Statistics
| Branch: | Revision:

root / hw / spapr.c @ 1de7afc9

History | View | Annotate | Download (30.6 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30
#include "net/net.h"
31
#include "blockdev.h"
32
#include "cpus.h"
33
#include "kvm.h"
34
#include "kvm_ppc.h"
35

    
36
#include "hw/boards.h"
37
#include "hw/ppc.h"
38
#include "hw/loader.h"
39

    
40
#include "hw/spapr.h"
41
#include "hw/spapr_vio.h"
42
#include "hw/spapr_pci.h"
43
#include "hw/xics.h"
44
#include "hw/pci/msi.h"
45

    
46
#include "kvm.h"
47
#include "kvm_ppc.h"
48
#include "pci/pci.h"
49

    
50
#include "exec/address-spaces.h"
51
#include "hw/usb.h"
52
#include "qemu/config-file.h"
53

    
54
#include <libfdt.h>
55

    
56
/* SLOF memory layout:
57
 *
58
 * SLOF raw image loaded at 0, copies its romfs right below the flat
59
 * device-tree, then position SLOF itself 31M below that
60
 *
61
 * So we set FW_OVERHEAD to 40MB which should account for all of that
62
 * and more
63
 *
64
 * We load our kernel at 4M, leaving space for SLOF initial image
65
 */
66
#define FDT_MAX_SIZE            0x10000
67
#define RTAS_MAX_SIZE           0x10000
68
#define FW_MAX_SIZE             0x400000
69
#define FW_FILE_NAME            "slof.bin"
70
#define FW_OVERHEAD             0x2800000
71
#define KERNEL_LOAD_ADDR        FW_MAX_SIZE
72

    
73
#define MIN_RMA_SLOF            128UL
74

    
75
#define TIMEBASE_FREQ           512000000ULL
76

    
77
#define MAX_CPUS                256
78
#define XICS_IRQS               1024
79

    
80
#define SPAPR_PCI_BUID          0x800000020000001ULL
81
#define SPAPR_PCI_MEM_WIN_ADDR  (0x10000000000ULL + 0xA0000000)
82
#define SPAPR_PCI_MEM_WIN_SIZE  0x20000000
83
#define SPAPR_PCI_IO_WIN_ADDR   (0x10000000000ULL + 0x80000000)
84
#define SPAPR_PCI_MSI_WIN_ADDR  (0x10000000000ULL + 0x90000000)
85

    
86
#define PHANDLE_XICP            0x00001111
87

    
88
#define HTAB_SIZE(spapr)        (1ULL << ((spapr)->htab_shift))
89

    
90
sPAPREnvironment *spapr;
91

    
92
int spapr_allocate_irq(int hint, bool lsi)
93
{
94
    int irq;
95

    
96
    if (hint) {
97
        irq = hint;
98
        /* FIXME: we should probably check for collisions somehow */
99
    } else {
100
        irq = spapr->next_irq++;
101
    }
102

    
103
    /* Configure irq type */
104
    if (!xics_get_qirq(spapr->icp, irq)) {
105
        return 0;
106
    }
107

    
108
    xics_set_irq_type(spapr->icp, irq, lsi);
109

    
110
    return irq;
111
}
112

    
113
/* Allocate block of consequtive IRQs, returns a number of the first */
114
int spapr_allocate_irq_block(int num, bool lsi)
115
{
116
    int first = -1;
117
    int i;
118

    
119
    for (i = 0; i < num; ++i) {
120
        int irq;
121

    
122
        irq = spapr_allocate_irq(0, lsi);
123
        if (!irq) {
124
            return -1;
125
        }
126

    
127
        if (0 == i) {
128
            first = irq;
129
        }
130

    
131
        /* If the above doesn't create a consecutive block then that's
132
         * an internal bug */
133
        assert(irq == (first + i));
134
    }
135

    
136
    return first;
137
}
138

    
139
static int spapr_fixup_cpu_dt(void *fdt, sPAPREnvironment *spapr)
140
{
141
    int ret = 0, offset;
142
    CPUPPCState *env;
143
    char cpu_model[32];
144
    int smt = kvmppc_smt_threads();
145
    uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
146

    
147
    assert(spapr->cpu_model);
148

    
149
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
150
        uint32_t associativity[] = {cpu_to_be32(0x5),
151
                                    cpu_to_be32(0x0),
152
                                    cpu_to_be32(0x0),
153
                                    cpu_to_be32(0x0),
154
                                    cpu_to_be32(env->numa_node),
155
                                    cpu_to_be32(env->cpu_index)};
156

