Statistics
| Branch: | Revision:

root / target-i386 / ops_sse.h @ 1e6eec8b

History | View | Annotate | Download (57.2 kB)

1
/*
2
 *  MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3
 *
4
 *  Copyright (c) 2005 Fabrice Bellard
5
 *  Copyright (c) 2008 Intel Corporation  <andrew.zaborowski@intel.com>
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19
 */
20
#if SHIFT == 0
21
#define Reg MMXReg
22
#define XMM_ONLY(...)
23
#define B(n) MMX_B(n)
24
#define W(n) MMX_W(n)
25
#define L(n) MMX_L(n)
26
#define Q(n) q
27
#define SUFFIX _mmx
28
#else
29
#define Reg XMMReg
30
#define XMM_ONLY(...) __VA_ARGS__
31
#define B(n) XMM_B(n)
32
#define W(n) XMM_W(n)
33
#define L(n) XMM_L(n)
34
#define Q(n) XMM_Q(n)
35
#define SUFFIX _xmm
36
#endif
37

    
38
void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
39
{
40
    int shift;
41

    
42
    if (s->Q(0) > 15) {
43
        d->Q(0) = 0;
44
#if SHIFT == 1
45
        d->Q(1) = 0;
46
#endif
47
    } else {
48
        shift = s->B(0);
49
        d->W(0) >>= shift;
50
        d->W(1) >>= shift;
51
        d->W(2) >>= shift;
52
        d->W(3) >>= shift;
53
#if SHIFT == 1
54
        d->W(4) >>= shift;
55
        d->W(5) >>= shift;
56
        d->W(6) >>= shift;
57
        d->W(7) >>= shift;
58
#endif
59
    }
60
}
61

    
62
void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
63
{
64
    int shift;
65

    
66
    if (s->Q(0) > 15) {
67
        shift = 15;
68
    } else {
69
        shift = s->B(0);
70
    }
71
    d->W(0) = (int16_t)d->W(0) >> shift;
72
    d->W(1) = (int16_t)d->W(1) >> shift;
73
    d->W(2) = (int16_t)d->W(2) >> shift;
74
    d->W(3) = (int16_t)d->W(3) >> shift;
75
#if SHIFT == 1
76
    d->W(4) = (int16_t)d->W(4) >> shift;
77
    d->W(5) = (int16_t)d->W(5) >> shift;
78
    d->W(6) = (int16_t)d->W(6) >> shift;
79
    d->W(7) = (int16_t)d->W(7) >> shift;
80
#endif
81
}
82

    
83
void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
84
{
85
    int shift;
86

    
87
    if (s->Q(0) > 15) {
88
        d->Q(0) = 0;
89
#if SHIFT == 1
90
        d->Q(1) = 0;
91
#endif
92
    } else {
93
        shift = s->B(0);
94
        d->W(0) <<= shift;
95
        d->W(1) <<= shift;
96
        d->W(2) <<= shift;
97
        d->W(3) <<= shift;
98
#if SHIFT == 1
99
        d->W(4) <<= shift;
100
        d->W(5) <<= shift;
101
        d->W(6) <<= shift;
102
        d->W(7) <<= shift;
103
#endif
104
    }
105
}
106

    
107
void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
108
{
109
    int shift;
110

    
111
    if (s->Q(0) > 31) {
112
        d->Q(0) = 0;
113
#if SHIFT == 1
114
        d->Q(1) = 0;
115
#endif
116
    } else {
117
        shift = s->B(0);
118
        d->L(0) >>= shift;
119
        d->L(1) >>= shift;
120
#if SHIFT == 1
121
        d->L(2) >>= shift;
122
        d->L(3) >>= shift;
123
#endif
124
    }
125
}
126

    
127
void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
128
{
129
    int shift;
130

    
131
    if (s->Q(0) > 31) {
132
        shift = 31;
133
    } else {
134
        shift = s->B(0);
135
    }
136
    d->L(0) = (int32_t)d->L(0) >> shift;
137
    d->L(1) = (int32_t)d->L(1) >> shift;
138
#if SHIFT == 1
139
    d->L(2) = (int32_t)d->L(2) >> shift;
140
    d->L(3) = (int32_t)d->L(3) >> shift;
141
#endif
142
}
143

    
144
void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
145
{
146
    int shift;
147

    
148
    if (s->Q(0) > 31) {
149
        d->Q(0) = 0;
150
#if SHIFT == 1
151
        d->Q(1) = 0;
152
#endif
153
    } else {
154
        shift = s->B(0);
155
        d->L(0) <<= shift;
156
        d->L(1) <<= shift;
157
#if SHIFT == 1
158
        d->L(2) <<= shift;
159
        d->L(3) <<= shift;
160
#endif
161
    }
162
}
163

    
164
void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
165
{
166
    int shift;
167

    
168
    if (s->Q(0) > 63) {
169
        d->Q(0) = 0;
170
#if SHIFT == 1
171
        d->Q(1) = 0;
172
#endif
173
    } else {
174
        shift = s->B(0);
175
        d->Q(0) >>= shift;
176
#if SHIFT == 1
177
        d->Q(1) >>= shift;
178
#endif
179
    }
180
}
181

    
182
void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
183
{
184
    int shift;
185

    
186
    if (s->Q(0) > 63) {
187
        d->Q(0) = 0;
188
#if SHIFT == 1
189
        d->Q(1) = 0;
190
#endif
191
    } else {
192
        shift = s->B(0);
193
        d->Q(0) <<= shift;
194
#if SHIFT == 1
195
        d->Q(1) <<= shift;
196
#endif
197
    }
198
}
199

    
200
#if SHIFT == 1
201
void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
202
{
203
    int shift, i;
204

    
205
    shift = s->L(0);
206
    if (shift > 16)
207
        shift = 16;
208
    for(i = 0; i < 16 - shift; i++)
209
        d->B(i) = d->B(i + shift);
210
    for(i = 16 - shift; i < 16; i++)
211
        d->B(i) = 0;
212
}
213

    
214
void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
215
{
216
    int shift, i;
217

    
218
    shift = s->L(0);
219
    if (shift > 16)
220
        shift = 16;
221
    for(i = 15; i >= shift; i--)
222
        d->B(i) = d->B(i - shift);
223
    for(i = 0; i < shift; i++)
224
        d->B(i) = 0;
225
}
226
#endif
227

    
228
#define SSE_HELPER_B(name, F)\
229
void glue(name, SUFFIX) (Reg *d, Reg *s)\
230
{\
231
    d->B(0) = F(d->B(0), s->B(0));\
232
    d->B(1) = F(d->B(1), s->B(1));\
233
    d->B(2) = F(d->B(2), s->B(2));\
234
    d->B(3) = F(d->B(3), s->B(3));\
235
    d->B(4) = F(d->B(4), s->B(4));\
236
    d->B(5) = F(d->B(5), s->B(5));\
237
    d->B(6) = F(d->B(6), s->B(6));\
238
    d->B(7) = F(d->B(7), s->B(7));\
239
    XMM_ONLY(\
240
    d->B(8) = F(d->B(8), s->B(8));\
241
    d->B(9) = F(d->B(9), s->B(9));\
242
    d->B(10) = F(d->B(10), s->B(10));\
243
    d->B(11) = F(d->B(11), s->B(11));\
244
    d->B(12) = F(d->B(12), s->B(12));\
245
    d->B(13) = F(d->B(13), s->B(13));\
246
    d->B(14) = F(d->B(14), s->B(14));\
247
    d->B(15) = F(d->B(15), s->B(15));\
248
    )\
249
}
250

