Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ 1eed09cb

History | View | Annotate | Download (56.9 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include "hw.h"
14
#include "pci.h"
15
#include "scsi-disk.h"
16
#include "block_int.h"
17

    
18
//#define DEBUG_LSI
19
//#define DEBUG_LSI_REG
20

    
21
#ifdef DEBUG_LSI
22
#define DPRINTF(fmt, ...) \
23
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
24
#define BADF(fmt, ...) \
25
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
26
#else
27
#define DPRINTF(fmt, ...) do {} while(0)
28
#define BADF(fmt, ...) \
29
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
30
#endif
31

    
32
#define LSI_SCNTL0_TRG    0x01
33
#define LSI_SCNTL0_AAP    0x02
34
#define LSI_SCNTL0_EPC    0x08
35
#define LSI_SCNTL0_WATN   0x10
36
#define LSI_SCNTL0_START  0x20
37

    
38
#define LSI_SCNTL1_SST    0x01
39
#define LSI_SCNTL1_IARB   0x02
40
#define LSI_SCNTL1_AESP   0x04
41
#define LSI_SCNTL1_RST    0x08
42
#define LSI_SCNTL1_CON    0x10
43
#define LSI_SCNTL1_DHP    0x20
44
#define LSI_SCNTL1_ADB    0x40
45
#define LSI_SCNTL1_EXC    0x80
46

    
47
#define LSI_SCNTL2_WSR    0x01
48
#define LSI_SCNTL2_VUE0   0x02
49
#define LSI_SCNTL2_VUE1   0x04
50
#define LSI_SCNTL2_WSS    0x08
51
#define LSI_SCNTL2_SLPHBEN 0x10
52
#define LSI_SCNTL2_SLPMD  0x20
53
#define LSI_SCNTL2_CHM    0x40
54
#define LSI_SCNTL2_SDU    0x80
55

    
56
#define LSI_ISTAT0_DIP    0x01
57
#define LSI_ISTAT0_SIP    0x02
58
#define LSI_ISTAT0_INTF   0x04
59
#define LSI_ISTAT0_CON    0x08
60
#define LSI_ISTAT0_SEM    0x10
61
#define LSI_ISTAT0_SIGP   0x20
62
#define LSI_ISTAT0_SRST   0x40
63
#define LSI_ISTAT0_ABRT   0x80
64

    
65
#define LSI_ISTAT1_SI     0x01
66
#define LSI_ISTAT1_SRUN   0x02
67
#define LSI_ISTAT1_FLSH   0x04
68

    
69
#define LSI_SSTAT0_SDP0   0x01
70
#define LSI_SSTAT0_RST    0x02
71
#define LSI_SSTAT0_WOA    0x04
72
#define LSI_SSTAT0_LOA    0x08
73
#define LSI_SSTAT0_AIP    0x10
74
#define LSI_SSTAT0_OLF    0x20
75
#define LSI_SSTAT0_ORF    0x40
76
#define LSI_SSTAT0_ILF    0x80
77

    
78
#define LSI_SIST0_PAR     0x01
79
#define LSI_SIST0_RST     0x02
80
#define LSI_SIST0_UDC     0x04
81
#define LSI_SIST0_SGE     0x08
82
#define LSI_SIST0_RSL     0x10
83
#define LSI_SIST0_SEL     0x20
84
#define LSI_SIST0_CMP     0x40
85
#define LSI_SIST0_MA      0x80
86

    
87
#define LSI_SIST1_HTH     0x01
88
#define LSI_SIST1_GEN     0x02
89
#define LSI_SIST1_STO     0x04
90
#define LSI_SIST1_SBMC    0x10
91

    
92
#define LSI_SOCL_IO       0x01
93
#define LSI_SOCL_CD       0x02
94
#define LSI_SOCL_MSG      0x04
95
#define LSI_SOCL_ATN      0x08
96
#define LSI_SOCL_SEL      0x10
97
#define LSI_SOCL_BSY      0x20
98
#define LSI_SOCL_ACK      0x40
99
#define LSI_SOCL_REQ      0x80
100

    
101
#define LSI_DSTAT_IID     0x01
102
#define LSI_DSTAT_SIR     0x04
103
#define LSI_DSTAT_SSI     0x08
104
#define LSI_DSTAT_ABRT    0x10
105
#define LSI_DSTAT_BF      0x20
106
#define LSI_DSTAT_MDPE    0x40
107
#define LSI_DSTAT_DFE     0x80
108

    
109
#define LSI_DCNTL_COM     0x01
110
#define LSI_DCNTL_IRQD    0x02
111
#define LSI_DCNTL_STD     0x04
112
#define LSI_DCNTL_IRQM    0x08
113
#define LSI_DCNTL_SSM     0x10
114
#define LSI_DCNTL_PFEN    0x20
115
#define LSI_DCNTL_PFF     0x40
116
#define LSI_DCNTL_CLSE    0x80
117

    
118
#define LSI_DMODE_MAN     0x01
119
#define LSI_DMODE_BOF     0x02
120
#define LSI_DMODE_ERMP    0x04
121
#define LSI_DMODE_ERL     0x08
122
#define LSI_DMODE_DIOM    0x10
123
#define LSI_DMODE_SIOM    0x20
124

    
125
#define LSI_CTEST2_DACK   0x01
126
#define LSI_CTEST2_DREQ   0x02
127
#define LSI_CTEST2_TEOP   0x04
128
#define LSI_CTEST2_PCICIE 0x08
129
#define LSI_CTEST2_CM     0x10
130
#define LSI_CTEST2_CIO    0x20
131
#define LSI_CTEST2_SIGP   0x40
132
#define LSI_CTEST2_DDIR   0x80
133

    
134
#define LSI_CTEST5_BL2    0x04
135
#define LSI_CTEST5_DDIR   0x08
136
#define LSI_CTEST5_MASR   0x10
137
#define LSI_CTEST5_DFSN   0x20
138
#define LSI_CTEST5_BBCK   0x40
139
#define LSI_CTEST5_ADCK   0x80
140

    
141
#define LSI_CCNTL0_DILS   0x01
142
#define LSI_CCNTL0_DISFC  0x10
143
#define LSI_CCNTL0_ENNDJ  0x20
144
#define LSI_CCNTL0_PMJCTL 0x40
145
#define LSI_CCNTL0_ENPMJ  0x80
146

    
147
#define LSI_CCNTL1_EN64DBMV  0x01
148
#define LSI_CCNTL1_EN64TIBMV 0x02
149
#define LSI_CCNTL1_64TIMOD   0x04
150
#define LSI_CCNTL1_DDAC      0x08
151
#define LSI_CCNTL1_ZMOD      0x80
152

    
153
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
154

    
155
#define PHASE_DO          0
156
#define PHASE_DI          1
157
#define PHASE_CMD         2
158
#define PHASE_ST          3
159
#define PHASE_MO          6
160
#define PHASE_MI          7
161
#define PHASE_MASK        7
162

    
163
/* Maximum length of MSG IN data.  */
164
#define LSI_MAX_MSGIN_LEN 8
165

    
166
/* Flag set if this is a tagged command.  */
167
#define LSI_TAG_VALID     (1 << 16)
168

    
169
typedef struct {
170
    uint32_t tag;
171
    uint32_t pending;
172
    int out;
173
} lsi_queue;
174

    
175
typedef struct {
176
    PCIDevice pci_dev;
177
    int mmio_io_addr;
178
    int ram_io_addr;
179
    uint32_t script_ram_base;
180

    
181
    int carry; /* ??? Should this be an a visible register somewhere?  */
182
    int sense;
183
    /* Action to take at the end of a MSG IN phase.
184
       0 = COMMAND, 1 = disconect, 2 = DATA OUT, 3 = DATA IN.  */
185
    int msg_action;
186
    int msg_len;
187
    uint8_t msg[LSI_MAX_MSGIN_LEN];
188
    /* 0 if SCRIPTS are running or stopped.
189
     * 1 if a Wait Reselect instruction has been issued.
190
     * 2 if processing DMA from lsi_execute_script.
191
     * 3 if a DMA operation is in progress.  */
192
    int waiting;
193
    SCSIDevice *scsi_dev[LSI_MAX_DEVS];
194
    SCSIDevice *current_dev;
195
    int current_lun;
196
    /* The tag is a combination of the device ID and the SCSI tag.  */
197
    uint32_t current_tag;
198
    uint32_t current_dma_len;
199
    int command_complete;
200
    uint8_t *dma_buf;
201
    lsi_queue *queue;
202
    int queue_len;
203
    int active_commands;
204

