Statistics
| Branch: | Revision:

root / hw / wdt_i6300esb.c @ 1eed09cb

History | View | Annotate | Download (14.5 kB)

1
/*
2
 * Virtual hardware watchdog.
3
 *
4
 * Copyright (C) 2009 Red Hat Inc.
5
 *
6
 * This program is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU General Public License
8
 * as published by the Free Software Foundation; either version 2
9
 * of the License, or (at your option) any later version.
10
 *
11
 * This program is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 * GNU General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU General Public License
17
 * along with this program; if not, write to the Free Software
18
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
19
 * USA.
20
 *
21
 * By Richard W.M. Jones (rjones@redhat.com).
22
 */
23

    
24
#include <inttypes.h>
25

    
26
#include "qemu-common.h"
27
#include "qemu-timer.h"
28
#include "watchdog.h"
29
#include "hw.h"
30
#include "isa.h"
31
#include "pc.h"
32
#include "pci.h"
33

    
34
/*#define I6300ESB_DEBUG 1*/
35

    
36
#ifdef I6300ESB_DEBUG
37
#define i6300esb_debug(fs,...) \
38
    fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
39
#else
40
#define i6300esb_debug(fs,...)
41
#endif
42

    
43
#ifndef PCI_DEVICE_ID_INTEL_ESB_9
44
#define PCI_DEVICE_ID_INTEL_ESB_9 0x25ab
45
#endif
46

    
47
/* PCI configuration registers */
48
#define ESB_CONFIG_REG  0x60            /* Config register                   */
49
#define ESB_LOCK_REG    0x68            /* WDT lock register                 */
50

    
51
/* Memory mapped registers (offset from base address) */
52
#define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
53
#define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
54
#define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
55
#define ESB_RELOAD_REG  0x0c            /* Reload register                   */
56

    
57
/* Lock register bits */
58
#define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
59
#define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
60
#define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
61

    
62
/* Config register bits */
63
#define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
64
#define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
65
#define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
66

    
67
/* Reload register bits */
68
#define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
69

    
70
/* Magic constants */
71
#define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
72
#define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
73

    
74
/* Device state. */
75
struct I6300State {
76
    PCIDevice dev;              /* PCI device state, must be first field. */
77

    
78
    int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
79
                                 * performed depends on the -watchdog-action
80
                                 * param passed on QEMU command line.
81
                                 */
82
    int clock_scale;            /* Clock scale. */
83
#define CLOCK_SCALE_1KHZ 0
84
#define CLOCK_SCALE_1MHZ 1
85

    
86
    int int_type;               /* Interrupt type generated. */
87
#define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
88
#define INT_TYPE_SMI 2
89
#define INT_TYPE_DISABLED 3
90

    
91
    int free_run;               /* If true, reload timer on expiry. */
92
    int locked;                 /* If true, enabled field cannot be changed. */
93
    int enabled;                /* If true, watchdog is enabled. */
94

    
95
    QEMUTimer *timer;           /* The actual watchdog timer. */
96

    
97
    uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
98
    uint32_t timer2_preload;
99
    int stage;                  /* Stage (1 or 2). */
100

    
101
    int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
102
                                 * registers, and we transition through
103
                                 * states 0 -> 1 -> 2 when this happens.
104
                                 */
105

    
106
    int previous_reboot_flag;   /* If the watchdog caused the previous
107
                                 * reboot, this flag will be set.
108
                                 */
109
};
110

    
111
typedef struct I6300State I6300State;
112

    
113
/* This function is called when the watchdog has either been enabled
114
 * (hence it starts counting down) or has been keep-alived.
115
 */
116
static void i6300esb_restart_timer(I6300State *d, int stage)
117
{
118
    int64_t timeout;
119

    
120
    if (!d->enabled)
121
        return;
122

    
123
    d->stage = stage;
124

    
125
    if (d->stage <= 1)
126
        timeout = d->timer1_preload;
127
    else
128
        timeout = d->timer2_preload;
129

    
130
    if (d->clock_scale == CLOCK_SCALE_1KHZ)
131
        timeout <<= 15;
132
    else
133
        timeout <<= 5;
134