    
251
#define SSE_HELPER_W(name, F)\
252
void glue(name, SUFFIX) (Reg *d, Reg *s)\
253
{\
254
    d->W(0) = F(d->W(0), s->W(0));\
255
    d->W(1) = F(d->W(1), s->W(1));\
256
    d->W(2) = F(d->W(2), s->W(2));\
257
    d->W(3) = F(d->W(3), s->W(3));\
258
    XMM_ONLY(\
259
    d->W(4) = F(d->W(4), s->W(4));\
260
    d->W(5) = F(d->W(5), s->W(5));\
261
    d->W(6) = F(d->W(6), s->W(6));\
262
    d->W(7) = F(d->W(7), s->W(7));\
263
    )\
264
}
265

    
266
#define SSE_HELPER_L(name, F)\
267
void glue(name, SUFFIX) (Reg *d, Reg *s)\
268
{\
269
    d->L(0) = F(d->L(0), s->L(0));\
270
    d->L(1) = F(d->L(1), s->L(1));\
271
    XMM_ONLY(\
272
    d->L(2) = F(d->L(2), s->L(2));\
273
    d->L(3) = F(d->L(3), s->L(3));\
274
    )\
275
}
276

    
277
#define SSE_HELPER_Q(name, F)\
278
void glue(name, SUFFIX) (Reg *d, Reg *s)\
279
{\
280
    d->Q(0) = F(d->Q(0), s->Q(0));\
281
    XMM_ONLY(\
282
    d->Q(1) = F(d->Q(1), s->Q(1));\
283
    )\
284
}
285

    
286
#if SHIFT == 0
287
static inline int satub(int x)
288
{
289
    if (x < 0)
290
        return 0;
291
    else if (x > 255)
292
        return 255;
293
    else
294
        return x;
295
}
296

    
297
static inline int satuw(int x)
298
{
299
    if (x < 0)
300
        return 0;
301
    else if (x > 65535)
302
        return 65535;
303
    else
304
        return x;
305
}
306

    
307
static inline int satsb(int x)
308
{
309
    if (x < -128)
310
        return -128;
311
    else if (x > 127)
312
        return 127;
313
    else
314
        return x;
315
}
316

    
317
static inline int satsw(int x)
318
{
319
    if (x < -32768)
320
        return -32768;
321
    else if (x > 32767)
322
        return 32767;
323
    else
324
        return x;
325
}
326

    
327
#define FADD(a, b) ((a) + (b))
328
#define FADDUB(a, b) satub((a) + (b))
329
#define FADDUW(a, b) satuw((a) + (b))
330
#define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
331
#define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
332

    
333
#define FSUB(a, b) ((a) - (b))
334
#define FSUBUB(a, b) satub((a) - (b))
335
#define FSUBUW(a, b) satuw((a) - (b))
336
#define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
337
#define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
338
#define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
339
#define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
340
#define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
341
#define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
342

    
343
#define FAND(a, b) (a) & (b)
344
#define FANDN(a, b) ((~(a)) & (b))
345
#define FOR(a, b) (a) | (b)
346
#define FXOR(a, b) (a) ^ (b)
347

    
348
#define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
349
#define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
350
#define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
351
#define FCMPEQ(a, b) (a) == (b) ? -1 : 0
352

    
353
#define FMULLW(a, b) (a) * (b)
354
#define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
355
#define FMULHUW(a, b) (a) * (b) >> 16
356
#define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
357

    
358
#define FAVG(a, b) ((a) + (b) + 1) >> 1
359
#endif
360

    
361
SSE_HELPER_B(helper_paddb, FADD)
362
SSE_HELPER_W(helper_paddw, FADD)
363
SSE_HELPER_L(helper_paddl, FADD)
364
SSE_HELPER_Q(helper_paddq, FADD)
365

    
366
SSE_HELPER_B(helper_psubb, FSUB)
367
SSE_HELPER_W(helper_psubw, FSUB)
368
SSE_HELPER_L(helper_psubl, FSUB)
369
SSE_HELPER_Q(helper_psubq, FSUB)
370

    
371
SSE_HELPER_B(helper_paddusb, FADDUB)
372
SSE_HELPER_B(helper_paddsb, FADDSB)
373
SSE_HELPER_B(helper_psubusb, FSUBUB)
374
SSE_HELPER_B(helper_psubsb, FSUBSB)
375

    
376
SSE_HELPER_W(helper_paddusw, FADDUW)
377
SSE_HELPER_W(helper_paddsw, FADDSW)
378
SSE_HELPER_W(helper_psubusw, FSUBUW)
379
SSE_HELPER_W(helper_psubsw, FSUBSW)
380

    
381
SSE_HELPER_B(helper_pminub, FMINUB)
382
SSE_HELPER_B(helper_pmaxub, FMAXUB)
383

    
384
SSE_HELPER_W(helper_pminsw, FMINSW)
385
SSE_HELPER_W(helper_pmaxsw, FMAXSW)
386

    
387
SSE_HELPER_Q(helper_pand, FAND)
388
SSE_HELPER_Q(helper_pandn, FANDN)
389
SSE_HELPER_Q(helper_por, FOR)
390
SSE_HELPER_Q(helper_pxor, FXOR)
391

    
392
SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
393
SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
394
SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
395

    
396
SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
397
SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
398
SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
399

    
400
SSE_HELPER_W(helper_pmullw, FMULLW)
401
#if SHIFT == 0
402
SSE_HELPER_W(helper_pmulhrw, FMULHRW)
403
#endif
404
SSE_HELPER_W(helper_pmulhuw, FMULHUW)
405
SSE_HELPER_W(helper_pmulhw, FMULHW)
406

    
407
SSE_HELPER_B(helper_pavgb, FAVG)
408
SSE_HELPER_W(helper_pavgw, FAVG)
409

    
410
void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
411
{
412
    d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
413
#if SHIFT == 1
414
    d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
415
#endif
416
}
417

    
418
void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
419
{
420
    int i;
421

    
422
    for(i = 0; i < (2 << SHIFT); i++) {
423
        d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
424
            (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
425
    }
426
}
427

    
428
#if SHIFT == 0
429
static inline int abs1(int a)
430
{
431
    if (a < 0)
432
        return -a;
433
    else
434
        return a;
435
}
436
#endif
437
void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
438
{
439
    unsigned int val;
440

    
441
    val = 0;
442
    val += abs1(d->B(0) - s->B(0));
443
    val += abs1(d->B(1) - s->B(1));
444
    val += abs1(d->B(2) - s->B(2));
445
    val += abs1(d->B(3) - s->B(3));
446
    val += abs1(d->B(4) - s->B(4));
447
    val += abs1(d->B(5) - s->B(5));
448
    val += abs1(d->B(6) - s->B(6));
449
    val += abs1(d->B(7) - s->B(7));
450
    d->Q(0) = val;
451
#if SHIFT == 1
452
    val = 0;
453
    val += abs1(d->B(8) - s->B(8));
454
    val += abs1(d->B(9) - s->B(9));
455
    val += abs1(d->B(10) - s->B(10));
456
    val += abs1(d->B(11) - s->B(11));
457
    val += abs1(d->B(12) - s->B(12));
458
    val += abs1(d->B(13) - s->B(13));
459
    val += abs1(d->B(14) - s->B(14));
460
    val += abs1(d->B(15) - s->B(15));
461
    d->Q(1) = val;
462
#endif
463
}
464

    
465
void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
466
{
467
    int i;
468
    for(i = 0; i < (8 << SHIFT); i++) {
469
        if (s->B(i) & 0x80)
470
            stb(a0 + i, d->B(i));
471
    }
472
}
473

    
474
void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
475
{
476
    d->L(0) = val;
477
    d->L(1) = 0;
478
#if SHIFT == 1
479
    d->Q(1) = 0;
480
#endif
481
}
482

    
483
#ifdef TARGET_X86_64
484
void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
485
{
486
    d->Q(0) = val;
487
#if SHIFT == 1
488
    d->Q(1) = 0;
489
#endif
490
}
491
#endif
492