    
205
    uint32_t dsa;
206
    uint32_t temp;
207
    uint32_t dnad;
208
    uint32_t dbc;
209
    uint8_t istat0;
210
    uint8_t istat1;
211
    uint8_t dcmd;
212
    uint8_t dstat;
213
    uint8_t dien;
214
    uint8_t sist0;
215
    uint8_t sist1;
216
    uint8_t sien0;
217
    uint8_t sien1;
218
    uint8_t mbox0;
219
    uint8_t mbox1;
220
    uint8_t dfifo;
221
    uint8_t ctest2;
222
    uint8_t ctest3;
223
    uint8_t ctest4;
224
    uint8_t ctest5;
225
    uint8_t ccntl0;
226
    uint8_t ccntl1;
227
    uint32_t dsp;
228
    uint32_t dsps;
229
    uint8_t dmode;
230
    uint8_t dcntl;
231
    uint8_t scntl0;
232
    uint8_t scntl1;
233
    uint8_t scntl2;
234
    uint8_t scntl3;
235
    uint8_t sstat0;
236
    uint8_t sstat1;
237
    uint8_t scid;
238
    uint8_t sxfer;
239
    uint8_t socl;
240
    uint8_t sdid;
241
    uint8_t ssid;
242
    uint8_t sfbr;
243
    uint8_t stest1;
244
    uint8_t stest2;
245
    uint8_t stest3;
246
    uint8_t sidl;
247
    uint8_t stime0;
248
    uint8_t respid0;
249
    uint8_t respid1;
250
    uint32_t mmrs;
251
    uint32_t mmws;
252
    uint32_t sfs;
253
    uint32_t drs;
254
    uint32_t sbms;
255
    uint32_t dbms;
256
    uint32_t dnad64;
257
    uint32_t pmjad1;
258
    uint32_t pmjad2;
259
    uint32_t rbc;
260
    uint32_t ua;
261
    uint32_t ia;
262
    uint32_t sbc;
263
    uint32_t csbc;
264
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
265

    
266
    /* Script ram is stored as 32-bit words in host byteorder.  */
267
    uint32_t script_ram[2048];
268
} LSIState;
269

    
270
static void lsi_soft_reset(LSIState *s)
271
{
272
    DPRINTF("Reset\n");
273
    s->carry = 0;
274

    
275
    s->waiting = 0;
276
    s->dsa = 0;
277
    s->dnad = 0;
278
    s->dbc = 0;
279
    s->temp = 0;
280
    memset(s->scratch, 0, sizeof(s->scratch));
281
    s->istat0 = 0;
282
    s->istat1 = 0;
283
    s->dcmd = 0;
284
    s->dstat = 0;
285
    s->dien = 0;
286
    s->sist0 = 0;
287
    s->sist1 = 0;
288
    s->sien0 = 0;
289
    s->sien1 = 0;
290
    s->mbox0 = 0;
291
    s->mbox1 = 0;
292
    s->dfifo = 0;
293
    s->ctest2 = 0;
294
    s->ctest3 = 0;
295
    s->ctest4 = 0;
296
    s->ctest5 = 0;
297
    s->ccntl0 = 0;
298
    s->ccntl1 = 0;
299
    s->dsp = 0;
300
    s->dsps = 0;
301
    s->dmode = 0;
302
    s->dcntl = 0;
303
    s->scntl0 = 0xc0;
304
    s->scntl1 = 0;
305
    s->scntl2 = 0;
306
    s->scntl3 = 0;
307
    s->sstat0 = 0;
308
    s->sstat1 = 0;
309
    s->scid = 7;
310
    s->sxfer = 0;
311
    s->socl = 0;
312
    s->stest1 = 0;
313
    s->stest2 = 0;
314
    s->stest3 = 0;
315
    s->sidl = 0;
316
    s->stime0 = 0;
317
    s->respid0 = 0x80;
318
    s->respid1 = 0;
319
    s->mmrs = 0;
320
    s->mmws = 0;
321
    s->sfs = 0;
322
    s->drs = 0;
323
    s->sbms = 0;
324
    s->dbms = 0;
325
    s->dnad64 = 0;
326
    s->pmjad1 = 0;
327
    s->pmjad2 = 0;
328
    s->rbc = 0;
329
    s->ua = 0;
330
    s->ia = 0;
331
    s->sbc = 0;
332
    s->csbc = 0;
333
}
334

    
335
static int lsi_dma_40bit(LSIState *s)
336
{
337
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
338
        return 1;
339
    return 0;
340
}
341

    
342
static int lsi_dma_ti64bit(LSIState *s)
343
{
344
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
345
        return 1;
346
    return 0;
347
}
348

    
349
static int lsi_dma_64bit(LSIState *s)
350
{
351
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
352
        return 1;
353
    return 0;
354
}
355

    
356
static uint8_t lsi_reg_readb(LSIState *s, int offset);
357
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
358
static void lsi_execute_script(LSIState *s);
359

    
360
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
361
{
362
    uint32_t buf;
363

    
364
    /* Optimize reading from SCRIPTS RAM.  */
365
    if ((addr & 0xffffe000) == s->script_ram_base) {
366
        return s->script_ram[(addr & 0x1fff) >> 2];
367
    }
368
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
369
    return cpu_to_le32(buf);
370
}
371

    
372
static void lsi_stop_script(LSIState *s)
373
{
374
    s->istat1 &= ~LSI_ISTAT1_SRUN;
375
}
376

    
377
static void lsi_update_irq(LSIState *s)
378
{
379
    int level;
380
    static int last_level;
381

    
382
    /* It's unclear whether the DIP/SIP bits should be cleared when the
383
       Interrupt Status Registers are cleared or when istat0 is read.
384
       We currently do the formwer, which seems to work.  */
385
    level = 0;
386
    if (s->dstat) {
387
        if (s->dstat & s->dien)
388
            level = 1;
389
        s->istat0 |= LSI_ISTAT0_DIP;
390
    } else {
391
        s->istat0 &= ~LSI_ISTAT0_DIP;
392
    }
393

    
394
    if (s->sist0 || s->sist1) {
395
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
396
            level = 1;
397
        s->istat0 |= LSI_ISTAT0_SIP;
398
    } else {
399
        s->istat0 &= ~LSI_ISTAT0_SIP;
400
    }
401
    if (s->istat0 & LSI_ISTAT0_INTF)
402
        level = 1;
403

    
404
    if (level != last_level) {
405
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
406
                level, s->dstat, s->sist1, s->sist0);
407
        last_level = level;
408
    }
409
    qemu_set_irq(s->pci_dev.irq[0], level);
410
}
411

    
412
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
413
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
414
{
415
    uint32_t mask0;
416
    uint32_t mask1;
417

    
418
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
419
            stat1, stat0, s->sist1, s->sist0);
420
    s->sist0 |= stat0;
421
    s->sist1 |= stat1;
422
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
423
       we don't stop processing when raising STO.  Instead continue
424
       execution and stop at the next insn that accesses the SCSI bus.  */
425
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
426
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
427
    mask1 &= ~LSI_SIST1_STO;
428
    if (s->sist0 & mask0 || s->sist1 & mask1) {
429
        lsi_stop_script(s);
430
    }
431
    lsi_update_irq(s);
432
}
433

    
434
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
435
static void lsi_script_dma_interrupt(LSIState *s, int stat)
436
{
437
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
438
    s->dstat |= stat;
439
    lsi_update_irq(s);
440
    lsi_stop_script(s);
441
}
442

    
443
static inline void lsi_set_phase(LSIState *s, int phase)
444
{
445
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
446
}
447

    
448
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
449
{
450
    /* Trigger a phase mismatch.  */
451
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
452
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL) || out) {
453
            s->dsp = s->pmjad1;
454
        } else {
455
            s->dsp = s->pmjad2;
456
        }
457
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
458
    } else {
459
        DPRINTF("Phase mismatch interrupt\n");
460
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
461
        lsi_stop_script(s);
462
    }
463
    lsi_set_phase(s, new_phase);
464
}
465

    
466

    
467
/* Resume SCRIPTS execution after a DMA operation.  */
468
static void lsi_resume_script(LSIState *s)
469
{
470
    if (s->waiting != 2) {
471
        s->waiting = 0;
472
        lsi_execute_script(s);
473
    } else {
474
        s->waiting = 0;
475
    }
476
}
477

    
478
/* Initiate a SCSI layer data transfer.  */
479
static void lsi_do_dma(LSIState *s, int out)
480
{
481
    uint32_t count;
482
    target_phys_addr_t addr;
483

    
484
    if (!s->current_dma_len) {
485
        /* Wait until data is available.  */
486
        DPRINTF("DMA no data available\n");
487
        return;
488
    }
489

    
490
    count = s->dbc;
491
    if (count > s->current_dma_len)
492
        count = s->current_dma_len;
493

    
494
    addr = s->dnad;
495
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
496
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
497
        addr |= ((uint64_t)s->dnad64 << 32);
498
    else if (s->dbms)
499
        addr |= ((uint64_t)s->dbms << 32);
500
    else if (s->sbms)
501
        addr |= ((uint64_t)s->sbms << 32);
502

    
503
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
504
    s->csbc += count;
505
    s->dnad += count;
506
    s->dbc -= count;
507