    
157
        if ((env->cpu_index % smt) != 0) {
158
            continue;
159
        }
160

    
161
        snprintf(cpu_model, 32, "/cpus/%s@%x", spapr->cpu_model,
162
                 env->cpu_index);
163

    
164
        offset = fdt_path_offset(fdt, cpu_model);
165
        if (offset < 0) {
166
            return offset;
167
        }
168

    
169
        if (nb_numa_nodes > 1) {
170
            ret = fdt_setprop(fdt, offset, "ibm,associativity", associativity,
171
                              sizeof(associativity));
172
            if (ret < 0) {
173
                return ret;
174
            }
175
        }
176

    
177
        ret = fdt_setprop(fdt, offset, "ibm,pft-size",
178
                          pft_size_prop, sizeof(pft_size_prop));
179
        if (ret < 0) {
180
            return ret;
181
        }
182
    }
183
    return ret;
184
}
185

    
186

    
187
static size_t create_page_sizes_prop(CPUPPCState *env, uint32_t *prop,
188
                                     size_t maxsize)
189
{
190
    size_t maxcells = maxsize / sizeof(uint32_t);
191
    int i, j, count;
192
    uint32_t *p = prop;
193

    
194
    for (i = 0; i < PPC_PAGE_SIZES_MAX_SZ; i++) {
195
        struct ppc_one_seg_page_size *sps = &env->sps.sps[i];
196

    
197
        if (!sps->page_shift) {
198
            break;
199
        }
200
        for (count = 0; count < PPC_PAGE_SIZES_MAX_SZ; count++) {
201
            if (sps->enc[count].page_shift == 0) {
202
                break;
203
            }
204
        }
205
        if ((p - prop) >= (maxcells - 3 - count * 2)) {
206
            break;
207
        }
208
        *(p++) = cpu_to_be32(sps->page_shift);
209
        *(p++) = cpu_to_be32(sps->slb_enc);
210
        *(p++) = cpu_to_be32(count);
211
        for (j = 0; j < count; j++) {
212
            *(p++) = cpu_to_be32(sps->enc[j].page_shift);
213
            *(p++) = cpu_to_be32(sps->enc[j].pte_enc);
214
        }
215
    }
216

    
217
    return (p - prop) * sizeof(uint32_t);
218
}
219

    
220
#define _FDT(exp) \
221
    do { \
222
        int ret = (exp);                                           \
223
        if (ret < 0) {                                             \
224
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
225
                    #exp, fdt_strerror(ret));                      \
226
            exit(1);                                               \
227
        }                                                          \
228
    } while (0)
229

    
230

    
231
static void *spapr_create_fdt_skel(const char *cpu_model,
232
                                   hwaddr initrd_base,
233
                                   hwaddr initrd_size,
234
                                   hwaddr kernel_size,
235
                                   const char *boot_device,
236
                                   const char *kernel_cmdline,
237
                                   uint32_t epow_irq)
238
{
239
    void *fdt;
240
    CPUPPCState *env;
241
    uint32_t start_prop = cpu_to_be32(initrd_base);
242
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
243
    char hypertas_prop[] = "hcall-pft\0hcall-term\0hcall-dabr\0hcall-interrupt"
244
        "\0hcall-tce\0hcall-vio\0hcall-splpar\0hcall-bulk";
245
    char qemu_hypertas_prop[] = "hcall-memop1";
246
    uint32_t refpoints[] = {cpu_to_be32(0x4), cpu_to_be32(0x4)};
247
    uint32_t interrupt_server_ranges_prop[] = {0, cpu_to_be32(smp_cpus)};
248
    char *modelname;
249
    int i, smt = kvmppc_smt_threads();
250
    unsigned char vec5[] = {0x0, 0x0, 0x0, 0x0, 0x0, 0x80};
251

    
252
    fdt = g_malloc0(FDT_MAX_SIZE);
253
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
254

    
255
    if (kernel_size) {
256
        _FDT((fdt_add_reservemap_entry(fdt, KERNEL_LOAD_ADDR, kernel_size)));
257
    }
258
    if (initrd_size) {
259
        _FDT((fdt_add_reservemap_entry(fdt, initrd_base, initrd_size)));
260
    }
261
    _FDT((fdt_finish_reservemap(fdt)));
262

    
263
    /* Root node */
264
    _FDT((fdt_begin_node(fdt, "")));
265
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
266
    _FDT((fdt_property_string(fdt, "model", "IBM pSeries (emulated by qemu)")));
267

