Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 1f5c3f8c

History | View | Annotate | Download (71.8 kB)

1 386405f7 bellard
\input texinfo @c -*- texinfo -*-
2 debc7065 bellard
@c %**start of header
3 debc7065 bellard
@setfilename qemu-doc.info
4 e080e785 Stefan Weil
5 e080e785 Stefan Weil
@documentlanguage en
6 e080e785 Stefan Weil
@documentencoding UTF-8
7 e080e785 Stefan Weil
8 8f40c388 bellard
@settitle QEMU Emulator User Documentation
9 debc7065 bellard
@exampleindent 0
10 debc7065 bellard
@paragraphindent 0
11 debc7065 bellard
@c %**end of header
12 386405f7 bellard
13 a1a32b05 Stefan Weil
@ifinfo
14 a1a32b05 Stefan Weil
@direntry
15 a1a32b05 Stefan Weil
* QEMU: (qemu-doc).    The QEMU Emulator User Documentation.
16 a1a32b05 Stefan Weil
@end direntry
17 a1a32b05 Stefan Weil
@end ifinfo
18 a1a32b05 Stefan Weil
19 0806e3f6 bellard
@iftex
20 386405f7 bellard
@titlepage
21 386405f7 bellard
@sp 7
22 8f40c388 bellard
@center @titlefont{QEMU Emulator}
23 debc7065 bellard
@sp 1
24 debc7065 bellard
@center @titlefont{User Documentation}
25 386405f7 bellard
@sp 3
26 386405f7 bellard
@end titlepage
27 0806e3f6 bellard
@end iftex
28 386405f7 bellard
29 debc7065 bellard
@ifnottex
30 debc7065 bellard
@node Top
31 debc7065 bellard
@top
32 debc7065 bellard
33 debc7065 bellard
@menu
34 debc7065 bellard
* Introduction::
35 debc7065 bellard
* Installation::
36 debc7065 bellard
* QEMU PC System emulator::
37 debc7065 bellard
* QEMU System emulator for non PC targets::
38 83195237 bellard
* QEMU User space emulator::
39 debc7065 bellard
* compilation:: Compilation from the sources
40 7544a042 Stefan Weil
* License::
41 debc7065 bellard
* Index::
42 debc7065 bellard
@end menu
43 debc7065 bellard
@end ifnottex
44 debc7065 bellard
45 debc7065 bellard
@contents
46 debc7065 bellard
47 debc7065 bellard
@node Introduction
48 386405f7 bellard
@chapter Introduction
49 386405f7 bellard
50 debc7065 bellard
@menu
51 debc7065 bellard
* intro_features:: Features
52 debc7065 bellard
@end menu
53 debc7065 bellard
54 debc7065 bellard
@node intro_features
55 322d0c66 bellard
@section Features
56 386405f7 bellard
57 1f673135 bellard
QEMU is a FAST! processor emulator using dynamic translation to
58 1f673135 bellard
achieve good emulation speed.
59 1eb20527 bellard
60 1eb20527 bellard
QEMU has two operating modes:
61 0806e3f6 bellard
62 d7e5edca Stefan Weil
@itemize
63 7544a042 Stefan Weil
@cindex operating modes
64 0806e3f6 bellard
65 5fafdf24 ths
@item
66 7544a042 Stefan Weil
@cindex system emulation
67 1f673135 bellard
Full system emulation. In this mode, QEMU emulates a full system (for
68 3f9f3aa1 bellard
example a PC), including one or several processors and various
69 3f9f3aa1 bellard
peripherals. It can be used to launch different Operating Systems
70 3f9f3aa1 bellard
without rebooting the PC or to debug system code.
71 1eb20527 bellard
72 5fafdf24 ths
@item
73 7544a042 Stefan Weil
@cindex user mode emulation
74 83195237 bellard
User mode emulation. In this mode, QEMU can launch
75 83195237 bellard
processes compiled for one CPU on another CPU. It can be used to
76 1f673135 bellard
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
77 1f673135 bellard
to ease cross-compilation and cross-debugging.
78 1eb20527 bellard
79 1eb20527 bellard
@end itemize
80 1eb20527 bellard
81 7c3fc84d bellard
QEMU can run without an host kernel driver and yet gives acceptable
82 5fafdf24 ths
performance.
83 322d0c66 bellard
84 52c00a5f bellard
For system emulation, the following hardware targets are supported:
85 52c00a5f bellard
@itemize
86 7544a042 Stefan Weil
@cindex emulated target systems
87 7544a042 Stefan Weil
@cindex supported target systems
88 9d0a8e6f bellard
@item PC (x86 or x86_64 processor)
89 3f9f3aa1 bellard
@item ISA PC (old style PC without PCI bus)
90 52c00a5f bellard
@item PREP (PowerPC processor)
91 d45952a0 aurel32
@item G3 Beige PowerMac (PowerPC processor)
92 9d0a8e6f bellard
@item Mac99 PowerMac (PowerPC processor, in progress)
93 ee76f82e blueswir1
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
94 c7ba218d blueswir1
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
95 d9aedc32 ths
@item Malta board (32-bit and 64-bit MIPS processors)
96 88cb0a02 aurel32
@item MIPS Magnum (64-bit MIPS processor)
97 9ee6e8bb pbrook
@item ARM Integrator/CP (ARM)
98 9ee6e8bb pbrook
@item ARM Versatile baseboard (ARM)
99 0ef849d7 Paul Brook
@item ARM RealView Emulation/Platform baseboard (ARM)
100 ef4c3856 balrog
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
101 9ee6e8bb pbrook
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
102 9ee6e8bb pbrook
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
103 707e011b pbrook
@item Freescale MCF5208EVB (ColdFire V2).
104 209a4e69 pbrook
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
105 02645926 balrog
@item Palm Tungsten|E PDA (OMAP310 processor)
106 c30bb264 balrog
@item N800 and N810 tablets (OMAP2420 processor)
107 57cd6e97 balrog
@item MusicPal (MV88W8618 ARM processor)
108 ef4c3856 balrog
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
109 ef4c3856 balrog
@item Siemens SX1 smartphone (OMAP310 processor)
110 4af39611 Paul Brook
@item Syborg SVP base model (ARM Cortex-A8).
111 48c50a62 Edgar E. Iglesias
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
112 48c50a62 Edgar E. Iglesias
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
113 52c00a5f bellard
@end itemize
114 386405f7 bellard
115 7544a042 Stefan Weil
@cindex supported user mode targets
116 7544a042 Stefan Weil
For user emulation, x86 (32 and 64 bit), PowerPC (32 and 64 bit),
117 7544a042 Stefan Weil
ARM, MIPS (32 bit only), Sparc (32 and 64 bit),
118 7544a042 Stefan Weil
Alpha, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
119 0806e3f6 bellard
120 debc7065 bellard
@node Installation
121 5b9f457a bellard
@chapter Installation
122 5b9f457a bellard
123 15a34c63 bellard
If you want to compile QEMU yourself, see @ref{compilation}.
124 15a34c63 bellard
125 debc7065 bellard
@menu
126 debc7065 bellard
* install_linux::   Linux
127 debc7065 bellard
* install_windows:: Windows
128 debc7065 bellard
* install_mac::     Macintosh
129 debc7065 bellard
@end menu
130 debc7065 bellard
131 debc7065 bellard
@node install_linux
132 1f673135 bellard
@section Linux
133 7544a042 Stefan Weil
@cindex installation (Linux)
134 1f673135 bellard
135 7c3fc84d bellard
If a precompiled package is available for your distribution - you just
136 7c3fc84d bellard
have to install it. Otherwise, see @ref{compilation}.
137 5b9f457a bellard
138 debc7065 bellard
@node install_windows
139 1f673135 bellard
@section Windows
140 7544a042 Stefan Weil
@cindex installation (Windows)
141 8cd0ac2f bellard
142 15a34c63 bellard
Download the experimental binary installer at
143 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
144 7544a042 Stefan Weil
TODO (no longer available)
145 d691f669 bellard
146 debc7065 bellard
@node install_mac
147 1f673135 bellard
@section Mac OS X
148 d691f669 bellard
149 15a34c63 bellard
Download the experimental binary installer at
150 debc7065 bellard
@url{http://www.free.oszoo.org/@/download.html}.
151 7544a042 Stefan Weil
TODO (no longer available)
152 df0f11a0 bellard
153 debc7065 bellard
@node QEMU PC System emulator
154 3f9f3aa1 bellard
@chapter QEMU PC System emulator
155 7544a042 Stefan Weil
@cindex system emulation (PC)
156 1eb20527 bellard
157 debc7065 bellard
@menu
158 debc7065 bellard
* pcsys_introduction:: Introduction
159 debc7065 bellard
* pcsys_quickstart::   Quick Start
160 debc7065 bellard
* sec_invocation::     Invocation
161 debc7065 bellard
* pcsys_keys::         Keys
162 debc7065 bellard
* pcsys_monitor::      QEMU Monitor
163 debc7065 bellard
* disk_images::        Disk Images
164 debc7065 bellard
* pcsys_network::      Network emulation
165 debc7065 bellard
* direct_linux_boot::  Direct Linux Boot
166 debc7065 bellard
* pcsys_usb::          USB emulation
167 f858dcae ths
* vnc_security::       VNC security
168 debc7065 bellard
* gdb_usage::          GDB usage
169 debc7065 bellard
* pcsys_os_specific::  Target OS specific information
170 debc7065 bellard
@end menu
171 debc7065 bellard
172 debc7065 bellard
@node pcsys_introduction
173 0806e3f6 bellard
@section Introduction
174 0806e3f6 bellard
175 0806e3f6 bellard
@c man begin DESCRIPTION
176 0806e3f6 bellard
177 3f9f3aa1 bellard
The QEMU PC System emulator simulates the
178 3f9f3aa1 bellard
following peripherals:
179 0806e3f6 bellard
180 0806e3f6 bellard
@itemize @minus
181 5fafdf24 ths
@item
182 15a34c63 bellard
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
183 0806e3f6 bellard
@item
184 15a34c63 bellard
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
185 15a34c63 bellard
extensions (hardware level, including all non standard modes).
186 0806e3f6 bellard
@item
187 0806e3f6 bellard
PS/2 mouse and keyboard
188 5fafdf24 ths
@item
189 15a34c63 bellard
2 PCI IDE interfaces with hard disk and CD-ROM support
190 1f673135 bellard
@item
191 1f673135 bellard
Floppy disk
192 5fafdf24 ths
@item
193 3a2eeac0 Stefan Weil
PCI and ISA network adapters
194 0806e3f6 bellard
@item
195 05d5818c bellard
Serial ports
196 05d5818c bellard
@item
197 c0fe3827 bellard
Creative SoundBlaster 16 sound card
198 c0fe3827 bellard
@item
199 c0fe3827 bellard
ENSONIQ AudioPCI ES1370 sound card
200 c0fe3827 bellard
@item
201 e5c9a13e balrog
Intel 82801AA AC97 Audio compatible sound card
202 e5c9a13e balrog
@item
203 c0fe3827 bellard
Adlib(OPL2) - Yamaha YM3812 compatible chip
204 b389dbfb bellard
@item
205 26463dbc balrog
Gravis Ultrasound GF1 sound card
206 26463dbc balrog
@item
207 cc53d26d malc
CS4231A compatible sound card
208 cc53d26d malc
@item
209 b389dbfb bellard
PCI UHCI USB controller and a virtual USB hub.
210 0806e3f6 bellard
@end itemize
211 0806e3f6 bellard
212 3f9f3aa1 bellard
SMP is supported with up to 255 CPUs.
213 3f9f3aa1 bellard
214 1d1f8c33 malc
Note that adlib, gus and cs4231a are only available when QEMU was
215 1d1f8c33 malc
configured with --audio-card-list option containing the name(s) of
216 e5178e8d malc
required card(s).
217 c0fe3827 bellard
218 15a34c63 bellard
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
219 15a34c63 bellard
VGA BIOS.
220 15a34c63 bellard
221 c0fe3827 bellard
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
222 c0fe3827 bellard
223 26463dbc balrog
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
224 26463dbc balrog
by Tibor "TS" Schรผtz.
225 423d65f4 balrog
226 720036a5 malc
Not that, by default, GUS shares IRQ(7) with parallel ports and so
227 720036a5 malc
qemu must be told to not have parallel ports to have working GUS
228 720036a5 malc
229 720036a5 malc
@example
230 720036a5 malc
qemu dos.img -soundhw gus -parallel none
231 720036a5 malc
@end example
232 720036a5 malc
233 720036a5 malc
Alternatively:
234 720036a5 malc
@example
235 720036a5 malc
qemu dos.img -device gus,irq=5
236 720036a5 malc
@end example
237 720036a5 malc
238 720036a5 malc
Or some other unclaimed IRQ.
239 720036a5 malc
240 cc53d26d malc
CS4231A is the chip used in Windows Sound System and GUSMAX products
241 cc53d26d malc
242 0806e3f6 bellard
@c man end
243 0806e3f6 bellard
244 debc7065 bellard
@node pcsys_quickstart
245 1eb20527 bellard
@section Quick Start
246 7544a042 Stefan Weil
@cindex quick start
247 1eb20527 bellard
248 285dc330 bellard
Download and uncompress the linux image (@file{linux.img}) and type:
249 0806e3f6 bellard
250 0806e3f6 bellard
@example
251 285dc330 bellard
qemu linux.img
252 0806e3f6 bellard
@end example
253 0806e3f6 bellard
254 0806e3f6 bellard
Linux should boot and give you a prompt.
255 0806e3f6 bellard
256 6cc721cf bellard
@node sec_invocation
257 ec410fc9 bellard
@section Invocation
258 ec410fc9 bellard
259 ec410fc9 bellard
@example
260 0806e3f6 bellard
@c man begin SYNOPSIS
261 89dfe898 ths
usage: qemu [options] [@var{disk_image}]
262 0806e3f6 bellard
@c man end
263 ec410fc9 bellard
@end example
264 ec410fc9 bellard
265 0806e3f6 bellard
@c man begin OPTIONS
266 d2c639d6 blueswir1
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
267 d2c639d6 blueswir1
targets do not need a disk image.
268 ec410fc9 bellard
269 5824d651 blueswir1
@include qemu-options.texi
270 ec410fc9 bellard
271 3e11db9a bellard
@c man end
272 3e11db9a bellard
273 debc7065 bellard
@node pcsys_keys
274 3e11db9a bellard
@section Keys
275 3e11db9a bellard
276 3e11db9a bellard
@c man begin OPTIONS
277 3e11db9a bellard
278 a1b74fe8 bellard
During the graphical emulation, you can use the following keys:
279 a1b74fe8 bellard
@table @key
280 f9859310 bellard
@item Ctrl-Alt-f
281 7544a042 Stefan Weil
@kindex Ctrl-Alt-f
282 a1b74fe8 bellard
Toggle full screen
283 a0a821a4 bellard
284 c4a735f9 malc
@item Ctrl-Alt-u
285 7544a042 Stefan Weil
@kindex Ctrl-Alt-u
286 c4a735f9 malc
Restore the screen's un-scaled dimensions
287 c4a735f9 malc
288 f9859310 bellard
@item Ctrl-Alt-n
289 7544a042 Stefan Weil
@kindex Ctrl-Alt-n
290 a0a821a4 bellard
Switch to virtual console 'n'. Standard console mappings are:
291 a0a821a4 bellard
@table @emph
292 a0a821a4 bellard
@item 1
293 a0a821a4 bellard
Target system display
294 a0a821a4 bellard
@item 2
295 a0a821a4 bellard
Monitor
296 a0a821a4 bellard
@item 3
297 a0a821a4 bellard
Serial port
298 a1b74fe8 bellard
@end table
299 a1b74fe8 bellard
300 f9859310 bellard
@item Ctrl-Alt
301 7544a042 Stefan Weil
@kindex Ctrl-Alt
302 a0a821a4 bellard
Toggle mouse and keyboard grab.
303 a0a821a4 bellard
@end table
304 a0a821a4 bellard
305 7544a042 Stefan Weil
@kindex Ctrl-Up
306 7544a042 Stefan Weil
@kindex Ctrl-Down
307 7544a042 Stefan Weil
@kindex Ctrl-PageUp
308 7544a042 Stefan Weil
@kindex Ctrl-PageDown
309 3e11db9a bellard
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
310 3e11db9a bellard
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
311 3e11db9a bellard
312 7544a042 Stefan Weil
@kindex Ctrl-a h
313 a0a821a4 bellard
During emulation, if you are using the @option{-nographic} option, use
314 a0a821a4 bellard
@key{Ctrl-a h} to get terminal commands:
315 ec410fc9 bellard
316 ec410fc9 bellard
@table @key
317 a1b74fe8 bellard
@item Ctrl-a h
318 7544a042 Stefan Weil
@kindex Ctrl-a h
319 d2c639d6 blueswir1
@item Ctrl-a ?
320 7544a042 Stefan Weil
@kindex Ctrl-a ?