    
508
    if (s->dma_buf == NULL) {
509
        s->dma_buf = s->current_dev->get_buf(s->current_dev,
510
                                             s->current_tag);
511
    }
512

    
513
    /* ??? Set SFBR to first data byte.  */
514
    if (out) {
515
        cpu_physical_memory_read(addr, s->dma_buf, count);
516
    } else {
517
        cpu_physical_memory_write(addr, s->dma_buf, count);
518
    }
519
    s->current_dma_len -= count;
520
    if (s->current_dma_len == 0) {
521
        s->dma_buf = NULL;
522
        if (out) {
523
            /* Write the data.  */
524
            s->current_dev->write_data(s->current_dev, s->current_tag);
525
        } else {
526
            /* Request any remaining data.  */
527
            s->current_dev->read_data(s->current_dev, s->current_tag);
528
        }
529
    } else {
530
        s->dma_buf += count;
531
        lsi_resume_script(s);
532
    }
533
}
534

    
535

    
536
/* Add a command to the queue.  */
537
static void lsi_queue_command(LSIState *s)
538
{
539
    lsi_queue *p;
540

    
541
    DPRINTF("Queueing tag=0x%x\n", s->current_tag);
542
    if (s->queue_len == s->active_commands) {
543
        s->queue_len++;
544
        s->queue = qemu_realloc(s->queue, s->queue_len * sizeof(lsi_queue));
545
    }
546
    p = &s->queue[s->active_commands++];
547
    p->tag = s->current_tag;
548
    p->pending = 0;
549
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
550
}
551

    
552
/* Queue a byte for a MSG IN phase.  */
553
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
554
{
555
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
556
        BADF("MSG IN data too long\n");
557
    } else {
558
        DPRINTF("MSG IN 0x%02x\n", data);
559
        s->msg[s->msg_len++] = data;
560
    }
561
}
562

    
563
/* Perform reselection to continue a command.  */
564
static void lsi_reselect(LSIState *s, uint32_t tag)
565
{
566
    lsi_queue *p;
567
    int n;
568
    int id;
569

    
570
    p = NULL;
571
    for (n = 0; n < s->active_commands; n++) {
572
        p = &s->queue[n];
573
        if (p->tag == tag)
574
            break;
575
    }
576
    if (n == s->active_commands) {
577
        BADF("Reselected non-existant command tag=0x%x\n", tag);
578
        return;
579
    }
580
    id = (tag >> 8) & 0xf;
581
    s->ssid = id | 0x80;
582
    DPRINTF("Reselected target %d\n", id);
583
    s->current_dev = s->scsi_dev[id];
584
    s->current_tag = tag;
585
    s->scntl1 |= LSI_SCNTL1_CON;
586
    lsi_set_phase(s, PHASE_MI);
587
    s->msg_action = p->out ? 2 : 3;
588
    s->current_dma_len = p->pending;
589
    s->dma_buf = NULL;
590
    lsi_add_msg_byte(s, 0x80);
591
    if (s->current_tag & LSI_TAG_VALID) {
592
        lsi_add_msg_byte(s, 0x20);
593
        lsi_add_msg_byte(s, tag & 0xff);
594
    }
595

    
596
    s->active_commands--;
597
    if (n != s->active_commands) {
598
        s->queue[n] = s->queue[s->active_commands];
599
    }
600
}
601

    
602
/* Record that data is available for a queued command.  Returns zero if
603
   the device was reselected, nonzero if the IO is deferred.  */
604
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
605
{
606
    lsi_queue *p;
607
    int i;
608
    for (i = 0; i < s->active_commands; i++) {
609
        p = &s->queue[i];
610
        if (p->tag == tag) {
611
            if (p->pending) {
612
                BADF("Multiple IO pending for tag %d\n", tag);
613
            }
614
            p->pending = arg;
615
            if (s->waiting == 1) {
616
                /* Reselect device.  */
617
                lsi_reselect(s, tag);
618
                return 0;
619
            } else {
620
               DPRINTF("Queueing IO tag=0x%x\n", tag);
621
                p->pending = arg;
622
                return 1;
623
            }
624
        }
625
    }
626
    BADF("IO with unknown tag %d\n", tag);
627
    return 1;
628
}
629

    
630
/* Callback to indicate that the SCSI layer has completed a transfer.  */
631
static void lsi_command_complete(void *opaque, int reason, uint32_t tag,
632
                                 uint32_t arg)
633
{
634
    LSIState *s = (LSIState *)opaque;
635
    int out;
636

    
637
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
638
    if (reason == SCSI_REASON_DONE) {
639
        DPRINTF("Command complete sense=%d\n", (int)arg);
640
        s->sense = arg;
641
        s->command_complete = 2;
642
        if (s->waiting && s->dbc != 0) {
643
            /* Raise phase mismatch for short transfers.  */
644
            lsi_bad_phase(s, out, PHASE_ST);
645
        } else {
646
            lsi_set_phase(s, PHASE_ST);
647
        }
648
        lsi_resume_script(s);
649
        return;
650
    }
651

    
652
    if (s->waiting == 1 || tag != s->current_tag) {
653
        if (lsi_queue_tag(s, tag, arg))
654
            return;
655
    }
656
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
657
    s->current_dma_len = arg;
658
    s->command_complete = 1;
659
    if (!s->waiting)
660
        return;
661
    if (s->waiting == 1 || s->dbc == 0) {
662
        lsi_resume_script(s);
663
    } else {
664
        lsi_do_dma(s, out);
665
    }
666
}
667

    
668
static void lsi_do_command(LSIState *s)
669
{
670
    uint8_t buf[16];
671
    int n;
672

    
673
    DPRINTF("Send command len=%d\n", s->dbc);
674
    if (s->dbc > 16)
675
        s->dbc = 16;
676
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
677
    s->sfbr = buf[0];
678
    s->command_complete = 0;
679
    n = s->current_dev->send_command(s->current_dev, s->current_tag, buf,
680
                                     s->current_lun);
681
    if (n > 0) {
682
        lsi_set_phase(s, PHASE_DI);
683
        s->current_dev->read_data(s->current_dev, s->current_tag);
684
    } else if (n < 0) {
685
        lsi_set_phase(s, PHASE_DO);
686
        s->current_dev->write_data(s->current_dev, s->current_tag);
687
    }
688

    
689
    if (!s->command_complete) {
690
        if (n) {
691
            /* Command did not complete immediately so disconnect.  */
692
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
693
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
694
            /* wait data */
695
            lsi_set_phase(s, PHASE_MI);
696
            s->msg_action = 1;
697
            lsi_queue_command(s);
698
        } else {
699
            /* wait command complete */
700
            lsi_set_phase(s, PHASE_DI);
701
        }
702
    }
703
}
704

    
705
static void lsi_do_status(LSIState *s)
706
{
707
    uint8_t sense;
708
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
709
    if (s->dbc != 1)
710
        BADF("Bad Status move\n");
711
    s->dbc = 1;
712
    sense = s->sense;
713
    s->sfbr = sense;
714
    cpu_physical_memory_write(s->dnad, &sense, 1);
715
    lsi_set_phase(s, PHASE_MI);
716
    s->msg_action = 1;
717
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
718
}
719

    
720
static void lsi_disconnect(LSIState *s)
721
{
722
    s->scntl1 &= ~LSI_SCNTL1_CON;
723
    s->sstat1 &= ~PHASE_MASK;
724
}
725

    
726
static void lsi_do_msgin(LSIState *s)
727
{
728
    int len;
729
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
730
    s->sfbr = s->msg[0];
731
    len = s->msg_len;
732
    if (len > s->dbc)
733
        len = s->dbc;
734
    cpu_physical_memory_write(s->dnad, s->msg, len);
735
    /* Linux drivers rely on the last byte being in the SIDL.  */
736
    s->sidl = s->msg[len - 1];
737
    s->msg_len -= len;
738
    if (s->msg_len) {
739
        memmove(s->msg, s->msg + len, s->msg_len);
740
    } else {
741
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
742
           switch to PHASE_MO.  */
743
        switch (s->msg_action) {
744
        case 0:
745
            lsi_set_phase(s, PHASE_CMD);
746
            break;
747
        case 1:
748
            lsi_disconnect(s);
749
            break;
750
        case 2:
751
            lsi_set_phase(s, PHASE_DO);
752
            break;
753
        case 3:
754
            lsi_set_phase(s, PHASE_DI);
755
            break;
756
        default:
757
            abort();
758
        }
759
    }
760
}
761

    
762
/* Read the next byte during a MSGOUT phase.  */
763
static uint8_t lsi_get_msgbyte(LSIState *s)
764
{
765
    uint8_t data;
766
    cpu_physical_memory_read(s->dnad, &data, 1);
767
    s->dnad++;
768
    s->dbc--;
769
    return data;
770
}
771

    
772
static void lsi_do_msgout(LSIState *s)
773
{
774
    uint8_t msg;
775
    int len;
776

