Statistics
| Branch: | Revision:

root / linux-user / qemu.h @ 1de7afc9

History | View | Annotate | Download (14.5 kB)

1
#ifndef QEMU_H
2
#define QEMU_H
3

    
4
#include <signal.h>
5
#include <string.h>
6

    
7
#include "cpu.h"
8

    
9
#undef DEBUG_REMAP
10
#ifdef DEBUG_REMAP
11
#include <stdlib.h>
12
#endif /* DEBUG_REMAP */
13

    
14
#include "exec/user/abitypes.h"
15

    
16
#include "exec/user/thunk.h"
17
#include "syscall_defs.h"
18
#include "syscall.h"
19
#include "target_signal.h"
20
#include "exec/gdbstub.h"
21
#include "qemu/queue.h"
22

    
23
#if defined(CONFIG_USE_NPTL)
24
#define THREAD __thread
25
#else
26
#define THREAD
27
#endif
28

    
29
/* This struct is used to hold certain information about the image.
30
 * Basically, it replicates in user space what would be certain
31
 * task_struct fields in the kernel
32
 */
33
struct image_info {
34
        abi_ulong       load_bias;
35
        abi_ulong       load_addr;
36
        abi_ulong       start_code;
37
        abi_ulong       end_code;
38
        abi_ulong       start_data;
39
        abi_ulong       end_data;
40
        abi_ulong       start_brk;
41
        abi_ulong       brk;
42
        abi_ulong       start_mmap;
43
        abi_ulong       mmap;
44
        abi_ulong       rss;
45
        abi_ulong       start_stack;
46
        abi_ulong       stack_limit;
47
        abi_ulong       entry;
48
        abi_ulong       code_offset;
49
        abi_ulong       data_offset;
50
        abi_ulong       saved_auxv;
51
        abi_ulong       auxv_len;
52
        abi_ulong       arg_start;
53
        abi_ulong       arg_end;
54
        uint32_t        elf_flags;
55
        int                personality;
56
#ifdef CONFIG_USE_FDPIC
57
        abi_ulong       loadmap_addr;
58
        uint16_t        nsegs;
59
        void           *loadsegs;
60
        abi_ulong       pt_dynamic_addr;
61
        struct image_info *other_info;
62
#endif
63
};
64

    
65
#ifdef TARGET_I386
66
/* Information about the current linux thread */
67
struct vm86_saved_state {
68
    uint32_t eax; /* return code */
69
    uint32_t ebx;
70
    uint32_t ecx;
71
    uint32_t edx;
72
    uint32_t esi;
73
    uint32_t edi;
74
    uint32_t ebp;
75
    uint32_t esp;
76
    uint32_t eflags;
77
    uint32_t eip;
78
    uint16_t cs, ss, ds, es, fs, gs;
79
};
80
#endif
81

    
82
#ifdef TARGET_ARM
83
/* FPU emulator */
84
#include "nwfpe/fpa11.h"
85
#endif
86

    
87
#define MAX_SIGQUEUE_SIZE 1024
88

    
89
struct sigqueue {
90
    struct sigqueue *next;
91
    target_siginfo_t info;
92
};
93

    
94
struct emulated_sigtable {
95
    int pending; /* true if signal is pending */
96
    struct sigqueue *first;
97
    struct sigqueue info; /* in order to always have memory for the
98
                             first signal, we put it here */
99
};
100

    
101
/* NOTE: we force a big alignment so that the stack stored after is
102
   aligned too */
103
typedef struct TaskState {
104
    pid_t ts_tid;     /* tid (or pid) of this task */
105
#ifdef TARGET_ARM
106
    /* FPA state */
107
    FPA11 fpa;
108
    int swi_errno;
109
#endif
110
#ifdef TARGET_UNICORE32
111
    int swi_errno;
112
#endif
113
#if defined(TARGET_I386) && !defined(TARGET_X86_64)
114
    abi_ulong target_v86;
115
    struct vm86_saved_state vm86_saved_regs;
116
    struct target_vm86plus_struct vm86plus;
117
    uint32_t v86flags;
118
    uint32_t v86mask;
119
#endif
120
#ifdef CONFIG_USE_NPTL
121
    abi_ulong child_tidptr;
122
#endif
123
#ifdef TARGET_M68K
124
    int sim_syscalls;
125
#endif
126
#if defined(TARGET_ARM) || defined(TARGET_M68K) || defined(TARGET_UNICORE32)
127
    /* Extra fields for semihosted binaries.  */
128
    uint32_t heap_base;
129
    uint32_t heap_limit;
130
#endif
131
    uint32_t stack_base;
132
    int used; /* non zero if used */
133
    struct image_info *info;
134
    struct linux_binprm *bprm;
135