321 ec410fc9 bellard
Print this help
322 3b46e624 ths
@item Ctrl-a x
323 7544a042 Stefan Weil
@kindex Ctrl-a x
324 366dfc52 ths
Exit emulator
325 3b46e624 ths
@item Ctrl-a s
326 7544a042 Stefan Weil
@kindex Ctrl-a s
327 1f47a922 bellard
Save disk data back to file (if -snapshot)
328 20d8a3ed ths
@item Ctrl-a t
329 7544a042 Stefan Weil
@kindex Ctrl-a t
330 d2c639d6 blueswir1
Toggle console timestamps
331 a1b74fe8 bellard
@item Ctrl-a b
332 7544a042 Stefan Weil
@kindex Ctrl-a b
333 1f673135 bellard
Send break (magic sysrq in Linux)
334 a1b74fe8 bellard
@item Ctrl-a c
335 7544a042 Stefan Weil
@kindex Ctrl-a c
336 1f673135 bellard
Switch between console and monitor
337 a1b74fe8 bellard
@item Ctrl-a Ctrl-a
338 7544a042 Stefan Weil
@kindex Ctrl-a a
339 a1b74fe8 bellard
Send Ctrl-a
340 ec410fc9 bellard
@end table
341 0806e3f6 bellard
@c man end
342 0806e3f6 bellard
343 0806e3f6 bellard
@ignore
344 0806e3f6 bellard
345 1f673135 bellard
@c man begin SEEALSO
346 1f673135 bellard
The HTML documentation of QEMU for more precise information and Linux
347 1f673135 bellard
user mode emulator invocation.
348 1f673135 bellard
@c man end
349 1f673135 bellard
350 1f673135 bellard
@c man begin AUTHOR
351 1f673135 bellard
Fabrice Bellard
352 1f673135 bellard
@c man end
353 1f673135 bellard
354 1f673135 bellard
@end ignore
355 1f673135 bellard
356 debc7065 bellard
@node pcsys_monitor
357 1f673135 bellard
@section QEMU Monitor
358 7544a042 Stefan Weil
@cindex QEMU monitor
359 1f673135 bellard
360 1f673135 bellard
The QEMU monitor is used to give complex commands to the QEMU
361 1f673135 bellard
emulator. You can use it to:
362 1f673135 bellard
363 1f673135 bellard
@itemize @minus
364 1f673135 bellard
365 1f673135 bellard
@item
366 e598752a ths
Remove or insert removable media images
367 89dfe898 ths
(such as CD-ROM or floppies).
368 1f673135 bellard
369 5fafdf24 ths
@item
370 1f673135 bellard
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
371 1f673135 bellard
from a disk file.
372 1f673135 bellard
373 1f673135 bellard
@item Inspect the VM state without an external debugger.
374 1f673135 bellard
375 1f673135 bellard
@end itemize
376 1f673135 bellard
377 1f673135 bellard
@subsection Commands
378 1f673135 bellard
379 1f673135 bellard
The following commands are available:
380 1f673135 bellard
381 2313086a Blue Swirl
@include qemu-monitor.texi
382 0806e3f6 bellard
383 1f673135 bellard
@subsection Integer expressions
384 1f673135 bellard
385 1f673135 bellard
The monitor understands integers expressions for every integer
386 1f673135 bellard
argument. You can use register names to get the value of specifics
387 1f673135 bellard
CPU registers by prefixing them with @emph{$}.
388 ec410fc9 bellard
389 1f47a922 bellard
@node disk_images
390 1f47a922 bellard
@section Disk Images
391 1f47a922 bellard
392 acd935ef bellard
Since version 0.6.1, QEMU supports many disk image formats, including
393 acd935ef bellard
growable disk images (their size increase as non empty sectors are
394 13a2e80f bellard
written), compressed and encrypted disk images. Version 0.8.3 added
395 13a2e80f bellard
the new qcow2 disk image format which is essential to support VM
396 13a2e80f bellard
snapshots.
397 1f47a922 bellard
398 debc7065 bellard
@menu
399 debc7065 bellard
* disk_images_quickstart::    Quick start for disk image creation
400 debc7065 bellard
* disk_images_snapshot_mode:: Snapshot mode
401 13a2e80f bellard
* vm_snapshots::              VM snapshots
402 debc7065 bellard
* qemu_img_invocation::       qemu-img Invocation
403 975b092b ths
* qemu_nbd_invocation::       qemu-nbd Invocation
404 19cb3738 bellard
* host_drives::               Using host drives
405 debc7065 bellard
* disk_images_fat_images::    Virtual FAT disk images
406 75818250 ths
* disk_images_nbd::           NBD access
407 debc7065 bellard
@end menu
408 debc7065 bellard
409 debc7065 bellard
@node disk_images_quickstart
410 acd935ef bellard
@subsection Quick start for disk image creation
411 acd935ef bellard
412 acd935ef bellard
You can create a disk image with the command:
413 1f47a922 bellard
@example
414 acd935ef bellard
qemu-img create myimage.img mysize
415 1f47a922 bellard
@end example
416 acd935ef bellard
where @var{myimage.img} is the disk image filename and @var{mysize} is its
417 acd935ef bellard
size in kilobytes. You can add an @code{M} suffix to give the size in
418 acd935ef bellard
megabytes and a @code{G} suffix for gigabytes.
419 acd935ef bellard
420 debc7065 bellard
See @ref{qemu_img_invocation} for more information.
421 1f47a922 bellard
422 debc7065 bellard
@node disk_images_snapshot_mode
423 1f47a922 bellard
@subsection Snapshot mode
424 1f47a922 bellard
425 1f47a922 bellard
If you use the option @option{-snapshot}, all disk images are
426 1f47a922 bellard
considered as read only. When sectors in written, they are written in
427 1f47a922 bellard
a temporary file created in @file{/tmp}. You can however force the
428 acd935ef bellard
write back to the raw disk images by using the @code{commit} monitor
429 acd935ef bellard
command (or @key{C-a s} in the serial console).
430 1f47a922 bellard
431 13a2e80f bellard
@node vm_snapshots
432 13a2e80f bellard
@subsection VM snapshots
433 13a2e80f bellard
434 13a2e80f bellard
VM snapshots are snapshots of the complete virtual machine including
435 13a2e80f bellard
CPU state, RAM, device state and the content of all the writable
436 13a2e80f bellard
disks. In order to use VM snapshots, you must have at least one non
437 13a2e80f bellard
removable and writable block device using the @code{qcow2} disk image
438 13a2e80f bellard
format. Normally this device is the first virtual hard drive.
439 13a2e80f bellard
440 13a2e80f bellard
Use the monitor command @code{savevm} to create a new VM snapshot or
441 13a2e80f bellard
replace an existing one. A human readable name can be assigned to each
442 19d36792 bellard
snapshot in addition to its numerical ID.
443 13a2e80f bellard
444 13a2e80f bellard
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
445 13a2e80f bellard
a VM snapshot. @code{info snapshots} lists the available snapshots
446 13a2e80f bellard
with their associated information:
447 13a2e80f bellard
448 13a2e80f bellard
@example
449 13a2e80f bellard
(qemu) info snapshots
450 13a2e80f bellard
Snapshot devices: hda
451 13a2e80f bellard
Snapshot list (from hda):
452 13a2e80f bellard
ID        TAG                 VM SIZE                DATE       VM CLOCK
453 13a2e80f bellard
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
454 13a2e80f bellard
2                                 40M 2006-08-06 12:43:29   00:00:18.633
455 13a2e80f bellard
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
456 13a2e80f bellard
@end example
457 13a2e80f bellard
458 13a2e80f bellard
A VM snapshot is made of a VM state info (its size is shown in
459 13a2e80f bellard
@code{info snapshots}) and a snapshot of every writable disk image.
460 13a2e80f bellard
The VM state info is stored in the first @code{qcow2} non removable
461 13a2e80f bellard
and writable block device. The disk image snapshots are stored in
462 13a2e80f bellard
every disk image. The size of a snapshot in a disk image is difficult
463 13a2e80f bellard
to evaluate and is not shown by @code{info snapshots} because the
464 13a2e80f bellard
associated disk sectors are shared among all the snapshots to save
465 19d36792 bellard
disk space (otherwise each snapshot would need a full copy of all the
466 19d36792 bellard
disk images).
467 13a2e80f bellard
468 13a2e80f bellard
When using the (unrelated) @code{-snapshot} option
469 13a2e80f bellard
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
470 13a2e80f bellard
but they are deleted as soon as you exit QEMU.
471 13a2e80f bellard
472 13a2e80f bellard
VM snapshots currently have the following known limitations:
473 13a2e80f bellard
@itemize
474 5fafdf24 ths
@item
475 13a2e80f bellard
They cannot cope with removable devices if they are removed or
476 13a2e80f bellard
inserted after a snapshot is done.
477 5fafdf24 ths
@item
478 13a2e80f bellard
A few device drivers still have incomplete snapshot support so their
479 13a2e80f bellard
state is not saved or restored properly (in particular USB).
480 13a2e80f bellard
@end itemize
481 13a2e80f bellard
482 acd935ef bellard
@node qemu_img_invocation
483 acd935ef bellard
@subsection @code{qemu-img} Invocation
484 1f47a922 bellard
485 acd935ef bellard
@include qemu-img.texi
486 05efe46e bellard
487 975b092b ths
@node qemu_nbd_invocation
488 975b092b ths
@subsection @code{qemu-nbd} Invocation
489 975b092b ths
490 975b092b ths
@include qemu-nbd.texi
491 975b092b ths
492 19cb3738 bellard
@node host_drives
493 19cb3738 bellard
@subsection Using host drives
494 19cb3738 bellard
495 19cb3738 bellard
In addition to disk image files, QEMU can directly access host
496 19cb3738 bellard
devices. We describe here the usage for QEMU version >= 0.8.3.
497 19cb3738 bellard
498 19cb3738 bellard
@subsubsection Linux
499 19cb3738 bellard
500 19cb3738 bellard
On Linux, you can directly use the host device filename instead of a
501 4be456f1 ths
disk image filename provided you have enough privileges to access
502 19cb3738 bellard
it. For example, use @file{/dev/cdrom} to access to the CDROM or
503 19cb3738 bellard
@file{/dev/fd0} for the floppy.
504 19cb3738 bellard
505 f542086d bellard
@table @code
506 19cb3738 bellard
@item CD
507 19cb3738 bellard
You can specify a CDROM device even if no CDROM is loaded. QEMU has
508 19cb3738 bellard
specific code to detect CDROM insertion or removal. CDROM ejection by
509 19cb3738 bellard
the guest OS is supported. Currently only data CDs are supported.
510 19cb3738 bellard
@item Floppy
511 19cb3738 bellard
You can specify a floppy device even if no floppy is loaded. Floppy
512 19cb3738 bellard
removal is currently not detected accurately (if you change floppy
513 19cb3738 bellard
without doing floppy access while the floppy is not loaded, the guest
514 19cb3738 bellard
OS will think that the same floppy is loaded).
515 19cb3738 bellard
@item Hard disks
516 19cb3738 bellard
Hard disks can be used. Normally you must specify the whole disk
517 19cb3738 bellard
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
518 19cb3738 bellard
see it as a partitioned disk. WARNING: unless you know what you do, it
519 19cb3738 bellard
is better to only make READ-ONLY accesses to the hard disk otherwise
520 19cb3738 bellard
you may corrupt your host data (use the @option{-snapshot} command
521 19cb3738 bellard
line option or modify the device permissions accordingly).
522 19cb3738 bellard
@end table
523 19cb3738 bellard
524 19cb3738 bellard
@subsubsection Windows
525 19cb3738 bellard
526 01781963 bellard
@table @code
527 01781963 bellard
@item CD
528 4be456f1 ths
The preferred syntax is the drive letter (e.g. @file{d:}). The
529 01781963 bellard
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
530 01781963 bellard
supported as an alias to the first CDROM drive.
531 19cb3738 bellard
532 e598752a ths
Currently there is no specific code to handle removable media, so it
533 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
534 19cb3738 bellard
change or eject media.
535 01781963 bellard
@item Hard disks
536 89dfe898 ths
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
537 01781963 bellard
where @var{N} is the drive number (0 is the first hard disk).
538 01781963 bellard
539 01781963 bellard
WARNING: unless you know what you do, it is better to only make
540 01781963 bellard
READ-ONLY accesses to the hard disk otherwise you may corrupt your
541 01781963 bellard
host data (use the @option{-snapshot} command line so that the
542 01781963 bellard
modifications are written in a temporary file).
543 01781963 bellard
@end table
544 01781963 bellard
545 19cb3738 bellard
546 19cb3738 bellard
@subsubsection Mac OS X
547 19cb3738 bellard
548 5fafdf24 ths
@file{/dev/cdrom} is an alias to the first CDROM.
549 19cb3738 bellard
550 e598752a ths
Currently there is no specific code to handle removable media, so it
551 19cb3738 bellard
is better to use the @code{change} or @code{eject} monitor commands to
552 19cb3738 bellard
change or eject media.
553 19cb3738 bellard
554 debc7065 bellard
@node disk_images_fat_images
555 2c6cadd4 bellard
@subsection Virtual FAT disk images
556 2c6cadd4 bellard
557 2c6cadd4 bellard
QEMU can automatically create a virtual FAT disk image from a
558 2c6cadd4 bellard
directory tree. In order to use it, just type:
559 2c6cadd4 bellard
560 5fafdf24 ths
@example
561 2c6cadd4 bellard
qemu linux.img -hdb fat:/my_directory
562 2c6cadd4 bellard
@end example
563 2c6cadd4 bellard
564 2c6cadd4 bellard
Then you access access to all the files in the @file{/my_directory}
565 2c6cadd4 bellard
directory without having to copy them in a disk image or to export
566 2c6cadd4 bellard
them via SAMBA or NFS. The default access is @emph{read-only}.
567 2c6cadd4 bellard
568 2c6cadd4 bellard
Floppies can be emulated with the @code{:floppy:} option:
569 2c6cadd4 bellard
570 5fafdf24 ths
@example
571 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:/my_directory
572 2c6cadd4 bellard
@end example
573 2c6cadd4 bellard
574 2c6cadd4 bellard
A read/write support is available for testing (beta stage) with the
575 2c6cadd4 bellard
@code{:rw:} option:
576 2c6cadd4 bellard
577 5fafdf24 ths
@example
578 2c6cadd4 bellard
qemu linux.img -fda fat:floppy:rw:/my_directory
579 2c6cadd4 bellard
@end example
580 2c6cadd4 bellard
581 2c6cadd4 bellard
What you should @emph{never} do:
582 2c6cadd4 bellard
@itemize
583 2c6cadd4 bellard
@item use non-ASCII filenames ;
584 2c6cadd4 bellard
@item use "-snapshot" together with ":rw:" ;
585 85b2c688 bellard
@item expect it to work when loadvm'ing ;
586 85b2c688 bellard
@item write to the FAT directory on the host system while accessing it with the guest system.
587 2c6cadd4 bellard
@end itemize
588 2c6cadd4 bellard
589 75818250 ths
@node disk_images_nbd
590 75818250 ths
@subsection NBD access
591 75818250 ths
592 75818250 ths
QEMU can access directly to block device exported using the Network Block Device
593 75818250 ths
protocol.
594 75818250 ths
595 75818250 ths
@example
596 75818250 ths
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
597 75818250 ths
@end example
598 75818250 ths
599 75818250 ths
If the NBD server is located on the same host, you can use an unix socket instead
600 75818250 ths
of an inet socket:
601 75818250 ths
602 75818250 ths
@example
603 75818250 ths
qemu linux.img -hdb nbd:unix:/tmp/my_socket
604 75818250 ths
@end example
605 75818250 ths
606 75818250 ths
In this case, the block device must be exported using qemu-nbd:
607 75818250 ths
608 75818250 ths
@example
609 75818250 ths
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
610 75818250 ths
@end example
611 75818250 ths
612 75818250 ths
The use of qemu-nbd allows to share a disk between several guests:
613 75818250 ths
@example
614 75818250 ths
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
615 75818250 ths
@end example
616 75818250 ths
617 75818250 ths
and then you can use it with two guests:
618 75818250 ths
@example
619 75818250 ths
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
620 75818250 ths
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
621 75818250 ths
@end example
622 75818250 ths
623 debc7065 bellard
@node pcsys_network
624 9d4fb82e bellard
@section Network emulation
625 9d4fb82e bellard
626 4be456f1 ths
QEMU can simulate several network cards (PCI or ISA cards on the PC
627 41d03949 bellard
target) and can connect them to an arbitrary number of Virtual Local
628 41d03949 bellard
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
629 41d03949 bellard
VLAN. VLAN can be connected between separate instances of QEMU to
630 4be456f1 ths
simulate large networks. For simpler usage, a non privileged user mode
631 41d03949 bellard
network stack can replace the TAP device to have a basic network
632 41d03949 bellard
connection.
633 41d03949 bellard
634 41d03949 bellard
@subsection VLANs
635 9d4fb82e bellard
636 41d03949 bellard
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
637 41d03949 bellard
connection between several network devices. These devices can be for
638 41d03949 bellard
example QEMU virtual Ethernet cards or virtual Host ethernet devices
639 41d03949 bellard
(TAP devices).
640 9d4fb82e bellard
641 41d03949 bellard
@subsection Using TAP network interfaces
642 41d03949 bellard
643 41d03949 bellard
This is the standard way to connect QEMU to a real network. QEMU adds
644 41d03949 bellard
a virtual network device on your host (called @code{tapN}), and you
645 41d03949 bellard
can then configure it as if it was a real ethernet card.