    
777
    DPRINTF("MSG out len=%d\n", s->dbc);
778
    while (s->dbc) {
779
        msg = lsi_get_msgbyte(s);
780
        s->sfbr = msg;
781

    
782
        switch (msg) {
783
        case 0x00:
784
            DPRINTF("MSG: Disconnect\n");
785
            lsi_disconnect(s);
786
            break;
787
        case 0x08:
788
            DPRINTF("MSG: No Operation\n");
789
            lsi_set_phase(s, PHASE_CMD);
790
            break;
791
        case 0x01:
792
            len = lsi_get_msgbyte(s);
793
            msg = lsi_get_msgbyte(s);
794
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
795
            switch (msg) {
796
            case 1:
797
                DPRINTF("SDTR (ignored)\n");
798
                s->dbc -= 2;
799
                break;
800
            case 3:
801
                DPRINTF("WDTR (ignored)\n");
802
                s->dbc -= 1;
803
                break;
804
            default:
805
                goto bad;
806
            }
807
            break;
808
        case 0x20: /* SIMPLE queue */
809
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
810
            DPRINTF("SIMPLE queue tag=0x%x\n", s->current_tag & 0xff);
811
            break;
812
        case 0x21: /* HEAD of queue */
813
            BADF("HEAD queue not implemented\n");
814
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
815
            break;
816
        case 0x22: /* ORDERED queue */
817
            BADF("ORDERED queue not implemented\n");
818
            s->current_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
819
            break;
820
        default:
821
            if ((msg & 0x80) == 0) {
822
                goto bad;
823
            }
824
            s->current_lun = msg & 7;
825
            DPRINTF("Select LUN %d\n", s->current_lun);
826
            lsi_set_phase(s, PHASE_CMD);
827
            break;
828
        }
829
    }
830
    return;
831
bad:
832
    BADF("Unimplemented message 0x%02x\n", msg);
833
    lsi_set_phase(s, PHASE_MI);
834
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
835
    s->msg_action = 0;
836
}
837

    
838
/* Sign extend a 24-bit value.  */
839
static inline int32_t sxt24(int32_t n)
840
{
841
    return (n << 8) >> 8;
842
}
843

    
844
#define LSI_BUF_SIZE 4096
845
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
846
{
847
    int n;
848
    uint8_t buf[LSI_BUF_SIZE];
849

    
850
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
851
    while (count) {
852
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
853
        cpu_physical_memory_read(src, buf, n);
854
        cpu_physical_memory_write(dest, buf, n);
855
        src += n;
856
        dest += n;
857
        count -= n;
858
    }
859
}
860

    
861
static void lsi_wait_reselect(LSIState *s)
862
{
863
    int i;
864
    DPRINTF("Wait Reselect\n");
865
    if (s->current_dma_len)
866
        BADF("Reselect with pending DMA\n");
867
    for (i = 0; i < s->active_commands; i++) {
868
        if (s->queue[i].pending) {
869
            lsi_reselect(s, s->queue[i].tag);
870
            break;
871
        }
872
    }
873
    if (s->current_dma_len == 0) {
874
        s->waiting = 1;
875
    }
876
}
877

    
878
static void lsi_execute_script(LSIState *s)
879
{
880
    uint32_t insn;
881
    uint32_t addr, addr_high;
882
    int opcode;
883
    int insn_processed = 0;
884

    
885
    s->istat1 |= LSI_ISTAT1_SRUN;
886
again:
887
    insn_processed++;
888
    insn = read_dword(s, s->dsp);
889
    if (!insn) {
890
        /* If we receive an empty opcode increment the DSP by 4 bytes
891
           instead of 8 and execute the next opcode at that location */
892
        s->dsp += 4;
893
        goto again;
894
    }
895
    addr = read_dword(s, s->dsp + 4);
896
    addr_high = 0;
897
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
898
    s->dsps = addr;
899
    s->dcmd = insn >> 24;
900
    s->dsp += 8;
901
    switch (insn >> 30) {
902
    case 0: /* Block move.  */
903
        if (s->sist1 & LSI_SIST1_STO) {
904
            DPRINTF("Delayed select timeout\n");
905
            lsi_stop_script(s);
906
            break;
907
        }
908
        s->dbc = insn & 0xffffff;
909
        s->rbc = s->dbc;
910
        /* ??? Set ESA.  */
911
        s->ia = s->dsp - 8;
912
        if (insn & (1 << 29)) {
913
            /* Indirect addressing.  */
914
            addr = read_dword(s, addr);
915
        } else if (insn & (1 << 28)) {
916
            uint32_t buf[2];
917
            int32_t offset;
918
            /* Table indirect addressing.  */
919

    
920
            /* 32-bit Table indirect */
921
            offset = sxt24(addr);
922
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
923
            /* byte count is stored in bits 0:23 only */
924
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
925
            s->rbc = s->dbc;
926
            addr = cpu_to_le32(buf[1]);
927

    
928
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
929
             * table, bits [31:24] */
930
            if (lsi_dma_40bit(s))
931
                addr_high = cpu_to_le32(buf[0]) >> 24;
932
            else if (lsi_dma_ti64bit(s)) {
933
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
934
                switch (selector) {
935
                case 0 ... 0x0f:
936
                    /* offset index into scratch registers since
937
                     * TI64 mode can use registers C to R */
938
                    addr_high = s->scratch[2 + selector];
939
                    break;
940
                case 0x10:
941
                    addr_high = s->mmrs;
942
                    break;
943
                case 0x11:
944
                    addr_high = s->mmws;
945
                    break;
946
                case 0x12:
947
                    addr_high = s->sfs;
948
                    break;
949
                case 0x13:
950
                    addr_high = s->drs;
951
                    break;
952
                case 0x14:
953
                    addr_high = s->sbms;
954
                    break;
955
                case 0x15:
956
                    addr_high = s->dbms;
957
                    break;
958
                default:
959
                    BADF("Illegal selector specified (0x%x > 0x15)"
960
                         " for 64-bit DMA block move", selector);
961
                    break;
962
                }
963
            }
964
        } else if (lsi_dma_64bit(s)) {
965
            /* fetch a 3rd dword if 64-bit direct move is enabled and
966
               only if we're not doing table indirect or indirect addressing */
967
            s->dbms = read_dword(s, s->dsp);
968
            s->dsp += 4;
969
            s->ia = s->dsp - 12;
970
        }
971
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
972
            DPRINTF("Wrong phase got %d expected %d\n",
973
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
974
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
975
            break;
976
        }
977
        s->dnad = addr;
978
        s->dnad64 = addr_high;
979
        switch (s->sstat1 & 0x7) {
980
        case PHASE_DO:
981
            s->waiting = 2;
982
            lsi_do_dma(s, 1);
983
            if (s->waiting)
984
                s->waiting = 3;
985
            break;
986
        case PHASE_DI:
987
            s->waiting = 2;
988
            lsi_do_dma(s, 0);
989
            if (s->waiting)
990
                s->waiting = 3;
991
            break;
992
        case PHASE_CMD:
993
            lsi_do_command(s);
994
            break;
995
        case PHASE_ST:
996
            lsi_do_status(s);
997
            break;
998
        case PHASE_MO:
999
            lsi_do_msgout(s);
1000
            break;
1001
        case PHASE_MI:
1002
            lsi_do_msgin(s);
1003
            break;
1004
        default:
1005
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1006
            exit(1);
1007
        }
1008
        s->dfifo = s->dbc & 0xff;
1009
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1010
        s->sbc = s->dbc;
1011
        s->rbc -= s->dbc;
1012
        s->ua = addr + s->dbc;
1013
        break;
1014

    
1015
    case 1: /* IO or Read/Write instruction.  */
1016
        opcode = (insn >> 27) & 7;
1017
        if (opcode < 5) {
1018
            uint32_t id;
1019

