Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ 1eed09cb

History | View | Annotate | Download (12 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "monitor.h"
27

    
28
//#define DEBUG_IRQ_COUNT
29
//#define DEBUG_IRQ
30

    
31
#ifdef DEBUG_IRQ
32
#define DPRINTF(fmt, ...)                                       \
33
    do { printf("IRQ: " fmt , ## __VA_ARGS__); } while (0)
34
#else
35
#define DPRINTF(fmt, ...)
36
#endif
37

    
38
/*
39
 * Registers of interrupt controller in sun4m.
40
 *
41
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42
 * produced as NCR89C105. See
43
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
44
 *
45
 * There is a system master controller and one for each cpu.
46
 *
47
 */
48

    
49
#define MAX_CPUS 16
50
#define MAX_PILS 16
51

    
52
struct SLAVIO_CPUINTCTLState;
53

    
54
typedef struct SLAVIO_INTCTLState {
55
    uint32_t intregm_pending;
56
    uint32_t intregm_disabled;
57
    uint32_t target_cpu;
58
#ifdef DEBUG_IRQ_COUNT
59
    uint64_t irq_count[32];
60
#endif
61
    qemu_irq *cpu_irqs[MAX_CPUS];
62
    const uint32_t *intbit_to_level;
63
    uint32_t cputimer_lbit, cputimer_mbit;
64
    uint32_t pil_out[MAX_CPUS];
65
    struct SLAVIO_CPUINTCTLState *slaves[MAX_CPUS];
66
} SLAVIO_INTCTLState;
67

    
68
typedef struct SLAVIO_CPUINTCTLState {
69
    uint32_t intreg_pending;
70
    SLAVIO_INTCTLState *master;
71
    uint32_t cpu;
72
} SLAVIO_CPUINTCTLState;
73

    
74
#define INTCTL_MAXADDR 0xf
75
#define INTCTL_SIZE (INTCTL_MAXADDR + 1)
76
#define INTCTLM_SIZE 0x14
77
#define MASTER_IRQ_MASK ~0x0fa2007f
78
#define MASTER_DISABLE 0x80000000
79
#define CPU_SOFTIRQ_MASK 0xfffe0000
80
#define CPU_IRQ_INT15_IN 0x0004000
81
#define CPU_IRQ_INT15_MASK 0x80000000
82

    
83
static void slavio_check_interrupts(SLAVIO_INTCTLState *s);
84

    
85
// per-cpu interrupt controller
86
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
87
{
88
    SLAVIO_CPUINTCTLState *s = opaque;
89
    uint32_t saddr, ret;
90

    
91
    saddr = addr >> 2;
92
    switch (saddr) {
93
    case 0:
94
        ret = s->intreg_pending;
95
        break;
96
    default:
97
        ret = 0;
98
        break;
99
    }
100
    DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, ret);
101

    
102
    return ret;
103
}
104

    
105
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
106
                                     uint32_t val)
107
{
108
    SLAVIO_CPUINTCTLState *s = opaque;
109
    uint32_t saddr;
110

    
111
    saddr = addr >> 2;
112
    DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, val);
113
    switch (saddr) {
114
    case 1: // clear pending softints
115
        if (val & CPU_IRQ_INT15_IN)
116
            val |= CPU_IRQ_INT15_MASK;
117
        val &= CPU_SOFTIRQ_MASK;
118
        s->intreg_pending &= ~val;
119
        slavio_check_interrupts(s->master);
120
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s->cpu, val,
121
                s->intreg_pending);
122
        break;
123
    case 2: // set softint
124
        val &= CPU_SOFTIRQ_MASK;
125
        s->intreg_pending |= val;
126
        slavio_check_interrupts(s->master);
127
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s->cpu, val,
128
                s->intreg_pending);
129
        break;
130
    default:
131
        break;
132
    }
133
}
134

    
135
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
136
    NULL,
137
    NULL,
138
    slavio_intctl_mem_readl,
139
};
140

    
141
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
142
    NULL,
143
    NULL,
144
    slavio_intctl_mem_writel,
145
};
146

    
147
// master system interrupt controller
148
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
149
{
150
    SLAVIO_INTCTLState *s = opaque;
151
    uint32_t saddr, ret;
152