    
493
#if SHIFT == 0
494
void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
495
{
496
    Reg r;
497
    r.W(0) = s->W(order & 3);
498
    r.W(1) = s->W((order >> 2) & 3);
499
    r.W(2) = s->W((order >> 4) & 3);
500
    r.W(3) = s->W((order >> 6) & 3);
501
    *d = r;
502
}
503
#else
504
void helper_shufps(Reg *d, Reg *s, int order)
505
{
506
    Reg r;
507
    r.L(0) = d->L(order & 3);
508
    r.L(1) = d->L((order >> 2) & 3);
509
    r.L(2) = s->L((order >> 4) & 3);
510
    r.L(3) = s->L((order >> 6) & 3);
511
    *d = r;
512
}
513

    
514
void helper_shufpd(Reg *d, Reg *s, int order)
515
{
516
    Reg r;
517
    r.Q(0) = d->Q(order & 1);
518
    r.Q(1) = s->Q((order >> 1) & 1);
519
    *d = r;
520
}
521

    
522
void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
523
{
524
    Reg r;
525
    r.L(0) = s->L(order & 3);
526
    r.L(1) = s->L((order >> 2) & 3);
527
    r.L(2) = s->L((order >> 4) & 3);
528
    r.L(3) = s->L((order >> 6) & 3);
529
    *d = r;
530
}
531

    
532
void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
533
{
534
    Reg r;
535
    r.W(0) = s->W(order & 3);
536
    r.W(1) = s->W((order >> 2) & 3);
537
    r.W(2) = s->W((order >> 4) & 3);
538
    r.W(3) = s->W((order >> 6) & 3);
539
    r.Q(1) = s->Q(1);
540
    *d = r;
541
}
542

    
543
void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
544
{
545
    Reg r;
546
    r.Q(0) = s->Q(0);
547
    r.W(4) = s->W(4 + (order & 3));
548
    r.W(5) = s->W(4 + ((order >> 2) & 3));
549
    r.W(6) = s->W(4 + ((order >> 4) & 3));
550
    r.W(7) = s->W(4 + ((order >> 6) & 3));
551
    *d = r;
552
}
553
#endif
554

    
555
#if SHIFT == 1
556
/* FPU ops */
557
/* XXX: not accurate */
558

    
559
#define SSE_HELPER_S(name, F)\
560
void helper_ ## name ## ps (Reg *d, Reg *s)\
561
{\
562
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
563
    d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
564
    d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
565
    d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
566
}\
567
\
568
void helper_ ## name ## ss (Reg *d, Reg *s)\
569
{\
570
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
571
}\
572
void helper_ ## name ## pd (Reg *d, Reg *s)\
573
{\
574
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
575
    d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
576
}\
577
\
578
void helper_ ## name ## sd (Reg *d, Reg *s)\
579
{\
580
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
581
}
582

    
583
#define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
584
#define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
585
#define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
586
#define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
587
#define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b)
588
#define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b)
589
#define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
590

    
591
SSE_HELPER_S(add, FPU_ADD)
592
SSE_HELPER_S(sub, FPU_SUB)
593
SSE_HELPER_S(mul, FPU_MUL)
594
SSE_HELPER_S(div, FPU_DIV)
595
SSE_HELPER_S(min, FPU_MIN)
596
SSE_HELPER_S(max, FPU_MAX)
597
SSE_HELPER_S(sqrt, FPU_SQRT)
598

    
599

    
600
/* float to float conversions */
601
void helper_cvtps2pd(Reg *d, Reg *s)
602
{
603
    float32 s0, s1;
604
    s0 = s->XMM_S(0);
605
    s1 = s->XMM_S(1);
606
    d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
607
    d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
608
}
609

    
610
void helper_cvtpd2ps(Reg *d, Reg *s)
611
{
612
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
613
    d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
614
    d->Q(1) = 0;
615
}
616

    
617
void helper_cvtss2sd(Reg *d, Reg *s)
618
{
619
    d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
620
}
621

    
622
void helper_cvtsd2ss(Reg *d, Reg *s)
623
{
624
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
625
}
626

    
627
/* integer to float */
628
void helper_cvtdq2ps(Reg *d, Reg *s)
629
{
630
    d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
631
    d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
632
    d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
633
    d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
634
}
635

    
636
void helper_cvtdq2pd(Reg *d, Reg *s)
637
{
638
    int32_t l0, l1;
639
    l0 = (int32_t)s->XMM_L(0);
640
    l1 = (int32_t)s->XMM_L(1);
641
    d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
642
    d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
643
}
644

    
645
void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
646
{
647
    d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
648
    d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
649
}
650

    
651
void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
652
{
653
    d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
654
    d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
655
}
656

    
657
void helper_cvtsi2ss(XMMReg *d, uint32_t val)
658
{
659
    d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
660
}
661

    
662
void helper_cvtsi2sd(XMMReg *d, uint32_t val)
663
{
664
    d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
665
}
666

    
667
#ifdef TARGET_X86_64
668
void helper_cvtsq2ss(XMMReg *d, uint64_t val)
669
{
670
    d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
671
}
672

    
673
void helper_cvtsq2sd(XMMReg *d, uint64_t val)
674
{
675
    d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
676
}
677
#endif
678

    
679
/* float to integer */
680
void helper_cvtps2dq(XMMReg *d, XMMReg *s)
681
{
682
    d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
683
    d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
684
    d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
685
    d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
686
}
687

    
688
void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
689
{
690
    d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
691
    d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
692
    d->XMM_Q(1) = 0;
693
}
694

    
695
void helper_cvtps2pi(MMXReg *d, XMMReg *s)
696
{
697
    d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
698
    d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
699
}
700

    
701
void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
702
{
703
    d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
704
    d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
705
}
706

    
707
int32_t helper_cvtss2si(XMMReg *s)
708
{
709
    return float32_to_int32(s->XMM_S(0), &env->sse_status);
710
}
711

    
712
int32_t helper_cvtsd2si(XMMReg *s)
713
{
714
    return float64_to_int32(s->XMM_D(0), &env->sse_status);
715
}
716

    
717
#ifdef TARGET_X86_64
718
int64_t helper_cvtss2sq(XMMReg *s)
719
{
720
    return float32_to_int64(s->XMM_S(0), &env->sse_status);
721
}
722

    
723
int64_t helper_cvtsd2sq(XMMReg *s)
724
{
725
    return float64_to_int64(s->XMM_D(0), &env->sse_status);
726
}
727
#endif
728

    
729
/* float to integer truncated */
730
void helper_cvttps2dq(XMMReg *d, XMMReg *s)
731
{
732
    d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
733
    d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
734
    d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
735
    d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
736
}
737

    
738
void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
739
{
740
    d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
741
    d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
742
    d->XMM_Q(1) = 0;
743
}
744

    
745
void helper_cvttps2pi(MMXReg *d, XMMReg *s)
746
{
747
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
748
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
749
}
750

    
751
void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
752
{
753
    d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
754
    d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
755
}
756

    
757
int32_t helper_cvttss2si(XMMReg *s)
758
{
759
    return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
760
}
761

    
762
int32_t helper_cvttsd2si(XMMReg *s)
763
{
764
    return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
765
}
766

    
767
#ifdef TARGET_X86_64
768
int64_t helper_cvttss2sq(XMMReg *s)
769
{
770
    return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
771
}
772

    
773
int64_t helper_cvttsd2sq(XMMReg *s)
774
{
775
    return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
776
}
777
#endif
778

    
779
void helper_rsqrtps(XMMReg *d, XMMReg *s)
780
{
781
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
782
    d->XMM_S(1) = approx_rsqrt(s->XMM_S(1));
783
    d->XMM_S(2) = approx_rsqrt(s->XMM_S(2));
784
    d->XMM_S(3) = approx_rsqrt(s->XMM_S(3));
785
}
786

    
787
void helper_rsqrtss(XMMReg *d, XMMReg *s)
788
{
789
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
790
}
791

