Statistics
| Branch: | Revision:

root / target-i386 / ops_sse.h @ 222a3336

History | View | Annotate | Download (57.5 kB)

1
/*
2
 *  MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3
 *
4
 *  Copyright (c) 2005 Fabrice Bellard
5
 *  Copyright (c) 2008 Intel Corporation  <andrew.zaborowski@intel.com>
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
 */
21
#if SHIFT == 0
22
#define Reg MMXReg
23
#define XMM_ONLY(x...)
24
#define B(n) MMX_B(n)
25
#define W(n) MMX_W(n)
26
#define L(n) MMX_L(n)
27
#define Q(n) q
28
#define SUFFIX _mmx
29
#else
30
#define Reg XMMReg
31
#define XMM_ONLY(x...) x
32
#define B(n) XMM_B(n)
33
#define W(n) XMM_W(n)
34
#define L(n) XMM_L(n)
35
#define Q(n) XMM_Q(n)
36
#define SUFFIX _xmm
37
#endif
38

    
39
void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
40
{
41
    int shift;
42

    
43
    if (s->Q(0) > 15) {
44
        d->Q(0) = 0;
45
#if SHIFT == 1
46
        d->Q(1) = 0;
47
#endif
48
    } else {
49
        shift = s->B(0);
50
        d->W(0) >>= shift;
51
        d->W(1) >>= shift;
52
        d->W(2) >>= shift;
53
        d->W(3) >>= shift;
54
#if SHIFT == 1
55
        d->W(4) >>= shift;
56
        d->W(5) >>= shift;
57
        d->W(6) >>= shift;
58
        d->W(7) >>= shift;
59
#endif
60
    }
61
    FORCE_RET();
62
}
63

    
64
void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
65
{
66
    int shift;
67

    
68
    if (s->Q(0) > 15) {
69
        shift = 15;
70
    } else {
71
        shift = s->B(0);
72
    }
73
    d->W(0) = (int16_t)d->W(0) >> shift;
74
    d->W(1) = (int16_t)d->W(1) >> shift;
75
    d->W(2) = (int16_t)d->W(2) >> shift;
76
    d->W(3) = (int16_t)d->W(3) >> shift;
77
#if SHIFT == 1
78
    d->W(4) = (int16_t)d->W(4) >> shift;
79
    d->W(5) = (int16_t)d->W(5) >> shift;
80
    d->W(6) = (int16_t)d->W(6) >> shift;
81
    d->W(7) = (int16_t)d->W(7) >> shift;
82
#endif
83
}
84

    
85
void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
86
{
87
    int shift;
88

    
89
    if (s->Q(0) > 15) {
90
        d->Q(0) = 0;
91
#if SHIFT == 1
92
        d->Q(1) = 0;
93
#endif
94
    } else {
95
        shift = s->B(0);
96
        d->W(0) <<= shift;
97
        d->W(1) <<= shift;
98
        d->W(2) <<= shift;
99
        d->W(3) <<= shift;
100
#if SHIFT == 1
101
        d->W(4) <<= shift;
102
        d->W(5) <<= shift;
103
        d->W(6) <<= shift;
104
        d->W(7) <<= shift;
105
#endif
106
    }
107
    FORCE_RET();
108
}
109

    
110
void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
111
{
112
    int shift;
113

    
114
    if (s->Q(0) > 31) {
115
        d->Q(0) = 0;
116
#if SHIFT == 1
117
        d->Q(1) = 0;
118
#endif
119
    } else {
120
        shift = s->B(0);
121
        d->L(0) >>= shift;
122
        d->L(1) >>= shift;
123
#if SHIFT == 1
124
        d->L(2) >>= shift;
125
        d->L(3) >>= shift;
126
#endif
127
    }
128
    FORCE_RET();
129
}
130

    
131
void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
132
{
133
    int shift;
134

    
135
    if (s->Q(0) > 31) {
136
        shift = 31;
137
    } else {
138
        shift = s->B(0);
139
    }
140
    d->L(0) = (int32_t)d->L(0) >> shift;
141
    d->L(1) = (int32_t)d->L(1) >> shift;
142
#if SHIFT == 1
143
    d->L(2) = (int32_t)d->L(2) >> shift;
144
    d->L(3) = (int32_t)d->L(3) >> shift;
145
#endif
146
}
147

    
148
void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
149
{
150
    int shift;
151

    
152
    if (s->Q(0) > 31) {
153
        d->Q(0) = 0;
154
#if SHIFT == 1
155
        d->Q(1) = 0;
156
#endif
157
    } else {
158
        shift = s->B(0);
159
        d->L(0) <<= shift;
160
        d->L(1) <<= shift;
161
#if SHIFT == 1
162
        d->L(2) <<= shift;
163
        d->L(3) <<= shift;
164
#endif
165
    }
166
    FORCE_RET();
167
}
168

    
169
void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
170
{
171
    int shift;
172

    
173
    if (s->Q(0) > 63) {
174
        d->Q(0) = 0;
175
#if SHIFT == 1
176
        d->Q(1) = 0;
177
#endif
178
    } else {
179
        shift = s->B(0);
180
        d->Q(0) >>= shift;
181
#if SHIFT == 1
182
        d->Q(1) >>= shift;
183
#endif
184
    }
185
    FORCE_RET();
186
}
187