646 9d4fb82e bellard
647 8f40c388 bellard
@subsubsection Linux host
648 8f40c388 bellard
649 9d4fb82e bellard
As an example, you can download the @file{linux-test-xxx.tar.gz}
650 9d4fb82e bellard
archive and copy the script @file{qemu-ifup} in @file{/etc} and
651 9d4fb82e bellard
configure properly @code{sudo} so that the command @code{ifconfig}
652 9d4fb82e bellard
contained in @file{qemu-ifup} can be executed as root. You must verify
653 41d03949 bellard
that your host kernel supports the TAP network interfaces: the
654 9d4fb82e bellard
device @file{/dev/net/tun} must be present.
655 9d4fb82e bellard
656 ee0f4751 bellard
See @ref{sec_invocation} to have examples of command lines using the
657 ee0f4751 bellard
TAP network interfaces.
658 9d4fb82e bellard
659 8f40c388 bellard
@subsubsection Windows host
660 8f40c388 bellard
661 8f40c388 bellard
There is a virtual ethernet driver for Windows 2000/XP systems, called
662 8f40c388 bellard
TAP-Win32. But it is not included in standard QEMU for Windows,
663 8f40c388 bellard
so you will need to get it separately. It is part of OpenVPN package,
664 8f40c388 bellard
so download OpenVPN from : @url{http://openvpn.net/}.
665 8f40c388 bellard
666 9d4fb82e bellard
@subsection Using the user mode network stack
667 9d4fb82e bellard
668 41d03949 bellard
By using the option @option{-net user} (default configuration if no
669 41d03949 bellard
@option{-net} option is specified), QEMU uses a completely user mode
670 4be456f1 ths
network stack (you don't need root privilege to use the virtual
671 41d03949 bellard
network). The virtual network configuration is the following:
672 9d4fb82e bellard
673 9d4fb82e bellard
@example
674 9d4fb82e bellard
675 41d03949 bellard
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
676 41d03949 bellard
                           |          (10.0.2.2)
677 9d4fb82e bellard
                           |
678 2518bd0d bellard
                           ---->  DNS server (10.0.2.3)
679 3b46e624 ths
                           |
680 2518bd0d bellard
                           ---->  SMB server (10.0.2.4)
681 9d4fb82e bellard
@end example
682 9d4fb82e bellard
683 9d4fb82e bellard
The QEMU VM behaves as if it was behind a firewall which blocks all
684 9d4fb82e bellard
incoming connections. You can use a DHCP client to automatically
685 41d03949 bellard
configure the network in the QEMU VM. The DHCP server assign addresses
686 41d03949 bellard
to the hosts starting from 10.0.2.15.
687 9d4fb82e bellard
688 9d4fb82e bellard
In order to check that the user mode network is working, you can ping
689 9d4fb82e bellard
the address 10.0.2.2 and verify that you got an address in the range
690 9d4fb82e bellard
10.0.2.x from the QEMU virtual DHCP server.
691 9d4fb82e bellard
692 b415a407 bellard
Note that @code{ping} is not supported reliably to the internet as it
693 4be456f1 ths
would require root privileges. It means you can only ping the local
694 b415a407 bellard
router (10.0.2.2).
695 b415a407 bellard
696 9bf05444 bellard
When using the built-in TFTP server, the router is also the TFTP
697 9bf05444 bellard
server.
698 9bf05444 bellard
699 9bf05444 bellard
When using the @option{-redir} option, TCP or UDP connections can be
700 9bf05444 bellard
redirected from the host to the guest. It allows for example to
701 9bf05444 bellard
redirect X11, telnet or SSH connections.
702 443f1376 bellard
703 41d03949 bellard
@subsection Connecting VLANs between QEMU instances
704 41d03949 bellard
705 41d03949 bellard
Using the @option{-net socket} option, it is possible to make VLANs
706 41d03949 bellard
that span several QEMU instances. See @ref{sec_invocation} to have a
707 41d03949 bellard
basic example.
708 41d03949 bellard
709 9d4fb82e bellard
@node direct_linux_boot
710 9d4fb82e bellard
@section Direct Linux Boot
711 1f673135 bellard
712 1f673135 bellard
This section explains how to launch a Linux kernel inside QEMU without
713 1f673135 bellard
having to make a full bootable image. It is very useful for fast Linux
714 ee0f4751 bellard
kernel testing.
715 1f673135 bellard
716 ee0f4751 bellard
The syntax is:
717 1f673135 bellard
@example
718 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
719 1f673135 bellard
@end example
720 1f673135 bellard
721 ee0f4751 bellard
Use @option{-kernel} to provide the Linux kernel image and
722 ee0f4751 bellard
@option{-append} to give the kernel command line arguments. The
723 ee0f4751 bellard
@option{-initrd} option can be used to provide an INITRD image.
724 1f673135 bellard
725 ee0f4751 bellard
When using the direct Linux boot, a disk image for the first hard disk
726 ee0f4751 bellard
@file{hda} is required because its boot sector is used to launch the
727 ee0f4751 bellard
Linux kernel.
728 1f673135 bellard
729 ee0f4751 bellard
If you do not need graphical output, you can disable it and redirect
730 ee0f4751 bellard
the virtual serial port and the QEMU monitor to the console with the
731 ee0f4751 bellard
@option{-nographic} option. The typical command line is:
732 1f673135 bellard
@example
733 ee0f4751 bellard
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
734 ee0f4751 bellard
     -append "root=/dev/hda console=ttyS0" -nographic
735 1f673135 bellard
@end example
736 1f673135 bellard
737 ee0f4751 bellard
Use @key{Ctrl-a c} to switch between the serial console and the
738 ee0f4751 bellard
monitor (@pxref{pcsys_keys}).
739 1f673135 bellard
740 debc7065 bellard
@node pcsys_usb
741 b389dbfb bellard
@section USB emulation
742 b389dbfb bellard
743 0aff66b5 pbrook
QEMU emulates a PCI UHCI USB controller. You can virtually plug
744 0aff66b5 pbrook
virtual USB devices or real host USB devices (experimental, works only
745 0aff66b5 pbrook
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
746 f542086d bellard
as necessary to connect multiple USB devices.
747 b389dbfb bellard
748 0aff66b5 pbrook
@menu
749 0aff66b5 pbrook
* usb_devices::
750 0aff66b5 pbrook
* host_usb_devices::
751 0aff66b5 pbrook
@end menu
752 0aff66b5 pbrook
@node usb_devices
753 0aff66b5 pbrook
@subsection Connecting USB devices
754 b389dbfb bellard
755 0aff66b5 pbrook
USB devices can be connected with the @option{-usbdevice} commandline option
756 0aff66b5 pbrook
or the @code{usb_add} monitor command.  Available devices are:
757 b389dbfb bellard
758 db380c06 balrog
@table @code
759 db380c06 balrog
@item mouse
760 0aff66b5 pbrook
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
761 db380c06 balrog
@item tablet
762 c6d46c20 bellard
Pointer device that uses absolute coordinates (like a touchscreen).
763 0aff66b5 pbrook
This means qemu is able to report the mouse position without having
764 0aff66b5 pbrook
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
765 db380c06 balrog
@item disk:@var{file}
766 0aff66b5 pbrook
Mass storage device based on @var{file} (@pxref{disk_images})
767 db380c06 balrog
@item host:@var{bus.addr}
768 0aff66b5 pbrook
Pass through the host device identified by @var{bus.addr}
769 0aff66b5 pbrook
(Linux only)
770 db380c06 balrog
@item host:@var{vendor_id:product_id}
771 0aff66b5 pbrook
Pass through the host device identified by @var{vendor_id:product_id}
772 0aff66b5 pbrook
(Linux only)
773 db380c06 balrog
@item wacom-tablet
774 f6d2a316 balrog
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
775 f6d2a316 balrog
above but it can be used with the tslib library because in addition to touch
776 f6d2a316 balrog
coordinates it reports touch pressure.
777 db380c06 balrog
@item keyboard
778 47b2d338 balrog
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
779 db380c06 balrog
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
780 db380c06 balrog
Serial converter. This emulates an FTDI FT232BM chip connected to host character
781 db380c06 balrog
device @var{dev}. The available character devices are the same as for the
782 db380c06 balrog
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
783 a11d070e balrog
used to override the default 0403:6001. For instance, 
784 db380c06 balrog
@example
785 db380c06 balrog
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
786 db380c06 balrog
@end example
787 db380c06 balrog
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
788 db380c06 balrog
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
789 2e4d9fb1 aurel32
@item braille
790 2e4d9fb1 aurel32
Braille device.  This will use BrlAPI to display the braille output on a real
791 2e4d9fb1 aurel32
or fake device.
792 9ad97e65 balrog
@item net:@var{options}
793 9ad97e65 balrog
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
794 9ad97e65 balrog
specifies NIC options as with @code{-net nic,}@var{options} (see description).
795 9ad97e65 balrog
For instance, user-mode networking can be used with
796 6c9f886c balrog
@example
797 9ad97e65 balrog
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
798 6c9f886c balrog
@end example
799 6c9f886c balrog
Currently this cannot be used in machines that support PCI NICs.
800 2d564691 balrog
@item bt[:@var{hci-type}]
801 2d564691 balrog
Bluetooth dongle whose type is specified in the same format as with
802 2d564691 balrog
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
803 2d564691 balrog
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
804 2d564691 balrog
This USB device implements the USB Transport Layer of HCI.  Example
805 2d564691 balrog
usage:
806 2d564691 balrog
@example
807 2d564691 balrog
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
808 2d564691 balrog
@end example
809 0aff66b5 pbrook
@end table
810 b389dbfb bellard
811 0aff66b5 pbrook
@node host_usb_devices
812 b389dbfb bellard
@subsection Using host USB devices on a Linux host
813 b389dbfb bellard
814 b389dbfb bellard
WARNING: this is an experimental feature. QEMU will slow down when
815 b389dbfb bellard
using it. USB devices requiring real time streaming (i.e. USB Video
816 b389dbfb bellard
Cameras) are not supported yet.
817 b389dbfb bellard
818 b389dbfb bellard
@enumerate
819 5fafdf24 ths
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
820 b389dbfb bellard
is actually using the USB device. A simple way to do that is simply to
821 b389dbfb bellard
disable the corresponding kernel module by renaming it from @file{mydriver.o}
822 b389dbfb bellard
to @file{mydriver.o.disabled}.
823 b389dbfb bellard
824 b389dbfb bellard
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
825 b389dbfb bellard
@example
826 b389dbfb bellard
ls /proc/bus/usb
827 b389dbfb bellard
001  devices  drivers
828 b389dbfb bellard
@end example
829 b389dbfb bellard
830 b389dbfb bellard
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
831 b389dbfb bellard
@example
832 b389dbfb bellard
chown -R myuid /proc/bus/usb
833 b389dbfb bellard
@end example
834 b389dbfb bellard
835 b389dbfb bellard
@item Launch QEMU and do in the monitor:
836 5fafdf24 ths
@example
837 b389dbfb bellard
info usbhost
838 b389dbfb bellard
  Device 1.2, speed 480 Mb/s
839 b389dbfb bellard
    Class 00: USB device 1234:5678, USB DISK
840 b389dbfb bellard
@end example
841 b389dbfb bellard
You should see the list of the devices you can use (Never try to use
842 b389dbfb bellard
hubs, it won't work).
843 b389dbfb bellard
844 b389dbfb bellard
@item Add the device in QEMU by using:
845 5fafdf24 ths
@example
846 b389dbfb bellard
usb_add host:1234:5678
847 b389dbfb bellard
@end example
848 b389dbfb bellard
849 b389dbfb bellard
Normally the guest OS should report that a new USB device is
850 b389dbfb bellard
plugged. You can use the option @option{-usbdevice} to do the same.
851 b389dbfb bellard
852 b389dbfb bellard
@item Now you can try to use the host USB device in QEMU.
853 b389dbfb bellard
854 b389dbfb bellard
@end enumerate
855 b389dbfb bellard
856 b389dbfb bellard
When relaunching QEMU, you may have to unplug and plug again the USB
857 b389dbfb bellard
device to make it work again (this is a bug).
858 b389dbfb bellard
859 f858dcae ths
@node vnc_security
860 f858dcae ths
@section VNC security
861 f858dcae ths
862 f858dcae ths
The VNC server capability provides access to the graphical console
863 f858dcae ths
of the guest VM across the network. This has a number of security
864 f858dcae ths
considerations depending on the deployment scenarios.
865 f858dcae ths
866 f858dcae ths
@menu
867 f858dcae ths
* vnc_sec_none::
868 f858dcae ths
* vnc_sec_password::
869 f858dcae ths
* vnc_sec_certificate::
870 f858dcae ths
* vnc_sec_certificate_verify::
871 f858dcae ths
* vnc_sec_certificate_pw::
872 2f9606b3 aliguori
* vnc_sec_sasl::
873 2f9606b3 aliguori
* vnc_sec_certificate_sasl::
874 f858dcae ths
* vnc_generate_cert::
875 2f9606b3 aliguori
* vnc_setup_sasl::
876 f858dcae ths
@end menu
877 f858dcae ths
@node vnc_sec_none
878 f858dcae ths
@subsection Without passwords
879 f858dcae ths
880 f858dcae ths
The simplest VNC server setup does not include any form of authentication.
881 f858dcae ths
For this setup it is recommended to restrict it to listen on a UNIX domain
882 f858dcae ths
socket only. For example
883 f858dcae ths
884 f858dcae ths
@example
885 f858dcae ths
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
886 f858dcae ths
@end example
887 f858dcae ths
888 f858dcae ths
This ensures that only users on local box with read/write access to that
889 f858dcae ths
path can access the VNC server. To securely access the VNC server from a
890 f858dcae ths
remote machine, a combination of netcat+ssh can be used to provide a secure
891 f858dcae ths
tunnel.
892 f858dcae ths
893 f858dcae ths
@node vnc_sec_password
894 f858dcae ths
@subsection With passwords
895 f858dcae ths
896 f858dcae ths
The VNC protocol has limited support for password based authentication. Since
897 f858dcae ths
the protocol limits passwords to 8 characters it should not be considered
898 f858dcae ths
to provide high security. The password can be fairly easily brute-forced by
899 f858dcae ths
a client making repeat connections. For this reason, a VNC server using password
900 f858dcae ths
authentication should be restricted to only listen on the loopback interface
901 34a3d239 blueswir1
or UNIX domain sockets. Password authentication is requested with the @code{password}
902 f858dcae ths
option, and then once QEMU is running the password is set with the monitor. Until
903 f858dcae ths
the monitor is used to set the password all clients will be rejected.
904 f858dcae ths
905 f858dcae ths
@example
906 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
907 f858dcae ths
(qemu) change vnc password
908 f858dcae ths
Password: ********
909 f858dcae ths
(qemu)
910 f858dcae ths
@end example
911 f858dcae ths
912 f858dcae ths
@node vnc_sec_certificate
913 f858dcae ths
@subsection With x509 certificates
914 f858dcae ths
915 f858dcae ths
The QEMU VNC server also implements the VeNCrypt extension allowing use of
916 f858dcae ths
TLS for encryption of the session, and x509 certificates for authentication.
917 f858dcae ths
The use of x509 certificates is strongly recommended, because TLS on its
918 f858dcae ths
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
919 f858dcae ths
support provides a secure session, but no authentication. This allows any
920 f858dcae ths
client to connect, and provides an encrypted session.
921 f858dcae ths
922 f858dcae ths
@example
923 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
924 f858dcae ths
@end example
925 f858dcae ths
926 f858dcae ths
In the above example @code{/etc/pki/qemu} should contain at least three files,
927 f858dcae ths
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
928 f858dcae ths
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
929 f858dcae ths
NB the @code{server-key.pem} file should be protected with file mode 0600 to
930 f858dcae ths
only be readable by the user owning it.
931 f858dcae ths
932 f858dcae ths
@node vnc_sec_certificate_verify
933 f858dcae ths
@subsection With x509 certificates and client verification
934 f858dcae ths
935 f858dcae ths
Certificates can also provide a means to authenticate the client connecting.
936 f858dcae ths
The server will request that the client provide a certificate, which it will
937 f858dcae ths
then validate against the CA certificate. This is a good choice if deploying
938 f858dcae ths
in an environment with a private internal certificate authority.
939 f858dcae ths
940 f858dcae ths
@example
941 f858dcae ths
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
942 f858dcae ths
@end example
943 f858dcae ths
944 f858dcae ths
945 f858dcae ths
@node vnc_sec_certificate_pw
946 f858dcae ths
@subsection With x509 certificates, client verification and passwords
947 f858dcae ths
948 f858dcae ths
Finally, the previous method can be combined with VNC password authentication
949 f858dcae ths
to provide two layers of authentication for clients.
950 f858dcae ths
951 f858dcae ths
@example
952 f858dcae ths
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
953 f858dcae ths
(qemu) change vnc password
954 f858dcae ths
Password: ********
955 f858dcae ths
(qemu)
956 f858dcae ths
@end example
957 f858dcae ths
958 2f9606b3 aliguori
959 2f9606b3 aliguori
@node vnc_sec_sasl
960 2f9606b3 aliguori
@subsection With SASL authentication
961 2f9606b3 aliguori
962 2f9606b3 aliguori
The SASL authentication method is a VNC extension, that provides an
963 2f9606b3 aliguori
easily extendable, pluggable authentication method. This allows for
964 2f9606b3 aliguori
integration with a wide range of authentication mechanisms, such as
965 2f9606b3 aliguori
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
966 2f9606b3 aliguori
The strength of the authentication depends on the exact mechanism
967 2f9606b3 aliguori
configured. If the chosen mechanism also provides a SSF layer, then
968 2f9606b3 aliguori
it will encrypt the datastream as well.