    
268
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
269
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
270

    
271
    /* /chosen */
272
    _FDT((fdt_begin_node(fdt, "chosen")));
273

    
274
    /* Set Form1_affinity */
275
    _FDT((fdt_property(fdt, "ibm,architecture-vec-5", vec5, sizeof(vec5))));
276

    
277
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
278
    _FDT((fdt_property(fdt, "linux,initrd-start",
279
                       &start_prop, sizeof(start_prop))));
280
    _FDT((fdt_property(fdt, "linux,initrd-end",
281
                       &end_prop, sizeof(end_prop))));
282
    if (kernel_size) {
283
        uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
284
                              cpu_to_be64(kernel_size) };
285

    
286
        _FDT((fdt_property(fdt, "qemu,boot-kernel", &kprop, sizeof(kprop))));
287
    }
288
    _FDT((fdt_property_string(fdt, "qemu,boot-device", boot_device)));
289
    _FDT((fdt_property_cell(fdt, "qemu,graphic-width", graphic_width)));
290
    _FDT((fdt_property_cell(fdt, "qemu,graphic-height", graphic_height)));
291
    _FDT((fdt_property_cell(fdt, "qemu,graphic-depth", graphic_depth)));
292

    
293
    _FDT((fdt_end_node(fdt)));
294

    
295
    /* cpus */
296
    _FDT((fdt_begin_node(fdt, "cpus")));
297

    
298
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
299
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
300

    
301
    modelname = g_strdup(cpu_model);
302

    
303
    for (i = 0; i < strlen(modelname); i++) {
304
        modelname[i] = toupper(modelname[i]);
305
    }
306

    
307
    /* This is needed during FDT finalization */
308
    spapr->cpu_model = g_strdup(modelname);
309

    
310
    for (env = first_cpu; env != NULL; env = env->next_cpu) {
311
        int index = env->cpu_index;
312
        uint32_t servers_prop[smp_threads];
313
        uint32_t gservers_prop[smp_threads * 2];
314
        char *nodename;
315
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
316
                           0xffffffff, 0xffffffff};
317
        uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() : TIMEBASE_FREQ;
318
        uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
319
        uint32_t page_sizes_prop[64];
320
        size_t page_sizes_prop_size;
321

    
322
        if ((index % smt) != 0) {
323
            continue;
324
        }
325

    
326
        if (asprintf(&nodename, "%s@%x", modelname, index) < 0) {
327
            fprintf(stderr, "Allocation failure\n");
328
            exit(1);
329
        }
330

    
331
        _FDT((fdt_begin_node(fdt, nodename)));
332

    
333
        free(nodename);
334

    
335
        _FDT((fdt_property_cell(fdt, "reg", index)));
336
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
337

    
338
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
339
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
340
                                env->dcache_line_size)));
341
        _FDT((fdt_property_cell(fdt, "icache-block-size",
342
                                env->icache_line_size)));
343
        _FDT((fdt_property_cell(fdt, "timebase-frequency", tbfreq)));
344
        _FDT((fdt_property_cell(fdt, "clock-frequency", cpufreq)));
345
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
346
        _FDT((fdt_property_string(fdt, "status", "okay")));
347
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
348

    
349
        /* Build interrupt servers and gservers properties */
350
        for (i = 0; i < smp_threads; i++) {
351
            servers_prop[i] = cpu_to_be32(index + i);
352
            /* Hack, direct the group queues back to cpu 0 */
353
            gservers_prop[i*2] = cpu_to_be32(index + i);
354
            gservers_prop[i*2 + 1] = 0;
355
        }
356
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-server#s",
357
                           servers_prop, sizeof(servers_prop))));
358
        _FDT((fdt_property(fdt, "ibm,ppc-interrupt-gserver#s",
359
                           gservers_prop, sizeof(gservers_prop))));
360

    
361
        if (env->mmu_model & POWERPC_MMU_1TSEG) {
362
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
363
                               segs, sizeof(segs))));
364
        }
365

    
366
        /* Advertise VMX/VSX (vector extensions) if available
367
         *   0 / no property == no vector extensions
368
         *   1               == VMX / Altivec available
369
         *   2               == VSX available */
370
        if (env->insns_flags & PPC_ALTIVEC) {
371
            uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
372

    
373
            _FDT((fdt_property_cell(fdt, "ibm,vmx", vmx)));
374
        }
375