    
188
void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
189
{
190
    int shift;
191

    
192
    if (s->Q(0) > 63) {
193
        d->Q(0) = 0;
194
#if SHIFT == 1
195
        d->Q(1) = 0;
196
#endif
197
    } else {
198
        shift = s->B(0);
199
        d->Q(0) <<= shift;
200
#if SHIFT == 1
201
        d->Q(1) <<= shift;
202
#endif
203
    }
204
    FORCE_RET();
205
}
206

    
207
#if SHIFT == 1
208
void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
209
{
210
    int shift, i;
211

    
212
    shift = s->L(0);
213
    if (shift > 16)
214
        shift = 16;
215
    for(i = 0; i < 16 - shift; i++)
216
        d->B(i) = d->B(i + shift);
217
    for(i = 16 - shift; i < 16; i++)
218
        d->B(i) = 0;
219
    FORCE_RET();
220
}
221

    
222
void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
223
{
224
    int shift, i;
225

    
226
    shift = s->L(0);
227
    if (shift > 16)
228
        shift = 16;
229
    for(i = 15; i >= shift; i--)
230
        d->B(i) = d->B(i - shift);
231
    for(i = 0; i < shift; i++)
232
        d->B(i) = 0;
233
    FORCE_RET();
234
}
235
#endif
236

    
237
#define SSE_HELPER_B(name, F)\
238
void glue(name, SUFFIX) (Reg *d, Reg *s)\
239
{\
240
    d->B(0) = F(d->B(0), s->B(0));\
241
    d->B(1) = F(d->B(1), s->B(1));\
242
    d->B(2) = F(d->B(2), s->B(2));\
243
    d->B(3) = F(d->B(3), s->B(3));\
244
    d->B(4) = F(d->B(4), s->B(4));\
245
    d->B(5) = F(d->B(5), s->B(5));\
246
    d->B(6) = F(d->B(6), s->B(6));\
247
    d->B(7) = F(d->B(7), s->B(7));\
248
    XMM_ONLY(\
249
    d->B(8) = F(d->B(8), s->B(8));\
250
    d->B(9) = F(d->B(9), s->B(9));\
251
    d->B(10) = F(d->B(10), s->B(10));\
252
    d->B(11) = F(d->B(11), s->B(11));\
253
    d->B(12) = F(d->B(12), s->B(12));\
254
    d->B(13) = F(d->B(13), s->B(13));\
255
    d->B(14) = F(d->B(14), s->B(14));\
256
    d->B(15) = F(d->B(15), s->B(15));\
257
    )\
258
}
259

    
260
#define SSE_HELPER_W(name, F)\
261
void glue(name, SUFFIX) (Reg *d, Reg *s)\
262
{\
263
    d->W(0) = F(d->W(0), s->W(0));\
264
    d->W(1) = F(d->W(1), s->W(1));\
265
    d->W(2) = F(d->W(2), s->W(2));\
266
    d->W(3) = F(d->W(3), s->W(3));\
267
    XMM_ONLY(\
268
    d->W(4) = F(d->W(4), s->W(4));\
269
    d->W(5) = F(d->W(5), s->W(5));\
270
    d->W(6) = F(d->W(6), s->W(6));\
271
    d->W(7) = F(d->W(7), s->W(7));\
272
    )\
273
}
274

    
275
#define SSE_HELPER_L(name, F)\
276
void glue(name, SUFFIX) (Reg *d, Reg *s)\
277
{\
278
    d->L(0) = F(d->L(0), s->L(0));\
279
    d->L(1) = F(d->L(1), s->L(1));\
280
    XMM_ONLY(\
281
    d->L(2) = F(d->L(2), s->L(2));\
282
    d->L(3) = F(d->L(3), s->L(3));\
283
    )\
284
}
285

    
286
#define SSE_HELPER_Q(name, F)\
287
void glue(name, SUFFIX) (Reg *d, Reg *s)\
288
{\
289
    d->Q(0) = F(d->Q(0), s->Q(0));\
290
    XMM_ONLY(\
291
    d->Q(1) = F(d->Q(1), s->Q(1));\
292
    )\
293
}
294

    
295
#if SHIFT == 0
296
static inline int satub(int x)
297
{
298
    if (x < 0)
299
        return 0;
300
    else if (x > 255)
301
        return 255;
302
    else
303
        return x;
304
}
305

    
306
static inline int satuw(int x)
307
{
308
    if (x < 0)
309
        return 0;
310
    else if (x > 65535)
311
        return 65535;
312
    else
313
        return x;
314
}
315

    
316
static inline int satsb(int x)
317
{
318
    if (x < -128)
319
        return -128;
320
    else if (x > 127)
321
        return 127;
322
    else
323
        return x;
324
}
325

    
326
static inline int satsw(int x)
327
{
328
    if (x < -32768)
329
        return -32768;
330
    else if (x > 32767)
331
        return 32767;
332
    else
333
        return x;
334
}
335

    
336
#define FADD(a, b) ((a) + (b))
337
#define FADDUB(a, b) satub((a) + (b))
338
#define FADDUW(a, b) satuw((a) + (b))
339
#define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
340
#define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
341