    
135
    /* Get the timeout in units of ticks_per_sec. */
136
    timeout = ticks_per_sec * timeout / 33000000;
137

    
138
    i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
139

    
140
    qemu_mod_timer(d->timer, qemu_get_clock(vm_clock) + timeout);
141
}
142

    
143
/* This is called when the guest disables the watchdog. */
144
static void i6300esb_disable_timer(I6300State *d)
145
{
146
    i6300esb_debug("timer disabled\n");
147

    
148
    qemu_del_timer(d->timer);
149
}
150

    
151
static void i6300esb_reset(I6300State *d)
152
{
153
    /* XXX We should probably reset other parts of the state here,
154
     * but we should also reset our state on general machine reset
155
     * too.  For now just disable the timer so it doesn't fire
156
     * again after the reboot.
157
     */
158
    i6300esb_disable_timer(d);
159
}
160

    
161
/* This function is called when the watchdog expires.  Note that
162
 * the hardware has two timers, and so expiry happens in two stages.
163
 * If d->stage == 1 then we perform the first stage action (usually,
164
 * sending an interrupt) and then restart the timer again for the
165
 * second stage.  If the second stage expires then the watchdog
166
 * really has run out.
167
 */
168
static void i6300esb_timer_expired(void *vp)
169
{
170
    I6300State *d = (I6300State *) vp;
171

    
172
    i6300esb_debug("stage %d\n", d->stage);
173

    
174
    if (d->stage == 1) {
175
        /* What to do at the end of stage 1? */
176
        switch (d->int_type) {
177
        case INT_TYPE_IRQ:
178
            fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
179
            break;
180
        case INT_TYPE_SMI:
181
            fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
182
            break;
183
        }
184

    
185
        /* Start the second stage. */
186
        i6300esb_restart_timer(d, 2);
187
    } else {
188
        /* Second stage expired, reboot for real. */
189
        if (d->reboot_enabled) {
190
            d->previous_reboot_flag = 1;
191
            watchdog_perform_action(); /* This reboots, exits, etc */
192
            i6300esb_reset(d);
193
        }
194

    
195
        /* In "free running mode" we start stage 1 again. */
196
        if (d->free_run)
197
            i6300esb_restart_timer(d, 1);
198
    }
199
}
200

    
201
static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
202
                                  uint32_t data, int len)
203
{
204
    I6300State *d = (I6300State *) dev;
205
    int old;
206

    
207
    i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
208

    
209
    if (addr == ESB_CONFIG_REG && len == 2) {
210
        d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
211
        d->clock_scale =
212
            (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
213
        d->int_type = (data & ESB_WDT_INTTYPE);
214
    } else if (addr == ESB_LOCK_REG && len == 1) {
215
        if (!d->locked) {
216
            d->locked = (data & ESB_WDT_LOCK) != 0;
217
            d->free_run = (data & ESB_WDT_FUNC) != 0;
218
            old = d->enabled;
219
            d->enabled = (data & ESB_WDT_ENABLE) != 0;
220
            if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
221
                i6300esb_restart_timer(d, 1);
222
            else if (!d->enabled)
223
                i6300esb_disable_timer(d);
224
        }
225
    } else {
226
        pci_default_write_config(dev, addr, data, len);
227
    }
228
}
229

    
230
static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
231
{
232
    I6300State *d = (I6300State *) dev;
233
    uint32_t data;
234

    
235
    i6300esb_debug ("addr = %x, len = %d\n", addr, len);
236

    
237
    if (addr == ESB_CONFIG_REG && len == 2) {
238
        data =
239
            (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
240
            (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
241
            d->int_type;
242
        return data;
243
    } else if (addr == ESB_LOCK_REG && len == 1) {
244
        data =
245
            (d->free_run ? ESB_WDT_FUNC : 0) |
246
            (d->locked ? ESB_WDT_LOCK : 0) |
247
            (d->enabled ? ESB_WDT_ENABLE : 0);
248
        return data;
249
    } else {
250
        return pci_default_read_config(dev, addr, len);
251
    }
252
}
253