    
376
        /* Advertise DFP (Decimal Floating Point) if available
377
         *   0 / no property == no DFP
378
         *   1               == DFP available */
379
        if (env->insns_flags2 & PPC2_DFP) {
380
            _FDT((fdt_property_cell(fdt, "ibm,dfp", 1)));
381
        }
382

    
383
        page_sizes_prop_size = create_page_sizes_prop(env, page_sizes_prop,
384
                                                      sizeof(page_sizes_prop));
385
        if (page_sizes_prop_size) {
386
            _FDT((fdt_property(fdt, "ibm,segment-page-sizes",
387
                               page_sizes_prop, page_sizes_prop_size)));
388
        }
389

    
390
        _FDT((fdt_end_node(fdt)));
391
    }
392

    
393
    g_free(modelname);
394

    
395
    _FDT((fdt_end_node(fdt)));
396

    
397
    /* RTAS */
398
    _FDT((fdt_begin_node(fdt, "rtas")));
399

    
400
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
401
                       sizeof(hypertas_prop))));
402
    _FDT((fdt_property(fdt, "qemu,hypertas-functions", qemu_hypertas_prop,
403
                       sizeof(qemu_hypertas_prop))));
404

    
405
    _FDT((fdt_property(fdt, "ibm,associativity-reference-points",
406
        refpoints, sizeof(refpoints))));
407

    
408
    _FDT((fdt_property_cell(fdt, "rtas-error-log-max", RTAS_ERROR_LOG_MAX)));
409

    
410
    _FDT((fdt_end_node(fdt)));
411

    
412
    /* interrupt controller */
413
    _FDT((fdt_begin_node(fdt, "interrupt-controller")));
414

    
415
    _FDT((fdt_property_string(fdt, "device_type",
416
                              "PowerPC-External-Interrupt-Presentation")));
417
    _FDT((fdt_property_string(fdt, "compatible", "IBM,ppc-xicp")));
418
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
419
    _FDT((fdt_property(fdt, "ibm,interrupt-server-ranges",
420
                       interrupt_server_ranges_prop,
421
                       sizeof(interrupt_server_ranges_prop))));
422
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 2)));
423
    _FDT((fdt_property_cell(fdt, "linux,phandle", PHANDLE_XICP)));
424
    _FDT((fdt_property_cell(fdt, "phandle", PHANDLE_XICP)));
425

    
426
    _FDT((fdt_end_node(fdt)));
427

    
428
    /* vdevice */
429
    _FDT((fdt_begin_node(fdt, "vdevice")));
430

    
431
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
432
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
433
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
434
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
435
    _FDT((fdt_property_cell(fdt, "#interrupt-cells", 0x2)));
436
    _FDT((fdt_property(fdt, "interrupt-controller", NULL, 0)));
437

    
438
    _FDT((fdt_end_node(fdt)));
439

    
440
    /* event-sources */
441
    spapr_events_fdt_skel(fdt, epow_irq);
442

    
443
    _FDT((fdt_end_node(fdt))); /* close root node */
444
    _FDT((fdt_finish(fdt)));
445

    
446
    return fdt;
447
}
448

    
449
static int spapr_populate_memory(sPAPREnvironment *spapr, void *fdt)
450
{
451
    uint32_t associativity[] = {cpu_to_be32(0x4), cpu_to_be32(0x0),
452
                                cpu_to_be32(0x0), cpu_to_be32(0x0),
453
                                cpu_to_be32(0x0)};
454
    char mem_name[32];
455
    hwaddr node0_size, mem_start;
456
    uint64_t mem_reg_property[2];
457
    int i, off;
458

    
459
    /* memory node(s) */
460
    node0_size = (nb_numa_nodes > 1) ? node_mem[0] : ram_size;
461
    if (spapr->rma_size > node0_size) {
462
        spapr->rma_size = node0_size;
463
    }
464

    
465
    /* RMA */
466
    mem_reg_property[0] = 0;
467
    mem_reg_property[1] = cpu_to_be64(spapr->rma_size);
468
    off = fdt_add_subnode(fdt, 0, "memory@0");
469
    _FDT(off);
470
    _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
471
    _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
472
                      sizeof(mem_reg_property))));
473
    _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
474
                      sizeof(associativity))));
475

    
476
    /* RAM: Node 0 */
477
    if (node0_size > spapr->rma_size) {
478
        mem_reg_property[0] = cpu_to_be64(spapr->rma_size);
479
        mem_reg_property[1] = cpu_to_be64(node0_size - spapr->rma_size);
480