    
342
#define FSUB(a, b) ((a) - (b))
343
#define FSUBUB(a, b) satub((a) - (b))
344
#define FSUBUW(a, b) satuw((a) - (b))
345
#define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
346
#define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
347
#define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
348
#define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
349
#define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
350
#define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
351

    
352
#define FAND(a, b) (a) & (b)
353
#define FANDN(a, b) ((~(a)) & (b))
354
#define FOR(a, b) (a) | (b)
355
#define FXOR(a, b) (a) ^ (b)
356

    
357
#define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
358
#define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
359
#define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
360
#define FCMPEQ(a, b) (a) == (b) ? -1 : 0
361

    
362
#define FMULLW(a, b) (a) * (b)
363
#define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
364
#define FMULHUW(a, b) (a) * (b) >> 16
365
#define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
366

    
367
#define FAVG(a, b) ((a) + (b) + 1) >> 1
368
#endif
369

    
370
SSE_HELPER_B(helper_paddb, FADD)
371
SSE_HELPER_W(helper_paddw, FADD)
372
SSE_HELPER_L(helper_paddl, FADD)
373
SSE_HELPER_Q(helper_paddq, FADD)
374

    
375
SSE_HELPER_B(helper_psubb, FSUB)
376
SSE_HELPER_W(helper_psubw, FSUB)
377
SSE_HELPER_L(helper_psubl, FSUB)
378
SSE_HELPER_Q(helper_psubq, FSUB)
379

    
380
SSE_HELPER_B(helper_paddusb, FADDUB)
381
SSE_HELPER_B(helper_paddsb, FADDSB)
382
SSE_HELPER_B(helper_psubusb, FSUBUB)
383
SSE_HELPER_B(helper_psubsb, FSUBSB)
384

    
385
SSE_HELPER_W(helper_paddusw, FADDUW)
386
SSE_HELPER_W(helper_paddsw, FADDSW)
387
SSE_HELPER_W(helper_psubusw, FSUBUW)
388
SSE_HELPER_W(helper_psubsw, FSUBSW)
389

    
390
SSE_HELPER_B(helper_pminub, FMINUB)
391
SSE_HELPER_B(helper_pmaxub, FMAXUB)
392

    
393
SSE_HELPER_W(helper_pminsw, FMINSW)
394
SSE_HELPER_W(helper_pmaxsw, FMAXSW)
395

    
396
SSE_HELPER_Q(helper_pand, FAND)
397
SSE_HELPER_Q(helper_pandn, FANDN)
398
SSE_HELPER_Q(helper_por, FOR)
399
SSE_HELPER_Q(helper_pxor, FXOR)
400

    
401
SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
402
SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
403
SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
404

    
405
SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
406
SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
407
SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
408

    
409
SSE_HELPER_W(helper_pmullw, FMULLW)
410
#if SHIFT == 0
411
SSE_HELPER_W(helper_pmulhrw, FMULHRW)
412
#endif
413
SSE_HELPER_W(helper_pmulhuw, FMULHUW)
414
SSE_HELPER_W(helper_pmulhw, FMULHW)
415

    
416
SSE_HELPER_B(helper_pavgb, FAVG)
417
SSE_HELPER_W(helper_pavgw, FAVG)
418

    
419
void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
420
{
421
    d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
422
#if SHIFT == 1
423
    d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
424
#endif
425
}
426

    
427
void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
428
{
429
    int i;
430

    
431
    for(i = 0; i < (2 << SHIFT); i++) {
432
        d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
433
            (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
434
    }
435
    FORCE_RET();
436
}
437

    
438
#if SHIFT == 0
439
static inline int abs1(int a)
440
{
441
    if (a < 0)
442
        return -a;
443
    else
444
        return a;
445
}
446
#endif
447
void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
448
{
449
    unsigned int val;
450

    
451
    val = 0;
452
    val += abs1(d->B(0) - s->B(0));
453
    val += abs1(d->B(1) - s->B(1));
454
    val += abs1(d->B(2) - s->B(2));
455
    val += abs1(d->B(3) - s->B(3));
456
    val += abs1(d->B(4) - s->B(4));
457
    val += abs1(d->B(5) - s->B(5));
458
    val += abs1(d->B(6) - s->B(6));
459
    val += abs1(d->B(7) - s->B(7));
460
    d->Q(0) = val;
461
#if SHIFT == 1
462
    val = 0;
463
    val += abs1(d->B(8) - s->B(8));
464
    val += abs1(d->B(9) - s->B(9));
465
    val += abs1(d->B(10) - s->B(10));
466
    val += abs1(d->B(11) - s->B(11));
467
    val += abs1(d->B(12) - s->B(12));
468
    val += abs1(d->B(13) - s->B(13));
469
    val += abs1(d->B(14) - s->B(14));
470
    val += abs1(d->B(15) - s->B(15));
471
    d->Q(1) = val;
472
#endif
473
}
474

    
475
void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
476
{
477
    int i;
478
    for(i = 0; i < (8 << SHIFT); i++) {
479
        if (s->B(i) & 0x80)
480
            stb(a0 + i, d->B(i));
481
    }
482
    FORCE_RET();
483
}
484

    
485
void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
486
{
487
    d->L(0) = val;
488
    d->L(1) = 0;
489
#if SHIFT == 1
490
    d->Q(1) = 0;
491
#endif
492
}
493