    
792
void helper_rcpps(XMMReg *d, XMMReg *s)
793
{
794
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
795
    d->XMM_S(1) = approx_rcp(s->XMM_S(1));
796
    d->XMM_S(2) = approx_rcp(s->XMM_S(2));
797
    d->XMM_S(3) = approx_rcp(s->XMM_S(3));
798
}
799

    
800
void helper_rcpss(XMMReg *d, XMMReg *s)
801
{
802
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
803
}
804

    
805
void helper_haddps(XMMReg *d, XMMReg *s)
806
{
807
    XMMReg r;
808
    r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
809
    r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
810
    r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
811
    r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
812
    *d = r;
813
}
814

    
815
void helper_haddpd(XMMReg *d, XMMReg *s)
816
{
817
    XMMReg r;
818
    r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
819
    r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
820
    *d = r;
821
}
822

    
823
void helper_hsubps(XMMReg *d, XMMReg *s)
824
{
825
    XMMReg r;
826
    r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
827
    r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
828
    r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
829
    r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
830
    *d = r;
831
}
832

    
833
void helper_hsubpd(XMMReg *d, XMMReg *s)
834
{
835
    XMMReg r;
836
    r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
837
    r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
838
    *d = r;
839
}
840

    
841
void helper_addsubps(XMMReg *d, XMMReg *s)
842
{
843
    d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0);
844
    d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1);
845
    d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2);
846
    d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3);
847
}
848

    
849
void helper_addsubpd(XMMReg *d, XMMReg *s)
850
{
851
    d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0);
852
    d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1);
853
}
854

    
855
/* XXX: unordered */
856
#define SSE_HELPER_CMP(name, F)\
857
void helper_ ## name ## ps (Reg *d, Reg *s)\
858
{\
859
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
860
    d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
861
    d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
862
    d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
863
}\
864
\
865
void helper_ ## name ## ss (Reg *d, Reg *s)\
866
{\
867
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
868
}\
869
void helper_ ## name ## pd (Reg *d, Reg *s)\
870
{\
871
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
872
    d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
873
}\
874
\
875
void helper_ ## name ## sd (Reg *d, Reg *s)\
876
{\
877
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
878
}
879

    
880
#define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0
881
#define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
882
#define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
883
#define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0
884
#define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1
885
#define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
886
#define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
887
#define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1
888

    
889
SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
890
SSE_HELPER_CMP(cmplt, FPU_CMPLT)
891
SSE_HELPER_CMP(cmple, FPU_CMPLE)
892
SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
893
SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
894
SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
895
SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
896
SSE_HELPER_CMP(cmpord, FPU_CMPORD)
897

    
898
static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
899

    
900
void helper_ucomiss(Reg *d, Reg *s)
901
{
902
    int ret;
903
    float32 s0, s1;
904

    
905
    s0 = d->XMM_S(0);
906
    s1 = s->XMM_S(0);
907
    ret = float32_compare_quiet(s0, s1, &env->sse_status);
908
    CC_SRC = comis_eflags[ret + 1];
909
}
910

    
911
void helper_comiss(Reg *d, Reg *s)
912
{
913
    int ret;
914
    float32 s0, s1;
915

    
916
    s0 = d->XMM_S(0);
917
    s1 = s->XMM_S(0);
918
    ret = float32_compare(s0, s1, &env->sse_status);
919
    CC_SRC = comis_eflags[ret + 1];
920
}
921

    
922
void helper_ucomisd(Reg *d, Reg *s)
923
{
924
    int ret;
925
    float64 d0, d1;
926

    
927
    d0 = d->XMM_D(0);
928
    d1 = s->XMM_D(0);
929
    ret = float64_compare_quiet(d0, d1, &env->sse_status);
930
    CC_SRC = comis_eflags[ret + 1];
931
}
932

    
933
void helper_comisd(Reg *d, Reg *s)
934
{
935
    int ret;
936
    float64 d0, d1;
937

    
938
    d0 = d->XMM_D(0);
939
    d1 = s->XMM_D(0);
940
    ret = float64_compare(d0, d1, &env->sse_status);
941
    CC_SRC = comis_eflags[ret + 1];
942
}
943

    
944
uint32_t helper_movmskps(Reg *s)
945
{
946
    int b0, b1, b2, b3;
947
    b0 = s->XMM_L(0) >> 31;
948
    b1 = s->XMM_L(1) >> 31;
949
    b2 = s->XMM_L(2) >> 31;
950
    b3 = s->XMM_L(3) >> 31;
951
    return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
952
}
953

    
954
uint32_t helper_movmskpd(Reg *s)
955
{
956
    int b0, b1;
957
    b0 = s->XMM_L(1) >> 31;
958
    b1 = s->XMM_L(3) >> 31;
959
    return b0 | (b1 << 1);
960
}
961

    
962
#endif
963

    
964
uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
965
{
966
    uint32_t val;
967
    val = 0;
968
    val |= (s->B(0) >> 7);
969
    val |= (s->B(1) >> 6) & 0x02;
970
    val |= (s->B(2) >> 5) & 0x04;
971
    val |= (s->B(3) >> 4) & 0x08;
972
    val |= (s->B(4) >> 3) & 0x10;
973
    val |= (s->B(5) >> 2) & 0x20;
974
    val |= (s->B(6) >> 1) & 0x40;
975
    val |= (s->B(7)) & 0x80;
976
#if SHIFT == 1
977
    val |= (s->B(8) << 1) & 0x0100;
978
    val |= (s->B(9) << 2) & 0x0200;
979
    val |= (s->B(10) << 3) & 0x0400;
980
    val |= (s->B(11) << 4) & 0x0800;
981
    val |= (s->B(12) << 5) & 0x1000;
982
    val |= (s->B(13) << 6) & 0x2000;
983
    val |= (s->B(14) << 7) & 0x4000;
984
    val |= (s->B(15) << 8) & 0x8000;
985
#endif
986
    return val;
987
}
988

    
989
void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
990
{
991
    Reg r;
992

    
993
    r.B(0) = satsb((int16_t)d->W(0));
994
    r.B(1) = satsb((int16_t)d->W(1));
995
    r.B(2) = satsb((int16_t)d->W(2));
996
    r.B(3) = satsb((int16_t)d->W(3));
997
#if SHIFT == 1
998
    r.B(4) = satsb((int16_t)d->W(4));
999
    r.B(5) = satsb((int16_t)d->W(5));
1000
    r.B(6) = satsb((int16_t)d->W(6));
1001
    r.B(7) = satsb((int16_t)d->W(7));
1002
#endif
1003
    r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1004
    r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1005
    r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1006
    r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1007
#if SHIFT == 1
1008
    r.B(12) = satsb((int16_t)s->W(4));
1009
    r.B(13) = satsb((int16_t)s->W(5));
1010
    r.B(14) = satsb((int16_t)s->W(6));
1011
    r.B(15) = satsb((int16_t)s->W(7));
1012
#endif
1013
    *d = r;
1014
}
1015

    
1016
void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
1017
{
1018
    Reg r;
1019

    
1020
    r.B(0) = satub((int16_t)d->W(0));
1021
    r.B(1) = satub((int16_t)d->W(1));
1022
    r.B(2) = satub((int16_t)d->W(2));
1023
    r.B(3) = satub((int16_t)d->W(3));
1024
#if SHIFT == 1
1025
    r.B(4) = satub((int16_t)d->W(4));
1026
    r.B(5) = satub((int16_t)d->W(5));
1027
    r.B(6) = satub((int16_t)d->W(6));
1028
    r.B(7) = satub((int16_t)d->W(7));
1029
#endif
1030
    r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1031
    r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1032
    r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1033
    r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1034
#if SHIFT == 1
1035
    r.B(12) = satub((int16_t)s->W(4));
1036
    r.B(13) = satub((int16_t)s->W(5));
1037
    r.B(14) = satub((int16_t)s->W(6));
1038
    r.B(15) = satub((int16_t)s->W(7));
1039
#endif
1040
    *d = r;
1041
}
1042