    
481
        sprintf(mem_name, "memory@" TARGET_FMT_lx, spapr->rma_size);
482
        off = fdt_add_subnode(fdt, 0, mem_name);
483
        _FDT(off);
484
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
485
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
486
                          sizeof(mem_reg_property))));
487
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
488
                          sizeof(associativity))));
489
    }
490

    
491
    /* RAM: Node 1 and beyond */
492
    mem_start = node0_size;
493
    for (i = 1; i < nb_numa_nodes; i++) {
494
        mem_reg_property[0] = cpu_to_be64(mem_start);
495
        mem_reg_property[1] = cpu_to_be64(node_mem[i]);
496
        associativity[3] = associativity[4] = cpu_to_be32(i);
497
        sprintf(mem_name, "memory@" TARGET_FMT_lx, mem_start);
498
        off = fdt_add_subnode(fdt, 0, mem_name);
499
        _FDT(off);
500
        _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
501
        _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
502
                          sizeof(mem_reg_property))));
503
        _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
504
                          sizeof(associativity))));
505
        mem_start += node_mem[i];
506
    }
507

    
508
    return 0;
509
}
510

    
511
static void spapr_finalize_fdt(sPAPREnvironment *spapr,
512
                               hwaddr fdt_addr,
513
                               hwaddr rtas_addr,
514
                               hwaddr rtas_size)
515
{
516
    int ret;
517
    void *fdt;
518
    sPAPRPHBState *phb;
519

    
520
    fdt = g_malloc(FDT_MAX_SIZE);
521

    
522
    /* open out the base tree into a temp buffer for the final tweaks */
523
    _FDT((fdt_open_into(spapr->fdt_skel, fdt, FDT_MAX_SIZE)));
524

    
525
    ret = spapr_populate_memory(spapr, fdt);
526
    if (ret < 0) {
527
        fprintf(stderr, "couldn't setup memory nodes in fdt\n");
528
        exit(1);
529
    }
530

    
531
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
532
    if (ret < 0) {
533
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
534
        exit(1);
535
    }
536

    
537
    QLIST_FOREACH(phb, &spapr->phbs, list) {
538
        ret = spapr_populate_pci_dt(phb, PHANDLE_XICP, fdt);
539
    }
540

    
541
    if (ret < 0) {
542
        fprintf(stderr, "couldn't setup PCI devices in fdt\n");
543
        exit(1);
544
    }
545

    
546
    /* RTAS */
547
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
548
    if (ret < 0) {
549
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
550
    }
551

    
552
    /* Advertise NUMA via ibm,associativity */
553
    ret = spapr_fixup_cpu_dt(fdt, spapr);
554
    if (ret < 0) {
555
        fprintf(stderr, "Couldn't finalize CPU device tree properties\n");
556
    }
557

    
558
    if (!spapr->has_graphics) {
559
        spapr_populate_chosen_stdout(fdt, spapr->vio_bus);
560
    }
561

    
562
    _FDT((fdt_pack(fdt)));
563

    
564
    if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
565
        hw_error("FDT too big ! 0x%x bytes (max is 0x%x)\n",
566
                 fdt_totalsize(fdt), FDT_MAX_SIZE);
567
        exit(1);
568
    }
569

    
570
    cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
571

    
572
    g_free(fdt);
573
}
574

    
575
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
576
{
577
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
578
}
579

    
580
static void emulate_spapr_hypercall(PowerPCCPU *cpu)
581
{
582
    CPUPPCState *env = &cpu->env;
583

    
584
    if (msr_pr) {
585
        hcall_dprintf("Hypercall made with MSR[PR]=1\n");
586
        env->gpr[3] = H_PRIVILEGE;
587
    } else {
588
        env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
589
    }
590
}
591

    
592
static void spapr_reset_htab(sPAPREnvironment *spapr)
593
{
594
    long shift;
595

    
596
    /* allocate hash page table.  For now we always make this 16mb,
597
     * later we should probably make it scale to the size of guest
598
     * RAM */
599

    
600
    shift = kvmppc_reset_htab(spapr->htab_shift);
601

    
602
    if (shift > 0) {
603
        /* Kernel handles htab, we don't need to allocate one */
604
        spapr->htab_shift = shift;
605
    } else {
606
        if (!spapr->htab) {
607
            /* Allocate an htab if we don't yet have one */
608
            spapr->htab = qemu_memalign(HTAB_SIZE(spapr), HTAB_SIZE(spapr));
609
        }
610

    
611
        /* And clear it */
612
        memset(spapr->htab, 0, HTAB_SIZE(spapr));
613
    }
614