    
494
#ifdef TARGET_X86_64
495
void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
496
{
497
    d->Q(0) = val;
498
#if SHIFT == 1
499
    d->Q(1) = 0;
500
#endif
501
}
502
#endif
503

    
504
#if SHIFT == 0
505
void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
506
{
507
    Reg r;
508
    r.W(0) = s->W(order & 3);
509
    r.W(1) = s->W((order >> 2) & 3);
510
    r.W(2) = s->W((order >> 4) & 3);
511
    r.W(3) = s->W((order >> 6) & 3);
512
    *d = r;
513
}
514
#else
515
void helper_shufps(Reg *d, Reg *s, int order)
516
{
517
    Reg r;
518
    r.L(0) = d->L(order & 3);
519
    r.L(1) = d->L((order >> 2) & 3);
520
    r.L(2) = s->L((order >> 4) & 3);
521
    r.L(3) = s->L((order >> 6) & 3);
522
    *d = r;
523
}
524

    
525
void helper_shufpd(Reg *d, Reg *s, int order)
526
{
527
    Reg r;
528
    r.Q(0) = d->Q(order & 1);
529
    r.Q(1) = s->Q((order >> 1) & 1);
530
    *d = r;
531
}
532

    
533
void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
534
{
535
    Reg r;
536
    r.L(0) = s->L(order & 3);
537
    r.L(1) = s->L((order >> 2) & 3);
538
    r.L(2) = s->L((order >> 4) & 3);
539
    r.L(3) = s->L((order >> 6) & 3);
540
    *d = r;
541
}
542

    
543
void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
544
{
545
    Reg r;
546
    r.W(0) = s->W(order & 3);
547
    r.W(1) = s->W((order >> 2) & 3);
548
    r.W(2) = s->W((order >> 4) & 3);
549
    r.W(3) = s->W((order >> 6) & 3);
550
    r.Q(1) = s->Q(1);
551
    *d = r;
552
}
553

    
554
void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
555
{
556
    Reg r;
557
    r.Q(0) = s->Q(0);
558
    r.W(4) = s->W(4 + (order & 3));
559
    r.W(5) = s->W(4 + ((order >> 2) & 3));
560
    r.W(6) = s->W(4 + ((order >> 4) & 3));
561
    r.W(7) = s->W(4 + ((order >> 6) & 3));
562
    *d = r;
563
}
564
#endif
565

    
566
#if SHIFT == 1
567
/* FPU ops */
568
/* XXX: not accurate */
569

    
570
#define SSE_HELPER_S(name, F)\
571
void helper_ ## name ## ps (Reg *d, Reg *s)\
572
{\
573
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
574
    d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
575
    d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
576
    d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
577
}\
578
\
579
void helper_ ## name ## ss (Reg *d, Reg *s)\
580
{\
581
    d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
582
}\
583
void helper_ ## name ## pd (Reg *d, Reg *s)\
584
{\
585
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
586
    d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
587
}\
588
\
589
void helper_ ## name ## sd (Reg *d, Reg *s)\
590
{\
591
    d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
592
}
593

    
594
#define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
595
#define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
596
#define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
597
#define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
598
#define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b)
599
#define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b)
600
#define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
601

    
602
SSE_HELPER_S(add, FPU_ADD)
603
SSE_HELPER_S(sub, FPU_SUB)
604
SSE_HELPER_S(mul, FPU_MUL)
605
SSE_HELPER_S(div, FPU_DIV)
606
SSE_HELPER_S(min, FPU_MIN)
607
SSE_HELPER_S(max, FPU_MAX)
608
SSE_HELPER_S(sqrt, FPU_SQRT)
609

    
610

    
611
/* float to float conversions */
612
void helper_cvtps2pd(Reg *d, Reg *s)
613
{
614
    float32 s0, s1;
615
    s0 = s->XMM_S(0);
616
    s1 = s->XMM_S(1);
617
    d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
618
    d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
619
}
620

    
621
void helper_cvtpd2ps(Reg *d, Reg *s)
622
{
623
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
624
    d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
625
    d->Q(1) = 0;
626
}
627

    
628
void helper_cvtss2sd(Reg *d, Reg *s)
629
{
630
    d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
631
}
632

    
633
void helper_cvtsd2ss(Reg *d, Reg *s)
634
{
635
    d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
636
}
637

    
638
/* integer to float */
639
void helper_cvtdq2ps(Reg *d, Reg *s)
640
{
641
    d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
642
    d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
643
    d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
644
    d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
645
}
646

    
647
void helper_cvtdq2pd(Reg *d, Reg *s)
648
{
649
    int32_t l0, l1;
650
    l0 = (int32_t)s->XMM_L(0);
651
    l1 = (int32_t)s->XMM_L(1);
652
    d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
653
    d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
654
}
655

    
656
void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
657
{
658
    d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
659
    d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
660
}
661

    
662
void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
663
{
664
    d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
665
    d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
666
}
667

    
668
void helper_cvtsi2ss(XMMReg *d, uint32_t val)
669
{
670
    d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
671
}
672

    
673
void helper_cvtsi2sd(XMMReg *d, uint32_t val)
674
{
675
    d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
676
}
677

    
678
#ifdef TARGET_X86_64
679
void helper_cvtsq2ss(XMMReg *d, uint64_t val)
680
{
681
    d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
682
}
683

