
{
450
    Port92State *s = DO_UPCAST(Port92State, dev, dev);
451

    
452
    s->a20_out = a20_out;
453
}
454

    
455
static const VMStateDescription vmstate_port92_isa = {
456
    .name = "port92",
457
    .version_id = 1,
458
    .minimum_version_id = 1,
459
    .minimum_version_id_old = 1,
460
    .fields      = (VMStateField []) {
461
        VMSTATE_UINT8(outport, Port92State),
462
        VMSTATE_END_OF_LIST()
463
    }
464
};
465

    
466
static void port92_reset(DeviceState *d)
467
{
468
    Port92State *s = container_of(d, Port92State, dev.qdev);
469

    
470
    s->outport &= ~1;
471
}
472

    
473
static const MemoryRegionOps port92_ops = {
474
    .read = port92_read,
475
    .write = port92_write,
476
    .impl = {
477
        .min_access_size = 1,
478
        .max_access_size = 1,
479
    },
480
    .endianness = DEVICE_LITTLE_ENDIAN,
481
};
482

    
483
static int port92_initfn(ISADevice *dev)
484
{
485
    Port92State *s = DO_UPCAST(Port92State, dev, dev);
486

    
487
    memory_region_init_io(&s->io, &port92_ops, s, "port92", 1);
488
    isa_register_ioport(dev, &s->io, 0x92);
489

    
490
    s->outport = 0;
491
    return 0;
492
}
493

    
494
static void port92_class_initfn(ObjectClass *klass, void *data)
495
{
496
    DeviceClass *dc = DEVICE_CLASS(klass);
497
    ISADeviceClass *ic = ISA_DEVICE_CLASS(klass);
498
    ic->init = port92_initfn;
499
    dc->no_user = 1;
500
    dc->reset = port92_reset;
501
    dc->vmsd = &vmstate_port92_isa;
502
}
503

    
504
static TypeInfo port92_info = {
505
    .name          = "port92",
506
    .parent        = TYPE_ISA_DEVICE,
507
    .instance_size = sizeof(Port92State),
508
    .class_init    = port92_class_initfn,
509
};
510

    
511
static void port92_register_types(void)
512
{
513
    type_register_static(&port92_info);
514
}
515

    
516
type_init(port92_register_types)
517

    
518
static void handle_a20_line_change(void *opaque, int irq, int level)
519
{
520
    CPUX86State *cpu = opaque;
521

    
522
    /* XXX: send to all CPUs ? */
523
    /* XXX: add logic to handle multiple A20 line sources */
524
    cpu_x86_set_a20(cpu, level);
525
}
526

    
527
/***********************************************************/
528
/* Bochs BIOS debug ports */
529

    
530
static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val)
531
{
532
    static const char shutdown_str[8] = "Shutdown";
533
    static int shutdown_index = 0;
534

    
535
    switch(addr) {
536
    case 0x8900:
537
        /* same as Bochs power off */
538
        if (val == shutdown_str[shutdown_index]) {
539
            shutdown_index++;
540
            if (shutdown_index == 8) {
541
                shutdown_index = 0;
542
                qemu_system_shutdown_request();
543
            }
544
        } else {
545
            shutdown_index = 0;
546
        }
547
        break;
548

    
549
    case 0x501:
550
    case 0x502:
551
        exit((val << 1) | 1);
552
    }
553
}
554

    
555
int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
556
{
557
    int index = le32_to_cpu(e820_table.count);
558
    struct e820_entry *entry;
559

    
560
    if (index >= E820_NR_ENTRIES)
561
        return -EBUSY;
562
    entry = &e820_table.entry[index++];
563

    
564
    entry->address = cpu_to_le64(address);
565
    entry->length = cpu_to_le64(length);
566
    entry->type = cpu_to_le32(type);
567