    
1020
            if (insn & (1 << 25)) {
1021
                id = read_dword(s, s->dsa + sxt24(insn));
1022
            } else {
1023
                id = addr;
1024
            }
1025
            id = (id >> 16) & 0xf;
1026
            if (insn & (1 << 26)) {
1027
                addr = s->dsp + sxt24(addr);
1028
            }
1029
            s->dnad = addr;
1030
            switch (opcode) {
1031
            case 0: /* Select */
1032
                s->sdid = id;
1033
                if (s->current_dma_len && (s->ssid & 0xf) == id) {
1034
                    DPRINTF("Already reselected by target %d\n", id);
1035
                    break;
1036
                }
1037
                s->sstat0 |= LSI_SSTAT0_WOA;
1038
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1039
                if (id >= LSI_MAX_DEVS || !s->scsi_dev[id]) {
1040
                    DPRINTF("Selected absent target %d\n", id);
1041
                    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
1042
                    lsi_disconnect(s);
1043
                    break;
1044
                }
1045
                DPRINTF("Selected target %d%s\n",
1046
                        id, insn & (1 << 3) ? " ATN" : "");
1047
                /* ??? Linux drivers compain when this is set.  Maybe
1048
                   it only applies in low-level mode (unimplemented).
1049
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1050
                s->current_dev = s->scsi_dev[id];
1051
                s->current_tag = id << 8;
1052
                s->scntl1 |= LSI_SCNTL1_CON;
1053
                if (insn & (1 << 3)) {
1054
                    s->socl |= LSI_SOCL_ATN;
1055
                }
1056
                lsi_set_phase(s, PHASE_MO);
1057
                break;
1058
            case 1: /* Disconnect */
1059
                DPRINTF("Wait Disconect\n");
1060
                s->scntl1 &= ~LSI_SCNTL1_CON;
1061
                break;
1062
            case 2: /* Wait Reselect */
1063
                lsi_wait_reselect(s);
1064
                break;
1065
            case 3: /* Set */
1066
                DPRINTF("Set%s%s%s%s\n",
1067
                        insn & (1 << 3) ? " ATN" : "",
1068
                        insn & (1 << 6) ? " ACK" : "",
1069
                        insn & (1 << 9) ? " TM" : "",
1070
                        insn & (1 << 10) ? " CC" : "");
1071
                if (insn & (1 << 3)) {
1072
                    s->socl |= LSI_SOCL_ATN;
1073
                    lsi_set_phase(s, PHASE_MO);
1074
                }
1075
                if (insn & (1 << 9)) {
1076
                    BADF("Target mode not implemented\n");
1077
                    exit(1);
1078
                }
1079
                if (insn & (1 << 10))
1080
                    s->carry = 1;
1081
                break;
1082
            case 4: /* Clear */
1083
                DPRINTF("Clear%s%s%s%s\n",
1084
                        insn & (1 << 3) ? " ATN" : "",
1085
                        insn & (1 << 6) ? " ACK" : "",
1086
                        insn & (1 << 9) ? " TM" : "",
1087
                        insn & (1 << 10) ? " CC" : "");
1088
                if (insn & (1 << 3)) {
1089
                    s->socl &= ~LSI_SOCL_ATN;
1090
                }
1091
                if (insn & (1 << 10))
1092
                    s->carry = 0;
1093
                break;
1094
            }
1095
        } else {
1096
            uint8_t op0;
1097
            uint8_t op1;
1098
            uint8_t data8;
1099
            int reg;
1100
            int operator;
1101
#ifdef DEBUG_LSI
1102
            static const char *opcode_names[3] =
1103
                {"Write", "Read", "Read-Modify-Write"};
1104
            static const char *operator_names[8] =
1105
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1106
#endif
1107

    
1108
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1109
            data8 = (insn >> 8) & 0xff;
1110
            opcode = (insn >> 27) & 7;
1111
            operator = (insn >> 24) & 7;
1112
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1113
                    opcode_names[opcode - 5], reg,
1114
                    operator_names[operator], data8, s->sfbr,
1115
                    (insn & (1 << 23)) ? " SFBR" : "");
1116
            op0 = op1 = 0;
1117
            switch (opcode) {
1118
            case 5: /* From SFBR */
1119
                op0 = s->sfbr;
1120
                op1 = data8;
1121
                break;
1122
            case 6: /* To SFBR */
1123
                if (operator)
1124
                    op0 = lsi_reg_readb(s, reg);
1125
                op1 = data8;
1126
                break;
1127
            case 7: /* Read-modify-write */
1128
                if (operator)
1129
                    op0 = lsi_reg_readb(s, reg);
1130
                if (insn & (1 << 23)) {
1131
                    op1 = s->sfbr;
1132
                } else {
1133
                    op1 = data8;
1134
                }
1135
                break;
1136
            }
1137

    
1138
            switch (operator) {
1139
            case 0: /* move */
1140
                op0 = op1;
1141
                break;
1142
            case 1: /* Shift left */
1143
                op1 = op0 >> 7;
1144
                op0 = (op0 << 1) | s->carry;
1145
                s->carry = op1;
1146
                break;
1147
            case 2: /* OR */
1148
                op0 |= op1;
1149
                break;
1150
            case 3: /* XOR */
1151
                op0 ^= op1;
1152
                break;
1153
            case 4: /* AND */
1154
                op0 &= op1;
1155
                break;
1156
            case 5: /* SHR */
1157
                op1 = op0 & 1;
1158
                op0 = (op0 >> 1) | (s->carry << 7);
1159
                s->carry = op1;
1160
                break;
1161
            case 6: /* ADD */
1162
                op0 += op1;
1163
                s->carry = op0 < op1;
1164
                break;
1165
            case 7: /* ADC */
1166
                op0 += op1 + s->carry;
1167
                if (s->carry)
1168
                    s->carry = op0 <= op1;
1169
                else
1170
                    s->carry = op0 < op1;
1171
                break;
1172
            }
1173

    
1174
            switch (opcode) {
1175
            case 5: /* From SFBR */
1176
            case 7: /* Read-modify-write */
1177
                lsi_reg_writeb(s, reg, op0);
1178
                break;
1179
            case 6: /* To SFBR */
1180
                s->sfbr = op0;
1181
                break;
1182
            }
1183
        }
1184
        break;
1185

    
1186
    case 2: /* Transfer Control.  */
1187
        {
1188
            int cond;
1189
            int jmp;
1190

    
1191
            if ((insn & 0x002e0000) == 0) {
1192
                DPRINTF("NOP\n");
1193
                break;
1194
            }
1195
            if (s->sist1 & LSI_SIST1_STO) {
1196
                DPRINTF("Delayed select timeout\n");
1197
                lsi_stop_script(s);
1198
                break;
1199
            }
1200
            cond = jmp = (insn & (1 << 19)) != 0;
1201
            if (cond == jmp && (insn & (1 << 21))) {
1202
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1203
                cond = s->carry != 0;
1204
            }
1205
            if (cond == jmp && (insn & (1 << 17))) {
1206
                DPRINTF("Compare phase %d %c= %d\n",
1207
                        (s->sstat1 & PHASE_MASK),
1208
                        jmp ? '=' : '!',
1209
                        ((insn >> 24) & 7));
1210
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1211
            }
1212
            if (cond == jmp && (insn & (1 << 18))) {
1213
                uint8_t mask;
1214

    
1215
                mask = (~insn >> 8) & 0xff;
1216
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1217
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1218
                cond = (s->sfbr & mask) == (insn & mask);
1219
            }
1220
            if (cond == jmp) {
1221
                if (insn & (1 << 23)) {
1222
                    /* Relative address.  */
1223
                    addr = s->dsp + sxt24(addr);
1224
                }
1225
                switch ((insn >> 27) & 7) {
1226
                case 0: /* Jump */
1227
                    DPRINTF("Jump to 0x%08x\n", addr);
1228
                    s->dsp = addr;
1229
                    break;
1230
                case 1: /* Call */
1231
                    DPRINTF("Call 0x%08x\n", addr);
1232
                    s->temp = s->dsp;
1233
                    s->dsp = addr;
1234
                    break;
1235
                case 2: /* Return */
1236
                    DPRINTF("Return to 0x%08x\n", s->temp);
1237
                    s->dsp = s->temp;
1238
                    break;
1239
                case 3: /* Interrupt */
1240
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1241
                    if ((insn & (1 << 20)) != 0) {
1242
                        s->istat0 |= LSI_ISTAT0_INTF;
1243
                        lsi_update_irq(s);
1244
                    } else {
1245
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1246
                    }
1247
                    break;
1248
                default:
1249
                    DPRINTF("Illegal transfer control\n");
1250
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1251
                    break;
1252
                }
1253
            } else {
1254
                DPRINTF("Control condition failed\n");
1255
            }
1256
        }
1257
        break;
1258

    
1259
    case 3:
1260
        if ((insn & (1 << 29)) == 0) {
1261
            /* Memory move.  */
1262
            uint32_t dest;
1263
            /* ??? The docs imply the destination address is loaded into
1264
               the TEMP register.  However the Linux drivers rely on
1265
               the value being presrved.  */
1266
            dest = read_dword(s, s->dsp);
1267
            s->dsp += 4;
1268
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1269
        } else {
1270
            uint8_t data[7];
1271
            int reg;
1272
            int n;
1273
            int i;
1274