    
684
void helper_cvtsq2sd(XMMReg *d, uint64_t val)
685
{
686
    d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
687
}
688
#endif
689

    
690
/* float to integer */
691
void helper_cvtps2dq(XMMReg *d, XMMReg *s)
692
{
693
    d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
694
    d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
695
    d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
696
    d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
697
}
698

    
699
void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
700
{
701
    d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
702
    d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
703
    d->XMM_Q(1) = 0;
704
}
705

    
706
void helper_cvtps2pi(MMXReg *d, XMMReg *s)
707
{
708
    d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
709
    d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
710
}
711

    
712
void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
713
{
714
    d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
715
    d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
716
}
717

    
718
int32_t helper_cvtss2si(XMMReg *s)
719
{
720
    return float32_to_int32(s->XMM_S(0), &env->sse_status);
721
}
722

    
723
int32_t helper_cvtsd2si(XMMReg *s)
724
{
725
    return float64_to_int32(s->XMM_D(0), &env->sse_status);
726
}
727

    
728
#ifdef TARGET_X86_64
729
int64_t helper_cvtss2sq(XMMReg *s)
730
{
731
    return float32_to_int64(s->XMM_S(0), &env->sse_status);
732
}
733

    
734
int64_t helper_cvtsd2sq(XMMReg *s)
735
{
736
    return float64_to_int64(s->XMM_D(0), &env->sse_status);
737
}
738
#endif
739

    
740
/* float to integer truncated */
741
void helper_cvttps2dq(XMMReg *d, XMMReg *s)
742
{
743
    d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
744
    d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
745
    d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
746
    d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
747
}
748

    
749
void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
750
{
751
    d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
752
    d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
753
    d->XMM_Q(1) = 0;
754
}
755

    
756
void helper_cvttps2pi(MMXReg *d, XMMReg *s)
757
{
758
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
759
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
760
}
761

    
762
void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
763
{
764
    d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
765
    d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
766
}
767

    
768
int32_t helper_cvttss2si(XMMReg *s)
769
{
770
    return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
771
}
772

    
773
int32_t helper_cvttsd2si(XMMReg *s)
774
{
775
    return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
776
}
777

    
778
#ifdef TARGET_X86_64
779
int64_t helper_cvttss2sq(XMMReg *s)
780
{
781
    return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
782
}
783

    
784
int64_t helper_cvttsd2sq(XMMReg *s)
785
{
786
    return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
787
}
788
#endif
789

    
790
void helper_rsqrtps(XMMReg *d, XMMReg *s)
791
{
792
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
793
    d->XMM_S(1) = approx_rsqrt(s->XMM_S(1));
794
    d->XMM_S(2) = approx_rsqrt(s->XMM_S(2));
795
    d->XMM_S(3) = approx_rsqrt(s->XMM_S(3));
796
}
797

    
798
void helper_rsqrtss(XMMReg *d, XMMReg *s)
799
{
800
    d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
801
}
802

    
803
void helper_rcpps(XMMReg *d, XMMReg *s)
804
{
805
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
806
    d->XMM_S(1) = approx_rcp(s->XMM_S(1));
807
    d->XMM_S(2) = approx_rcp(s->XMM_S(2));
808
    d->XMM_S(3) = approx_rcp(s->XMM_S(3));
809
}
810

    
811
void helper_rcpss(XMMReg *d, XMMReg *s)
812
{
813
    d->XMM_S(0) = approx_rcp(s->XMM_S(0));
814
}
815

    
816
void helper_haddps(XMMReg *d, XMMReg *s)
817
{
818
    XMMReg r;
819
    r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
820
    r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
821
    r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
822
    r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
823
    *d = r;
824
}
825

    
826
void helper_haddpd(XMMReg *d, XMMReg *s)
827
{
828
    XMMReg r;
829
    r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
830
    r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
831
    *d = r;
832
}
833

    
834
void helper_hsubps(XMMReg *d, XMMReg *s)
835
{
836
    XMMReg r;
837
    r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
838
    r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
839
    r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
840
    r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
841
    *d = r;
842
}
843

    
844
void helper_hsubpd(XMMReg *d, XMMReg *s)
845
{
846
    XMMReg r;
847
    r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
848
    r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
849
    *d = r;
850
}
851

    
852
void helper_addsubps(XMMReg *d, XMMReg *s)
853
{
854
    d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0);
855
    d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1);
856
    d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2);
857
    d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3);
858
}
859

    
860
void helper_addsubpd(XMMReg *d, XMMReg *s)
861
{
862
    d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0);
863
    d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1);
864
}
865

    
866
/* XXX: unordered */
867
#define SSE_HELPER_CMP(name, F)\
868
void helper_ ## name ## ps (Reg *d, Reg *s)\
869
{\
870
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
871
    d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
872
    d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
873
    d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
874
}\
875
\
876
void helper_ ## name ## ss (Reg *d, Reg *s)\
877
{\
878
    d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
879
}\
880
void helper_ ## name ## pd (Reg *d, Reg *s)\
881
{\
882
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
883
    d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
884
}\
885
\
886
void helper_ ## name ## sd (Reg *d, Reg *s)\
887
{\
888
    d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
889
}
890