    
568
    e820_table.count = cpu_to_le32(index);
569
    return index;
570
}
571

    
572
static const MemoryRegionPortio bochs_bios_portio_list[] = {
573
    { 0x500, 1, 1, .write = bochs_bios_write, }, /* 0x500 */
574
    { 0x501, 1, 1, .write = bochs_bios_write, }, /* 0x501 */
575
    { 0x501, 2, 2, .write = bochs_bios_write, }, /* 0x501 */
576
    { 0x8900, 1, 1, .write = bochs_bios_write, }, /* 0x8900 */
577
    PORTIO_END_OF_LIST(),
578
};
579

    
580
static void *bochs_bios_init(void)
581
{
582
    void *fw_cfg;
583
    uint8_t *smbios_table;
584
    size_t smbios_len;
585
    uint64_t *numa_fw_cfg;
586
    int i, j;
587
    PortioList *bochs_bios_port_list = g_new(PortioList, 1);
588

    
589
    portio_list_init(bochs_bios_port_list, bochs_bios_portio_list,
590
                     NULL, "bochs-bios");
591
    portio_list_add(bochs_bios_port_list, get_system_io(), 0x0);
592

    
593
    fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0);
594

    
595
    fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
596
    fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
597
    fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables,
598
                     acpi_tables_len);
599
    fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
600

    
601
    smbios_table = smbios_get_table(&smbios_len);
602
    if (smbios_table)
603
        fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
604
                         smbios_table, smbios_len);
605
    fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, (uint8_t *)&e820_table,
606
                     sizeof(struct e820_table));
607

    
608
    fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, (uint8_t *)&hpet_cfg,
609
                     sizeof(struct hpet_fw_config));
610
    /* allocate memory for the NUMA channel: one (64bit) word for the number
611
     * of nodes, one word for each VCPU->node and one word for each node to
612
     * hold the amount of memory.
613
     */
614
    numa_fw_cfg = g_malloc0((1 + max_cpus + nb_numa_nodes) * 8);
615
    numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
616
    for (i = 0; i < max_cpus; i++) {
617
        for (j = 0; j < nb_numa_nodes; j++) {
618
            if (test_bit(i, node_cpumask[j])) {
619
                numa_fw_cfg[i + 1] = cpu_to_le64(j);
620
                break;
621
            }
622
        }
623
    }
624
    for (i = 0; i < nb_numa_nodes; i++) {
625
        numa_fw_cfg[max_cpus + 1 + i] = cpu_to_le64(node_mem[i]);
626
    }
627
    fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg,
628
                     (1 + max_cpus + nb_numa_nodes) * 8);
629

    
630
    return fw_cfg;
631
}
632

    
633
static long get_file_size(FILE *f)
634
{
635
    long where, size;
636

    
637
    /* XXX: on Unix systems, using fstat() probably makes more sense */
638

    
639
    where = ftell(f);
640
    fseek(f, 0, SEEK_END);
641
    size = ftell(f);
642
    fseek(f, where, SEEK_SET);
643

    
644
    return size;
645
}
646

    
647
static void load_linux(void *fw_cfg,
648
                       const char *kernel_filename,
649
                       const char *initrd_filename,
650
                       const char *kernel_cmdline,
651
                       hwaddr max_ram_size)
652
{
653
    uint16_t protocol;
654
    int setup_size, kernel_size, initrd_size = 0, cmdline_size;
655
    uint32_t initrd_max;
656
    uint8_t header[8192], *setup, *kernel, *initrd_data;
657
    hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
658
    FILE *f;
659
    char *vmode;
660

    
661
    /* Align to 16 bytes as a paranoia measure */
662
    cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
663

    
664
    /* load the kernel header */
665
    f = fopen(kernel_filename, "rb");
666
    if (!f || !(kernel_size = get_file_size(f)) ||
667
        fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
668
        MIN(ARRAY_SIZE(header), kernel_size)) {
669
        fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
670
                kernel_filename, strerror(errno));
671
        exit(1);
672
    }
673