    
615
    /* Update the RMA size if necessary */
616
    if (spapr->vrma_adjust) {
617
        spapr->rma_size = kvmppc_rma_size(ram_size, spapr->htab_shift);
618
    }
619
}
620

    
621
static void ppc_spapr_reset(void)
622
{
623
    /* Reset the hash table & recalc the RMA */
624
    spapr_reset_htab(spapr);
625

    
626
    qemu_devices_reset();
627

    
628
    /* Load the fdt */
629
    spapr_finalize_fdt(spapr, spapr->fdt_addr, spapr->rtas_addr,
630
                       spapr->rtas_size);
631

    
632
    /* Set up the entry state */
633
    first_cpu->gpr[3] = spapr->fdt_addr;
634
    first_cpu->gpr[5] = 0;
635
    first_cpu->halted = 0;
636
    first_cpu->nip = spapr->entry_point;
637

    
638
}
639

    
640
static void spapr_cpu_reset(void *opaque)
641
{
642
    PowerPCCPU *cpu = opaque;
643
    CPUPPCState *env = &cpu->env;
644

    
645
    cpu_reset(CPU(cpu));
646

    
647
    /* All CPUs start halted.  CPU0 is unhalted from the machine level
648
     * reset code and the rest are explicitly started up by the guest
649
     * using an RTAS call */
650
    env->halted = 1;
651

    
652
    env->spr[SPR_HIOR] = 0;
653

    
654
    env->external_htab = spapr->htab;
655
    env->htab_base = -1;
656
    env->htab_mask = HTAB_SIZE(spapr) - 1;
657
    env->spr[SPR_SDR1] = (unsigned long)spapr->htab |
658
        (spapr->htab_shift - 18);
659
}
660

    
661
static void spapr_create_nvram(sPAPREnvironment *spapr)
662
{
663
    QemuOpts *machine_opts;
664
    DeviceState *dev;
665

    
666
    dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
667

    
668
    machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
669
    if (machine_opts) {
670
        const char *drivename;
671

    
672
        drivename = qemu_opt_get(machine_opts, "nvram");
673
        if (drivename) {
674
            BlockDriverState *bs;
675

    
676
            bs = bdrv_find(drivename);
677
            if (!bs) {
678
                fprintf(stderr, "No such block device \"%s\" for nvram\n",
679
                        drivename);
680
                exit(1);
681
            }
682
            qdev_prop_set_drive_nofail(dev, "drive", bs);
683
        }
684
    }
685

    
686
    qdev_init_nofail(dev);
687

    
688
    spapr->nvram = (struct sPAPRNVRAM *)dev;
689
}
690

    
691
/* Returns whether we want to use VGA or not */
692
static int spapr_vga_init(PCIBus *pci_bus)
693
{
694
    switch (vga_interface_type) {
695
    case VGA_NONE:
696
    case VGA_STD:
697
        return pci_vga_init(pci_bus) != NULL;
698
    default:
699
        fprintf(stderr, "This vga model is not supported,"
700
                "currently it only supports -vga std\n");
701
        exit(0);
702
        break;
703
    }
704
}
705

    
706
/* pSeries LPAR / sPAPR hardware init */
707
static void ppc_spapr_init(QEMUMachineInitArgs *args)
708
{
709
    ram_addr_t ram_size = args->ram_size;
710
    const char *cpu_model = args->cpu_model;
711
    const char *kernel_filename = args->kernel_filename;
712
    const char *kernel_cmdline = args->kernel_cmdline;
713
    const char *initrd_filename = args->initrd_filename;
714
    const char *boot_device = args->boot_device;
715
    PowerPCCPU *cpu;
716
    CPUPPCState *env;
717
    PCIHostState *phb;
718
    int i;
719
    MemoryRegion *sysmem = get_system_memory();
720
    MemoryRegion *ram = g_new(MemoryRegion, 1);
721
    hwaddr rma_alloc_size;
722
    uint32_t initrd_base = 0;
723
    long kernel_size = 0, initrd_size = 0;
724
    long load_limit, rtas_limit, fw_size;
725
    char *filename;
726

    
727
    msi_supported = true;
728

    
729
    spapr = g_malloc0(sizeof(*spapr));
730
    QLIST_INIT(&spapr->phbs);
731

    
732
    cpu_ppc_hypercall = emulate_spapr_hypercall;
733

    
734
    /* Allocate RMA if necessary */
735
    rma_alloc_size = kvmppc_alloc_rma("ppc_spapr.rma", sysmem);
736