    
1043
void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
1044
{
1045
    Reg r;
1046

    
1047
    r.W(0) = satsw(d->L(0));
1048
    r.W(1) = satsw(d->L(1));
1049
#if SHIFT == 1
1050
    r.W(2) = satsw(d->L(2));
1051
    r.W(3) = satsw(d->L(3));
1052
#endif
1053
    r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1054
    r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1055
#if SHIFT == 1
1056
    r.W(6) = satsw(s->L(2));
1057
    r.W(7) = satsw(s->L(3));
1058
#endif
1059
    *d = r;
1060
}
1061

    
1062
#define UNPCK_OP(base_name, base)                               \
1063
                                                                \
1064
void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s)   \
1065
{                                                               \
1066
    Reg r;                                              \
1067
                                                                \
1068
    r.B(0) = d->B((base << (SHIFT + 2)) + 0);                   \
1069
    r.B(1) = s->B((base << (SHIFT + 2)) + 0);                   \
1070
    r.B(2) = d->B((base << (SHIFT + 2)) + 1);                   \
1071
    r.B(3) = s->B((base << (SHIFT + 2)) + 1);                   \
1072
    r.B(4) = d->B((base << (SHIFT + 2)) + 2);                   \
1073
    r.B(5) = s->B((base << (SHIFT + 2)) + 2);                   \
1074
    r.B(6) = d->B((base << (SHIFT + 2)) + 3);                   \
1075
    r.B(7) = s->B((base << (SHIFT + 2)) + 3);                   \
1076
XMM_ONLY(                                                       \
1077
    r.B(8) = d->B((base << (SHIFT + 2)) + 4);                   \
1078
    r.B(9) = s->B((base << (SHIFT + 2)) + 4);                   \
1079
    r.B(10) = d->B((base << (SHIFT + 2)) + 5);                  \
1080
    r.B(11) = s->B((base << (SHIFT + 2)) + 5);                  \
1081
    r.B(12) = d->B((base << (SHIFT + 2)) + 6);                  \
1082
    r.B(13) = s->B((base << (SHIFT + 2)) + 6);                  \
1083
    r.B(14) = d->B((base << (SHIFT + 2)) + 7);                  \
1084
    r.B(15) = s->B((base << (SHIFT + 2)) + 7);                  \
1085
)                                                               \
1086
    *d = r;                                                     \
1087
}                                                               \
1088
                                                                \
1089
void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s)   \
1090
{                                                               \
1091
    Reg r;                                              \
1092
                                                                \
1093
    r.W(0) = d->W((base << (SHIFT + 1)) + 0);                   \
1094
    r.W(1) = s->W((base << (SHIFT + 1)) + 0);                   \
1095
    r.W(2) = d->W((base << (SHIFT + 1)) + 1);                   \
1096
    r.W(3) = s->W((base << (SHIFT + 1)) + 1);                   \
1097
XMM_ONLY(                                                       \
1098
    r.W(4) = d->W((base << (SHIFT + 1)) + 2);                   \
1099
    r.W(5) = s->W((base << (SHIFT + 1)) + 2);                   \
1100
    r.W(6) = d->W((base << (SHIFT + 1)) + 3);                   \
1101
    r.W(7) = s->W((base << (SHIFT + 1)) + 3);                   \
1102
)                                                               \
1103
    *d = r;                                                     \
1104
}                                                               \
1105
                                                                \
1106
void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s)   \
1107
{                                                               \
1108
    Reg r;                                              \
1109
                                                                \
1110
    r.L(0) = d->L((base << SHIFT) + 0);                         \
1111
    r.L(1) = s->L((base << SHIFT) + 0);                         \
1112
XMM_ONLY(                                                       \
1113
    r.L(2) = d->L((base << SHIFT) + 1);                         \
1114
    r.L(3) = s->L((base << SHIFT) + 1);                         \
1115
)                                                               \
1116
    *d = r;                                                     \
1117
}                                                               \
1118
                                                                \
1119
XMM_ONLY(                                                       \
1120
void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s)  \
1121
{                                                               \
1122
    Reg r;                                              \
1123
                                                                \
1124
    r.Q(0) = d->Q(base);                                        \
1125
    r.Q(1) = s->Q(base);                                        \
1126
    *d = r;                                                     \
1127
}                                                               \
1128
)
1129

    
1130
UNPCK_OP(l, 0)
1131
UNPCK_OP(h, 1)
1132

    
1133
/* 3DNow! float ops */
1134
#if SHIFT == 0
1135
void helper_pi2fd(MMXReg *d, MMXReg *s)
1136
{
1137
    d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1138
    d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1139
}
1140

    
1141
void helper_pi2fw(MMXReg *d, MMXReg *s)
1142
{
1143
    d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1144
    d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1145
}
1146

    
1147
void helper_pf2id(MMXReg *d, MMXReg *s)
1148
{
1149
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1150
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1151
}
1152

    
1153
void helper_pf2iw(MMXReg *d, MMXReg *s)
1154
{
1155
    d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
1156
    d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
1157
}
1158

    
1159
void helper_pfacc(MMXReg *d, MMXReg *s)
1160
{
1161
    MMXReg r;
1162
    r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1163
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1164
    *d = r;
1165
}
1166

    
1167
void helper_pfadd(MMXReg *d, MMXReg *s)
1168
{
1169
    d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1170
    d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1171
}
1172

    
1173
void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1174
{
1175
    d->MMX_L(0) = float32_eq(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
1176
    d->MMX_L(1) = float32_eq(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
1177
}
1178

    
1179
void helper_pfcmpge(MMXReg *d, MMXReg *s)
1180
{
1181
    d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1182
    d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1183
}
1184

    
1185
void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1186
{
1187
    d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1188
    d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1189
}
1190

    
1191
void helper_pfmax(MMXReg *d, MMXReg *s)
1192
{
1193
    if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
1194
        d->MMX_S(0) = s->MMX_S(0);
1195
    if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
1196
        d->MMX_S(1) = s->MMX_S(1);
1197
}
1198

    
1199
void helper_pfmin(MMXReg *d, MMXReg *s)
1200
{
1201
    if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
1202
        d->MMX_S(0) = s->MMX_S(0);
1203
    if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
1204
        d->MMX_S(1) = s->MMX_S(1);
1205
}
1206

    
1207
void helper_pfmul(MMXReg *d, MMXReg *s)
1208
{
1209
    d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1210
    d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1211
}
1212

    
1213
void helper_pfnacc(MMXReg *d, MMXReg *s)
1214
{
1215
    MMXReg r;
1216
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1217
    r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1218
    *d = r;
1219
}
1220

    
1221
void helper_pfpnacc(MMXReg *d, MMXReg *s)
1222
{
1223
    MMXReg r;
1224
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1225
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1226
    *d = r;
1227
}
1228

    
1229
void helper_pfrcp(MMXReg *d, MMXReg *s)
1230
{
1231
    d->MMX_S(0) = approx_rcp(s->MMX_S(0));
1232
    d->MMX_S(1) = d->MMX_S(0);
1233
}
1234

    
1235
void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1236
{
1237
    d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1238
    d->MMX_S(1) = approx_rsqrt(d->MMX_S(1));
1239
    d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1240
    d->MMX_L(0) = d->MMX_L(1);
1241
}
1242

    
1243
void helper_pfsub(MMXReg *d, MMXReg *s)
1244
{
1245
    d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1246
    d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1247
}
1248

    
1249
void helper_pfsubr(MMXReg *d, MMXReg *s)
1250
{
1251
    d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1252
    d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1253
}
1254