969 2f9606b3 aliguori
970 2f9606b3 aliguori
Refer to the later docs on how to choose the exact SASL mechanism
971 2f9606b3 aliguori
used for authentication, but assuming use of one supporting SSF,
972 2f9606b3 aliguori
then QEMU can be launched with:
973 2f9606b3 aliguori
974 2f9606b3 aliguori
@example
975 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
976 2f9606b3 aliguori
@end example
977 2f9606b3 aliguori
978 2f9606b3 aliguori
@node vnc_sec_certificate_sasl
979 2f9606b3 aliguori
@subsection With x509 certificates and SASL authentication
980 2f9606b3 aliguori
981 2f9606b3 aliguori
If the desired SASL authentication mechanism does not supported
982 2f9606b3 aliguori
SSF layers, then it is strongly advised to run it in combination
983 2f9606b3 aliguori
with TLS and x509 certificates. This provides securely encrypted
984 2f9606b3 aliguori
data stream, avoiding risk of compromising of the security
985 2f9606b3 aliguori
credentials. This can be enabled, by combining the 'sasl' option
986 2f9606b3 aliguori
with the aforementioned TLS + x509 options:
987 2f9606b3 aliguori
988 2f9606b3 aliguori
@example
989 2f9606b3 aliguori
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
990 2f9606b3 aliguori
@end example
991 2f9606b3 aliguori
992 2f9606b3 aliguori
993 f858dcae ths
@node vnc_generate_cert
994 f858dcae ths
@subsection Generating certificates for VNC
995 f858dcae ths
996 f858dcae ths
The GNU TLS packages provides a command called @code{certtool} which can
997 f858dcae ths
be used to generate certificates and keys in PEM format. At a minimum it
998 f858dcae ths
is neccessary to setup a certificate authority, and issue certificates to
999 f858dcae ths
each server. If using certificates for authentication, then each client
1000 f858dcae ths
will also need to be issued a certificate. The recommendation is for the
1001 f858dcae ths
server to keep its certificates in either @code{/etc/pki/qemu} or for
1002 f858dcae ths
unprivileged users in @code{$HOME/.pki/qemu}.
1003 f858dcae ths
1004 f858dcae ths
@menu
1005 f858dcae ths
* vnc_generate_ca::
1006 f858dcae ths
* vnc_generate_server::
1007 f858dcae ths
* vnc_generate_client::
1008 f858dcae ths
@end menu
1009 f858dcae ths
@node vnc_generate_ca
1010 f858dcae ths
@subsubsection Setup the Certificate Authority
1011 f858dcae ths
1012 f858dcae ths
This step only needs to be performed once per organization / organizational
1013 f858dcae ths
unit. First the CA needs a private key. This key must be kept VERY secret
1014 f858dcae ths
and secure. If this key is compromised the entire trust chain of the certificates
1015 f858dcae ths
issued with it is lost.
1016 f858dcae ths
1017 f858dcae ths
@example
1018 f858dcae ths
# certtool --generate-privkey > ca-key.pem
1019 f858dcae ths
@end example
1020 f858dcae ths
1021 f858dcae ths
A CA needs to have a public certificate. For simplicity it can be a self-signed
1022 f858dcae ths
certificate, or one issue by a commercial certificate issuing authority. To
1023 f858dcae ths
generate a self-signed certificate requires one core piece of information, the
1024 f858dcae ths
name of the organization.
1025 f858dcae ths
1026 f858dcae ths
@example
1027 f858dcae ths
# cat > ca.info <<EOF
1028 f858dcae ths
cn = Name of your organization
1029 f858dcae ths
ca
1030 f858dcae ths
cert_signing_key
1031 f858dcae ths
EOF
1032 f858dcae ths
# certtool --generate-self-signed \
1033 f858dcae ths
           --load-privkey ca-key.pem
1034 f858dcae ths
           --template ca.info \
1035 f858dcae ths
           --outfile ca-cert.pem
1036 f858dcae ths
@end example
1037 f858dcae ths
1038 f858dcae ths
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1039 f858dcae ths
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1040 f858dcae ths
1041 f858dcae ths
@node vnc_generate_server
1042 f858dcae ths
@subsubsection Issuing server certificates
1043 f858dcae ths
1044 f858dcae ths
Each server (or host) needs to be issued with a key and certificate. When connecting
1045 f858dcae ths
the certificate is sent to the client which validates it against the CA certificate.
1046 f858dcae ths
The core piece of information for a server certificate is the hostname. This should
1047 f858dcae ths
be the fully qualified hostname that the client will connect with, since the client
1048 f858dcae ths
will typically also verify the hostname in the certificate. On the host holding the
1049 f858dcae ths
secure CA private key:
1050 f858dcae ths
1051 f858dcae ths
@example
1052 f858dcae ths
# cat > server.info <<EOF
1053 f858dcae ths
organization = Name  of your organization
1054 f858dcae ths
cn = server.foo.example.com
1055 f858dcae ths
tls_www_server
1056 f858dcae ths
encryption_key
1057 f858dcae ths
signing_key
1058 f858dcae ths
EOF
1059 f858dcae ths
# certtool --generate-privkey > server-key.pem
1060 f858dcae ths
# certtool --generate-certificate \
1061 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1062 f858dcae ths
           --load-ca-privkey ca-key.pem \
1063 f858dcae ths
           --load-privkey server server-key.pem \
1064 f858dcae ths
           --template server.info \
1065 f858dcae ths
           --outfile server-cert.pem
1066 f858dcae ths
@end example
1067 f858dcae ths
1068 f858dcae ths
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1069 f858dcae ths
to the server for which they were generated. The @code{server-key.pem} is security
1070 f858dcae ths
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1071 f858dcae ths
1072 f858dcae ths
@node vnc_generate_client
1073 f858dcae ths
@subsubsection Issuing client certificates
1074 f858dcae ths
1075 f858dcae ths
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1076 f858dcae ths
certificates as its authentication mechanism, each client also needs to be issued
1077 f858dcae ths
a certificate. The client certificate contains enough metadata to uniquely identify
1078 f858dcae ths
the client, typically organization, state, city, building, etc. On the host holding
1079 f858dcae ths
the secure CA private key:
1080 f858dcae ths
1081 f858dcae ths
@example
1082 f858dcae ths
# cat > client.info <<EOF
1083 f858dcae ths
country = GB
1084 f858dcae ths
state = London
1085 f858dcae ths
locality = London
1086 f858dcae ths
organiazation = Name of your organization
1087 f858dcae ths
cn = client.foo.example.com
1088 f858dcae ths
tls_www_client
1089 f858dcae ths
encryption_key
1090 f858dcae ths
signing_key
1091 f858dcae ths
EOF
1092 f858dcae ths
# certtool --generate-privkey > client-key.pem
1093 f858dcae ths
# certtool --generate-certificate \
1094 f858dcae ths
           --load-ca-certificate ca-cert.pem \
1095 f858dcae ths
           --load-ca-privkey ca-key.pem \
1096 f858dcae ths
           --load-privkey client-key.pem \
1097 f858dcae ths
           --template client.info \
1098 f858dcae ths
           --outfile client-cert.pem
1099 f858dcae ths
@end example
1100 f858dcae ths
1101 f858dcae ths
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1102 f858dcae ths
copied to the client for which they were generated.
1103 f858dcae ths
1104 2f9606b3 aliguori
1105 2f9606b3 aliguori
@node vnc_setup_sasl
1106 2f9606b3 aliguori
1107 2f9606b3 aliguori
@subsection Configuring SASL mechanisms
1108 2f9606b3 aliguori
1109 2f9606b3 aliguori
The following documentation assumes use of the Cyrus SASL implementation on a
1110 2f9606b3 aliguori
Linux host, but the principals should apply to any other SASL impl. When SASL
1111 2f9606b3 aliguori
is enabled, the mechanism configuration will be loaded from system default
1112 2f9606b3 aliguori
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1113 2f9606b3 aliguori
unprivileged user, an environment variable SASL_CONF_PATH can be used
1114 2f9606b3 aliguori
to make it search alternate locations for the service config.
1115 2f9606b3 aliguori
1116 2f9606b3 aliguori
The default configuration might contain
1117 2f9606b3 aliguori
1118 2f9606b3 aliguori
@example
1119 2f9606b3 aliguori
mech_list: digest-md5
1120 2f9606b3 aliguori
sasldb_path: /etc/qemu/passwd.db
1121 2f9606b3 aliguori
@end example
1122 2f9606b3 aliguori
1123 2f9606b3 aliguori
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1124 2f9606b3 aliguori
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1125 2f9606b3 aliguori
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1126 2f9606b3 aliguori
command. While this mechanism is easy to configure and use, it is not
1127 2f9606b3 aliguori
considered secure by modern standards, so only suitable for developers /
1128 2f9606b3 aliguori
ad-hoc testing.
1129 2f9606b3 aliguori
1130 2f9606b3 aliguori
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1131 2f9606b3 aliguori
mechanism
1132 2f9606b3 aliguori
1133 2f9606b3 aliguori
@example
1134 2f9606b3 aliguori
mech_list: gssapi
1135 2f9606b3 aliguori
keytab: /etc/qemu/krb5.tab
1136 2f9606b3 aliguori
@end example
1137 2f9606b3 aliguori
1138 2f9606b3 aliguori
For this to work the administrator of your KDC must generate a Kerberos
1139 2f9606b3 aliguori
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1140 2f9606b3 aliguori
replacing 'somehost.example.com' with the fully qualified host name of the
1141 2f9606b3 aliguori
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1142 2f9606b3 aliguori
1143 2f9606b3 aliguori
Other configurations will be left as an exercise for the reader. It should
1144 2f9606b3 aliguori
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1145 2f9606b3 aliguori
encryption. For all other mechanisms, VNC should always be configured to
1146 2f9606b3 aliguori
use TLS and x509 certificates to protect security credentials from snooping.
1147 2f9606b3 aliguori
1148 0806e3f6 bellard
@node gdb_usage
1149 da415d54 bellard
@section GDB usage
1150 da415d54 bellard
1151 da415d54 bellard
QEMU has a primitive support to work with gdb, so that you can do
1152 0806e3f6 bellard
'Ctrl-C' while the virtual machine is running and inspect its state.
1153 da415d54 bellard
1154 9d4520d0 bellard
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1155 da415d54 bellard
gdb connection:
1156 da415d54 bellard
@example
1157 debc7065 bellard
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1158 debc7065 bellard
       -append "root=/dev/hda"
1159 da415d54 bellard
Connected to host network interface: tun0
1160 da415d54 bellard
Waiting gdb connection on port 1234
1161 da415d54 bellard
@end example
1162 da415d54 bellard
1163 da415d54 bellard
Then launch gdb on the 'vmlinux' executable:
1164 da415d54 bellard
@example
1165 da415d54 bellard
> gdb vmlinux
1166 da415d54 bellard
@end example
1167 da415d54 bellard
1168 da415d54 bellard
In gdb, connect to QEMU:
1169 da415d54 bellard
@example
1170 6c9bf893 bellard
(gdb) target remote localhost:1234
1171 da415d54 bellard
@end example
1172 da415d54 bellard
1173 da415d54 bellard
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1174 da415d54 bellard
@example
1175 da415d54 bellard
(gdb) c
1176 da415d54 bellard
@end example
1177 da415d54 bellard
1178 0806e3f6 bellard
Here are some useful tips in order to use gdb on system code:
1179 0806e3f6 bellard
1180 0806e3f6 bellard
@enumerate
1181 0806e3f6 bellard
@item
1182 0806e3f6 bellard
Use @code{info reg} to display all the CPU registers.
1183 0806e3f6 bellard
@item
1184 0806e3f6 bellard
Use @code{x/10i $eip} to display the code at the PC position.
1185 0806e3f6 bellard
@item
1186 0806e3f6 bellard
Use @code{set architecture i8086} to dump 16 bit code. Then use
1187 294e8637 bellard
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1188 0806e3f6 bellard
@end enumerate
1189 0806e3f6 bellard
1190 60897d36 edgar_igl
Advanced debugging options:
1191 60897d36 edgar_igl
1192 60897d36 edgar_igl
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1193 94d45e44 edgar_igl
@table @code
1194 60897d36 edgar_igl
@item maintenance packet qqemu.sstepbits
1195 60897d36 edgar_igl
1196 60897d36 edgar_igl
This will display the MASK bits used to control the single stepping IE:
1197 60897d36 edgar_igl
@example
1198 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstepbits
1199 60897d36 edgar_igl
sending: "qqemu.sstepbits"
1200 60897d36 edgar_igl
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1201 60897d36 edgar_igl
@end example
1202 60897d36 edgar_igl
@item maintenance packet qqemu.sstep
1203 60897d36 edgar_igl
1204 60897d36 edgar_igl
This will display the current value of the mask used when single stepping IE:
1205 60897d36 edgar_igl
@example
1206 60897d36 edgar_igl
(gdb) maintenance packet qqemu.sstep
1207 60897d36 edgar_igl
sending: "qqemu.sstep"
1208 60897d36 edgar_igl
received: "0x7"
1209 60897d36 edgar_igl
@end example
1210 60897d36 edgar_igl
@item maintenance packet Qqemu.sstep=HEX_VALUE
1211 60897d36 edgar_igl
1212 60897d36 edgar_igl
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1213 60897d36 edgar_igl
@example
1214 60897d36 edgar_igl
(gdb) maintenance packet Qqemu.sstep=0x5
1215 60897d36 edgar_igl
sending: "qemu.sstep=0x5"
1216 60897d36 edgar_igl
received: "OK"
1217 60897d36 edgar_igl
@end example
1218 94d45e44 edgar_igl
@end table
1219 60897d36 edgar_igl
1220 debc7065 bellard
@node pcsys_os_specific
1221 1a084f3d bellard
@section Target OS specific information
1222 1a084f3d bellard
1223 1a084f3d bellard
@subsection Linux
1224 1a084f3d bellard
1225 15a34c63 bellard
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1226 15a34c63 bellard
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1227 15a34c63 bellard
color depth in the guest and the host OS.
1228 1a084f3d bellard
1229 e3371e62 bellard
When using a 2.6 guest Linux kernel, you should add the option
1230 e3371e62 bellard
@code{clock=pit} on the kernel command line because the 2.6 Linux
1231 e3371e62 bellard
kernels make very strict real time clock checks by default that QEMU
1232 e3371e62 bellard
cannot simulate exactly.
1233 e3371e62 bellard
1234 7c3fc84d bellard
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1235 7c3fc84d bellard
not activated because QEMU is slower with this patch. The QEMU
1236 7c3fc84d bellard
Accelerator Module is also much slower in this case. Earlier Fedora
1237 4be456f1 ths
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1238 7c3fc84d bellard
patch by default. Newer kernels don't have it.
1239 7c3fc84d bellard
1240 1a084f3d bellard
@subsection Windows
1241 1a084f3d bellard
1242 1a084f3d bellard
If you have a slow host, using Windows 95 is better as it gives the
1243 1a084f3d bellard
best speed. Windows 2000 is also a good choice.
1244 1a084f3d bellard
1245 e3371e62 bellard
@subsubsection SVGA graphic modes support
1246 e3371e62 bellard
1247 e3371e62 bellard
QEMU emulates a Cirrus Logic GD5446 Video
1248 15a34c63 bellard
card. All Windows versions starting from Windows 95 should recognize
1249 15a34c63 bellard
and use this graphic card. For optimal performances, use 16 bit color
1250 15a34c63 bellard
depth in the guest and the host OS.
1251 1a084f3d bellard
1252 3cb0853a bellard
If you are using Windows XP as guest OS and if you want to use high
1253 3cb0853a bellard
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1254 3cb0853a bellard
1280x1024x16), then you should use the VESA VBE virtual graphic card
1255 3cb0853a bellard
(option @option{-std-vga}).
1256 3cb0853a bellard
1257 e3371e62 bellard
@subsubsection CPU usage reduction
1258 e3371e62 bellard
1259 e3371e62 bellard
Windows 9x does not correctly use the CPU HLT
1260 15a34c63 bellard
instruction. The result is that it takes host CPU cycles even when
1261 15a34c63 bellard
idle. You can install the utility from
1262 15a34c63 bellard
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1263 15a34c63 bellard
problem. Note that no such tool is needed for NT, 2000 or XP.
1264 1a084f3d bellard
1265 9d0a8e6f bellard
@subsubsection Windows 2000 disk full problem
1266 e3371e62 bellard
1267 9d0a8e6f bellard
Windows 2000 has a bug which gives a disk full problem during its
1268 9d0a8e6f bellard
installation. When installing it, use the @option{-win2k-hack} QEMU
1269 9d0a8e6f bellard
option to enable a specific workaround. After Windows 2000 is
1270 9d0a8e6f bellard
installed, you no longer need this option (this option slows down the
1271 9d0a8e6f bellard
IDE transfers).
1272 e3371e62 bellard
1273 6cc721cf bellard
@subsubsection Windows 2000 shutdown
1274 6cc721cf bellard
1275 6cc721cf bellard
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1276 6cc721cf bellard
can. It comes from the fact that Windows 2000 does not automatically
1277 6cc721cf bellard
use the APM driver provided by the BIOS.