    
153
    saddr = addr >> 2;
154
    switch (saddr) {
155
    case 0:
156
        ret = s->intregm_pending & ~MASTER_DISABLE;
157
        break;
158
    case 1:
159
        ret = s->intregm_disabled & MASTER_IRQ_MASK;
160
        break;
161
    case 4:
162
        ret = s->target_cpu;
163
        break;
164
    default:
165
        ret = 0;
166
        break;
167
    }
168
    DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
169

    
170
    return ret;
171
}
172

    
173
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
174
                                      uint32_t val)
175
{
176
    SLAVIO_INTCTLState *s = opaque;
177
    uint32_t saddr;
178

    
179
    saddr = addr >> 2;
180
    DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
181
    switch (saddr) {
182
    case 2: // clear (enable)
183
        // Force clear unused bits
184
        val &= MASTER_IRQ_MASK;
185
        s->intregm_disabled &= ~val;
186
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
187
                s->intregm_disabled);
188
        slavio_check_interrupts(s);
189
        break;
190
    case 3: // set (disable, clear pending)
191
        // Force clear unused bits
192
        val &= MASTER_IRQ_MASK;
193
        s->intregm_disabled |= val;
194
        s->intregm_pending &= ~val;
195
        slavio_check_interrupts(s);
196
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
197
                s->intregm_disabled);
198
        break;
199
    case 4:
200
        s->target_cpu = val & (MAX_CPUS - 1);
201
        slavio_check_interrupts(s);
202
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
203
        break;
204
    default:
205
        break;
206
    }
207
}
208

    
209
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
210
    NULL,
211
    NULL,
212
    slavio_intctlm_mem_readl,
213
};
214

    
215
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
216
    NULL,
217
    NULL,
218
    slavio_intctlm_mem_writel,
219
};
220

    
221
void slavio_pic_info(Monitor *mon, void *opaque)
222
{
223
    SLAVIO_INTCTLState *s = opaque;
224
    int i;
225

    
226
    for (i = 0; i < MAX_CPUS; i++) {
227
        monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
228
                       s->slaves[i]->intreg_pending);
229
    }
230
    monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
231
                   s->intregm_pending, s->intregm_disabled);
232
}
233

    
234
void slavio_irq_info(Monitor *mon, void *opaque)
235
{
236
#ifndef DEBUG_IRQ_COUNT
237
    monitor_printf(mon, "irq statistic code not compiled.\n");
238
#else
239
    SLAVIO_INTCTLState *s = opaque;
240
    int i;
241
    int64_t count;
242

    
243
    monitor_printf(mon, "IRQ statistics:\n");
244
    for (i = 0; i < 32; i++) {
245
        count = s->irq_count[i];
246
        if (count > 0)
247
            monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
248
    }
249
#endif
250
}
251

    
252
static void slavio_check_interrupts(SLAVIO_INTCTLState *s)
253
{
254
    uint32_t pending = s->intregm_pending, pil_pending;
255
    unsigned int i, j;
256

    
257
    pending &= ~s->intregm_disabled;
258

    
259
    DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
260
    for (i = 0; i < MAX_CPUS; i++) {
261
        pil_pending = 0;
262
        if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
263
            (i == s->target_cpu)) {
264
            for (j = 0; j < 32; j++) {
265
                if (pending & (1 << j))
266
                    pil_pending |= 1 << s->intbit_to_level[j];
267
            }
268
        }
269
        pil_pending |= (s->slaves[i]->intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
270

    
271
        for (j = 0; j < MAX_PILS; j++) {
272
            if (pil_pending & (1 << j)) {
273
                if (!(s->pil_out[i] & (1 << j)))
274
                    qemu_irq_raise(s->cpu_irqs[i][j]);
275
            } else {
276
                if (s->pil_out[i] & (1 << j))
277
                    qemu_irq_lower(s->cpu_irqs[i][j]);
278
            }
279
        }
280
        s->pil_out[i] = pil_pending;
281
    }
282
}
283

    
284
/*
285
 * "irq" here is the bit number in the system interrupt register to
286
 * separate serial and keyboard interrupts sharing a level.
287
 */
288
static void slavio_set_irq(void *opaque, int irq, int level)
289
{
290
    SLAVIO_INTCTLState *s = opaque;
291
    uint32_t mask = 1 << irq;
292
    uint32_t pil = s->intbit_to_level[irq];
293