    
674
    /* kernel protocol version */
675
#if 0
676
    fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
677
#endif
678
    if (ldl_p(header+0x202) == 0x53726448)
679
        protocol = lduw_p(header+0x206);
680
    else {
681
        /* This looks like a multiboot kernel. If it is, let's stop
682
           treating it like a Linux kernel. */
683
        if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
684
                           kernel_cmdline, kernel_size, header))
685
            return;
686
        protocol = 0;
687
    }
688

    
689
    if (protocol < 0x200 || !(header[0x211] & 0x01)) {
690
        /* Low kernel */
691
        real_addr    = 0x90000;
692
        cmdline_addr = 0x9a000 - cmdline_size;
693
        prot_addr    = 0x10000;
694
    } else if (protocol < 0x202) {
695
        /* High but ancient kernel */
696
        real_addr    = 0x90000;
697
        cmdline_addr = 0x9a000 - cmdline_size;
698
        prot_addr    = 0x100000;
699
    } else {
700
        /* High and recent kernel */
701
        real_addr    = 0x10000;
702
        cmdline_addr = 0x20000;
703
        prot_addr    = 0x100000;
704
    }
705

    
706
#if 0
707
    fprintf(stderr,
708
            "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
709
            "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
710
            "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
711
            real_addr,
712
            cmdline_addr,
713
            prot_addr);
714
#endif
715

    
716
    /* highest address for loading the initrd */
717
    if (protocol >= 0x203)
718
        initrd_max = ldl_p(header+0x22c);
719
    else
720
        initrd_max = 0x37ffffff;
721

    
722
    if (initrd_max >= max_ram_size-ACPI_DATA_SIZE)
723
            initrd_max = max_ram_size-ACPI_DATA_SIZE-1;
724

    
725
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
726
    fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
727
    fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
728
                     (uint8_t*)strdup(kernel_cmdline),
729
                     strlen(kernel_cmdline)+1);
730

    
731
    if (protocol >= 0x202) {
732
        stl_p(header+0x228, cmdline_addr);
733
    } else {
734
        stw_p(header+0x20, 0xA33F);
735
        stw_p(header+0x22, cmdline_addr-real_addr);
736
    }
737

    
738
    /* handle vga= parameter */
739
    vmode = strstr(kernel_cmdline, "vga=");
740
    if (vmode) {
741
        unsigned int video_mode;
742
        /* skip "vga=" */
743
        vmode += 4;
744
        if (!strncmp(vmode, "normal", 6)) {
745
            video_mode = 0xffff;
746
        } else if (!strncmp(vmode, "ext", 3)) {
747
            video_mode = 0xfffe;
748
        } else if (!strncmp(vmode, "ask", 3)) {
749
            video_mode = 0xfffd;
750
        } else {
751
            video_mode = strtol(vmode, NULL, 0);
752
        }
753
        stw_p(header+0x1fa, video_mode);
754
    }
755

    
756
    /* loader type */
757
    /* High nybble = B reserved for QEMU; low nybble is revision number.
758
       If this code is substantially changed, you may want to consider
759
       incrementing the revision. */
760
    if (protocol >= 0x200)
761
        header[0x210] = 0xB0;
762

    
763
    /* heap */
764
    if (protocol >= 0x201) {
765
        header[0x211] |= 0x80;        /* CAN_USE_HEAP */
766
        stw_p(header+0x224, cmdline_addr-real_addr-0x200);
767
    }
768

    
769
    /* load initrd */
770
    if (initrd_filename) {
771
        if (protocol < 0x200) {
772
            fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
773
            exit(1);
774
        }
775

    
776
        initrd_size = get_image_size(initrd_filename);
777
        if (initrd_size < 0) {
778
            fprintf(stderr, "qemu: error reading initrd %s\n",
779
                    initrd_filename);
780
            exit(1);
781
        }
782

    
783
        initrd_addr = (initrd_max-initrd_size) & ~4095;
784

    
785
        initrd_data = g_malloc(initrd_size);
786
        load_image(initrd_filename, initrd_data);
787