    
1255
void helper_pswapd(MMXReg *d, MMXReg *s)
1256
{
1257
    MMXReg r;
1258
    r.MMX_L(0) = s->MMX_L(1);
1259
    r.MMX_L(1) = s->MMX_L(0);
1260
    *d = r;
1261
}
1262
#endif
1263

    
1264
/* SSSE3 op helpers */
1265
void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s)
1266
{
1267
    int i;
1268
    Reg r;
1269

    
1270
    for (i = 0; i < (8 << SHIFT); i++)
1271
        r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1272

    
1273
    *d = r;
1274
}
1275

    
1276
void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s)
1277
{
1278
    d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1279
    d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1280
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1281
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1282
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1283
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1284
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1285
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1286
}
1287

    
1288
void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s)
1289
{
1290
    d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1291
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1292
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1293
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1294
}
1295

    
1296
void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s)
1297
{
1298
    d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1299
    d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1300
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1301
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1302
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1303
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1304
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1305
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1306
}
1307

    
1308
void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s)
1309
{
1310
    d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) +
1311
                    (int8_t)s->B( 1) * (uint8_t)d->B( 1));
1312
    d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) +
1313
                    (int8_t)s->B( 3) * (uint8_t)d->B( 3));
1314
    d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) +
1315
                    (int8_t)s->B( 5) * (uint8_t)d->B( 5));
1316
    d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) +
1317
                    (int8_t)s->B( 7) * (uint8_t)d->B( 7));
1318
#if SHIFT == 1
1319
    d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) +
1320
                    (int8_t)s->B( 9) * (uint8_t)d->B( 9));
1321
    d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1322
                    (int8_t)s->B(11) * (uint8_t)d->B(11));
1323
    d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1324
                    (int8_t)s->B(13) * (uint8_t)d->B(13));
1325
    d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1326
                    (int8_t)s->B(15) * (uint8_t)d->B(15));
1327
#endif
1328
}
1329

    
1330
void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s)
1331
{
1332
    d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1333
    d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1334
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1335
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1336
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1337
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1338
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1339
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1340
}
1341

    
1342
void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s)
1343
{
1344
    d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1345
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1346
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1347
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1348
}
1349

    
1350
void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s)
1351
{
1352
    d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1353
    d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1354
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1355
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1356
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1357
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1358
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1359
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1360
}
1361

    
1362
#define FABSB(_, x) x > INT8_MAX  ? -(int8_t ) x : x
1363
#define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x
1364
#define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x
1365
SSE_HELPER_B(helper_pabsb, FABSB)
1366
SSE_HELPER_W(helper_pabsw, FABSW)
1367
SSE_HELPER_L(helper_pabsd, FABSL)
1368

    
1369
#define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15
1370
SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1371

    
1372
#define FSIGNB(d, s) s <= INT8_MAX  ? s ? d : 0 : -(int8_t ) d
1373
#define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d
1374
#define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d
1375
SSE_HELPER_B(helper_psignb, FSIGNB)
1376
SSE_HELPER_W(helper_psignw, FSIGNW)
1377
SSE_HELPER_L(helper_psignd, FSIGNL)
1378

    
1379
void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift)
1380
{
1381
    Reg r;
1382

    
1383
    /* XXX could be checked during translation */
1384
    if (shift >= (16 << SHIFT)) {
1385
        r.Q(0) = 0;
1386
        XMM_ONLY(r.Q(1) = 0);
1387
    } else {
1388
        shift <<= 3;
1389
#define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1390
#if SHIFT == 0
1391
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1392
                 SHR(d->Q(0), shift -  64);
1393
#else
1394
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1395
                 SHR(s->Q(1), shift -  64) |
1396
                 SHR(d->Q(0), shift - 128) |
1397
                 SHR(d->Q(1), shift - 192);
1398
        r.Q(1) = SHR(s->Q(0), shift +  64) |
1399
                 SHR(s->Q(1), shift -   0) |
1400
                 SHR(d->Q(0), shift -  64) |
1401
                 SHR(d->Q(1), shift - 128);
1402
#endif
1403
#undef SHR
1404
    }
1405

    
1406
    *d = r;
1407
}
1408

    
1409
#define XMM0 env->xmm_regs[0]
1410

    
1411
#if SHIFT == 1
1412
#define SSE_HELPER_V(name, elem, num, F)\
1413
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1414
{\
1415
    d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\
1416
    d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\
1417
    if (num > 2) {\
1418
        d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\
1419
        d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\
1420
        if (num > 4) {\
1421
            d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\
1422
            d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\
1423
            d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\
1424
            d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\
1425
            if (num > 8) {\
1426
                d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\
1427
                d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\
1428
                d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\
1429
                d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\
1430
                d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\
1431
                d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\
1432
                d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\
1433
                d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\
1434
            }\
1435
        }\
1436
    }\
1437
}
1438

    
1439
#define SSE_HELPER_I(name, elem, num, F)\
1440
void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\
1441
{\
1442
    d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\
1443
    d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\
1444
    if (num > 2) {\
1445
        d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\
1446
        d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\
1447
        if (num > 4) {\
1448
            d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\
1449
            d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\
1450
            d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\
1451
            d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\
1452
            if (num > 8) {\
1453
                d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\
1454
                d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\
1455
                d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\
1456
                d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\
1457
                d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\
1458
                d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\
1459
                d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\
1460
                d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\
1461
            }\
1462
        }\
1463
    }\
1464
}
1465

    
1466
/* SSE4.1 op helpers */
1467
#define FBLENDVB(d, s, m) (m & 0x80) ? s : d
1468
#define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d
1469
#define FBLENDVPD(d, s, m) (m & 0x8000000000000000LL) ? s : d
1470
SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1471
SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1472
SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1473

    
1474
void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s)
1475
{
1476
    uint64_t zf = (s->Q(0) &  d->Q(0)) | (s->Q(1) &  d->Q(1));
1477
    uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1478

    
1479
    CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1480
}
1481

    
1482
#define SSE_HELPER_F(name, elem, num, F)\
1483
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1484
{\
1485
    d->elem(0) = F(0);\
1486
    d->elem(1) = F(1);\
1487
    if (num > 2) {\
1488
        d->elem(2) = F(2);\
1489
        d->elem(3) = F(3);\
1490
        if (num > 4) {\
1491
            d->elem(4) = F(4);\
1492
            d->elem(5) = F(5);\
1493
            d->elem(6) = F(6);\
1494
            d->elem(7) = F(7);\
1495
        }\
1496
    }\
1497
}
1498

    
1499
SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1500
SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1501
SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1502
SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1503
SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1504
SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1505
SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1506
SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1507
SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1508
SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1509
SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1510
SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1511

    
1512
void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s)
1513
{
1514
    d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0);
1515
    d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2);
1516
}
1517

    
1518
#define FCMPEQQ(d, s) d == s ? -1 : 0
1519
SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1520

    
1521
void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s)
1522
{
1523
    d->W(0) = satuw((int32_t) d->L(0));
1524
    d->W(1) = satuw((int32_t) d->L(1));
1525
    d->W(2) = satuw((int32_t) d->L(2));
1526
    d->W(3) = satuw((int32_t) d->L(3));
1527
    d->W(4) = satuw((int32_t) s->L(0));
1528
    d->W(5) = satuw((int32_t) s->L(1));
1529
    d->W(6) = satuw((int32_t) s->L(2));
1530
    d->W(7) = satuw((int32_t) s->L(3));
1531
}
1532

    
1533
#define FMINSB(d, s) MIN((int8_t) d, (int8_t) s)
1534
#define FMINSD(d, s) MIN((int32_t) d, (int32_t) s)
1535
#define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s)
1536
#define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s)
1537
SSE_HELPER_B(helper_pminsb, FMINSB)
1538
SSE_HELPER_L(helper_pminsd, FMINSD)
1539
SSE_HELPER_W(helper_pminuw, MIN)
1540
SSE_HELPER_L(helper_pminud, MIN)
1541
SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1542
SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1543
SSE_HELPER_W(helper_pmaxuw, MAX)
1544
SSE_HELPER_L(helper_pmaxud, MAX)
1545