1278 6cc721cf bellard
1279 6cc721cf bellard
In order to correct that, do the following (thanks to Struan
1280 6cc721cf bellard
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1281 6cc721cf bellard
Add/Troubleshoot a device => Add a new device & Next => No, select the
1282 6cc721cf bellard
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1283 6cc721cf bellard
(again) a few times. Now the driver is installed and Windows 2000 now
1284 5fafdf24 ths
correctly instructs QEMU to shutdown at the appropriate moment.
1285 6cc721cf bellard
1286 6cc721cf bellard
@subsubsection Share a directory between Unix and Windows
1287 6cc721cf bellard
1288 6cc721cf bellard
See @ref{sec_invocation} about the help of the option @option{-smb}.
1289 6cc721cf bellard
1290 2192c332 bellard
@subsubsection Windows XP security problem
1291 e3371e62 bellard
1292 e3371e62 bellard
Some releases of Windows XP install correctly but give a security
1293 e3371e62 bellard
error when booting:
1294 e3371e62 bellard
@example
1295 e3371e62 bellard
A problem is preventing Windows from accurately checking the
1296 e3371e62 bellard
license for this computer. Error code: 0x800703e6.
1297 e3371e62 bellard
@end example
1298 e3371e62 bellard
1299 2192c332 bellard
The workaround is to install a service pack for XP after a boot in safe
1300 2192c332 bellard
mode. Then reboot, and the problem should go away. Since there is no
1301 2192c332 bellard
network while in safe mode, its recommended to download the full
1302 2192c332 bellard
installation of SP1 or SP2 and transfer that via an ISO or using the
1303 2192c332 bellard
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1304 e3371e62 bellard
1305 a0a821a4 bellard
@subsection MS-DOS and FreeDOS
1306 a0a821a4 bellard
1307 a0a821a4 bellard
@subsubsection CPU usage reduction
1308 a0a821a4 bellard
1309 a0a821a4 bellard
DOS does not correctly use the CPU HLT instruction. The result is that
1310 a0a821a4 bellard
it takes host CPU cycles even when idle. You can install the utility
1311 a0a821a4 bellard
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1312 a0a821a4 bellard
problem.
1313 a0a821a4 bellard
1314 debc7065 bellard
@node QEMU System emulator for non PC targets
1315 3f9f3aa1 bellard
@chapter QEMU System emulator for non PC targets
1316 3f9f3aa1 bellard
1317 3f9f3aa1 bellard
QEMU is a generic emulator and it emulates many non PC
1318 3f9f3aa1 bellard
machines. Most of the options are similar to the PC emulator. The
1319 4be456f1 ths
differences are mentioned in the following sections.
1320 3f9f3aa1 bellard
1321 debc7065 bellard
@menu
1322 7544a042 Stefan Weil
* PowerPC System emulator::
1323 24d4de45 ths
* Sparc32 System emulator::
1324 24d4de45 ths
* Sparc64 System emulator::
1325 24d4de45 ths
* MIPS System emulator::
1326 24d4de45 ths
* ARM System emulator::
1327 24d4de45 ths
* ColdFire System emulator::
1328 7544a042 Stefan Weil
* Cris System emulator::
1329 7544a042 Stefan Weil
* Microblaze System emulator::
1330 7544a042 Stefan Weil
* SH4 System emulator::
1331 debc7065 bellard
@end menu
1332 debc7065 bellard
1333 7544a042 Stefan Weil
@node PowerPC System emulator
1334 7544a042 Stefan Weil
@section PowerPC System emulator
1335 7544a042 Stefan Weil
@cindex system emulation (PowerPC)
1336 1a084f3d bellard
1337 15a34c63 bellard
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1338 15a34c63 bellard
or PowerMac PowerPC system.
1339 1a084f3d bellard
1340 b671f9ed bellard
QEMU emulates the following PowerMac peripherals:
1341 1a084f3d bellard
1342 15a34c63 bellard
@itemize @minus
1343 5fafdf24 ths
@item
1344 006f3a48 blueswir1
UniNorth or Grackle PCI Bridge
1345 15a34c63 bellard
@item
1346 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1347 5fafdf24 ths
@item
1348 15a34c63 bellard
2 PMAC IDE interfaces with hard disk and CD-ROM support
1349 5fafdf24 ths
@item
1350 15a34c63 bellard
NE2000 PCI adapters
1351 15a34c63 bellard
@item
1352 15a34c63 bellard
Non Volatile RAM
1353 15a34c63 bellard
@item
1354 15a34c63 bellard
VIA-CUDA with ADB keyboard and mouse.
1355 1a084f3d bellard
@end itemize
1356 1a084f3d bellard
1357 b671f9ed bellard
QEMU emulates the following PREP peripherals:
1358 52c00a5f bellard
1359 52c00a5f bellard
@itemize @minus
1360 5fafdf24 ths
@item
1361 15a34c63 bellard
PCI Bridge
1362 15a34c63 bellard
@item
1363 15a34c63 bellard
PCI VGA compatible card with VESA Bochs Extensions
1364 5fafdf24 ths
@item
1365 52c00a5f bellard
2 IDE interfaces with hard disk and CD-ROM support
1366 52c00a5f bellard
@item
1367 52c00a5f bellard
Floppy disk
1368 5fafdf24 ths
@item
1369 15a34c63 bellard
NE2000 network adapters
1370 52c00a5f bellard
@item
1371 52c00a5f bellard
Serial port
1372 52c00a5f bellard
@item
1373 52c00a5f bellard
PREP Non Volatile RAM
1374 15a34c63 bellard
@item
1375 15a34c63 bellard
PC compatible keyboard and mouse.
1376 52c00a5f bellard
@end itemize
1377 52c00a5f bellard
1378 15a34c63 bellard
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1379 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1380 52c00a5f bellard
1381 992e5acd blueswir1
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1382 006f3a48 blueswir1
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1383 006f3a48 blueswir1
v2) portable firmware implementation. The goal is to implement a 100%
1384 006f3a48 blueswir1
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1385 992e5acd blueswir1
1386 15a34c63 bellard
@c man begin OPTIONS
1387 15a34c63 bellard
1388 15a34c63 bellard
The following options are specific to the PowerPC emulation:
1389 15a34c63 bellard
1390 15a34c63 bellard
@table @option
1391 15a34c63 bellard
1392 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}[x@var{DEPTH}]
1393 15a34c63 bellard
1394 15a34c63 bellard
Set the initial VGA graphic mode. The default is 800x600x15.
1395 15a34c63 bellard
1396 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1397 95efd11c blueswir1
1398 95efd11c blueswir1
Set OpenBIOS variables in NVRAM, for example:
1399 95efd11c blueswir1
1400 95efd11c blueswir1
@example
1401 95efd11c blueswir1
qemu-system-ppc -prom-env 'auto-boot?=false' \
1402 95efd11c blueswir1
 -prom-env 'boot-device=hd:2,\yaboot' \
1403 95efd11c blueswir1
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1404 95efd11c blueswir1
@end example
1405 95efd11c blueswir1
1406 95efd11c blueswir1
These variables are not used by Open Hack'Ware.
1407 95efd11c blueswir1
1408 15a34c63 bellard
@end table
1409 15a34c63 bellard
1410 5fafdf24 ths
@c man end
1411 15a34c63 bellard
1412 15a34c63 bellard
1413 52c00a5f bellard
More information is available at
1414 3f9f3aa1 bellard
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1415 52c00a5f bellard
1416 24d4de45 ths
@node Sparc32 System emulator
1417 24d4de45 ths
@section Sparc32 System emulator
1418 7544a042 Stefan Weil
@cindex system emulation (Sparc32)
1419 e80cfcfc bellard
1420 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc} to simulate the following
1421 34a3d239 blueswir1
Sun4m architecture machines:
1422 34a3d239 blueswir1
@itemize @minus
1423 34a3d239 blueswir1
@item
1424 34a3d239 blueswir1
SPARCstation 4
1425 34a3d239 blueswir1
@item
1426 34a3d239 blueswir1
SPARCstation 5
1427 34a3d239 blueswir1
@item
1428 34a3d239 blueswir1
SPARCstation 10
1429 34a3d239 blueswir1
@item
1430 34a3d239 blueswir1
SPARCstation 20
1431 34a3d239 blueswir1
@item
1432 34a3d239 blueswir1
SPARCserver 600MP
1433 34a3d239 blueswir1
@item
1434 34a3d239 blueswir1
SPARCstation LX
1435 34a3d239 blueswir1
@item
1436 34a3d239 blueswir1
SPARCstation Voyager
1437 34a3d239 blueswir1
@item
1438 34a3d239 blueswir1
SPARCclassic
1439 34a3d239 blueswir1
@item
1440 34a3d239 blueswir1
SPARCbook
1441 34a3d239 blueswir1
@end itemize
1442 34a3d239 blueswir1
1443 34a3d239 blueswir1
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1444 34a3d239 blueswir1
but Linux limits the number of usable CPUs to 4.
1445 e80cfcfc bellard
1446 34a3d239 blueswir1
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1447 34a3d239 blueswir1
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1448 34a3d239 blueswir1
emulators are not usable yet.
1449 34a3d239 blueswir1
1450 34a3d239 blueswir1
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1451 e80cfcfc bellard
1452 e80cfcfc bellard
@itemize @minus
1453 3475187d bellard
@item
1454 7d85892b blueswir1
IOMMU or IO-UNITs
1455 e80cfcfc bellard
@item
1456 e80cfcfc bellard
TCX Frame buffer
1457 5fafdf24 ths
@item
1458 e80cfcfc bellard
Lance (Am7990) Ethernet
1459 e80cfcfc bellard
@item
1460 34a3d239 blueswir1
Non Volatile RAM M48T02/M48T08
1461 e80cfcfc bellard
@item
1462 3475187d bellard
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1463 3475187d bellard
and power/reset logic
1464 3475187d bellard
@item
1465 3475187d bellard
ESP SCSI controller with hard disk and CD-ROM support
1466 3475187d bellard
@item
1467 6a3b9cc9 blueswir1
Floppy drive (not on SS-600MP)
1468 a2502b58 blueswir1
@item
1469 a2502b58 blueswir1
CS4231 sound device (only on SS-5, not working yet)
1470 e80cfcfc bellard
@end itemize
1471 e80cfcfc bellard
1472 6a3b9cc9 blueswir1
The number of peripherals is fixed in the architecture.  Maximum
1473 6a3b9cc9 blueswir1
memory size depends on the machine type, for SS-5 it is 256MB and for
1474 7d85892b blueswir1
others 2047MB.
1475 3475187d bellard
1476 30a604f3 bellard
Since version 0.8.2, QEMU uses OpenBIOS
1477 0986ac3b bellard
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1478 0986ac3b bellard
firmware implementation. The goal is to implement a 100% IEEE
1479 0986ac3b bellard
1275-1994 (referred to as Open Firmware) compliant firmware.
1480 3475187d bellard
1481 3475187d bellard
A sample Linux 2.6 series kernel and ram disk image are available on
1482 34a3d239 blueswir1
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1483 34a3d239 blueswir1
some kernel versions work. Please note that currently Solaris kernels
1484 34a3d239 blueswir1
don't work probably due to interface issues between OpenBIOS and
1485 34a3d239 blueswir1
Solaris.
1486 3475187d bellard
1487 3475187d bellard
@c man begin OPTIONS
1488 3475187d bellard
1489 a2502b58 blueswir1
The following options are specific to the Sparc32 emulation:
1490 3475187d bellard
1491 3475187d bellard
@table @option
1492 3475187d bellard
1493 4e257e5e Kevin Wolf
@item -g @var{W}x@var{H}x[x@var{DEPTH}]
1494 3475187d bellard
1495 a2502b58 blueswir1
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1496 a2502b58 blueswir1
the only other possible mode is 1024x768x24.
1497 3475187d bellard
1498 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1499 66508601 blueswir1
1500 66508601 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1501 66508601 blueswir1
1502 66508601 blueswir1
@example
1503 66508601 blueswir1
qemu-system-sparc -prom-env 'auto-boot?=false' \
1504 66508601 blueswir1
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1505 66508601 blueswir1
@end example
1506 66508601 blueswir1
1507 609c1dac Blue Swirl
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic] [|SPARCbook|SS-2|SS-1000|SS-2000]
1508 a2502b58 blueswir1
1509 a2502b58 blueswir1
Set the emulated machine type. Default is SS-5.
1510 a2502b58 blueswir1
1511 3475187d bellard
@end table
1512 3475187d bellard
1513 5fafdf24 ths
@c man end
1514 3475187d bellard
1515 24d4de45 ths
@node Sparc64 System emulator
1516 24d4de45 ths
@section Sparc64 System emulator
1517 7544a042 Stefan Weil
@cindex system emulation (Sparc64)
1518 e80cfcfc bellard
1519 34a3d239 blueswir1
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1520 34a3d239 blueswir1
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1521 34a3d239 blueswir1
Niagara (T1) machine. The emulator is not usable for anything yet, but
1522 34a3d239 blueswir1
it can launch some kernels.
1523 b756921a bellard
1524 c7ba218d blueswir1
QEMU emulates the following peripherals:
1525 83469015 bellard
1526 83469015 bellard
@itemize @minus
1527 83469015 bellard
@item
1528 5fafdf24 ths
UltraSparc IIi APB PCI Bridge
1529 83469015 bellard
@item
1530 83469015 bellard
PCI VGA compatible card with VESA Bochs Extensions
1531 83469015 bellard
@item
1532 34a3d239 blueswir1
PS/2 mouse and keyboard
1533 34a3d239 blueswir1
@item
1534 83469015 bellard
Non Volatile RAM M48T59
1535 83469015 bellard
@item
1536 83469015 bellard
PC-compatible serial ports
1537 c7ba218d blueswir1
@item
1538 c7ba218d blueswir1
2 PCI IDE interfaces with hard disk and CD-ROM support
1539 34a3d239 blueswir1
@item
1540 34a3d239 blueswir1
Floppy disk
1541 83469015 bellard
@end itemize
1542 83469015 bellard
1543 c7ba218d blueswir1
@c man begin OPTIONS
1544 c7ba218d blueswir1
1545 c7ba218d blueswir1
The following options are specific to the Sparc64 emulation:
1546 c7ba218d blueswir1
1547 c7ba218d blueswir1
@table @option
1548 c7ba218d blueswir1
1549 4e257e5e Kevin Wolf
@item -prom-env @var{string}
1550 34a3d239 blueswir1
1551 34a3d239 blueswir1
Set OpenBIOS variables in NVRAM, for example:
1552 34a3d239 blueswir1
1553 34a3d239 blueswir1
@example
1554 34a3d239 blueswir1
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1555 34a3d239 blueswir1
@end example
1556 34a3d239 blueswir1
1557 34a3d239 blueswir1
@item -M [sun4u|sun4v|Niagara]
1558 c7ba218d blueswir1
1559 c7ba218d blueswir1
Set the emulated machine type. The default is sun4u.
1560 c7ba218d blueswir1
1561 c7ba218d blueswir1
@end table
1562 c7ba218d blueswir1
1563 c7ba218d blueswir1
@c man end
1564 c7ba218d blueswir1
1565 24d4de45 ths
@node MIPS System emulator
1566 24d4de45 ths
@section MIPS System emulator
1567 7544a042 Stefan Weil
@cindex system emulation (MIPS)
1568 9d0a8e6f bellard
1569 d9aedc32 ths
Four executables cover simulation of 32 and 64-bit MIPS systems in
1570 d9aedc32 ths
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1571 d9aedc32 ths
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1572 88cb0a02 aurel32
Five different machine types are emulated:
1573 24d4de45 ths
1574 24d4de45 ths
@itemize @minus
1575 24d4de45 ths
@item
1576 24d4de45 ths
A generic ISA PC-like machine "mips"
1577 24d4de45 ths
@item
1578 24d4de45 ths
The MIPS Malta prototype board "malta"
1579 24d4de45 ths
@item
1580 d9aedc32 ths
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1581 6bf5b4e8 ths
@item
1582 f0fc6f8f ths
MIPS emulator pseudo board "mipssim"
1583 88cb0a02 aurel32
@item
1584 88cb0a02 aurel32
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1585 24d4de45 ths
@end itemize
1586 24d4de45 ths
1587 24d4de45 ths
The generic emulation is supported by Debian 'Etch' and is able to
1588 24d4de45 ths
install Debian into a virtual disk image. The following devices are
1589 24d4de45 ths
emulated:
1590 3f9f3aa1 bellard
1591 3f9f3aa1 bellard
@itemize @minus
1592 5fafdf24 ths
@item
1593 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1594 3f9f3aa1 bellard
@item
1595 3f9f3aa1 bellard
PC style serial port
1596 3f9f3aa1 bellard
@item
1597 24d4de45 ths
PC style IDE disk
1598 24d4de45 ths
@item
1599 3f9f3aa1 bellard
NE2000 network card
1600 3f9f3aa1 bellard
@end itemize
1601 3f9f3aa1 bellard
1602 24d4de45 ths
The Malta emulation supports the following devices:
1603 24d4de45 ths
1604 24d4de45 ths
@itemize @minus
1605 24d4de45 ths
@item
1606 0b64d008 ths
Core board with MIPS 24Kf CPU and Galileo system controller
1607 24d4de45 ths
@item
1608 24d4de45 ths
PIIX4 PCI/USB/SMbus controller
1609 24d4de45 ths
@item
1610 24d4de45 ths
The Multi-I/O chip's serial device
1611 24d4de45 ths
@item
1612 3a2eeac0 Stefan Weil
PCI network cards (PCnet32 and others)
1613 24d4de45 ths
@item
1614 24d4de45 ths
Malta FPGA serial device
1615 24d4de45 ths
@item
1616 1f605a76 aurel32
Cirrus (default) or any other PCI VGA graphics card
1617 24d4de45 ths
@end itemize
1618 24d4de45 ths
1619 24d4de45 ths
The ACER Pica emulation supports:
1620 24d4de45 ths
1621 24d4de45 ths
@itemize @minus
1622 24d4de45 ths
@item
1623 24d4de45 ths
MIPS R4000 CPU
1624 24d4de45 ths
@item
1625 24d4de45 ths
PC-style IRQ and DMA controllers
1626 24d4de45 ths
@item
1627 24d4de45 ths
PC Keyboard
1628 24d4de45 ths
@item
1629 24d4de45 ths
IDE controller
1630 24d4de45 ths
@end itemize
1631 3f9f3aa1 bellard
1632 f0fc6f8f ths
The mipssim pseudo board emulation provides an environment similiar
1633 f0fc6f8f ths
to what the proprietary MIPS emulator uses for running Linux.