    
136
    struct emulated_sigtable sigtab[TARGET_NSIG];
137
    struct sigqueue sigqueue_table[MAX_SIGQUEUE_SIZE]; /* siginfo queue */
138
    struct sigqueue *first_free; /* first free siginfo queue entry */
139
    int signal_pending; /* non zero if a signal may be pending */
140
} __attribute__((aligned(16))) TaskState;
141

    
142
extern char *exec_path;
143
void init_task_state(TaskState *ts);
144
void task_settid(TaskState *);
145
void stop_all_tasks(void);
146
extern const char *qemu_uname_release;
147
extern unsigned long mmap_min_addr;
148

    
149
/* ??? See if we can avoid exposing so much of the loader internals.  */
150
/*
151
 * MAX_ARG_PAGES defines the number of pages allocated for arguments
152
 * and envelope for the new program. 32 should suffice, this gives
153
 * a maximum env+arg of 128kB w/4KB pages!
154
 */
155
#define MAX_ARG_PAGES 33
156

    
157
/* Read a good amount of data initially, to hopefully get all the
158
   program headers loaded.  */
159
#define BPRM_BUF_SIZE  1024
160

    
161
/*
162
 * This structure is used to hold the arguments that are
163
 * used when loading binaries.
164
 */
165
struct linux_binprm {
166
        char buf[BPRM_BUF_SIZE] __attribute__((aligned));
167
        void *page[MAX_ARG_PAGES];
168
        abi_ulong p;
169
        int fd;
170
        int e_uid, e_gid;
171
        int argc, envc;
172
        char **argv;
173
        char **envp;
174
        char * filename;        /* Name of binary */
175
        int (*core_dump)(int, const CPUArchState *); /* coredump routine */
176
};
177

    
178
void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
179
abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
180
                              abi_ulong stringp, int push_ptr);
181
int loader_exec(const char * filename, char ** argv, char ** envp,
182
             struct target_pt_regs * regs, struct image_info *infop,
183
             struct linux_binprm *);
184

    
185
int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
186
                    struct image_info * info);
187
int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
188
                    struct image_info * info);
189

    
190
abi_long memcpy_to_target(abi_ulong dest, const void *src,
191
                          unsigned long len);
192
void target_set_brk(abi_ulong new_brk);
193
abi_long do_brk(abi_ulong new_brk);
194
void syscall_init(void);
195
abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
196
                    abi_long arg2, abi_long arg3, abi_long arg4,
197
                    abi_long arg5, abi_long arg6, abi_long arg7,
198
                    abi_long arg8);
199
void gemu_log(const char *fmt, ...) GCC_FMT_ATTR(1, 2);
200
extern THREAD CPUArchState *thread_env;
201
void cpu_loop(CPUArchState *env);
202
char *target_strerror(int err);
203
int get_osversion(void);
204
void fork_start(void);
205
void fork_end(int child);
206

    
207
/* Creates the initial guest address space in the host memory space using
208
 * the given host start address hint and size.  The guest_start parameter
209
 * specifies the start address of the guest space.  guest_base will be the
210
 * difference between the host start address computed by this function and
211
 * guest_start.  If fixed is specified, then the mapped address space must
212
 * start at host_start.  The real start address of the mapped memory space is
213
 * returned or -1 if there was an error.
214
 */
215
unsigned long init_guest_space(unsigned long host_start,
216
                               unsigned long host_size,
217
                               unsigned long guest_start,
218
                               bool fixed);
219

    
220
#include "qemu/log.h"
221

    
222
/* syscall.c */
223
int host_to_target_waitstatus(int status);
224

    
225
/* strace.c */
226
void print_syscall(int num,
227
                   abi_long arg1, abi_long arg2, abi_long arg3,
228
                   abi_long arg4, abi_long arg5, abi_long arg6);
229
void print_syscall_ret(int num, abi_long arg1);
230
extern int do_strace;
231

    
232
/* signal.c */
233
void process_pending_signals(CPUArchState *cpu_env);
234
void signal_init(void);
235
int queue_signal(CPUArchState *env, int sig, target_siginfo_t *info);
236
void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
237
void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
238
int target_to_host_signal(int sig);
239
int host_to_target_signal(int sig);
240
long do_sigreturn(CPUArchState *env);
241
long do_rt_sigreturn(CPUArchState *env);
242
abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp);
243

    
244
#ifdef TARGET_I386
245
/* vm86.c */
246
void save_v86_state(CPUX86State *env);
247
void handle_vm86_trap(CPUX86State *env, int trapno);
248
void handle_vm86_fault(CPUX86State *env);
249
int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
250
#elif defined(TARGET_SPARC64)
251
void sparc64_set_context(CPUSPARCState *env);
252
void sparc64_get_context(CPUSPARCState *env);
253
#endif
254