    
737
    if (rma_alloc_size == -1) {
738
        hw_error("qemu: Unable to create RMA\n");
739
        exit(1);
740
    }
741

    
742
    if (rma_alloc_size && (rma_alloc_size < ram_size)) {
743
        spapr->rma_size = rma_alloc_size;
744
    } else {
745
        spapr->rma_size = ram_size;
746

    
747
        /* With KVM, we don't actually know whether KVM supports an
748
         * unbounded RMA (PR KVM) or is limited by the hash table size
749
         * (HV KVM using VRMA), so we always assume the latter
750
         *
751
         * In that case, we also limit the initial allocations for RTAS
752
         * etc... to 256M since we have no way to know what the VRMA size
753
         * is going to be as it depends on the size of the hash table
754
         * isn't determined yet.
755
         */
756
        if (kvm_enabled()) {
757
            spapr->vrma_adjust = 1;
758
            spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
759
        }
760
    }
761

    
762
    /* We place the device tree and RTAS just below either the top of the RMA,
763
     * or just below 2GB, whichever is lowere, so that it can be
764
     * processed with 32-bit real mode code if necessary */
765
    rtas_limit = MIN(spapr->rma_size, 0x80000000);
766
    spapr->rtas_addr = rtas_limit - RTAS_MAX_SIZE;
767
    spapr->fdt_addr = spapr->rtas_addr - FDT_MAX_SIZE;
768
    load_limit = spapr->fdt_addr - FW_OVERHEAD;
769

    
770
    /* We aim for a hash table of size 1/128 the size of RAM.  The
771
     * normal rule of thumb is 1/64 the size of RAM, but that's much
772
     * more than needed for the Linux guests we support. */
773
    spapr->htab_shift = 18; /* Minimum architected size */
774
    while (spapr->htab_shift <= 46) {
775
        if ((1ULL << (spapr->htab_shift + 7)) >= ram_size) {
776
            break;
777
        }
778
        spapr->htab_shift++;
779
    }
780

    
781
    /* init CPUs */
782
    if (cpu_model == NULL) {
783
        cpu_model = kvm_enabled() ? "host" : "POWER7";
784
    }
785
    for (i = 0; i < smp_cpus; i++) {
786
        cpu = cpu_ppc_init(cpu_model);
787
        if (cpu == NULL) {
788
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
789
            exit(1);
790
        }
791
        env = &cpu->env;
792

    
793
        /* Set time-base frequency to 512 MHz */
794
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
795

    
796
        /* PAPR always has exception vectors in RAM not ROM */
797
        env->hreset_excp_prefix = 0;
798

    
799
        /* Tell KVM that we're in PAPR mode */
800
        if (kvm_enabled()) {
801
            kvmppc_set_papr(env);
802
        }
803

    
804
        qemu_register_reset(spapr_cpu_reset, cpu);
805
    }
806

    
807
    /* allocate RAM */
808
    spapr->ram_limit = ram_size;
809
    if (spapr->ram_limit > rma_alloc_size) {
810
        ram_addr_t nonrma_base = rma_alloc_size;
811
        ram_addr_t nonrma_size = spapr->ram_limit - rma_alloc_size;
812

    
813
        memory_region_init_ram(ram, "ppc_spapr.ram", nonrma_size);
814
        vmstate_register_ram_global(ram);
815
        memory_region_add_subregion(sysmem, nonrma_base, ram);
816
    }
817

    
818
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
819
    spapr->rtas_size = load_image_targphys(filename, spapr->rtas_addr,
820
                                           rtas_limit - spapr->rtas_addr);
821
    if (spapr->rtas_size < 0) {
822
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
823
        exit(1);
824
    }
825
    if (spapr->rtas_size > RTAS_MAX_SIZE) {
826
        hw_error("RTAS too big ! 0x%lx bytes (max is 0x%x)\n",
827
                 spapr->rtas_size, RTAS_MAX_SIZE);
828
        exit(1);
829
    }
830
    g_free(filename);
831

    
832

    
833
    /* Set up Interrupt Controller */
834
    spapr->icp = xics_system_init(XICS_IRQS);
835
    spapr->next_irq = XICS_IRQ_BASE;
836

    
837
    /* Set up EPOW events infrastructure */
838
    spapr_events_init(spapr);
839