    
1275
            if (insn & (1 << 28)) {
1276
                addr = s->dsa + sxt24(addr);
1277
            }
1278
            n = (insn & 7);
1279
            reg = (insn >> 16) & 0xff;
1280
            if (insn & (1 << 24)) {
1281
                cpu_physical_memory_read(addr, data, n);
1282
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1283
                        addr, *(int *)data);
1284
                for (i = 0; i < n; i++) {
1285
                    lsi_reg_writeb(s, reg + i, data[i]);
1286
                }
1287
            } else {
1288
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1289
                for (i = 0; i < n; i++) {
1290
                    data[i] = lsi_reg_readb(s, reg + i);
1291
                }
1292
                cpu_physical_memory_write(addr, data, n);
1293
            }
1294
        }
1295
    }
1296
    if (insn_processed > 10000 && !s->waiting) {
1297
        /* Some windows drivers make the device spin waiting for a memory
1298
           location to change.  If we have been executed a lot of code then
1299
           assume this is the case and force an unexpected device disconnect.
1300
           This is apparently sufficient to beat the drivers into submission.
1301
         */
1302
        if (!(s->sien0 & LSI_SIST0_UDC))
1303
            fprintf(stderr, "inf. loop with UDC masked\n");
1304
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1305
        lsi_disconnect(s);
1306
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1307
        if (s->dcntl & LSI_DCNTL_SSM) {
1308
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1309
        } else {
1310
            goto again;
1311
        }
1312
    }
1313
    DPRINTF("SCRIPTS execution stopped\n");
1314
}
1315

    
1316
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1317
{
1318
    uint8_t tmp;
1319
#define CASE_GET_REG24(name, addr) \
1320
    case addr: return s->name & 0xff; \
1321
    case addr + 1: return (s->name >> 8) & 0xff; \
1322
    case addr + 2: return (s->name >> 16) & 0xff;
1323

    
1324
#define CASE_GET_REG32(name, addr) \
1325
    case addr: return s->name & 0xff; \
1326
    case addr + 1: return (s->name >> 8) & 0xff; \
1327
    case addr + 2: return (s->name >> 16) & 0xff; \
1328
    case addr + 3: return (s->name >> 24) & 0xff;
1329

    
1330
#ifdef DEBUG_LSI_REG
1331
    DPRINTF("Read reg %x\n", offset);
1332
#endif
1333
    switch (offset) {
1334
    case 0x00: /* SCNTL0 */
1335
        return s->scntl0;
1336
    case 0x01: /* SCNTL1 */
1337
        return s->scntl1;
1338
    case 0x02: /* SCNTL2 */
1339
        return s->scntl2;
1340
    case 0x03: /* SCNTL3 */
1341
        return s->scntl3;
1342
    case 0x04: /* SCID */
1343
        return s->scid;
1344
    case 0x05: /* SXFER */
1345
        return s->sxfer;
1346
    case 0x06: /* SDID */
1347
        return s->sdid;
1348
    case 0x07: /* GPREG0 */
1349
        return 0x7f;
1350
    case 0x08: /* Revision ID */
1351
        return 0x00;
1352
    case 0xa: /* SSID */
1353
        return s->ssid;
1354
    case 0xb: /* SBCL */
1355
        /* ??? This is not correct. However it's (hopefully) only
1356
           used for diagnostics, so should be ok.  */
1357
        return 0;
1358
    case 0xc: /* DSTAT */
1359
        tmp = s->dstat | 0x80;
1360
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1361
            s->dstat = 0;
1362
        lsi_update_irq(s);
1363
        return tmp;
1364
    case 0x0d: /* SSTAT0 */
1365
        return s->sstat0;
1366
    case 0x0e: /* SSTAT1 */
1367
        return s->sstat1;
1368
    case 0x0f: /* SSTAT2 */
1369
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1370
    CASE_GET_REG32(dsa, 0x10)
1371
    case 0x14: /* ISTAT0 */
1372
        return s->istat0;
1373
    case 0x15: /* ISTAT1 */
1374
        return s->istat1;
1375
    case 0x16: /* MBOX0 */
1376
        return s->mbox0;
1377
    case 0x17: /* MBOX1 */
1378
        return s->mbox1;
1379
    case 0x18: /* CTEST0 */
1380
        return 0xff;
1381
    case 0x19: /* CTEST1 */
1382
        return 0;
1383
    case 0x1a: /* CTEST2 */
1384
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1385
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1386
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1387
            tmp |= LSI_CTEST2_SIGP;
1388
        }
1389
        return tmp;
1390
    case 0x1b: /* CTEST3 */
1391
        return s->ctest3;
1392
    CASE_GET_REG32(temp, 0x1c)
1393
    case 0x20: /* DFIFO */
1394
        return 0;
1395
    case 0x21: /* CTEST4 */
1396
        return s->ctest4;
1397
    case 0x22: /* CTEST5 */
1398
        return s->ctest5;
1399
    case 0x23: /* CTEST6 */
1400
         return 0;
1401
    CASE_GET_REG24(dbc, 0x24)
1402
    case 0x27: /* DCMD */
1403
        return s->dcmd;
1404
    CASE_GET_REG32(dsp, 0x2c)
1405
    CASE_GET_REG32(dsps, 0x30)
1406
    CASE_GET_REG32(scratch[0], 0x34)
1407
    case 0x38: /* DMODE */
1408
        return s->dmode;
1409
    case 0x39: /* DIEN */
1410
        return s->dien;
1411
    case 0x3b: /* DCNTL */
1412
        return s->dcntl;
1413
    case 0x40: /* SIEN0 */
1414
        return s->sien0;
1415
    case 0x41: /* SIEN1 */
1416
        return s->sien1;
1417
    case 0x42: /* SIST0 */
1418
        tmp = s->sist0;
1419
        s->sist0 = 0;
1420
        lsi_update_irq(s);
1421
        return tmp;
1422
    case 0x43: /* SIST1 */
1423
        tmp = s->sist1;
1424
        s->sist1 = 0;
1425
        lsi_update_irq(s);
1426
        return tmp;
1427
    case 0x46: /* MACNTL */
1428
        return 0x0f;
1429
    case 0x47: /* GPCNTL0 */
1430
        return 0x0f;
1431
    case 0x48: /* STIME0 */
1432
        return s->stime0;
1433
    case 0x4a: /* RESPID0 */
1434
        return s->respid0;
1435
    case 0x4b: /* RESPID1 */
1436
        return s->respid1;
1437
    case 0x4d: /* STEST1 */
1438
        return s->stest1;
1439
    case 0x4e: /* STEST2 */
1440
        return s->stest2;
1441
    case 0x4f: /* STEST3 */
1442
        return s->stest3;
1443
    case 0x50: /* SIDL */
1444
        /* This is needed by the linux drivers.  We currently only update it
1445
           during the MSG IN phase.  */
1446
        return s->sidl;
1447
    case 0x52: /* STEST4 */
1448
        return 0xe0;
1449
    case 0x56: /* CCNTL0 */
1450
        return s->ccntl0;
1451
    case 0x57: /* CCNTL1 */
1452
        return s->ccntl1;
1453
    case 0x58: /* SBDL */
1454
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1455
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1456
            return s->msg[0];
1457
        return 0;
1458
    case 0x59: /* SBDL high */
1459
        return 0;
1460
    CASE_GET_REG32(mmrs, 0xa0)
1461
    CASE_GET_REG32(mmws, 0xa4)
1462
    CASE_GET_REG32(sfs, 0xa8)
1463
    CASE_GET_REG32(drs, 0xac)
1464
    CASE_GET_REG32(sbms, 0xb0)
1465
    CASE_GET_REG32(dbms, 0xb4)
1466
    CASE_GET_REG32(dnad64, 0xb8)
1467
    CASE_GET_REG32(pmjad1, 0xc0)
1468
    CASE_GET_REG32(pmjad2, 0xc4)
1469
    CASE_GET_REG32(rbc, 0xc8)
1470
    CASE_GET_REG32(ua, 0xcc)
1471
    CASE_GET_REG32(ia, 0xd4)
1472
    CASE_GET_REG32(sbc, 0xd8)
1473
    CASE_GET_REG32(csbc, 0xdc)
1474
    }
1475
    if (offset >= 0x5c && offset < 0xa0) {
1476
        int n;
1477
        int shift;
1478
        n = (offset - 0x58) >> 2;
1479
        shift = (offset & 3) * 8;
1480
        return (s->scratch[n] >> shift) & 0xff;
1481
    }
1482
    BADF("readb 0x%x\n", offset);
1483
    exit(1);
1484
#undef CASE_GET_REG24
1485
#undef CASE_GET_REG32
1486
}
1487

    
1488
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1489
{
1490
#define CASE_SET_REG32(name, addr) \
1491
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1492
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1493
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1494
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1495