1634 f0fc6f8f ths
It supports:
1635 6bf5b4e8 ths
1636 6bf5b4e8 ths
@itemize @minus
1637 6bf5b4e8 ths
@item
1638 6bf5b4e8 ths
A range of MIPS CPUs, default is the 24Kf
1639 6bf5b4e8 ths
@item
1640 6bf5b4e8 ths
PC style serial port
1641 6bf5b4e8 ths
@item
1642 6bf5b4e8 ths
MIPSnet network emulation
1643 6bf5b4e8 ths
@end itemize
1644 6bf5b4e8 ths
1645 88cb0a02 aurel32
The MIPS Magnum R4000 emulation supports:
1646 88cb0a02 aurel32
1647 88cb0a02 aurel32
@itemize @minus
1648 88cb0a02 aurel32
@item
1649 88cb0a02 aurel32
MIPS R4000 CPU
1650 88cb0a02 aurel32
@item
1651 88cb0a02 aurel32
PC-style IRQ controller
1652 88cb0a02 aurel32
@item
1653 88cb0a02 aurel32
PC Keyboard
1654 88cb0a02 aurel32
@item
1655 88cb0a02 aurel32
SCSI controller
1656 88cb0a02 aurel32
@item
1657 88cb0a02 aurel32
G364 framebuffer
1658 88cb0a02 aurel32
@end itemize
1659 88cb0a02 aurel32
1660 88cb0a02 aurel32
1661 24d4de45 ths
@node ARM System emulator
1662 24d4de45 ths
@section ARM System emulator
1663 7544a042 Stefan Weil
@cindex system emulation (ARM)
1664 3f9f3aa1 bellard
1665 3f9f3aa1 bellard
Use the executable @file{qemu-system-arm} to simulate a ARM
1666 3f9f3aa1 bellard
machine. The ARM Integrator/CP board is emulated with the following
1667 3f9f3aa1 bellard
devices:
1668 3f9f3aa1 bellard
1669 3f9f3aa1 bellard
@itemize @minus
1670 3f9f3aa1 bellard
@item
1671 9ee6e8bb pbrook
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1672 3f9f3aa1 bellard
@item
1673 3f9f3aa1 bellard
Two PL011 UARTs
1674 5fafdf24 ths
@item
1675 3f9f3aa1 bellard
SMC 91c111 Ethernet adapter
1676 00a9bf19 pbrook
@item
1677 00a9bf19 pbrook
PL110 LCD controller
1678 00a9bf19 pbrook
@item
1679 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1680 a1bb27b1 pbrook
@item
1681 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1682 00a9bf19 pbrook
@end itemize
1683 00a9bf19 pbrook
1684 00a9bf19 pbrook
The ARM Versatile baseboard is emulated with the following devices:
1685 00a9bf19 pbrook
1686 00a9bf19 pbrook
@itemize @minus
1687 00a9bf19 pbrook
@item
1688 9ee6e8bb pbrook
ARM926E, ARM1136 or Cortex-A8 CPU
1689 00a9bf19 pbrook
@item
1690 00a9bf19 pbrook
PL190 Vectored Interrupt Controller
1691 00a9bf19 pbrook
@item
1692 00a9bf19 pbrook
Four PL011 UARTs
1693 5fafdf24 ths
@item
1694 00a9bf19 pbrook
SMC 91c111 Ethernet adapter
1695 00a9bf19 pbrook
@item
1696 00a9bf19 pbrook
PL110 LCD controller
1697 00a9bf19 pbrook
@item
1698 00a9bf19 pbrook
PL050 KMI with PS/2 keyboard and mouse.
1699 00a9bf19 pbrook
@item
1700 00a9bf19 pbrook
PCI host bridge.  Note the emulated PCI bridge only provides access to
1701 00a9bf19 pbrook
PCI memory space.  It does not provide access to PCI IO space.
1702 4be456f1 ths
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1703 4be456f1 ths
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1704 00a9bf19 pbrook
mapped control registers.
1705 e6de1bad pbrook
@item
1706 e6de1bad pbrook
PCI OHCI USB controller.
1707 e6de1bad pbrook
@item
1708 e6de1bad pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1709 a1bb27b1 pbrook
@item
1710 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1711 3f9f3aa1 bellard
@end itemize
1712 3f9f3aa1 bellard
1713 21a88941 Paul Brook
Several variants of the ARM RealView baseboard are emulated,
1714 21a88941 Paul Brook
including the EB, PB-A8 and PBX-A9.  Due to interactions with the
1715 21a88941 Paul Brook
bootloader, only certain Linux kernel configurations work out
1716 21a88941 Paul Brook
of the box on these boards.
1717 21a88941 Paul Brook
1718 21a88941 Paul Brook
Kernels for the PB-A8 board should have CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1719 21a88941 Paul Brook
enabled in the kernel, and expect 512M RAM.  Kernels for The PBX-A9 board
1720 21a88941 Paul Brook
should have CONFIG_SPARSEMEM enabled, CONFIG_REALVIEW_HIGH_PHYS_OFFSET
1721 21a88941 Paul Brook
disabled and expect 1024M RAM.
1722 21a88941 Paul Brook
1723 21a88941 Paul Brook
The following devices are emuilated:
1724 d7739d75 pbrook
1725 d7739d75 pbrook
@itemize @minus
1726 d7739d75 pbrook
@item
1727 f7c70325 Paul Brook
ARM926E, ARM1136, ARM11MPCore, Cortex-A8 or Cortex-A9 MPCore CPU
1728 d7739d75 pbrook
@item
1729 d7739d75 pbrook
ARM AMBA Generic/Distributed Interrupt Controller
1730 d7739d75 pbrook
@item
1731 d7739d75 pbrook
Four PL011 UARTs
1732 5fafdf24 ths
@item
1733 0ef849d7 Paul Brook
SMC 91c111 or SMSC LAN9118 Ethernet adapter
1734 d7739d75 pbrook
@item
1735 d7739d75 pbrook
PL110 LCD controller
1736 d7739d75 pbrook
@item
1737 d7739d75 pbrook
PL050 KMI with PS/2 keyboard and mouse
1738 d7739d75 pbrook
@item
1739 d7739d75 pbrook
PCI host bridge
1740 d7739d75 pbrook
@item
1741 d7739d75 pbrook
PCI OHCI USB controller
1742 d7739d75 pbrook
@item
1743 d7739d75 pbrook
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1744 a1bb27b1 pbrook
@item
1745 a1bb27b1 pbrook
PL181 MultiMedia Card Interface with SD card.
1746 d7739d75 pbrook
@end itemize
1747 d7739d75 pbrook
1748 b00052e4 balrog
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1749 b00052e4 balrog
and "Terrier") emulation includes the following peripherals:
1750 b00052e4 balrog
1751 b00052e4 balrog
@itemize @minus
1752 b00052e4 balrog
@item
1753 b00052e4 balrog
Intel PXA270 System-on-chip (ARM V5TE core)
1754 b00052e4 balrog
@item
1755 b00052e4 balrog
NAND Flash memory
1756 b00052e4 balrog
@item
1757 b00052e4 balrog
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1758 b00052e4 balrog
@item
1759 b00052e4 balrog
On-chip OHCI USB controller
1760 b00052e4 balrog
@item
1761 b00052e4 balrog
On-chip LCD controller
1762 b00052e4 balrog
@item
1763 b00052e4 balrog
On-chip Real Time Clock
1764 b00052e4 balrog
@item
1765 b00052e4 balrog
TI ADS7846 touchscreen controller on SSP bus
1766 b00052e4 balrog
@item
1767 b00052e4 balrog
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1768 b00052e4 balrog
@item
1769 b00052e4 balrog
GPIO-connected keyboard controller and LEDs
1770 b00052e4 balrog
@item
1771 549444e1 balrog
Secure Digital card connected to PXA MMC/SD host
1772 b00052e4 balrog
@item
1773 b00052e4 balrog
Three on-chip UARTs
1774 b00052e4 balrog
@item
1775 b00052e4 balrog
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1776 b00052e4 balrog
@end itemize
1777 b00052e4 balrog
1778 02645926 balrog
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1779 02645926 balrog
following elements:
1780 02645926 balrog
1781 02645926 balrog
@itemize @minus
1782 02645926 balrog
@item
1783 02645926 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1784 02645926 balrog
@item
1785 02645926 balrog
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1786 02645926 balrog
@item
1787 02645926 balrog
On-chip LCD controller
1788 02645926 balrog
@item
1789 02645926 balrog
On-chip Real Time Clock
1790 02645926 balrog
@item
1791 02645926 balrog
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1792 02645926 balrog
CODEC, connected through MicroWire and I@math{^2}S busses
1793 02645926 balrog
@item
1794 02645926 balrog
GPIO-connected matrix keypad
1795 02645926 balrog
@item
1796 02645926 balrog
Secure Digital card connected to OMAP MMC/SD host
1797 02645926 balrog
@item
1798 02645926 balrog
Three on-chip UARTs
1799 02645926 balrog
@end itemize
1800 02645926 balrog
1801 c30bb264 balrog
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1802 c30bb264 balrog
emulation supports the following elements:
1803 c30bb264 balrog
1804 c30bb264 balrog
@itemize @minus
1805 c30bb264 balrog
@item
1806 c30bb264 balrog
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1807 c30bb264 balrog
@item
1808 c30bb264 balrog
RAM and non-volatile OneNAND Flash memories
1809 c30bb264 balrog
@item
1810 c30bb264 balrog
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1811 c30bb264 balrog
display controller and a LS041y3 MIPI DBI-C controller
1812 c30bb264 balrog
@item
1813 c30bb264 balrog
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1814 c30bb264 balrog
driven through SPI bus
1815 c30bb264 balrog
@item
1816 c30bb264 balrog
National Semiconductor LM8323-controlled qwerty keyboard driven
1817 c30bb264 balrog
through I@math{^2}C bus
1818 c30bb264 balrog
@item
1819 c30bb264 balrog
Secure Digital card connected to OMAP MMC/SD host
1820 c30bb264 balrog
@item
1821 c30bb264 balrog
Three OMAP on-chip UARTs and on-chip STI debugging console
1822 c30bb264 balrog
@item
1823 2d564691 balrog
A Bluetooth(R) transciever and HCI connected to an UART
1824 2d564691 balrog
@item
1825 c30bb264 balrog
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1826 c30bb264 balrog
TUSB6010 chip - only USB host mode is supported
1827 c30bb264 balrog
@item
1828 c30bb264 balrog
TI TMP105 temperature sensor driven through I@math{^2}C bus
1829 c30bb264 balrog
@item
1830 c30bb264 balrog
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1831 c30bb264 balrog
@item
1832 c30bb264 balrog
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1833 c30bb264 balrog
through CBUS
1834 c30bb264 balrog
@end itemize
1835 c30bb264 balrog
1836 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1837 9ee6e8bb pbrook
devices:
1838 9ee6e8bb pbrook
1839 9ee6e8bb pbrook
@itemize @minus
1840 9ee6e8bb pbrook
@item
1841 9ee6e8bb pbrook
Cortex-M3 CPU core.
1842 9ee6e8bb pbrook
@item
1843 9ee6e8bb pbrook
64k Flash and 8k SRAM.
1844 9ee6e8bb pbrook
@item
1845 9ee6e8bb pbrook
Timers, UARTs, ADC and I@math{^2}C interface.
1846 9ee6e8bb pbrook
@item
1847 9ee6e8bb pbrook
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1848 9ee6e8bb pbrook
@end itemize
1849 9ee6e8bb pbrook
1850 9ee6e8bb pbrook
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1851 9ee6e8bb pbrook
devices:
1852 9ee6e8bb pbrook
1853 9ee6e8bb pbrook
@itemize @minus
1854 9ee6e8bb pbrook
@item
1855 9ee6e8bb pbrook
Cortex-M3 CPU core.
1856 9ee6e8bb pbrook
@item
1857 9ee6e8bb pbrook
256k Flash and 64k SRAM.
1858 9ee6e8bb pbrook
@item
1859 9ee6e8bb pbrook
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1860 9ee6e8bb pbrook
@item
1861 9ee6e8bb pbrook
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1862 9ee6e8bb pbrook
@end itemize
1863 9ee6e8bb pbrook
1864 57cd6e97 balrog
The Freecom MusicPal internet radio emulation includes the following
1865 57cd6e97 balrog
elements:
1866 57cd6e97 balrog
1867 57cd6e97 balrog
@itemize @minus
1868 57cd6e97 balrog
@item
1869 57cd6e97 balrog
Marvell MV88W8618 ARM core.
1870 57cd6e97 balrog
@item
1871 57cd6e97 balrog
32 MB RAM, 256 KB SRAM, 8 MB flash.
1872 57cd6e97 balrog
@item
1873 57cd6e97 balrog
Up to 2 16550 UARTs
1874 57cd6e97 balrog
@item
1875 57cd6e97 balrog
MV88W8xx8 Ethernet controller
1876 57cd6e97 balrog
@item
1877 57cd6e97 balrog
MV88W8618 audio controller, WM8750 CODEC and mixer
1878 57cd6e97 balrog
@item
1879 e080e785 Stefan Weil
128ร—64 display with brightness control
1880 57cd6e97 balrog
@item
1881 57cd6e97 balrog
2 buttons, 2 navigation wheels with button function
1882 57cd6e97 balrog
@end itemize
1883 57cd6e97 balrog
1884 997641a8 balrog
The Siemens SX1 models v1 and v2 (default) basic emulation.
1885 997641a8 balrog
The emulaton includes the following elements:
1886 997641a8 balrog
1887 997641a8 balrog
@itemize @minus
1888 997641a8 balrog
@item
1889 997641a8 balrog
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1890 997641a8 balrog
@item
1891 997641a8 balrog
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1892 997641a8 balrog
V1
1893 997641a8 balrog
1 Flash of 16MB and 1 Flash of 8MB
1894 997641a8 balrog
V2
1895 997641a8 balrog
1 Flash of 32MB
1896 997641a8 balrog
@item
1897 997641a8 balrog
On-chip LCD controller
1898 997641a8 balrog
@item
1899 997641a8 balrog
On-chip Real Time Clock
1900 997641a8 balrog
@item
1901 997641a8 balrog
Secure Digital card connected to OMAP MMC/SD host
1902 997641a8 balrog
@item
1903 997641a8 balrog
Three on-chip UARTs
1904 997641a8 balrog
@end itemize
1905 997641a8 balrog
1906 4af39611 Paul Brook
The "Syborg" Symbian Virtual Platform base model includes the following
1907 4af39611 Paul Brook
elements:
1908 4af39611 Paul Brook
1909 4af39611 Paul Brook
@itemize @minus
1910 4af39611 Paul Brook
@item
1911 4af39611 Paul Brook
ARM Cortex-A8 CPU
1912 4af39611 Paul Brook
@item
1913 4af39611 Paul Brook
Interrupt controller
1914 4af39611 Paul Brook
@item
1915 4af39611 Paul Brook
Timer
1916 4af39611 Paul Brook
@item
1917 4af39611 Paul Brook
Real Time Clock
1918 4af39611 Paul Brook
@item
1919 4af39611 Paul Brook
Keyboard
1920 4af39611 Paul Brook
@item
1921 4af39611 Paul Brook
Framebuffer
1922 4af39611 Paul Brook
@item
1923 4af39611 Paul Brook
Touchscreen
1924 4af39611 Paul Brook
@item
1925 4af39611 Paul Brook
UARTs
1926 4af39611 Paul Brook
@end itemize
1927 4af39611 Paul Brook
1928 3f9f3aa1 bellard
A Linux 2.6 test image is available on the QEMU web site. More
1929 3f9f3aa1 bellard
information is available in the QEMU mailing-list archive.
1930 9d0a8e6f bellard
1931 d2c639d6 blueswir1
@c man begin OPTIONS
1932 d2c639d6 blueswir1
1933 d2c639d6 blueswir1
The following options are specific to the ARM emulation:
1934 d2c639d6 blueswir1
1935 d2c639d6 blueswir1
@table @option
1936 d2c639d6 blueswir1
1937 d2c639d6 blueswir1
@item -semihosting
1938 d2c639d6 blueswir1
Enable semihosting syscall emulation.
1939 d2c639d6 blueswir1
1940 d2c639d6 blueswir1
On ARM this implements the "Angel" interface.