    
255
/* mmap.c */
256
int target_mprotect(abi_ulong start, abi_ulong len, int prot);
257
abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
258
                     int flags, int fd, abi_ulong offset);
259
int target_munmap(abi_ulong start, abi_ulong len);
260
abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
261
                       abi_ulong new_size, unsigned long flags,
262
                       abi_ulong new_addr);
263
int target_msync(abi_ulong start, abi_ulong len, int flags);
264
extern unsigned long last_brk;
265
extern abi_ulong mmap_next_start;
266
void mmap_lock(void);
267
void mmap_unlock(void);
268
abi_ulong mmap_find_vma(abi_ulong, abi_ulong);
269
void cpu_list_lock(void);
270
void cpu_list_unlock(void);
271
#if defined(CONFIG_USE_NPTL)
272
void mmap_fork_start(void);
273
void mmap_fork_end(int child);
274
#endif
275

    
276
/* main.c */
277
extern unsigned long guest_stack_size;
278

    
279
/* user access */
280

    
281
#define VERIFY_READ 0
282
#define VERIFY_WRITE 1 /* implies read access */
283

    
284
static inline int access_ok(int type, abi_ulong addr, abi_ulong size)
285
{
286
    return page_check_range((target_ulong)addr, size,
287
                            (type == VERIFY_READ) ? PAGE_READ : (PAGE_READ | PAGE_WRITE)) == 0;
288
}
289

    
290
/* NOTE __get_user and __put_user use host pointers and don't check access. */
291
/* These are usually used to access struct data members once the
292
 * struct has been locked - usually with lock_user_struct().
293
 */
294
#define __put_user(x, hptr)\
295
({ __typeof(*hptr) pu_ = (x);\
296
    switch(sizeof(*hptr)) {\
297
    case 1: break;\
298
    case 2: pu_ = tswap16(pu_); break; \
299
    case 4: pu_ = tswap32(pu_); break; \
300
    case 8: pu_ = tswap64(pu_); break; \
301
    default: abort();\
302
    }\
303
    memcpy(hptr, &pu_, sizeof(pu_)); \
304
    0;\
305
})
306

    
307
#define __get_user(x, hptr) \
308
({ __typeof(*hptr) gu_; \
309
    memcpy(&gu_, hptr, sizeof(gu_)); \
310
    switch(sizeof(*hptr)) {\
311
    case 1: break; \
312
    case 2: gu_ = tswap16(gu_); break; \
313
    case 4: gu_ = tswap32(gu_); break; \
314
    case 8: gu_ = tswap64(gu_); break; \
315
    default: abort();\
316
    }\
317
    (x) = gu_; \
318
    0;\
319
})
320

    
321
/* put_user()/get_user() take a guest address and check access */
322
/* These are usually used to access an atomic data type, such as an int,
323
 * that has been passed by address.  These internally perform locking
324
 * and unlocking on the data type.
325
 */
326
#define put_user(x, gaddr, target_type)                                        \
327
({                                                                        \
328
    abi_ulong __gaddr = (gaddr);                                        \
329
    target_type *__hptr;                                                \
330
    abi_long __ret;                                                        \
331
    if ((__hptr = lock_user(VERIFY_WRITE, __gaddr, sizeof(target_type), 0))) { \
332
        __ret = __put_user((x), __hptr);                                \
333
        unlock_user(__hptr, __gaddr, sizeof(target_type));                \
334
    } else                                                                \
335
        __ret = -TARGET_EFAULT;                                                \
336
    __ret;                                                                \
337
})
338

    
339
#define get_user(x, gaddr, target_type)                                        \
340
({                                                                        \
341
    abi_ulong __gaddr = (gaddr);                                        \
342
    target_type *__hptr;                                                \
343
    abi_long __ret;                                                        \
344
    if ((__hptr = lock_user(VERIFY_READ, __gaddr, sizeof(target_type), 1))) { \
345
        __ret = __get_user((x), __hptr);                                \
346
        unlock_user(__hptr, __gaddr, 0);                                \
347
    } else {                                                                \
348
        /* avoid warning */                                                \
349
        (x) = 0;                                                        \
350
        __ret = -TARGET_EFAULT;                                                \
351
    }                                                                        \
352
    __ret;                                                                \
353
})
354