    
891
#define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0
892
#define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
893
#define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
894
#define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0
895
#define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1
896
#define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
897
#define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
898
#define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1
899

    
900
SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
901
SSE_HELPER_CMP(cmplt, FPU_CMPLT)
902
SSE_HELPER_CMP(cmple, FPU_CMPLE)
903
SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
904
SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
905
SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
906
SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
907
SSE_HELPER_CMP(cmpord, FPU_CMPORD)
908

    
909
const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
910

    
911
void helper_ucomiss(Reg *d, Reg *s)
912
{
913
    int ret;
914
    float32 s0, s1;
915

    
916
    s0 = d->XMM_S(0);
917
    s1 = s->XMM_S(0);
918
    ret = float32_compare_quiet(s0, s1, &env->sse_status);
919
    CC_SRC = comis_eflags[ret + 1];
920
    FORCE_RET();
921
}
922

    
923
void helper_comiss(Reg *d, Reg *s)
924
{
925
    int ret;
926
    float32 s0, s1;
927

    
928
    s0 = d->XMM_S(0);
929
    s1 = s->XMM_S(0);
930
    ret = float32_compare(s0, s1, &env->sse_status);
931
    CC_SRC = comis_eflags[ret + 1];
932
    FORCE_RET();
933
}
934

    
935
void helper_ucomisd(Reg *d, Reg *s)
936
{
937
    int ret;
938
    float64 d0, d1;
939

    
940
    d0 = d->XMM_D(0);
941
    d1 = s->XMM_D(0);
942
    ret = float64_compare_quiet(d0, d1, &env->sse_status);
943
    CC_SRC = comis_eflags[ret + 1];
944
    FORCE_RET();
945
}
946

    
947
void helper_comisd(Reg *d, Reg *s)
948
{
949
    int ret;
950
    float64 d0, d1;
951

    
952
    d0 = d->XMM_D(0);
953
    d1 = s->XMM_D(0);
954
    ret = float64_compare(d0, d1, &env->sse_status);
955
    CC_SRC = comis_eflags[ret + 1];
956
    FORCE_RET();
957
}
958

    
959
uint32_t helper_movmskps(Reg *s)
960
{
961
    int b0, b1, b2, b3;
962
    b0 = s->XMM_L(0) >> 31;
963
    b1 = s->XMM_L(1) >> 31;
964
    b2 = s->XMM_L(2) >> 31;
965
    b3 = s->XMM_L(3) >> 31;
966
    return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
967
}
968

    
969
uint32_t helper_movmskpd(Reg *s)
970
{
971
    int b0, b1;
972
    b0 = s->XMM_L(1) >> 31;
973
    b1 = s->XMM_L(3) >> 31;
974
    return b0 | (b1 << 1);
975
}
976

    
977
#endif
978

    
979
uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
980
{
981
    uint32_t val;
982
    val = 0;
983
    val |= (s->XMM_B(0) >> 7);
984
    val |= (s->XMM_B(1) >> 6) & 0x02;
985
    val |= (s->XMM_B(2) >> 5) & 0x04;
986
    val |= (s->XMM_B(3) >> 4) & 0x08;
987
    val |= (s->XMM_B(4) >> 3) & 0x10;
988
    val |= (s->XMM_B(5) >> 2) & 0x20;
989
    val |= (s->XMM_B(6) >> 1) & 0x40;
990
    val |= (s->XMM_B(7)) & 0x80;
991
#if SHIFT == 1
992
    val |= (s->XMM_B(8) << 1) & 0x0100;
993
    val |= (s->XMM_B(9) << 2) & 0x0200;
994
    val |= (s->XMM_B(10) << 3) & 0x0400;
995
    val |= (s->XMM_B(11) << 4) & 0x0800;
996
    val |= (s->XMM_B(12) << 5) & 0x1000;
997
    val |= (s->XMM_B(13) << 6) & 0x2000;
998
    val |= (s->XMM_B(14) << 7) & 0x4000;
999
    val |= (s->XMM_B(15) << 8) & 0x8000;
1000
#endif
1001
    return val;
1002
}
1003

    
1004
void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
1005
{
1006
    Reg r;
1007

    
1008
    r.B(0) = satsb((int16_t)d->W(0));
1009
    r.B(1) = satsb((int16_t)d->W(1));
1010
    r.B(2) = satsb((int16_t)d->W(2));
1011
    r.B(3) = satsb((int16_t)d->W(3));
1012
#if SHIFT == 1
1013
    r.B(4) = satsb((int16_t)d->W(4));
1014
    r.B(5) = satsb((int16_t)d->W(5));
1015
    r.B(6) = satsb((int16_t)d->W(6));
1016
    r.B(7) = satsb((int16_t)d->W(7));
1017
#endif
1018
    r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1019
    r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1020
    r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1021
    r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1022
#if SHIFT == 1
1023
    r.B(12) = satsb((int16_t)s->W(4));
1024
    r.B(13) = satsb((int16_t)s->W(5));
1025
    r.B(14) = satsb((int16_t)s->W(6));
1026
    r.B(15) = satsb((int16_t)s->W(7));
1027
#endif
1028
    *d = r;
1029
}
1030

    
1031
void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
1032
{
1033
    Reg r;
1034