    
1546
#define FMULLD(d, s) (int32_t) d * (int32_t) s
1547
SSE_HELPER_L(helper_pmulld, FMULLD)
1548

    
1549
void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s)
1550
{
1551
    int idx = 0;
1552

    
1553
    if (s->W(1) < s->W(idx))
1554
        idx = 1;
1555
    if (s->W(2) < s->W(idx))
1556
        idx = 2;
1557
    if (s->W(3) < s->W(idx))
1558
        idx = 3;
1559
    if (s->W(4) < s->W(idx))
1560
        idx = 4;
1561
    if (s->W(5) < s->W(idx))
1562
        idx = 5;
1563
    if (s->W(6) < s->W(idx))
1564
        idx = 6;
1565
    if (s->W(7) < s->W(idx))
1566
        idx = 7;
1567

    
1568
    d->Q(1) = 0;
1569
    d->L(1) = 0;
1570
    d->W(1) = idx;
1571
    d->W(0) = s->W(idx);
1572
}
1573

    
1574
void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1575
{
1576
    signed char prev_rounding_mode;
1577

    
1578
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1579
    if (!(mode & (1 << 2)))
1580
        switch (mode & 3) {
1581
        case 0:
1582
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1583
            break;
1584
        case 1:
1585
            set_float_rounding_mode(float_round_down, &env->sse_status);
1586
            break;
1587
        case 2:
1588
            set_float_rounding_mode(float_round_up, &env->sse_status);
1589
            break;
1590
        case 3:
1591
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1592
            break;
1593
        }
1594

    
1595
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1596
    d->L(1) = float64_round_to_int(s->L(1), &env->sse_status);
1597
    d->L(2) = float64_round_to_int(s->L(2), &env->sse_status);
1598
    d->L(3) = float64_round_to_int(s->L(3), &env->sse_status);
1599

    
1600
#if 0 /* TODO */
1601
    if (mode & (1 << 3))
1602
        set_float_exception_flags(
1603
                        get_float_exception_flags(&env->sse_status) &
1604
                        ~float_flag_inexact,
1605
                        &env->sse_status);
1606
#endif
1607
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1608
}
1609

    
1610
void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1611
{
1612
    signed char prev_rounding_mode;
1613

    
1614
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1615
    if (!(mode & (1 << 2)))
1616
        switch (mode & 3) {
1617
        case 0:
1618
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1619
            break;
1620
        case 1:
1621
            set_float_rounding_mode(float_round_down, &env->sse_status);
1622
            break;
1623
        case 2:
1624
            set_float_rounding_mode(float_round_up, &env->sse_status);
1625
            break;
1626
        case 3:
1627
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1628
            break;
1629
        }
1630

    
1631
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1632
    d->Q(1) = float64_round_to_int(s->Q(1), &env->sse_status);
1633

    
1634
#if 0 /* TODO */
1635
    if (mode & (1 << 3))
1636
        set_float_exception_flags(
1637
                        get_float_exception_flags(&env->sse_status) &
1638
                        ~float_flag_inexact,
1639
                        &env->sse_status);
1640
#endif
1641
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1642
}
1643

    
1644
void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1645
{
1646
    signed char prev_rounding_mode;
1647

    
1648
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1649
    if (!(mode & (1 << 2)))
1650
        switch (mode & 3) {
1651
        case 0:
1652
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1653
            break;
1654
        case 1:
1655
            set_float_rounding_mode(float_round_down, &env->sse_status);
1656
            break;
1657
        case 2:
1658
            set_float_rounding_mode(float_round_up, &env->sse_status);
1659
            break;
1660
        case 3:
1661
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1662
            break;
1663
        }
1664

    
1665
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1666

    
1667
#if 0 /* TODO */
1668
    if (mode & (1 << 3))
1669
        set_float_exception_flags(
1670
                        get_float_exception_flags(&env->sse_status) &
1671
                        ~float_flag_inexact,
1672
                        &env->sse_status);
1673
#endif
1674
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1675
}
1676

    
1677
void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1678
{
1679
    signed char prev_rounding_mode;
1680

    
1681
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1682
    if (!(mode & (1 << 2)))
1683
        switch (mode & 3) {
1684
        case 0:
1685
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1686
            break;
1687
        case 1:
1688
            set_float_rounding_mode(float_round_down, &env->sse_status);
1689
            break;
1690
        case 2:
1691
            set_float_rounding_mode(float_round_up, &env->sse_status);
1692
            break;
1693
        case 3:
1694
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1695
            break;
1696
        }
1697

    
1698
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1699

    
1700
#if 0 /* TODO */
1701
    if (mode & (1 << 3))
1702
        set_float_exception_flags(
1703
                        get_float_exception_flags(&env->sse_status) &
1704
                        ~float_flag_inexact,
1705
                        &env->sse_status);
1706
#endif
1707
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1708
}
1709

    
1710
#define FBLENDP(d, s, m) m ? s : d
1711
SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1712
SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1713
SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1714

    
1715
void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1716
{
1717
    float32 iresult = 0 /*float32_zero*/;
1718

    
1719
    if (mask & (1 << 4))
1720
        iresult = float32_add(iresult,
1721
                        float32_mul(d->L(0), s->L(0), &env->sse_status),
1722
                        &env->sse_status);
1723
    if (mask & (1 << 5))
1724
        iresult = float32_add(iresult,
1725
                        float32_mul(d->L(1), s->L(1), &env->sse_status),
1726
                        &env->sse_status);
1727
    if (mask & (1 << 6))
1728
        iresult = float32_add(iresult,
1729
                        float32_mul(d->L(2), s->L(2), &env->sse_status),
1730
                        &env->sse_status);
1731
    if (mask & (1 << 7))
1732
        iresult = float32_add(iresult,
1733
                        float32_mul(d->L(3), s->L(3), &env->sse_status),
1734
                        &env->sse_status);
1735
    d->L(0) = (mask & (1 << 0)) ? iresult : 0 /*float32_zero*/;
1736
    d->L(1) = (mask & (1 << 1)) ? iresult : 0 /*float32_zero*/;
1737
    d->L(2) = (mask & (1 << 2)) ? iresult : 0 /*float32_zero*/;
1738
    d->L(3) = (mask & (1 << 3)) ? iresult : 0 /*float32_zero*/;
1739
}
1740

    
1741
void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1742
{
1743
    float64 iresult = 0 /*float64_zero*/;
1744

    
1745
    if (mask & (1 << 4))
1746
        iresult = float64_add(iresult,
1747
                        float64_mul(d->Q(0), s->Q(0), &env->sse_status),
1748
                        &env->sse_status);
1749
    if (mask & (1 << 5))
1750
        iresult = float64_add(iresult,
1751
                        float64_mul(d->Q(1), s->Q(1), &env->sse_status),
1752
                        &env->sse_status);
1753
    d->Q(0) = (mask & (1 << 0)) ? iresult : 0 /*float64_zero*/;
1754
    d->Q(1) = (mask & (1 << 1)) ? iresult : 0 /*float64_zero*/;
1755
}
1756

    
1757
void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset)
1758
{
1759
    int s0 = (offset & 3) << 2;
1760
    int d0 = (offset & 4) << 0;
1761
    int i;
1762
    Reg r;
1763

    
1764
    for (i = 0; i < 8; i++, d0++) {
1765
        r.W(i) = 0;
1766
        r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1767
        r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1768
        r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1769
        r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1770
    }
1771

    
1772
    *d = r;
1773
}
1774

    
1775
/* SSE4.2 op helpers */
1776
/* it's unclear whether signed or unsigned */
1777
#define FCMPGTQ(d, s) d > s ? -1 : 0
1778
SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1779