    
294
    DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
295
            level);
296
    if (pil > 0) {
297
        if (level) {
298
#ifdef DEBUG_IRQ_COUNT
299
            s->irq_count[pil]++;
300
#endif
301
            s->intregm_pending |= mask;
302
            s->slaves[s->target_cpu]->intreg_pending |= 1 << pil;
303
        } else {
304
            s->intregm_pending &= ~mask;
305
            s->slaves[s->target_cpu]->intreg_pending &= ~(1 << pil);
306
        }
307
        slavio_check_interrupts(s);
308
    }
309
}
310

    
311
static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
312
{
313
    SLAVIO_INTCTLState *s = opaque;
314

    
315
    DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
316

    
317
    if (level) {
318
        s->intregm_pending |= s->cputimer_mbit;
319
        s->slaves[cpu]->intreg_pending |= s->cputimer_lbit;
320
    } else {
321
        s->intregm_pending &= ~s->cputimer_mbit;
322
        s->slaves[cpu]->intreg_pending &= ~s->cputimer_lbit;
323
    }
324

    
325
    slavio_check_interrupts(s);
326
}
327

    
328
static void slavio_intctl_save(QEMUFile *f, void *opaque)
329
{
330
    SLAVIO_INTCTLState *s = opaque;
331
    int i;
332

    
333
    for (i = 0; i < MAX_CPUS; i++) {
334
        qemu_put_be32s(f, &s->slaves[i]->intreg_pending);
335
    }
336
    qemu_put_be32s(f, &s->intregm_pending);
337
    qemu_put_be32s(f, &s->intregm_disabled);
338
    qemu_put_be32s(f, &s->target_cpu);
339
}
340

    
341
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
342
{
343
    SLAVIO_INTCTLState *s = opaque;
344
    int i;
345

    
346
    if (version_id != 1)
347
        return -EINVAL;
348

    
349
    for (i = 0; i < MAX_CPUS; i++) {
350
        qemu_get_be32s(f, &s->slaves[i]->intreg_pending);
351
    }
352
    qemu_get_be32s(f, &s->intregm_pending);
353
    qemu_get_be32s(f, &s->intregm_disabled);
354
    qemu_get_be32s(f, &s->target_cpu);
355
    slavio_check_interrupts(s);
356
    return 0;
357
}
358

    
359
static void slavio_intctl_reset(void *opaque)
360
{
361
    SLAVIO_INTCTLState *s = opaque;
362
    int i;
363

    
364
    for (i = 0; i < MAX_CPUS; i++) {
365
        s->slaves[i]->intreg_pending = 0;
366
    }
367
    s->intregm_disabled = ~MASTER_IRQ_MASK;
368
    s->intregm_pending = 0;
369
    s->target_cpu = 0;
370
    slavio_check_interrupts(s);
371
}
372

    
373
void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
374
                         const uint32_t *intbit_to_level,
375
                         qemu_irq **irq, qemu_irq **cpu_irq,
376
                         qemu_irq **parent_irq, unsigned int cputimer)
377
{
378
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
379
    SLAVIO_INTCTLState *s;
380
    SLAVIO_CPUINTCTLState *slave;
381

    
382
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
383

    
384
    s->intbit_to_level = intbit_to_level;
385
    for (i = 0; i < MAX_CPUS; i++) {
386
        slave = qemu_mallocz(sizeof(SLAVIO_CPUINTCTLState));
387

    
388
        slave->cpu = i;
389
        slave->master = s;
390

    
391
        slavio_intctl_io_memory = cpu_register_io_memory(slavio_intctl_mem_read,
392
                                                         slavio_intctl_mem_write,
393
                                                         slave);
394
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
395
                                     slavio_intctl_io_memory);
396

    
397
        s->slaves[i] = slave;
398
        s->cpu_irqs[i] = parent_irq[i];
399
    }
400

    
401
    slavio_intctlm_io_memory = cpu_register_io_memory(slavio_intctlm_mem_read,
402
                                                      slavio_intctlm_mem_write,
403
                                                      s);
404
    cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
405

    
406
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
407
                    slavio_intctl_load, s);
408
    qemu_register_reset(slavio_intctl_reset, 0, s);
409
    *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
410

    
411
    *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
412
    s->cputimer_mbit = 1 << cputimer;
413
    s->cputimer_lbit = 1 << intbit_to_level[cputimer];
414
    slavio_intctl_reset(s);
415
    return s;
416
}