    
254
static uint32_t i6300esb_mem_readb(void *vp, target_phys_addr_t addr)
255
{
256
    i6300esb_debug ("addr = %x\n", (int) addr);
257

    
258
    return 0;
259
}
260

    
261
static uint32_t i6300esb_mem_readw(void *vp, target_phys_addr_t addr)
262
{
263
    uint32_t data = 0;
264
    I6300State *d = (I6300State *) vp;
265

    
266
    i6300esb_debug("addr = %x\n", (int) addr);
267

    
268
    if (addr == 0xc) {
269
        /* The previous reboot flag is really bit 9, but there is
270
         * a bug in the Linux driver where it thinks it's bit 12.
271
         * Set both.
272
         */
273
        data = d->previous_reboot_flag ? 0x1200 : 0;
274
    }
275

    
276
    return data;
277
}
278

    
279
static uint32_t i6300esb_mem_readl(void *vp, target_phys_addr_t addr)
280
{
281
    i6300esb_debug("addr = %x\n", (int) addr);
282

    
283
    return 0;
284
}
285

    
286
static void i6300esb_mem_writeb(void *vp, target_phys_addr_t addr, uint32_t val)
287
{
288
    I6300State *d = (I6300State *) vp;
289

    
290
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
291

    
292
    if (addr == 0xc && val == 0x80)
293
        d->unlock_state = 1;
294
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
295
        d->unlock_state = 2;
296
}
297

    
298
static void i6300esb_mem_writew(void *vp, target_phys_addr_t addr, uint32_t val)
299
{
300
    I6300State *d = (I6300State *) vp;
301

    
302
    i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
303

    
304
    if (addr == 0xc && val == 0x80)
305
        d->unlock_state = 1;
306
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
307
        d->unlock_state = 2;
308
    else {
309
        if (d->unlock_state == 2) {
310
            if (addr == 0xc) {
311
                if ((val & 0x100) != 0)
312
                    /* This is the "ping" from the userspace watchdog in
313
                     * the guest ...
314
                     */
315
                    i6300esb_restart_timer(d, 1);
316

    
317
                /* Setting bit 9 resets the previous reboot flag.
318
                 * There's a bug in the Linux driver where it sets
319
                 * bit 12 instead.
320
                 */
321
                if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
322
                    d->previous_reboot_flag = 0;
323
                }
324
            }
325

    
326
            d->unlock_state = 0;
327
        }
328
    }
329
}
330

    
331
static void i6300esb_mem_writel(void *vp, target_phys_addr_t addr, uint32_t val)
332
{
333
    I6300State *d = (I6300State *) vp;
334

    
335
    i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
336

    
337
    if (addr == 0xc && val == 0x80)
338
        d->unlock_state = 1;
339
    else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
340
        d->unlock_state = 2;
341
    else {
342
        if (d->unlock_state == 2) {
343
            if (addr == 0)
344
                d->timer1_preload = val & 0xfffff;
345
            else if (addr == 4)
346
                d->timer2_preload = val & 0xfffff;
347

    
348
            d->unlock_state = 0;
349
        }
350
    }
351
}
352

    
353
static void i6300esb_map(PCIDevice *dev, int region_num,
354
                         uint32_t addr, uint32_t size, int type)
355
{
356
    static CPUReadMemoryFunc *mem_read[3] = {
357
        i6300esb_mem_readb,
358
        i6300esb_mem_readw,
359
        i6300esb_mem_readl,
360
    };
361
    static CPUWriteMemoryFunc *mem_write[3] = {
362
        i6300esb_mem_writeb,
363
        i6300esb_mem_writew,
364
        i6300esb_mem_writel,
365
    };
366
    I6300State *d = (I6300State *) dev;
367
    int io_mem;
368

    
369
    i6300esb_debug("addr = %x, size = %x, type = %d\n", addr, size, type);
370

    
371
    io_mem = cpu_register_io_memory(mem_read, mem_write, d);
372
    cpu_register_physical_memory (addr, 0x10, io_mem);
373
    /* qemu_register_coalesced_mmio (addr, 0x10); ? */
374
}
375