    
1035
    r.B(0) = satub((int16_t)d->W(0));
1036
    r.B(1) = satub((int16_t)d->W(1));
1037
    r.B(2) = satub((int16_t)d->W(2));
1038
    r.B(3) = satub((int16_t)d->W(3));
1039
#if SHIFT == 1
1040
    r.B(4) = satub((int16_t)d->W(4));
1041
    r.B(5) = satub((int16_t)d->W(5));
1042
    r.B(6) = satub((int16_t)d->W(6));
1043
    r.B(7) = satub((int16_t)d->W(7));
1044
#endif
1045
    r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1046
    r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1047
    r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1048
    r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1049
#if SHIFT == 1
1050
    r.B(12) = satub((int16_t)s->W(4));
1051
    r.B(13) = satub((int16_t)s->W(5));
1052
    r.B(14) = satub((int16_t)s->W(6));
1053
    r.B(15) = satub((int16_t)s->W(7));
1054
#endif
1055
    *d = r;
1056
}
1057

    
1058
void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
1059
{
1060
    Reg r;
1061

    
1062
    r.W(0) = satsw(d->L(0));
1063
    r.W(1) = satsw(d->L(1));
1064
#if SHIFT == 1
1065
    r.W(2) = satsw(d->L(2));
1066
    r.W(3) = satsw(d->L(3));
1067
#endif
1068
    r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1069
    r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1070
#if SHIFT == 1
1071
    r.W(6) = satsw(s->L(2));
1072
    r.W(7) = satsw(s->L(3));
1073
#endif
1074
    *d = r;
1075
}
1076

    
1077
#define UNPCK_OP(base_name, base)                               \
1078
                                                                \
1079
void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s)   \
1080
{                                                               \
1081
    Reg r;                                              \
1082
                                                                \
1083
    r.B(0) = d->B((base << (SHIFT + 2)) + 0);                   \
1084
    r.B(1) = s->B((base << (SHIFT + 2)) + 0);                   \
1085
    r.B(2) = d->B((base << (SHIFT + 2)) + 1);                   \
1086
    r.B(3) = s->B((base << (SHIFT + 2)) + 1);                   \
1087
    r.B(4) = d->B((base << (SHIFT + 2)) + 2);                   \
1088
    r.B(5) = s->B((base << (SHIFT + 2)) + 2);                   \
1089
    r.B(6) = d->B((base << (SHIFT + 2)) + 3);                   \
1090
    r.B(7) = s->B((base << (SHIFT + 2)) + 3);                   \
1091
XMM_ONLY(                                                       \
1092
    r.B(8) = d->B((base << (SHIFT + 2)) + 4);                   \
1093
    r.B(9) = s->B((base << (SHIFT + 2)) + 4);                   \
1094
    r.B(10) = d->B((base << (SHIFT + 2)) + 5);                  \
1095
    r.B(11) = s->B((base << (SHIFT + 2)) + 5);                  \
1096
    r.B(12) = d->B((base << (SHIFT + 2)) + 6);                  \
1097
    r.B(13) = s->B((base << (SHIFT + 2)) + 6);                  \
1098
    r.B(14) = d->B((base << (SHIFT + 2)) + 7);                  \
1099
    r.B(15) = s->B((base << (SHIFT + 2)) + 7);                  \
1100
)                                                               \
1101
    *d = r;                                                     \
1102
}                                                               \
1103
                                                                \
1104
void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s)   \
1105
{                                                               \
1106
    Reg r;                                              \
1107
                                                                \
1108
    r.W(0) = d->W((base << (SHIFT + 1)) + 0);                   \
1109
    r.W(1) = s->W((base << (SHIFT + 1)) + 0);                   \
1110
    r.W(2) = d->W((base << (SHIFT + 1)) + 1);                   \
1111
    r.W(3) = s->W((base << (SHIFT + 1)) + 1);                   \
1112
XMM_ONLY(                                                       \
1113
    r.W(4) = d->W((base << (SHIFT + 1)) + 2);                   \
1114
    r.W(5) = s->W((base << (SHIFT + 1)) + 2);                   \
1115
    r.W(6) = d->W((base << (SHIFT + 1)) + 3);                   \
1116
    r.W(7) = s->W((base << (SHIFT + 1)) + 3);                   \
1117
)                                                               \
1118
    *d = r;                                                     \
1119
}                                                               \
1120
                                                                \
1121
void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s)   \
1122
{                                                               \
1123
    Reg r;                                              \
1124
                                                                \
1125
    r.L(0) = d->L((base << SHIFT) + 0);                         \
1126
    r.L(1) = s->L((base << SHIFT) + 0);                         \
1127
XMM_ONLY(                                                       \
1128
    r.L(2) = d->L((base << SHIFT) + 1);                         \
1129
    r.L(3) = s->L((base << SHIFT) + 1);                         \
1130
)                                                               \
1131
    *d = r;                                                     \
1132
}                                                               \
1133
                                                                \
1134
XMM_ONLY(                                                       \
1135
void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s)  \
1136
{                                                               \
1137
    Reg r;                                              \
1138
                                                                \
1139
    r.Q(0) = d->Q(base);                                        \
1140
    r.Q(1) = s->Q(base);                                        \
1141
    *d = r;                                                     \
1142
}                                                               \
1143
)
1144