    
840
    /* Set up IOMMU */
841
    spapr_iommu_init();
842

    
843
    /* Set up VIO bus */
844
    spapr->vio_bus = spapr_vio_bus_init();
845

    
846
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
847
        if (serial_hds[i]) {
848
            spapr_vty_create(spapr->vio_bus, serial_hds[i]);
849
        }
850
    }
851

    
852
    /* We always have at least the nvram device on VIO */
853
    spapr_create_nvram(spapr);
854

    
855
    /* Set up PCI */
856
    spapr_pci_rtas_init();
857

    
858
    spapr_create_phb(spapr, "pci", SPAPR_PCI_BUID,
859
                     SPAPR_PCI_MEM_WIN_ADDR,
860
                     SPAPR_PCI_MEM_WIN_SIZE,
861
                     SPAPR_PCI_IO_WIN_ADDR,
862
                     SPAPR_PCI_MSI_WIN_ADDR);
863
    phb = PCI_HOST_BRIDGE(QLIST_FIRST(&spapr->phbs));
864

    
865
    for (i = 0; i < nb_nics; i++) {
866
        NICInfo *nd = &nd_table[i];
867

    
868
        if (!nd->model) {
869
            nd->model = g_strdup("ibmveth");
870
        }
871

    
872
        if (strcmp(nd->model, "ibmveth") == 0) {
873
            spapr_vlan_create(spapr->vio_bus, nd);
874
        } else {
875
            pci_nic_init_nofail(&nd_table[i], nd->model, NULL);
876
        }
877
    }
878

    
879
    for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
880
        spapr_vscsi_create(spapr->vio_bus);
881
    }
882

    
883
    /* Graphics */
884
    if (spapr_vga_init(phb->bus)) {
885
        spapr->has_graphics = true;
886
    }
887

    
888
    if (usb_enabled(spapr->has_graphics)) {
889
        pci_create_simple(phb->bus, -1, "pci-ohci");
890
        if (spapr->has_graphics) {
891
            usbdevice_create("keyboard");
892
            usbdevice_create("mouse");
893
        }
894
    }
895

    
896
    if (spapr->rma_size < (MIN_RMA_SLOF << 20)) {
897
        fprintf(stderr, "qemu: pSeries SLOF firmware requires >= "
898
                "%ldM guest RMA (Real Mode Area memory)\n", MIN_RMA_SLOF);
899
        exit(1);
900
    }
901

    
902
    if (kernel_filename) {
903
        uint64_t lowaddr = 0;
904

    
905
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
906
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
907
        if (kernel_size < 0) {
908
            kernel_size = load_image_targphys(kernel_filename,
909
                                              KERNEL_LOAD_ADDR,
910
                                              load_limit - KERNEL_LOAD_ADDR);
911
        }
912
        if (kernel_size < 0) {
913
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
914
                    kernel_filename);
915
            exit(1);
916
        }
917

    
918
        /* load initrd */
919
        if (initrd_filename) {
920
            /* Try to locate the initrd in the gap between the kernel
921
             * and the firmware. Add a bit of space just in case
922
             */
923
            initrd_base = (KERNEL_LOAD_ADDR + kernel_size + 0x1ffff) & ~0xffff;
924
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
925
                                              load_limit - initrd_base);
926
            if (initrd_size < 0) {
927
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
928
                        initrd_filename);
929
                exit(1);
930
            }
931
        } else {
932
            initrd_base = 0;
933
            initrd_size = 0;
934
        }
935
    }
936

    
937
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, FW_FILE_NAME);
938
    fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
939
    if (fw_size < 0) {
940
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
941
        exit(1);
942
    }
943
    g_free(filename);
944

    
945
    spapr->entry_point = 0x100;
946

    
947
    /* Prepare the device tree */
948
    spapr->fdt_skel = spapr_create_fdt_skel(cpu_model,
949
                                            initrd_base, initrd_size,
950
                                            kernel_size,
951
                                            boot_device, kernel_cmdline,
952
                                            spapr->epow_irq);
953
    assert(spapr->fdt_skel != NULL);
954
}
955

    
956
static QEMUMachine spapr_machine = {
957
    .name = "pseries",
958
    .desc = "pSeries Logical Partition (PAPR compliant)",
959
    .init = ppc_spapr_init,
960
    .reset = ppc_spapr_reset,
961
    .block_default_type = IF_SCSI,
962
    .max_cpus = MAX_CPUS,
963
    .no_parallel = 1,
964
};
965

    
966
static void spapr_machine_init(void)
967
{
968
    qemu_register_machine(&spapr_machine);
969
}
970

    
971
machine_init(spapr_machine_init);