    
376
static void i6300esb_save(QEMUFile *f, void *vp)
377
{
378
    I6300State *d = (I6300State *) vp;
379

    
380
    pci_device_save(&d->dev, f);
381
    qemu_put_be32(f, d->reboot_enabled);
382
    qemu_put_be32(f, d->clock_scale);
383
    qemu_put_be32(f, d->int_type);
384
    qemu_put_be32(f, d->free_run);
385
    qemu_put_be32(f, d->locked);
386
    qemu_put_be32(f, d->enabled);
387
    qemu_put_timer(f, d->timer);
388
    qemu_put_be32(f, d->timer1_preload);
389
    qemu_put_be32(f, d->timer2_preload);
390
    qemu_put_be32(f, d->stage);
391
    qemu_put_be32(f, d->unlock_state);
392
    qemu_put_be32(f, d->previous_reboot_flag);
393
}
394

    
395
static int i6300esb_load(QEMUFile *f, void *vp, int version)
396
{
397
    I6300State *d = (I6300State *) vp;
398

    
399
    if (version != sizeof (I6300State))
400
        return -EINVAL;
401

    
402
    pci_device_load(&d->dev, f);
403
    d->reboot_enabled = qemu_get_be32(f);
404
    d->clock_scale = qemu_get_be32(f);
405
    d->int_type = qemu_get_be32(f);
406
    d->free_run = qemu_get_be32(f);
407
    d->locked = qemu_get_be32(f);
408
    d->enabled = qemu_get_be32(f);
409
    qemu_get_timer(f, d->timer);
410
    d->timer1_preload = qemu_get_be32(f);
411
    d->timer2_preload = qemu_get_be32(f);
412
    d->stage = qemu_get_be32(f);
413
    d->unlock_state = qemu_get_be32(f);
414
    d->previous_reboot_flag = qemu_get_be32(f);
415

    
416
    return 0;
417
}
418

    
419
/* Create and initialize a virtual Intel 6300ESB during PC creation. */
420
static void i6300esb_pc_init(PCIBus *pci_bus)
421
{
422
    I6300State *d;
423
    uint8_t *pci_conf;
424

    
425
    if (!pci_bus) {
426
        fprintf(stderr, "wdt_i6300esb: no PCI bus in this machine\n");
427
        return;
428
    }
429

    
430
    d = (I6300State *)
431
        pci_register_device (pci_bus, "i6300esb_wdt", sizeof (I6300State),
432
                             -1,
433
                             i6300esb_config_read, i6300esb_config_write);
434

    
435
    d->reboot_enabled = 1;
436
    d->clock_scale = CLOCK_SCALE_1KHZ;
437
    d->int_type = INT_TYPE_IRQ;
438
    d->free_run = 0;
439
    d->locked = 0;
440
    d->enabled = 0;
441
    d->timer = qemu_new_timer(vm_clock, i6300esb_timer_expired, d);
442
    d->timer1_preload = 0xfffff;
443
    d->timer2_preload = 0xfffff;
444
    d->stage = 1;
445
    d->unlock_state = 0;
446
    d->previous_reboot_flag = 0;
447

    
448
    pci_conf = d->dev.config;
449
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
450
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_ESB_9);
451
    pci_config_set_class(pci_conf, PCI_CLASS_SYSTEM_OTHER);
452
    pci_conf[0x0e] = 0x00;
453

    
454
    pci_register_io_region(&d->dev, 0, 0x10,
455
                            PCI_ADDRESS_SPACE_MEM, i6300esb_map);
456

    
457
    register_savevm("i6300esb_wdt", -1, sizeof(I6300State),
458
                     i6300esb_save, i6300esb_load, d);
459
}
460

    
461
static WatchdogTimerModel model = {
462
    .wdt_name = "i6300esb",
463
    .wdt_description = "Intel 6300ESB",
464
    .wdt_pc_init = i6300esb_pc_init,
465
};
466

    
467
void wdt_i6300esb_init(void)
468
{
469
    watchdog_add_model(&model);
470
}