    
1496
#ifdef DEBUG_LSI_REG
1497
    DPRINTF("Write reg %x = %02x\n", offset, val);
1498
#endif
1499
    switch (offset) {
1500
    case 0x00: /* SCNTL0 */
1501
        s->scntl0 = val;
1502
        if (val & LSI_SCNTL0_START) {
1503
            BADF("Start sequence not implemented\n");
1504
        }
1505
        break;
1506
    case 0x01: /* SCNTL1 */
1507
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1508
        if (val & LSI_SCNTL1_IARB) {
1509
            BADF("Immediate Arbritration not implemented\n");
1510
        }
1511
        if (val & LSI_SCNTL1_RST) {
1512
            s->sstat0 |= LSI_SSTAT0_RST;
1513
            lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1514
        } else {
1515
            s->sstat0 &= ~LSI_SSTAT0_RST;
1516
        }
1517
        break;
1518
    case 0x02: /* SCNTL2 */
1519
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1520
        s->scntl2 = val;
1521
        break;
1522
    case 0x03: /* SCNTL3 */
1523
        s->scntl3 = val;
1524
        break;
1525
    case 0x04: /* SCID */
1526
        s->scid = val;
1527
        break;
1528
    case 0x05: /* SXFER */
1529
        s->sxfer = val;
1530
        break;
1531
    case 0x06: /* SDID */
1532
        if ((val & 0xf) != (s->ssid & 0xf))
1533
            BADF("Destination ID does not match SSID\n");
1534
        s->sdid = val & 0xf;
1535
        break;
1536
    case 0x07: /* GPREG0 */
1537
        break;
1538
    case 0x08: /* SFBR */
1539
        /* The CPU is not allowed to write to this register.  However the
1540
           SCRIPTS register move instructions are.  */
1541
        s->sfbr = val;
1542
        break;
1543
    case 0x0a: case 0x0b: 
1544
        /* Openserver writes to these readonly registers on startup */
1545
        return;    
1546
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1547
        /* Linux writes to these readonly registers on startup.  */
1548
        return;
1549
    CASE_SET_REG32(dsa, 0x10)
1550
    case 0x14: /* ISTAT0 */
1551
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1552
        if (val & LSI_ISTAT0_ABRT) {
1553
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1554
        }
1555
        if (val & LSI_ISTAT0_INTF) {
1556
            s->istat0 &= ~LSI_ISTAT0_INTF;
1557
            lsi_update_irq(s);
1558
        }
1559
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1560
            DPRINTF("Woken by SIGP\n");
1561
            s->waiting = 0;
1562
            s->dsp = s->dnad;
1563
            lsi_execute_script(s);
1564
        }
1565
        if (val & LSI_ISTAT0_SRST) {
1566
            lsi_soft_reset(s);
1567
        }
1568
        break;
1569
    case 0x16: /* MBOX0 */
1570
        s->mbox0 = val;
1571
        break;
1572
    case 0x17: /* MBOX1 */
1573
        s->mbox1 = val;
1574
        break;
1575
    case 0x1a: /* CTEST2 */
1576
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1577
        break;
1578
    case 0x1b: /* CTEST3 */
1579
        s->ctest3 = val & 0x0f;
1580
        break;
1581
    CASE_SET_REG32(temp, 0x1c)
1582
    case 0x21: /* CTEST4 */
1583
        if (val & 7) {
1584
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1585
        }
1586
        s->ctest4 = val;
1587
        break;
1588
    case 0x22: /* CTEST5 */
1589
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1590
            BADF("CTEST5 DMA increment not implemented\n");
1591
        }
1592
        s->ctest5 = val;
1593
        break;
1594
    case 0x2c: /* DSP[0:7] */
1595
        s->dsp &= 0xffffff00;
1596
        s->dsp |= val;
1597
        break;
1598
    case 0x2d: /* DSP[8:15] */
1599
        s->dsp &= 0xffff00ff;
1600
        s->dsp |= val << 8;
1601
        break;
1602
    case 0x2e: /* DSP[16:23] */
1603
        s->dsp &= 0xff00ffff;
1604
        s->dsp |= val << 16;
1605
        break;
1606
    case 0x2f: /* DSP[24:31] */
1607
        s->dsp &= 0x00ffffff;
1608
        s->dsp |= val << 24;
1609
        if ((s->dmode & LSI_DMODE_MAN) == 0
1610
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1611
            lsi_execute_script(s);
1612
        break;
1613
    CASE_SET_REG32(dsps, 0x30)
1614
    CASE_SET_REG32(scratch[0], 0x34)
1615
    case 0x38: /* DMODE */
1616
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1617
            BADF("IO mappings not implemented\n");
1618
        }
1619
        s->dmode = val;
1620
        break;
1621
    case 0x39: /* DIEN */
1622
        s->dien = val;
1623
        lsi_update_irq(s);
1624
        break;
1625
    case 0x3b: /* DCNTL */
1626
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1627
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1628
            lsi_execute_script(s);
1629
        break;
1630
    case 0x40: /* SIEN0 */
1631
        s->sien0 = val;
1632
        lsi_update_irq(s);
1633
        break;
1634
    case 0x41: /* SIEN1 */
1635
        s->sien1 = val;
1636
        lsi_update_irq(s);
1637
        break;
1638
    case 0x47: /* GPCNTL0 */
1639
        break;
1640
    case 0x48: /* STIME0 */
1641
        s->stime0 = val;
1642
        break;
1643
    case 0x49: /* STIME1 */
1644
        if (val & 0xf) {
1645
            DPRINTF("General purpose timer not implemented\n");
1646
            /* ??? Raising the interrupt immediately seems to be sufficient
1647
               to keep the FreeBSD driver happy.  */
1648
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1649
        }
1650
        break;
1651
    case 0x4a: /* RESPID0 */
1652
        s->respid0 = val;
1653
        break;
1654
    case 0x4b: /* RESPID1 */
1655
        s->respid1 = val;
1656
        break;
1657
    case 0x4d: /* STEST1 */
1658
        s->stest1 = val;
1659
        break;
1660
    case 0x4e: /* STEST2 */
1661
        if (val & 1) {
1662
            BADF("Low level mode not implemented\n");
1663
        }
1664
        s->stest2 = val;
1665
        break;
1666
    case 0x4f: /* STEST3 */
1667
        if (val & 0x41) {
1668
            BADF("SCSI FIFO test mode not implemented\n");
1669
        }
1670
        s->stest3 = val;
1671
        break;
1672
    case 0x56: /* CCNTL0 */
1673
        s->ccntl0 = val;
1674
        break;
1675
    case 0x57: /* CCNTL1 */
1676
        s->ccntl1 = val;
1677
        break;
1678
    CASE_SET_REG32(mmrs, 0xa0)
1679
    CASE_SET_REG32(mmws, 0xa4)
1680
    CASE_SET_REG32(sfs, 0xa8)
1681
    CASE_SET_REG32(drs, 0xac)
1682
    CASE_SET_REG32(sbms, 0xb0)
1683
    CASE_SET_REG32(dbms, 0xb4)
1684
    CASE_SET_REG32(dnad64, 0xb8)
1685
    CASE_SET_REG32(pmjad1, 0xc0)
1686
    CASE_SET_REG32(pmjad2, 0xc4)
1687
    CASE_SET_REG32(rbc, 0xc8)
1688
    CASE_SET_REG32(ua, 0xcc)
1689
    CASE_SET_REG32(ia, 0xd4)
1690
    CASE_SET_REG32(sbc, 0xd8)
1691
    CASE_SET_REG32(csbc, 0xdc)
1692
    default:
1693
        if (offset >= 0x5c && offset < 0xa0) {
1694
            int n;
1695
            int shift;
1696
            n = (offset - 0x58) >> 2;
1697
            shift = (offset & 3) * 8;
1698
            s->scratch[n] &= ~(0xff << shift);
1699
            s->scratch[n] |= (val & 0xff) << shift;
1700
        } else {
1701
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1702
        }
1703
    }
1704
#undef CASE_SET_REG32
1705
}
1706

    
1707
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1708
{
1709
    LSIState *s = (LSIState *)opaque;
1710

    
1711
    lsi_reg_writeb(s, addr & 0xff, val);
1712
}
1713

    
1714
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1715
{
1716
    LSIState *s = (LSIState *)opaque;
1717

    
1718
    addr &= 0xff;
1719
    lsi_reg_writeb(s, addr, val & 0xff);
1720
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1721
}
1722

    
1723
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1724
{
1725
    LSIState *s = (LSIState *)opaque;
1726

    
1727
    addr &= 0xff;
1728
    lsi_reg_writeb(s, addr, val & 0xff);
1729
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1730
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1731
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1732
}
1733

    
1734
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1735
{
1736
    LSIState *s = (LSIState *)opaque;
1737

    
1738
    return lsi_reg_readb(s, addr & 0xff);
1739
}
1740

    
1741
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1742
{
1743
    LSIState *s = (LSIState *)opaque;
1744
    uint32_t val;
1745

    
1746
    addr &= 0xff;
1747
    val = lsi_reg_readb(s, addr);
1748
    val |= lsi_reg_readb(s, addr + 1) << 8;
1749
    return val;
1750
}
1751

    
1752
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1753
{
1754
    LSIState *s = (LSIState *)opaque;
1755
    uint32_t val;
1756
    addr &= 0xff;
1757
    val = lsi_reg_readb(s, addr);
1758
    val |= lsi_reg_readb(s, addr + 1) << 8;
1759
    val |= lsi_reg_readb(s, addr + 2) << 16;
1760
    val |= lsi_reg_readb(s, addr + 3) << 24;
1761
    return val;
1762
}
1763