    
788
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
789
        fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
790
        fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
791

    
792
        stl_p(header+0x218, initrd_addr);
793
        stl_p(header+0x21c, initrd_size);
794
    }
795

    
796
    /* load kernel and setup */
797
    setup_size = header[0x1f1];
798
    if (setup_size == 0)
799
        setup_size = 4;
800
    setup_size = (setup_size+1)*512;
801
    kernel_size -= setup_size;
802

    
803
    setup  = g_malloc(setup_size);
804
    kernel = g_malloc(kernel_size);
805
    fseek(f, 0, SEEK_SET);
806
    if (fread(setup, 1, setup_size, f) != setup_size) {
807
        fprintf(stderr, "fread() failed\n");
808
        exit(1);
809
    }
810
    if (fread(kernel, 1, kernel_size, f) != kernel_size) {
811
        fprintf(stderr, "fread() failed\n");
812
        exit(1);
813
    }
814
    fclose(f);
815
    memcpy(setup, header, MIN(sizeof(header), setup_size));
816

    
817
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
818
    fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
819
    fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
820

    
821
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
822
    fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
823
    fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
824

    
825
    option_rom[nb_option_roms].name = "linuxboot.bin";
826
    option_rom[nb_option_roms].bootindex = 0;
827
    nb_option_roms++;
828
}
829

    
830
#define NE2000_NB_MAX 6
831

    
832
static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
833
                                              0x280, 0x380 };
834
static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
835

    
836
static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc };
837
static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 };
838

    
839
void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
840
{
841
    static int nb_ne2k = 0;
842

    
843
    if (nb_ne2k == NE2000_NB_MAX)
844
        return;
845
    isa_ne2000_init(bus, ne2000_io[nb_ne2k],
846
                    ne2000_irq[nb_ne2k], nd);
847
    nb_ne2k++;
848
}
849

    
850
DeviceState *cpu_get_current_apic(void)
851
{
852
    if (cpu_single_env) {
853
        return cpu_single_env->apic_state;
854
    } else {
855
        return NULL;
856
    }
857
}
858

    
859
void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
860
{
861
    CPUX86State *s = opaque;
862

    
863
    if (level) {
864
        cpu_interrupt(s, CPU_INTERRUPT_SMI);
865
    }
866
}
867

    
868
void pc_cpus_init(const char *cpu_model)
869
{
870
    int i;
871

    
872
    /* init CPUs */
873
    if (cpu_model == NULL) {
874
#ifdef TARGET_X86_64
875
        cpu_model = "qemu64";
876
#else
877
        cpu_model = "qemu32";
878
#endif
879
    }
880

    
881
    for (i = 0; i < smp_cpus; i++) {
882
        if (!cpu_x86_init(cpu_model)) {
883
            fprintf(stderr, "Unable to find x86 CPU definition\n");
884
            exit(1);
885
        }
886
    }
887
}
888

    
889
void *pc_memory_init(MemoryRegion *system_memory,
890
                    const char *kernel_filename,
891
                    const char *kernel_cmdline,
892
                    const char *initrd_filename,
893
                    ram_addr_t below_4g_mem_size,
894
                    ram_addr_t above_4g_mem_size,
895
                    MemoryRegion *rom_memory,
896
                    MemoryRegion **ram_memory)
897
{
898
    int linux_boot, i;
899
    MemoryRegion *ram, *option_rom_mr;
900
    MemoryRegion *ram_below_4g, *ram_above_4g;
901
    void *fw_cfg;
902