1941 d2c639d6 blueswir1
1942 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
1943 d2c639d6 blueswir1
so should only be used with trusted guest OS.
1944 d2c639d6 blueswir1
1945 d2c639d6 blueswir1
@end table
1946 d2c639d6 blueswir1
1947 24d4de45 ths
@node ColdFire System emulator
1948 24d4de45 ths
@section ColdFire System emulator
1949 7544a042 Stefan Weil
@cindex system emulation (ColdFire)
1950 7544a042 Stefan Weil
@cindex system emulation (M68K)
1951 209a4e69 pbrook
1952 209a4e69 pbrook
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1953 209a4e69 pbrook
The emulator is able to boot a uClinux kernel.
1954 707e011b pbrook
1955 707e011b pbrook
The M5208EVB emulation includes the following devices:
1956 707e011b pbrook
1957 707e011b pbrook
@itemize @minus
1958 5fafdf24 ths
@item
1959 707e011b pbrook
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1960 707e011b pbrook
@item
1961 707e011b pbrook
Three Two on-chip UARTs.
1962 707e011b pbrook
@item
1963 707e011b pbrook
Fast Ethernet Controller (FEC)
1964 707e011b pbrook
@end itemize
1965 707e011b pbrook
1966 707e011b pbrook
The AN5206 emulation includes the following devices:
1967 209a4e69 pbrook
1968 209a4e69 pbrook
@itemize @minus
1969 5fafdf24 ths
@item
1970 209a4e69 pbrook
MCF5206 ColdFire V2 Microprocessor.
1971 209a4e69 pbrook
@item
1972 209a4e69 pbrook
Two on-chip UARTs.
1973 209a4e69 pbrook
@end itemize
1974 209a4e69 pbrook
1975 d2c639d6 blueswir1
@c man begin OPTIONS
1976 d2c639d6 blueswir1
1977 7544a042 Stefan Weil
The following options are specific to the ColdFire emulation:
1978 d2c639d6 blueswir1
1979 d2c639d6 blueswir1
@table @option
1980 d2c639d6 blueswir1
1981 d2c639d6 blueswir1
@item -semihosting
1982 d2c639d6 blueswir1
Enable semihosting syscall emulation.
1983 d2c639d6 blueswir1
1984 d2c639d6 blueswir1
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1985 d2c639d6 blueswir1
1986 d2c639d6 blueswir1
Note that this allows guest direct access to the host filesystem,
1987 d2c639d6 blueswir1
so should only be used with trusted guest OS.
1988 d2c639d6 blueswir1
1989 d2c639d6 blueswir1
@end table
1990 d2c639d6 blueswir1
1991 7544a042 Stefan Weil
@node Cris System emulator
1992 7544a042 Stefan Weil
@section Cris System emulator
1993 7544a042 Stefan Weil
@cindex system emulation (Cris)
1994 7544a042 Stefan Weil
1995 7544a042 Stefan Weil
TODO
1996 7544a042 Stefan Weil
1997 7544a042 Stefan Weil
@node Microblaze System emulator
1998 7544a042 Stefan Weil
@section Microblaze System emulator
1999 7544a042 Stefan Weil
@cindex system emulation (Microblaze)
2000 7544a042 Stefan Weil
2001 7544a042 Stefan Weil
TODO
2002 7544a042 Stefan Weil
2003 7544a042 Stefan Weil
@node SH4 System emulator
2004 7544a042 Stefan Weil
@section SH4 System emulator
2005 7544a042 Stefan Weil
@cindex system emulation (SH4)
2006 7544a042 Stefan Weil
2007 7544a042 Stefan Weil
TODO
2008 7544a042 Stefan Weil
2009 5fafdf24 ths
@node QEMU User space emulator
2010 5fafdf24 ths
@chapter QEMU User space emulator
2011 83195237 bellard
2012 83195237 bellard
@menu
2013 83195237 bellard
* Supported Operating Systems ::
2014 83195237 bellard
* Linux User space emulator::
2015 83195237 bellard
* Mac OS X/Darwin User space emulator ::
2016 84778508 blueswir1
* BSD User space emulator ::
2017 83195237 bellard
@end menu
2018 83195237 bellard
2019 83195237 bellard
@node Supported Operating Systems
2020 83195237 bellard
@section Supported Operating Systems
2021 83195237 bellard
2022 83195237 bellard
The following OS are supported in user space emulation:
2023 83195237 bellard
2024 83195237 bellard
@itemize @minus
2025 83195237 bellard
@item
2026 4be456f1 ths
Linux (referred as qemu-linux-user)
2027 83195237 bellard
@item
2028 4be456f1 ths
Mac OS X/Darwin (referred as qemu-darwin-user)
2029 84778508 blueswir1
@item
2030 84778508 blueswir1
BSD (referred as qemu-bsd-user)
2031 83195237 bellard
@end itemize
2032 83195237 bellard
2033 83195237 bellard
@node Linux User space emulator
2034 83195237 bellard
@section Linux User space emulator
2035 386405f7 bellard
2036 debc7065 bellard
@menu
2037 debc7065 bellard
* Quick Start::
2038 debc7065 bellard
* Wine launch::
2039 debc7065 bellard
* Command line options::
2040 79737e4a pbrook
* Other binaries::
2041 debc7065 bellard
@end menu
2042 debc7065 bellard
2043 debc7065 bellard
@node Quick Start
2044 83195237 bellard
@subsection Quick Start
2045 df0f11a0 bellard
2046 1f673135 bellard
In order to launch a Linux process, QEMU needs the process executable
2047 5fafdf24 ths
itself and all the target (x86) dynamic libraries used by it.
2048 386405f7 bellard
2049 1f673135 bellard
@itemize
2050 386405f7 bellard
2051 1f673135 bellard
@item On x86, you can just try to launch any process by using the native
2052 1f673135 bellard
libraries:
2053 386405f7 bellard
2054 5fafdf24 ths
@example
2055 1f673135 bellard
qemu-i386 -L / /bin/ls
2056 1f673135 bellard
@end example
2057 386405f7 bellard
2058 1f673135 bellard
@code{-L /} tells that the x86 dynamic linker must be searched with a
2059 1f673135 bellard
@file{/} prefix.
2060 386405f7 bellard
2061 dbcf5e82 ths
@item Since QEMU is also a linux process, you can launch qemu with
2062 dbcf5e82 ths
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2063 386405f7 bellard
2064 5fafdf24 ths
@example
2065 1f673135 bellard
qemu-i386 -L / qemu-i386 -L / /bin/ls
2066 1f673135 bellard
@end example
2067 386405f7 bellard
2068 1f673135 bellard
@item On non x86 CPUs, you need first to download at least an x86 glibc
2069 1f673135 bellard
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2070 1f673135 bellard
@code{LD_LIBRARY_PATH} is not set:
2071 df0f11a0 bellard
2072 1f673135 bellard
@example
2073 5fafdf24 ths
unset LD_LIBRARY_PATH
2074 1f673135 bellard
@end example
2075 1eb87257 bellard
2076 1f673135 bellard
Then you can launch the precompiled @file{ls} x86 executable:
2077 1eb87257 bellard
2078 1f673135 bellard
@example
2079 1f673135 bellard
qemu-i386 tests/i386/ls
2080 1f673135 bellard
@end example
2081 1f673135 bellard
You can look at @file{qemu-binfmt-conf.sh} so that
2082 1f673135 bellard
QEMU is automatically launched by the Linux kernel when you try to
2083 1f673135 bellard
launch x86 executables. It requires the @code{binfmt_misc} module in the
2084 1f673135 bellard
Linux kernel.
2085 1eb87257 bellard
2086 1f673135 bellard
@item The x86 version of QEMU is also included. You can try weird things such as:
2087 1f673135 bellard
@example
2088 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2089 debc7065 bellard
          /usr/local/qemu-i386/bin/ls-i386
2090 1f673135 bellard
@end example
2091 1eb20527 bellard
2092 1f673135 bellard
@end itemize
2093 1eb20527 bellard
2094 debc7065 bellard
@node Wine launch
2095 83195237 bellard
@subsection Wine launch
2096 1eb20527 bellard
2097 1f673135 bellard
@itemize
2098 386405f7 bellard
2099 1f673135 bellard
@item Ensure that you have a working QEMU with the x86 glibc
2100 1f673135 bellard
distribution (see previous section). In order to verify it, you must be
2101 1f673135 bellard
able to do:
2102 386405f7 bellard
2103 1f673135 bellard
@example
2104 1f673135 bellard
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2105 1f673135 bellard
@end example
2106 386405f7 bellard
2107 1f673135 bellard
@item Download the binary x86 Wine install
2108 5fafdf24 ths
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2109 386405f7 bellard
2110 1f673135 bellard
@item Configure Wine on your account. Look at the provided script
2111 debc7065 bellard
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2112 1f673135 bellard
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2113 386405f7 bellard
2114 1f673135 bellard
@item Then you can try the example @file{putty.exe}:
2115 386405f7 bellard
2116 1f673135 bellard
@example
2117 debc7065 bellard
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2118 debc7065 bellard
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2119 1f673135 bellard
@end example
2120 386405f7 bellard
2121 1f673135 bellard
@end itemize
2122 fd429f2f bellard
2123 debc7065 bellard
@node Command line options
2124 83195237 bellard
@subsection Command line options
2125 1eb20527 bellard
2126 1f673135 bellard
@example
2127 68a1c816 Paul Brook
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] [-R size] program [arguments...]
2128 1f673135 bellard
@end example
2129 1eb20527 bellard
2130 1f673135 bellard
@table @option
2131 1f673135 bellard
@item -h
2132 1f673135 bellard
Print the help
2133 3b46e624 ths
@item -L path
2134 1f673135 bellard
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2135 1f673135 bellard
@item -s size
2136 1f673135 bellard
Set the x86 stack size in bytes (default=524288)
2137 34a3d239 blueswir1
@item -cpu model
2138 34a3d239 blueswir1
Select CPU model (-cpu ? for list and additional feature selection)
2139 379f6698 Paul Brook
@item -B offset
2140 379f6698 Paul Brook
Offset guest address by the specified number of bytes.  This is useful when
2141 1f5c3f8c Stefan Weil
the address region required by guest applications is reserved on the host.
2142 1f5c3f8c Stefan Weil
This option is currently only supported on some hosts.
2143 68a1c816 Paul Brook
@item -R size
2144 68a1c816 Paul Brook
Pre-allocate a guest virtual address space of the given size (in bytes).
2145 68a1c816 Paul Brook
"G", "M", and "k" suffixes may be used when specifying the size.  
2146 386405f7 bellard
@end table
2147 386405f7 bellard
2148 1f673135 bellard
Debug options:
2149 386405f7 bellard
2150 1f673135 bellard
@table @option
2151 1f673135 bellard
@item -d
2152 1f673135 bellard
Activate log (logfile=/tmp/qemu.log)
2153 1f673135 bellard
@item -p pagesize
2154 1f673135 bellard
Act as if the host page size was 'pagesize' bytes
2155 34a3d239 blueswir1
@item -g port
2156 34a3d239 blueswir1
Wait gdb connection to port
2157 1b530a6d aurel32
@item -singlestep
2158 1b530a6d aurel32
Run the emulation in single step mode.
2159 1f673135 bellard
@end table
2160 386405f7 bellard
2161 b01bcae6 balrog
Environment variables:
2162 b01bcae6 balrog
2163 b01bcae6 balrog
@table @env
2164 b01bcae6 balrog
@item QEMU_STRACE
2165 b01bcae6 balrog
Print system calls and arguments similar to the 'strace' program
2166 b01bcae6 balrog
(NOTE: the actual 'strace' program will not work because the user
2167 b01bcae6 balrog
space emulator hasn't implemented ptrace).  At the moment this is
2168 b01bcae6 balrog
incomplete.  All system calls that don't have a specific argument
2169 b01bcae6 balrog
format are printed with information for six arguments.  Many
2170 b01bcae6 balrog
flag-style arguments don't have decoders and will show up as numbers.
2171 5cfdf930 ths
@end table
2172 b01bcae6 balrog
2173 79737e4a pbrook
@node Other binaries
2174 83195237 bellard
@subsection Other binaries
2175 79737e4a pbrook
2176 7544a042 Stefan Weil
@cindex user mode (Alpha)
2177 7544a042 Stefan Weil
@command{qemu-alpha} TODO.
2178 7544a042 Stefan Weil
2179 7544a042 Stefan Weil
@cindex user mode (ARM)
2180 7544a042 Stefan Weil
@command{qemu-armeb} TODO.
2181 7544a042 Stefan Weil
2182 7544a042 Stefan Weil
@cindex user mode (ARM)
2183 79737e4a pbrook
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2184 79737e4a pbrook
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2185 79737e4a pbrook
configurations), and arm-uclinux bFLT format binaries.
2186 79737e4a pbrook
2187 7544a042 Stefan Weil
@cindex user mode (ColdFire)
2188 7544a042 Stefan Weil
@cindex user mode (M68K)
2189 e6e5906b pbrook
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2190 e6e5906b pbrook
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2191 e6e5906b pbrook
coldfire uClinux bFLT format binaries.
2192 e6e5906b pbrook
2193 79737e4a pbrook
The binary format is detected automatically.
2194 79737e4a pbrook
2195 7544a042 Stefan Weil
@cindex user mode (Cris)
2196 7544a042 Stefan Weil
@command{qemu-cris} TODO.
2197 7544a042 Stefan Weil
2198 7544a042 Stefan Weil
@cindex user mode (i386)
2199 7544a042 Stefan Weil
@command{qemu-i386} TODO.
2200 7544a042 Stefan Weil
@command{qemu-x86_64} TODO.
2201 7544a042 Stefan Weil
2202 7544a042 Stefan Weil
@cindex user mode (Microblaze)
2203 7544a042 Stefan Weil
@command{qemu-microblaze} TODO.
2204 7544a042 Stefan Weil
2205 7544a042 Stefan Weil
@cindex user mode (MIPS)
2206 7544a042 Stefan Weil
@command{qemu-mips} TODO.
2207 7544a042 Stefan Weil
@command{qemu-mipsel} TODO.
2208 7544a042 Stefan Weil
2209 7544a042 Stefan Weil
@cindex user mode (PowerPC)
2210 7544a042 Stefan Weil
@command{qemu-ppc64abi32} TODO.
2211 7544a042 Stefan Weil
@command{qemu-ppc64} TODO.
2212 7544a042 Stefan Weil
@command{qemu-ppc} TODO.
2213 7544a042 Stefan Weil
2214 7544a042 Stefan Weil
@cindex user mode (SH4)
2215 7544a042 Stefan Weil
@command{qemu-sh4eb} TODO.
2216 7544a042 Stefan Weil
@command{qemu-sh4} TODO.
2217 7544a042 Stefan Weil
2218 7544a042 Stefan Weil
@cindex user mode (SPARC)
2219 34a3d239 blueswir1
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2220 34a3d239 blueswir1
2221 a785e42e blueswir1
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2222 a785e42e blueswir1
(Sparc64 CPU, 32 bit ABI).
2223 a785e42e blueswir1
2224 a785e42e blueswir1
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2225 a785e42e blueswir1
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2226 a785e42e blueswir1
2227 83195237 bellard
@node Mac OS X/Darwin User space emulator
2228 83195237 bellard
@section Mac OS X/Darwin User space emulator
2229 83195237 bellard
2230 83195237 bellard
@menu
2231 83195237 bellard
* Mac OS X/Darwin Status::
2232 83195237 bellard
* Mac OS X/Darwin Quick Start::
2233 83195237 bellard
* Mac OS X/Darwin Command line options::
2234 83195237 bellard
@end menu
2235 83195237 bellard
2236 83195237 bellard
@node Mac OS X/Darwin Status
2237 83195237 bellard
@subsection Mac OS X/Darwin Status
2238 83195237 bellard
2239 83195237 bellard
@itemize @minus
2240 83195237 bellard
@item
2241 83195237 bellard
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2242 83195237 bellard
@item
2243 83195237 bellard
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2244 83195237 bellard
@item
2245 dbcf5e82 ths
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2246 83195237 bellard
@item
2247 83195237 bellard
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2248 83195237 bellard
@end itemize
2249 83195237 bellard
2250 83195237 bellard
[1] If you're host commpage can be executed by qemu.
2251 83195237 bellard
2252 83195237 bellard
@node Mac OS X/Darwin Quick Start
2253 83195237 bellard
@subsection Quick Start
2254 83195237 bellard
2255 83195237 bellard
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2256 83195237 bellard
itself and all the target dynamic libraries used by it. If you don't have the FAT
2257 83195237 bellard
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2258 83195237 bellard
CD or compile them by hand.
2259 83195237 bellard
2260 83195237 bellard
@itemize
2261 83195237 bellard
2262 83195237 bellard
@item On x86, you can just try to launch any process by using the native
2263 83195237 bellard
libraries:
2264 83195237 bellard
2265 5fafdf24 ths
@example
2266 dbcf5e82 ths
qemu-i386 /bin/ls
2267 83195237 bellard
@end example
2268 83195237 bellard
2269 83195237 bellard
or to run the ppc version of the executable:
2270 83195237 bellard
2271 5fafdf24 ths
@example
2272 dbcf5e82 ths
qemu-ppc /bin/ls
2273 83195237 bellard
@end example
2274 83195237 bellard
2275 83195237 bellard
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2276 83195237 bellard
are installed:
2277 83195237 bellard
2278 5fafdf24 ths
@example
2279 dbcf5e82 ths
qemu-i386 -L /opt/x86_root/ /bin/ls
2280 83195237 bellard
@end example
2281 83195237 bellard
2282 83195237 bellard
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2283 83195237 bellard
@file{/opt/x86_root/usr/bin/dyld}.