    
1764
static CPUReadMemoryFunc *lsi_mmio_readfn[3] = {
1765
    lsi_mmio_readb,
1766
    lsi_mmio_readw,
1767
    lsi_mmio_readl,
1768
};
1769

    
1770
static CPUWriteMemoryFunc *lsi_mmio_writefn[3] = {
1771
    lsi_mmio_writeb,
1772
    lsi_mmio_writew,
1773
    lsi_mmio_writel,
1774
};
1775

    
1776
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1777
{
1778
    LSIState *s = (LSIState *)opaque;
1779
    uint32_t newval;
1780
    int shift;
1781

    
1782
    addr &= 0x1fff;
1783
    newval = s->script_ram[addr >> 2];
1784
    shift = (addr & 3) * 8;
1785
    newval &= ~(0xff << shift);
1786
    newval |= val << shift;
1787
    s->script_ram[addr >> 2] = newval;
1788
}
1789

    
1790
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1791
{
1792
    LSIState *s = (LSIState *)opaque;
1793
    uint32_t newval;
1794

    
1795
    addr &= 0x1fff;
1796
    newval = s->script_ram[addr >> 2];
1797
    if (addr & 2) {
1798
        newval = (newval & 0xffff) | (val << 16);
1799
    } else {
1800
        newval = (newval & 0xffff0000) | val;
1801
    }
1802
    s->script_ram[addr >> 2] = newval;
1803
}
1804

    
1805

    
1806
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1807
{
1808
    LSIState *s = (LSIState *)opaque;
1809

    
1810
    addr &= 0x1fff;
1811
    s->script_ram[addr >> 2] = val;
1812
}
1813

    
1814
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1815
{
1816
    LSIState *s = (LSIState *)opaque;
1817
    uint32_t val;
1818

    
1819
    addr &= 0x1fff;
1820
    val = s->script_ram[addr >> 2];
1821
    val >>= (addr & 3) * 8;
1822
    return val & 0xff;
1823
}
1824

    
1825
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1826
{
1827
    LSIState *s = (LSIState *)opaque;
1828
    uint32_t val;
1829

    
1830
    addr &= 0x1fff;
1831
    val = s->script_ram[addr >> 2];
1832
    if (addr & 2)
1833
        val >>= 16;
1834
    return le16_to_cpu(val);
1835
}
1836

    
1837
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1838
{
1839
    LSIState *s = (LSIState *)opaque;
1840

    
1841
    addr &= 0x1fff;
1842
    return le32_to_cpu(s->script_ram[addr >> 2]);
1843
}
1844

    
1845
static CPUReadMemoryFunc *lsi_ram_readfn[3] = {
1846
    lsi_ram_readb,
1847
    lsi_ram_readw,
1848
    lsi_ram_readl,
1849
};
1850

    
1851
static CPUWriteMemoryFunc *lsi_ram_writefn[3] = {
1852
    lsi_ram_writeb,
1853
    lsi_ram_writew,
1854
    lsi_ram_writel,
1855
};
1856

    
1857
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1858
{
1859
    LSIState *s = (LSIState *)opaque;
1860
    return lsi_reg_readb(s, addr & 0xff);
1861
}
1862

    
1863
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1864
{
1865
    LSIState *s = (LSIState *)opaque;
1866
    uint32_t val;
1867
    addr &= 0xff;
1868
    val = lsi_reg_readb(s, addr);
1869
    val |= lsi_reg_readb(s, addr + 1) << 8;
1870
    return val;
1871
}
1872

    
1873
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1874
{
1875
    LSIState *s = (LSIState *)opaque;
1876
    uint32_t val;
1877
    addr &= 0xff;
1878
    val = lsi_reg_readb(s, addr);
1879
    val |= lsi_reg_readb(s, addr + 1) << 8;
1880
    val |= lsi_reg_readb(s, addr + 2) << 16;
1881
    val |= lsi_reg_readb(s, addr + 3) << 24;
1882
    return val;
1883
}
1884

    
1885
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1886
{
1887
    LSIState *s = (LSIState *)opaque;
1888
    lsi_reg_writeb(s, addr & 0xff, val);
1889
}
1890

    
1891
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1892
{
1893
    LSIState *s = (LSIState *)opaque;
1894
    addr &= 0xff;
1895
    lsi_reg_writeb(s, addr, val & 0xff);
1896
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1897
}
1898

    
1899
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1900
{
1901
    LSIState *s = (LSIState *)opaque;
1902
    addr &= 0xff;
1903
    lsi_reg_writeb(s, addr, val & 0xff);
1904
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1905
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1906
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1907
}
1908

    
1909
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
1910
                           uint32_t addr, uint32_t size, int type)
1911
{
1912
    LSIState *s = (LSIState *)pci_dev;
1913

    
1914
    DPRINTF("Mapping IO at %08x\n", addr);
1915

    
1916
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
1917
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
1918
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
1919
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
1920
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
1921
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
1922
}
1923

    
1924
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
1925
                            uint32_t addr, uint32_t size, int type)
1926
{
1927
    LSIState *s = (LSIState *)pci_dev;
1928

    
1929
    DPRINTF("Mapping ram at %08x\n", addr);
1930
    s->script_ram_base = addr;
1931
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
1932
}
1933

    
1934
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
1935
                             uint32_t addr, uint32_t size, int type)
1936
{
1937
    LSIState *s = (LSIState *)pci_dev;
1938

    
1939
    DPRINTF("Mapping registers at %08x\n", addr);
1940
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
1941
}
1942

    
1943
void lsi_scsi_attach(DeviceState *host, BlockDriverState *bd, int id)
1944
{
1945
    LSIState *s = (LSIState *)host;
1946

    
1947
    if (id < 0) {
1948
        for (id = 0; id < LSI_MAX_DEVS; id++) {
1949
            if (s->scsi_dev[id] == NULL)
1950
                break;
1951
        }
1952
    }
1953
    if (id >= LSI_MAX_DEVS) {
1954
        BADF("Bad Device ID %d\n", id);
1955
        return;
1956
    }
1957
    if (s->scsi_dev[id]) {
1958
        DPRINTF("Destroying device %d\n", id);
1959
        s->scsi_dev[id]->destroy(s->scsi_dev[id]);
1960
    }
1961
    DPRINTF("Attaching block device %d\n", id);
1962
    s->scsi_dev[id] = scsi_generic_init(bd, 1, lsi_command_complete, s);
1963
    if (s->scsi_dev[id] == NULL)
1964
        s->scsi_dev[id] = scsi_disk_init(bd, 1, lsi_command_complete, s);
1965
    bd->private = &s->pci_dev;
1966
}
1967

    
1968
static int lsi_scsi_uninit(PCIDevice *d)
1969
{
1970
    LSIState *s = (LSIState *) d;
1971

    
1972
    cpu_unregister_io_memory(s->mmio_io_addr);
1973
    cpu_unregister_io_memory(s->ram_io_addr);
1974

    
1975
    qemu_free(s->queue);
1976

    
1977
    return 0;
1978
}
1979

    
1980
static void lsi_scsi_init(PCIDevice *dev)
1981
{
1982
    LSIState *s = (LSIState *)dev;
1983
    uint8_t *pci_conf;
1984

    
1985
    pci_conf = s->pci_dev.config;
1986

    
1987
    /* PCI Vendor ID (word) */
1988
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
1989
    /* PCI device ID (word) */
1990
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
1991
    /* PCI base class code */
1992
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
1993
    /* PCI subsystem ID */
1994
    pci_conf[0x2e] = 0x00;
1995
    pci_conf[0x2f] = 0x10;
1996
    /* PCI latency timer = 255 */
1997
    pci_conf[0x0d] = 0xff;
1998
    /* Interrupt pin 1 */
1999
    pci_conf[0x3d] = 0x01;
2000

    
2001
    s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2002
                                             lsi_mmio_writefn, s);
2003
    s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2004
                                            lsi_ram_writefn, s);
2005

    
2006
    pci_register_io_region((struct PCIDevice *)s, 0, 256,
2007
                           PCI_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2008
    pci_register_io_region((struct PCIDevice *)s, 1, 0x400,
2009
                           PCI_ADDRESS_SPACE_MEM, lsi_mmio_mapfunc);
2010
    pci_register_io_region((struct PCIDevice *)s, 2, 0x2000,
2011
                           PCI_ADDRESS_SPACE_MEM, lsi_ram_mapfunc);
2012
    s->queue = qemu_malloc(sizeof(lsi_queue));
2013
    s->queue_len = 1;
2014
    s->active_commands = 0;
2015
    s->pci_dev.unregister = lsi_scsi_uninit;
2016

    
2017
    lsi_soft_reset(s);
2018

    
2019
    scsi_bus_new(&dev->qdev, lsi_scsi_attach);
2020
}
2021

    
2022
static void lsi53c895a_register_devices(void)
2023
{
2024
    pci_qdev_register("lsi53c895a", sizeof(LSIState), lsi_scsi_init);
2025
}
2026

    
2027
device_init(lsi53c895a_register_devices);