    
903
    linux_boot = (kernel_filename != NULL);
904

    
905
    /* Allocate RAM.  We allocate it as a single memory region and use
906
     * aliases to address portions of it, mostly for backwards compatibility
907
     * with older qemus that used qemu_ram_alloc().
908
     */
909
    ram = g_malloc(sizeof(*ram));
910
    memory_region_init_ram(ram, "pc.ram",
911
                           below_4g_mem_size + above_4g_mem_size);
912
    vmstate_register_ram_global(ram);
913
    *ram_memory = ram;
914
    ram_below_4g = g_malloc(sizeof(*ram_below_4g));
915
    memory_region_init_alias(ram_below_4g, "ram-below-4g", ram,
916
                             0, below_4g_mem_size);
917
    memory_region_add_subregion(system_memory, 0, ram_below_4g);
918
    if (above_4g_mem_size > 0) {
919
        ram_above_4g = g_malloc(sizeof(*ram_above_4g));
920
        memory_region_init_alias(ram_above_4g, "ram-above-4g", ram,
921
                                 below_4g_mem_size, above_4g_mem_size);
922
        memory_region_add_subregion(system_memory, 0x100000000ULL,
923
                                    ram_above_4g);
924
    }
925

    
926

    
927
    /* Initialize PC system firmware */
928
    pc_system_firmware_init(rom_memory);
929

    
930
    option_rom_mr = g_malloc(sizeof(*option_rom_mr));
931
    memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE);
932
    vmstate_register_ram_global(option_rom_mr);
933
    memory_region_add_subregion_overlap(rom_memory,
934
                                        PC_ROM_MIN_VGA,
935
                                        option_rom_mr,
936
                                        1);
937

    
938
    fw_cfg = bochs_bios_init();
939
    rom_set_fw(fw_cfg);
940

    
941
    if (linux_boot) {
942
        load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size);
943
    }
944

    
945
    for (i = 0; i < nb_option_roms; i++) {
946
        rom_add_option(option_rom[i].name, option_rom[i].bootindex);
947
    }
948
    return fw_cfg;
949
}
950

    
951
qemu_irq *pc_allocate_cpu_irq(void)
952
{
953
    return qemu_allocate_irqs(pic_irq_request, NULL, 1);
954
}
955

    
956
DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
957
{
958
    DeviceState *dev = NULL;
959

    
960
    if (pci_bus) {
961
        PCIDevice *pcidev = pci_vga_init(pci_bus);
962
        dev = pcidev ? &pcidev->qdev : NULL;
963
    } else if (isa_bus) {
964
        ISADevice *isadev = isa_vga_init(isa_bus);
965
        dev = isadev ? &isadev->qdev : NULL;
966
    }
967
    return dev;
968
}
969

    
970
static void cpu_request_exit(void *opaque, int irq, int level)
971
{
972
    CPUX86State *env = cpu_single_env;
973

    
974
    if (env && level) {
975
        cpu_exit(env);
976
    }
977
}
978

    
979
static const MemoryRegionOps ioport80_io_ops = {
980
    .write = ioport80_write,
981
    .endianness = DEVICE_NATIVE_ENDIAN,
982
    .impl = {
983
        .min_access_size = 1,
984
        .max_access_size = 1,
985
    },
986
};
987

    
988
static const MemoryRegionOps ioportF0_io_ops = {
989
    .write = ioportF0_write,
990
    .endianness = DEVICE_NATIVE_ENDIAN,
991
    .impl = {
992
        .min_access_size = 1,
993
        .max_access_size = 1,
994
    },
995
};
996

    
997
void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
998
                          ISADevice **rtc_state,
999
                          ISADevice **floppy,
1000
                          bool no_vmport)
1001
{
1002
    int i;
1003
    DriveInfo *fd[MAX_FD];
1004
    DeviceState *hpet = NULL;
1005
    int pit_isa_irq = 0;
1006
    qemu_irq pit_alt_irq = NULL;
1007
    qemu_irq rtc_irq = NULL;
1008
    qemu_irq *a20_line;
1009
    ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1010
    qemu_irq *cpu_exit_irq;
1011
    MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1012
    MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1013

    
1014
    memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1);
1015
    memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1016

    
1017
    memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1);
1018
    memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1019

    
1020
    /*
1021
     * Check if an HPET shall be created.
1022
     *
1023
     * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1024
     * when the HPET wants to take over. Thus we have to disable the latter.
1025
     */
1026
    if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1027
        hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL);
1028