2284 83195237 bellard
2285 83195237 bellard
@end itemize
2286 83195237 bellard
2287 83195237 bellard
@node Mac OS X/Darwin Command line options
2288 83195237 bellard
@subsection Command line options
2289 83195237 bellard
2290 83195237 bellard
@example
2291 dbcf5e82 ths
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2292 83195237 bellard
@end example
2293 83195237 bellard
2294 83195237 bellard
@table @option
2295 83195237 bellard
@item -h
2296 83195237 bellard
Print the help
2297 3b46e624 ths
@item -L path
2298 83195237 bellard
Set the library root path (default=/)
2299 83195237 bellard
@item -s size
2300 83195237 bellard
Set the stack size in bytes (default=524288)
2301 83195237 bellard
@end table
2302 83195237 bellard
2303 83195237 bellard
Debug options:
2304 83195237 bellard
2305 83195237 bellard
@table @option
2306 83195237 bellard
@item -d
2307 83195237 bellard
Activate log (logfile=/tmp/qemu.log)
2308 83195237 bellard
@item -p pagesize
2309 83195237 bellard
Act as if the host page size was 'pagesize' bytes
2310 1b530a6d aurel32
@item -singlestep
2311 1b530a6d aurel32
Run the emulation in single step mode.
2312 83195237 bellard
@end table
2313 83195237 bellard
2314 84778508 blueswir1
@node BSD User space emulator
2315 84778508 blueswir1
@section BSD User space emulator
2316 84778508 blueswir1
2317 84778508 blueswir1
@menu
2318 84778508 blueswir1
* BSD Status::
2319 84778508 blueswir1
* BSD Quick Start::
2320 84778508 blueswir1
* BSD Command line options::
2321 84778508 blueswir1
@end menu
2322 84778508 blueswir1
2323 84778508 blueswir1
@node BSD Status
2324 84778508 blueswir1
@subsection BSD Status
2325 84778508 blueswir1
2326 84778508 blueswir1
@itemize @minus
2327 84778508 blueswir1
@item
2328 84778508 blueswir1
target Sparc64 on Sparc64: Some trivial programs work.
2329 84778508 blueswir1
@end itemize
2330 84778508 blueswir1
2331 84778508 blueswir1
@node BSD Quick Start
2332 84778508 blueswir1
@subsection Quick Start
2333 84778508 blueswir1
2334 84778508 blueswir1
In order to launch a BSD process, QEMU needs the process executable
2335 84778508 blueswir1
itself and all the target dynamic libraries used by it.
2336 84778508 blueswir1
2337 84778508 blueswir1
@itemize
2338 84778508 blueswir1
2339 84778508 blueswir1
@item On Sparc64, you can just try to launch any process by using the native
2340 84778508 blueswir1
libraries:
2341 84778508 blueswir1
2342 84778508 blueswir1
@example
2343 84778508 blueswir1
qemu-sparc64 /bin/ls
2344 84778508 blueswir1
@end example
2345 84778508 blueswir1
2346 84778508 blueswir1
@end itemize
2347 84778508 blueswir1
2348 84778508 blueswir1
@node BSD Command line options
2349 84778508 blueswir1
@subsection Command line options
2350 84778508 blueswir1
2351 84778508 blueswir1
@example
2352 84778508 blueswir1
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2353 84778508 blueswir1
@end example
2354 84778508 blueswir1
2355 84778508 blueswir1
@table @option
2356 84778508 blueswir1
@item -h
2357 84778508 blueswir1
Print the help
2358 84778508 blueswir1
@item -L path
2359 84778508 blueswir1
Set the library root path (default=/)
2360 84778508 blueswir1
@item -s size
2361 84778508 blueswir1
Set the stack size in bytes (default=524288)
2362 84778508 blueswir1
@item -bsd type
2363 84778508 blueswir1
Set the type of the emulated BSD Operating system. Valid values are
2364 84778508 blueswir1
FreeBSD, NetBSD and OpenBSD (default).
2365 84778508 blueswir1
@end table
2366 84778508 blueswir1
2367 84778508 blueswir1
Debug options:
2368 84778508 blueswir1
2369 84778508 blueswir1
@table @option
2370 84778508 blueswir1
@item -d
2371 84778508 blueswir1
Activate log (logfile=/tmp/qemu.log)
2372 84778508 blueswir1
@item -p pagesize
2373 84778508 blueswir1
Act as if the host page size was 'pagesize' bytes
2374 1b530a6d aurel32
@item -singlestep
2375 1b530a6d aurel32
Run the emulation in single step mode.
2376 84778508 blueswir1
@end table
2377 84778508 blueswir1
2378 15a34c63 bellard
@node compilation
2379 15a34c63 bellard
@chapter Compilation from the sources
2380 15a34c63 bellard
2381 debc7065 bellard
@menu
2382 debc7065 bellard
* Linux/Unix::
2383 debc7065 bellard
* Windows::
2384 debc7065 bellard
* Cross compilation for Windows with Linux::
2385 debc7065 bellard
* Mac OS X::
2386 47eacb4f Stefan Weil
* Make targets::
2387 debc7065 bellard
@end menu
2388 debc7065 bellard
2389 debc7065 bellard
@node Linux/Unix
2390 7c3fc84d bellard
@section Linux/Unix
2391 7c3fc84d bellard
2392 7c3fc84d bellard
@subsection Compilation
2393 7c3fc84d bellard
2394 7c3fc84d bellard
First you must decompress the sources:
2395 7c3fc84d bellard
@example
2396 7c3fc84d bellard
cd /tmp
2397 7c3fc84d bellard
tar zxvf qemu-x.y.z.tar.gz
2398 7c3fc84d bellard
cd qemu-x.y.z
2399 7c3fc84d bellard
@end example
2400 7c3fc84d bellard
2401 7c3fc84d bellard
Then you configure QEMU and build it (usually no options are needed):
2402 7c3fc84d bellard
@example
2403 7c3fc84d bellard
./configure
2404 7c3fc84d bellard
make
2405 7c3fc84d bellard
@end example
2406 7c3fc84d bellard
2407 7c3fc84d bellard
Then type as root user:
2408 7c3fc84d bellard
@example
2409 7c3fc84d bellard
make install
2410 7c3fc84d bellard
@end example
2411 7c3fc84d bellard
to install QEMU in @file{/usr/local}.
2412 7c3fc84d bellard
2413 debc7065 bellard
@node Windows
2414 15a34c63 bellard
@section Windows
2415 15a34c63 bellard
2416 15a34c63 bellard
@itemize
2417 15a34c63 bellard
@item Install the current versions of MSYS and MinGW from
2418 15a34c63 bellard
@url{http://www.mingw.org/}. You can find detailed installation
2419 15a34c63 bellard
instructions in the download section and the FAQ.
2420 15a34c63 bellard
2421 5fafdf24 ths
@item Download
2422 15a34c63 bellard
the MinGW development library of SDL 1.2.x
2423 debc7065 bellard
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2424 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2425 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2426 15a34c63 bellard
correct SDL directory when invoked.
2427 15a34c63 bellard
2428 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2429 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2430 d0a96f3d Scott Tsai
MingGW's default header and linker search paths.
2431 d0a96f3d Scott Tsai
2432 15a34c63 bellard
@item Extract the current version of QEMU.
2433 5fafdf24 ths
2434 15a34c63 bellard
@item Start the MSYS shell (file @file{msys.bat}).
2435 15a34c63 bellard
2436 5fafdf24 ths
@item Change to the QEMU directory. Launch @file{./configure} and
2437 15a34c63 bellard
@file{make}.  If you have problems using SDL, verify that
2438 15a34c63 bellard
@file{sdl-config} can be launched from the MSYS command line.
2439 15a34c63 bellard
2440 5fafdf24 ths
@item You can install QEMU in @file{Program Files/Qemu} by typing
2441 15a34c63 bellard
@file{make install}. Don't forget to copy @file{SDL.dll} in
2442 15a34c63 bellard
@file{Program Files/Qemu}.
2443 15a34c63 bellard
2444 15a34c63 bellard
@end itemize
2445 15a34c63 bellard
2446 debc7065 bellard
@node Cross compilation for Windows with Linux
2447 15a34c63 bellard
@section Cross compilation for Windows with Linux
2448 15a34c63 bellard
2449 15a34c63 bellard
@itemize
2450 15a34c63 bellard
@item
2451 15a34c63 bellard
Install the MinGW cross compilation tools available at
2452 15a34c63 bellard
@url{http://www.mingw.org/}.
2453 15a34c63 bellard
2454 d0a96f3d Scott Tsai
@item Download
2455 d0a96f3d Scott Tsai
the MinGW development library of SDL 1.2.x
2456 d0a96f3d Scott Tsai
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2457 d0a96f3d Scott Tsai
@url{http://www.libsdl.org}. Unpack it in a temporary place and
2458 d0a96f3d Scott Tsai
edit the @file{sdl-config} script so that it gives the
2459 d0a96f3d Scott Tsai
correct SDL directory when invoked.  Set up the @code{PATH} environment
2460 d0a96f3d Scott Tsai
variable so that @file{sdl-config} can be launched by
2461 15a34c63 bellard
the QEMU configuration script.
2462 15a34c63 bellard
2463 d0a96f3d Scott Tsai
@item Install the MinGW version of zlib and make sure
2464 d0a96f3d Scott Tsai
@file{zlib.h} and @file{libz.dll.a} are in
2465 d0a96f3d Scott Tsai
MingGW's default header and linker search paths.
2466 d0a96f3d Scott Tsai
2467 5fafdf24 ths
@item
2468 15a34c63 bellard
Configure QEMU for Windows cross compilation:
2469 15a34c63 bellard
@example
2470 d0a96f3d Scott Tsai
PATH=/usr/i686-pc-mingw32/sys-root/mingw/bin:$PATH ./configure --cross-prefix='i686-pc-mingw32-'
2471 d0a96f3d Scott Tsai
@end example
2472 d0a96f3d Scott Tsai
The example assumes @file{sdl-config} is installed under @file{/usr/i686-pc-mingw32/sys-root/mingw/bin} and
2473 d0a96f3d Scott Tsai
MinGW cross compilation tools have names like @file{i686-pc-mingw32-gcc} and @file{i686-pc-mingw32-strip}.
2474 d0a96f3d Scott Tsai
We set the @code{PATH} environment variable to ensure the MingW version of @file{sdl-config} is used and
2475 d0a96f3d Scott Tsai
use --cross-prefix to specify the name of the cross compiler.
2476 d0a96f3d Scott Tsai
You can also use --prefix to set the Win32 install path which defaults to @file{c:/Program Files/Qemu}.
2477 d0a96f3d Scott Tsai
2478 d0a96f3d Scott Tsai
Under Fedora Linux, you can run:
2479 d0a96f3d Scott Tsai
@example
2480 d0a96f3d Scott Tsai
yum -y install mingw32-gcc mingw32-SDL mingw32-zlib
2481 15a34c63 bellard
@end example
2482 d0a96f3d Scott Tsai
to get a suitable cross compilation environment.
2483 15a34c63 bellard
2484 5fafdf24 ths
@item You can install QEMU in the installation directory by typing
2485 d0a96f3d Scott Tsai
@code{make install}. Don't forget to copy @file{SDL.dll} and @file{zlib1.dll} into the
2486 5fafdf24 ths
installation directory.
2487 15a34c63 bellard
2488 15a34c63 bellard
@end itemize
2489 15a34c63 bellard
2490 d0a96f3d Scott Tsai
Wine can be used to launch the resulting qemu.exe compiled for Win32.
2491 15a34c63 bellard
2492 debc7065 bellard
@node Mac OS X
2493 15a34c63 bellard
@section Mac OS X
2494 15a34c63 bellard
2495 15a34c63 bellard
The Mac OS X patches are not fully merged in QEMU, so you should look
2496 15a34c63 bellard
at the QEMU mailing list archive to have all the necessary
2497 15a34c63 bellard
information.
2498 15a34c63 bellard
2499 47eacb4f Stefan Weil
@node Make targets
2500 47eacb4f Stefan Weil
@section Make targets
2501 47eacb4f Stefan Weil
2502 47eacb4f Stefan Weil
@table @code
2503 47eacb4f Stefan Weil
2504 47eacb4f Stefan Weil
@item make
2505 47eacb4f Stefan Weil
@item make all
2506 47eacb4f Stefan Weil
Make everything which is typically needed.
2507 47eacb4f Stefan Weil
2508 47eacb4f Stefan Weil
@item install
2509 47eacb4f Stefan Weil
TODO
2510 47eacb4f Stefan Weil
2511 47eacb4f Stefan Weil
@item install-doc
2512 47eacb4f Stefan Weil
TODO
2513 47eacb4f Stefan Weil
2514 47eacb4f Stefan Weil
@item make clean
2515 47eacb4f Stefan Weil
Remove most files which were built during make.
2516 47eacb4f Stefan Weil
2517 47eacb4f Stefan Weil
@item make distclean
2518 47eacb4f Stefan Weil
Remove everything which was built during make.
2519 47eacb4f Stefan Weil
2520 47eacb4f Stefan Weil
@item make dvi
2521 47eacb4f Stefan Weil
@item make html
2522 47eacb4f Stefan Weil
@item make info
2523 47eacb4f Stefan Weil
@item make pdf
2524 47eacb4f Stefan Weil
Create documentation in dvi, html, info or pdf format.
2525 47eacb4f Stefan Weil
2526 47eacb4f Stefan Weil
@item make cscope
2527 47eacb4f Stefan Weil
TODO
2528 47eacb4f Stefan Weil
2529 47eacb4f Stefan Weil
@item make defconfig
2530 47eacb4f Stefan Weil
(Re-)create some build configuration files.
2531 47eacb4f Stefan Weil
User made changes will be overwritten.
2532 47eacb4f Stefan Weil
2533 47eacb4f Stefan Weil
@item tar
2534 47eacb4f Stefan Weil
@item tarbin
2535 47eacb4f Stefan Weil
TODO
2536 47eacb4f Stefan Weil
2537 47eacb4f Stefan Weil
@end table
2538 47eacb4f Stefan Weil
2539 7544a042 Stefan Weil
@node License
2540 7544a042 Stefan Weil
@appendix License
2541 7544a042 Stefan Weil
2542 7544a042 Stefan Weil
QEMU is a trademark of Fabrice Bellard.
2543 7544a042 Stefan Weil
2544 7544a042 Stefan Weil
QEMU is released under the GNU General Public License (TODO: add link).
2545 7544a042 Stefan Weil
Parts of QEMU have specific licenses, see file LICENSE.
2546 7544a042 Stefan Weil
2547 7544a042 Stefan Weil
TODO (refer to file LICENSE, include it, include the GPL?)
2548 7544a042 Stefan Weil
2549 debc7065 bellard
@node Index
2550 7544a042 Stefan Weil
@appendix Index
2551 7544a042 Stefan Weil
@menu
2552 7544a042 Stefan Weil
* Concept Index::
2553 7544a042 Stefan Weil
* Function Index::
2554 7544a042 Stefan Weil
* Keystroke Index::
2555 7544a042 Stefan Weil
* Program Index::
2556 7544a042 Stefan Weil
* Data Type Index::
2557 7544a042 Stefan Weil
* Variable Index::
2558 7544a042 Stefan Weil
@end menu
2559 7544a042 Stefan Weil
2560 7544a042 Stefan Weil
@node Concept Index
2561 7544a042 Stefan Weil
@section Concept Index
2562 7544a042 Stefan Weil
This is the main index. Should we combine all keywords in one index? TODO
2563 debc7065 bellard
@printindex cp
2564 debc7065 bellard
2565 7544a042 Stefan Weil
@node Function Index
2566 7544a042 Stefan Weil
@section Function Index
2567 7544a042 Stefan Weil
This index could be used for command line options and monitor functions.
2568 7544a042 Stefan Weil
@printindex fn
2569 7544a042 Stefan Weil
2570 7544a042 Stefan Weil
@node Keystroke Index
2571 7544a042 Stefan Weil
@section Keystroke Index
2572 7544a042 Stefan Weil
2573 7544a042 Stefan Weil
This is a list of all keystrokes which have a special function
2574 7544a042 Stefan Weil
in system emulation.
2575 7544a042 Stefan Weil
2576 7544a042 Stefan Weil
@printindex ky
2577 7544a042 Stefan Weil
2578 7544a042 Stefan Weil
@node Program Index
2579 7544a042 Stefan Weil
@section Program Index
2580 7544a042 Stefan Weil
@printindex pg
2581 7544a042 Stefan Weil
2582 7544a042 Stefan Weil
@node Data Type Index
2583 7544a042 Stefan Weil
@section Data Type Index
2584 7544a042 Stefan Weil
2585 7544a042 Stefan Weil
This index could be used for qdev device names and options.
2586 7544a042 Stefan Weil
2587 7544a042 Stefan Weil
@printindex tp
2588 7544a042 Stefan Weil
2589 7544a042 Stefan Weil
@node Variable Index
2590 7544a042 Stefan Weil
@section Variable Index
2591 7544a042 Stefan Weil
@printindex vr
2592 7544a042 Stefan Weil
2593 debc7065 bellard
@bye