    
1780
static inline int pcmp_elen(int reg, uint32_t ctrl)
1781
{
1782
    int val;
1783

    
1784
    /* Presence of REX.W is indicated by a bit higher than 7 set */
1785
    if (ctrl >> 8)
1786
        val = abs1((int64_t) env->regs[reg]);
1787
    else
1788
        val = abs1((int32_t) env->regs[reg]);
1789

    
1790
    if (ctrl & 1) {
1791
        if (val > 8)
1792
            return 8;
1793
    } else
1794
        if (val > 16)
1795
            return 16;
1796

    
1797
    return val;
1798
}
1799

    
1800
static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1801
{
1802
    int val = 0;
1803

    
1804
    if (ctrl & 1) {
1805
        while (val < 8 && r->W(val))
1806
            val++;
1807
    } else
1808
        while (val < 16 && r->B(val))
1809
            val++;
1810

    
1811
    return val;
1812
}
1813

    
1814
static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1815
{
1816
    switch ((ctrl >> 0) & 3) {
1817
    case 0:
1818
        return r->B(i);
1819
    case 1:
1820
        return r->W(i);
1821
    case 2:
1822
        return (int8_t) r->B(i);
1823
    case 3:
1824
    default:
1825
        return (int16_t) r->W(i);
1826
    }
1827
}
1828

    
1829
static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1830
                int8_t ctrl, int valids, int validd)
1831
{
1832
    unsigned int res = 0;
1833
    int v;
1834
    int j, i;
1835
    int upper = (ctrl & 1) ? 7 : 15;
1836

    
1837
    valids--;
1838
    validd--;
1839

    
1840
    CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1841

    
1842
    switch ((ctrl >> 2) & 3) {
1843
    case 0:
1844
        for (j = valids; j >= 0; j--) {
1845
            res <<= 1;
1846
            v = pcmp_val(s, ctrl, j);
1847
            for (i = validd; i >= 0; i--)
1848
                res |= (v == pcmp_val(d, ctrl, i));
1849
        }
1850
        break;
1851
    case 1:
1852
        for (j = valids; j >= 0; j--) {
1853
            res <<= 1;
1854
            v = pcmp_val(s, ctrl, j);
1855
            for (i = ((validd - 1) | 1); i >= 0; i -= 2)
1856
                res |= (pcmp_val(d, ctrl, i - 0) <= v &&
1857
                        pcmp_val(d, ctrl, i - 1) >= v);
1858
        }
1859
        break;
1860
    case 2:
1861
        res = (2 << (upper - MAX(valids, validd))) - 1;
1862
        res <<= MAX(valids, validd) - MIN(valids, validd);
1863
        for (i = MIN(valids, validd); i >= 0; i--) {
1864
            res <<= 1;
1865
            v = pcmp_val(s, ctrl, i);
1866
            res |= (v == pcmp_val(d, ctrl, i));
1867
        }
1868
        break;
1869
    case 3:
1870
        for (j = valids - validd; j >= 0; j--) {
1871
            res <<= 1;
1872
            res |= 1;
1873
            for (i = MIN(upper - j, validd); i >= 0; i--)
1874
                res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
1875
        }
1876
        break;
1877
    }
1878

    
1879
    switch ((ctrl >> 4) & 3) {
1880
    case 1:
1881
        res ^= (2 << upper) - 1;
1882
        break;
1883
    case 3:
1884
        res ^= (2 << valids) - 1;
1885
        break;
1886
    }
1887

    
1888
    if (res)
1889
       CC_SRC |= CC_C;
1890
    if (res & 1)
1891
       CC_SRC |= CC_O;
1892

    
1893
    return res;
1894
}
1895

    
1896
static inline int rffs1(unsigned int val)
1897
{
1898
    int ret = 1, hi;
1899

    
1900
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1901
        if (val >> hi) {
1902
            val >>= hi;
1903
            ret += hi;
1904
        }
1905

    
1906
    return ret;
1907
}
1908

    
1909
static inline int ffs1(unsigned int val)
1910
{
1911
    int ret = 1, hi;
1912

    
1913
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1914
        if (val << hi) {
1915
            val <<= hi;
1916
            ret += hi;
1917
        }
1918

    
1919
    return ret;
1920
}
1921

    
1922
void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1923
{
1924
    unsigned int res = pcmpxstrx(d, s, ctrl,
1925
                    pcmp_elen(R_EDX, ctrl),
1926
                    pcmp_elen(R_EAX, ctrl));
1927

    
1928
    if (res)
1929
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1930
    else
1931
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1932
}
1933

    
1934
void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1935
{
1936
    int i;
1937
    unsigned int res = pcmpxstrx(d, s, ctrl,
1938
                    pcmp_elen(R_EDX, ctrl),
1939
                    pcmp_elen(R_EAX, ctrl));
1940

    
1941
    if ((ctrl >> 6) & 1) {
1942
        if (ctrl & 1)
1943
            for (i = 0; i <= 8; i--, res >>= 1)
1944
                d->W(i) = (res & 1) ? ~0 : 0;
1945
        else
1946
            for (i = 0; i <= 16; i--, res >>= 1)
1947
                d->B(i) = (res & 1) ? ~0 : 0;
1948
    } else {
1949
        d->Q(1) = 0;
1950
        d->Q(0) = res;
1951
    }
1952
}
1953

    
1954
void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1955
{
1956
    unsigned int res = pcmpxstrx(d, s, ctrl,
1957
                    pcmp_ilen(s, ctrl),
1958
                    pcmp_ilen(d, ctrl));
1959

    
1960
    if (res)
1961
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1962
    else
1963
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1964
}
1965

    
1966
void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1967
{
1968
    int i;
1969
    unsigned int res = pcmpxstrx(d, s, ctrl,
1970
                    pcmp_ilen(s, ctrl),
1971
                    pcmp_ilen(d, ctrl));
1972

    
1973
    if ((ctrl >> 6) & 1) {
1974
        if (ctrl & 1)
1975
            for (i = 0; i <= 8; i--, res >>= 1)
1976
                d->W(i) = (res & 1) ? ~0 : 0;
1977
        else
1978
            for (i = 0; i <= 16; i--, res >>= 1)
1979
                d->B(i) = (res & 1) ? ~0 : 0;
1980
    } else {
1981
        d->Q(1) = 0;
1982
        d->Q(0) = res;
1983
    }
1984
}
1985

    
1986
#define CRCPOLY        0x1edc6f41
1987
#define CRCPOLY_BITREV 0x82f63b78
1988
target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
1989
{
1990
    target_ulong crc = (msg & ((target_ulong) -1 >>
1991
                            (TARGET_LONG_BITS - len))) ^ crc1;
1992

    
1993
    while (len--)
1994
        crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
1995

    
1996
    return crc;
1997
}
1998

    
1999
#define POPMASK(i)     ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2000
#define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))
2001
target_ulong helper_popcnt(target_ulong n, uint32_t type)
2002
{
2003
    CC_SRC = n ? 0 : CC_Z;
2004

    
2005
    n = POPCOUNT(n, 0);
2006
    n = POPCOUNT(n, 1);
2007
    n = POPCOUNT(n, 2);
2008
    n = POPCOUNT(n, 3);
2009
    if (type == 1)
2010
        return n & 0xff;
2011

    
2012
    n = POPCOUNT(n, 4);
2013
#ifndef TARGET_X86_64
2014
    return n;
2015
#else
2016
    if (type == 2)
2017
        return n & 0xff;
2018

    
2019
    return POPCOUNT(n, 5);
2020
#endif
2021
}
2022
#endif
2023

    
2024
#undef SHIFT
2025
#undef XMM_ONLY
2026
#undef Reg
2027
#undef B
2028
#undef W
2029
#undef L
2030
#undef Q
2031
#undef SUFFIX