    
1029
        if (hpet) {
1030
            for (i = 0; i < GSI_NUM_PINS; i++) {
1031
                sysbus_connect_irq(sysbus_from_qdev(hpet), i, gsi[i]);
1032
            }
1033
            pit_isa_irq = -1;
1034
            pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1035
            rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1036
        }
1037
    }
1038
    *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1039

    
1040
    qemu_register_boot_set(pc_boot_set, *rtc_state);
1041

    
1042
    if (!xen_enabled()) {
1043
        if (kvm_irqchip_in_kernel()) {
1044
            pit = kvm_pit_init(isa_bus, 0x40);
1045
        } else {
1046
            pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1047
        }
1048
        if (hpet) {
1049
            /* connect PIT to output control line of the HPET */
1050
            qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0));
1051
        }
1052
        pcspk_init(isa_bus, pit);
1053
    }
1054

    
1055
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
1056
        if (serial_hds[i]) {
1057
            serial_isa_init(isa_bus, i, serial_hds[i]);
1058
        }
1059
    }
1060

    
1061
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
1062
        if (parallel_hds[i]) {
1063
            parallel_init(isa_bus, i, parallel_hds[i]);
1064
        }
1065
    }
1066

    
1067
    a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1068
    i8042 = isa_create_simple(isa_bus, "i8042");
1069
    i8042_setup_a20_line(i8042, &a20_line[0]);
1070
    if (!no_vmport) {
1071
        vmport_init(isa_bus);
1072
        vmmouse = isa_try_create(isa_bus, "vmmouse");
1073
    } else {
1074
        vmmouse = NULL;
1075
    }
1076
    if (vmmouse) {
1077
        qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042);
1078
        qdev_init_nofail(&vmmouse->qdev);
1079
    }
1080
    port92 = isa_create_simple(isa_bus, "port92");
1081
    port92_init(port92, &a20_line[1]);
1082

    
1083
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
1084
    DMA_init(0, cpu_exit_irq);
1085

    
1086
    for(i = 0; i < MAX_FD; i++) {
1087
        fd[i] = drive_get(IF_FLOPPY, 0, i);
1088
    }
1089
    *floppy = fdctrl_init_isa(isa_bus, fd);
1090
}
1091

    
1092
void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1093
{
1094
    int i;
1095

    
1096
    for (i = 0; i < nb_nics; i++) {
1097
        NICInfo *nd = &nd_table[i];
1098

    
1099
        if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1100
            pc_init_ne2k_isa(isa_bus, nd);
1101
        } else {
1102
            pci_nic_init_nofail(nd, "e1000", NULL);
1103
        }
1104
    }
1105
}
1106

    
1107
void pc_pci_device_init(PCIBus *pci_bus)
1108
{
1109
    int max_bus;
1110
    int bus;
1111

    
1112
    max_bus = drive_get_max_bus(IF_SCSI);
1113
    for (bus = 0; bus <= max_bus; bus++) {
1114
        pci_create_simple(pci_bus, -1, "lsi53c895a");
1115
    }
1116
}
1117

    
1118
void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1119
{
1120
    DeviceState *dev;
1121
    SysBusDevice *d;
1122
    unsigned int i;
1123

    
1124
    if (kvm_irqchip_in_kernel()) {
1125
        dev = qdev_create(NULL, "kvm-ioapic");
1126
    } else {
1127
        dev = qdev_create(NULL, "ioapic");
1128
    }
1129
    if (parent_name) {
1130
        object_property_add_child(object_resolve_path(parent_name, NULL),
1131
                                  "ioapic", OBJECT(dev), NULL);
1132
    }
1133
    qdev_init_nofail(dev);
1134
    d = sysbus_from_qdev(dev);
1135
    sysbus_mmio_map(d, 0, 0xfec00000);
1136

    
1137
    for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1138
        gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1139
    }
1140
}