    
355
#define put_user_ual(x, gaddr) put_user((x), (gaddr), abi_ulong)
356
#define put_user_sal(x, gaddr) put_user((x), (gaddr), abi_long)
357
#define put_user_u64(x, gaddr) put_user((x), (gaddr), uint64_t)
358
#define put_user_s64(x, gaddr) put_user((x), (gaddr), int64_t)
359
#define put_user_u32(x, gaddr) put_user((x), (gaddr), uint32_t)
360
#define put_user_s32(x, gaddr) put_user((x), (gaddr), int32_t)
361
#define put_user_u16(x, gaddr) put_user((x), (gaddr), uint16_t)
362
#define put_user_s16(x, gaddr) put_user((x), (gaddr), int16_t)
363
#define put_user_u8(x, gaddr)  put_user((x), (gaddr), uint8_t)
364
#define put_user_s8(x, gaddr)  put_user((x), (gaddr), int8_t)
365

    
366
#define get_user_ual(x, gaddr) get_user((x), (gaddr), abi_ulong)
367
#define get_user_sal(x, gaddr) get_user((x), (gaddr), abi_long)
368
#define get_user_u64(x, gaddr) get_user((x), (gaddr), uint64_t)
369
#define get_user_s64(x, gaddr) get_user((x), (gaddr), int64_t)
370
#define get_user_u32(x, gaddr) get_user((x), (gaddr), uint32_t)
371
#define get_user_s32(x, gaddr) get_user((x), (gaddr), int32_t)
372
#define get_user_u16(x, gaddr) get_user((x), (gaddr), uint16_t)
373
#define get_user_s16(x, gaddr) get_user((x), (gaddr), int16_t)
374
#define get_user_u8(x, gaddr)  get_user((x), (gaddr), uint8_t)
375
#define get_user_s8(x, gaddr)  get_user((x), (gaddr), int8_t)
376

    
377
/* copy_from_user() and copy_to_user() are usually used to copy data
378
 * buffers between the target and host.  These internally perform
379
 * locking/unlocking of the memory.
380
 */
381
abi_long copy_from_user(void *hptr, abi_ulong gaddr, size_t len);
382
abi_long copy_to_user(abi_ulong gaddr, void *hptr, size_t len);
383

    
384
/* Functions for accessing guest memory.  The tget and tput functions
385
   read/write single values, byteswapping as necessary.  The lock_user
386
   gets a pointer to a contiguous area of guest memory, but does not perform
387
   and byteswapping.  lock_user may return either a pointer to the guest
388
   memory, or a temporary buffer.  */
389

    
390
/* Lock an area of guest memory into the host.  If copy is true then the
391
   host area will have the same contents as the guest.  */
392
static inline void *lock_user(int type, abi_ulong guest_addr, long len, int copy)
393
{
394
    if (!access_ok(type, guest_addr, len))
395
        return NULL;
396
#ifdef DEBUG_REMAP
397
    {
398
        void *addr;
399
        addr = malloc(len);
400
        if (copy)
401
            memcpy(addr, g2h(guest_addr), len);
402
        else
403
            memset(addr, 0, len);
404
        return addr;
405
    }
406
#else
407
    return g2h(guest_addr);
408
#endif
409
}
410

    
411
/* Unlock an area of guest memory.  The first LEN bytes must be
412
   flushed back to guest memory. host_ptr = NULL is explicitly
413
   allowed and does nothing. */
414
static inline void unlock_user(void *host_ptr, abi_ulong guest_addr,
415
                               long len)
416
{
417

    
418
#ifdef DEBUG_REMAP
419
    if (!host_ptr)
420
        return;
421
    if (host_ptr == g2h(guest_addr))
422
        return;
423
    if (len > 0)
424
        memcpy(g2h(guest_addr), host_ptr, len);
425
    free(host_ptr);
426
#endif
427
}
428

    
429
/* Return the length of a string in target memory or -TARGET_EFAULT if
430
   access error. */
431
abi_long target_strlen(abi_ulong gaddr);
432

    
433
/* Like lock_user but for null terminated strings.  */
434
static inline void *lock_user_string(abi_ulong guest_addr)
435
{
436
    abi_long len;
437
    len = target_strlen(guest_addr);
438
    if (len < 0)
439
        return NULL;
440
    return lock_user(VERIFY_READ, guest_addr, (long)(len + 1), 1);
441
}
442

    
443
/* Helper macros for locking/ulocking a target struct.  */
444
#define lock_user_struct(type, host_ptr, guest_addr, copy)        \
445
    (host_ptr = lock_user(type, guest_addr, sizeof(*host_ptr), copy))
446
#define unlock_user_struct(host_ptr, guest_addr, copy)                \
447
    unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
448

    
449
#if defined(CONFIG_USE_NPTL)
450
#include <pthread.h>
451
#endif
452

    
453
#endif /* QEMU_H */