    
1145
UNPCK_OP(l, 0)
1146
UNPCK_OP(h, 1)
1147

    
1148
/* 3DNow! float ops */
1149
#if SHIFT == 0
1150
void helper_pi2fd(MMXReg *d, MMXReg *s)
1151
{
1152
    d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1153
    d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1154
}
1155

    
1156
void helper_pi2fw(MMXReg *d, MMXReg *s)
1157
{
1158
    d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1159
    d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1160
}
1161

    
1162
void helper_pf2id(MMXReg *d, MMXReg *s)
1163
{
1164
    d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1165
    d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1166
}
1167

    
1168
void helper_pf2iw(MMXReg *d, MMXReg *s)
1169
{
1170
    d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
1171
    d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
1172
}
1173

    
1174
void helper_pfacc(MMXReg *d, MMXReg *s)
1175
{
1176
    MMXReg r;
1177
    r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1178
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1179
    *d = r;
1180
}
1181

    
1182
void helper_pfadd(MMXReg *d, MMXReg *s)
1183
{
1184
    d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1185
    d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1186
}
1187

    
1188
void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1189
{
1190
    d->MMX_L(0) = float32_eq(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
1191
    d->MMX_L(1) = float32_eq(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
1192
}
1193

    
1194
void helper_pfcmpge(MMXReg *d, MMXReg *s)
1195
{
1196
    d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1197
    d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1198
}
1199

    
1200
void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1201
{
1202
    d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1203
    d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1204
}
1205

    
1206
void helper_pfmax(MMXReg *d, MMXReg *s)
1207
{
1208
    if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
1209
        d->MMX_S(0) = s->MMX_S(0);
1210
    if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
1211
        d->MMX_S(1) = s->MMX_S(1);
1212
}
1213

    
1214
void helper_pfmin(MMXReg *d, MMXReg *s)
1215
{
1216
    if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
1217
        d->MMX_S(0) = s->MMX_S(0);
1218
    if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
1219
        d->MMX_S(1) = s->MMX_S(1);
1220
}
1221

    
1222
void helper_pfmul(MMXReg *d, MMXReg *s)
1223
{
1224
    d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1225
    d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1226
}
1227

    
1228
void helper_pfnacc(MMXReg *d, MMXReg *s)
1229
{
1230
    MMXReg r;
1231
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1232
    r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1233
    *d = r;
1234
}
1235

    
1236
void helper_pfpnacc(MMXReg *d, MMXReg *s)
1237
{
1238
    MMXReg r;
1239
    r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1240
    r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1241
    *d = r;
1242
}
1243

    
1244
void helper_pfrcp(MMXReg *d, MMXReg *s)
1245
{
1246
    d->MMX_S(0) = approx_rcp(s->MMX_S(0));
1247
    d->MMX_S(1) = d->MMX_S(0);
1248
}
1249

    
1250
void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1251
{
1252
    d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1253
    d->MMX_S(1) = approx_rsqrt(d->MMX_S(1));
1254
    d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1255
    d->MMX_L(0) = d->MMX_L(1);
1256
}
1257

    
1258
void helper_pfsub(MMXReg *d, MMXReg *s)
1259
{
1260
    d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1261
    d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1262
}
1263

    
1264
void helper_pfsubr(MMXReg *d, MMXReg *s)
1265
{
1266
    d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1267
    d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1268
}
1269

    
1270
void helper_pswapd(MMXReg *d, MMXReg *s)
1271
{
1272
    MMXReg r;
1273
    r.MMX_L(0) = s->MMX_L(1);
1274
    r.MMX_L(1) = s->MMX_L(0);
1275
    *d = r;
1276
}
1277
#endif
1278

    
1279
/* SSSE3 op helpers */
1280
void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s)
1281
{
1282
    int i;
1283
    Reg r;
1284

    
1285
    for (i = 0; i < (8 << SHIFT); i++)
1286
        r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1287

    
1288
    *d = r;
1289
}
1290

    
1291
void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s)
1292
{
1293
    d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1294
    d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1295
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1296
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1297
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1298
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1299
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1300
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1301
}
1302

    
1303
void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s)
1304
{
1305
    d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1306
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1307
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1308
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1309
}
1310

    
1311
void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s)
1312
{
1313
    d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1314
    d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1315
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1316
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1317
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1318
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1319
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1320
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1321
}
1322

    
1323
void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s)
1324
{
1325
    d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) +
1326
                    (int8_t)s->B( 1) * (uint8_t)d->B( 1));
1327
    d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) +
1328
                    (int8_t)s->B( 3) * (uint8_t)d->B( 3));
1329
    d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) +
1330
                    (int8_t)s->B( 5) * (uint8_t)d->B( 5));
1331
    d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) +
1332
                    (int8_t)s->B( 7) * (uint8_t)d->B( 7));
1333
#if SHIFT == 1
1334
    d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) +
1335
                    (int8_t)s->B( 9) * (uint8_t)d->B( 9));
1336
    d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1337
                    (int8_t)s->B(11) * (uint8_t)d->B(11));
1338
    d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1339
                    (int8_t)s->B(13) * (uint8_t)d->B(13));
1340
    d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1341
                    (int8_t)s->B(15) * (uint8_t)d->B(15));
1342
#endif
1343
}
1344

    
1345
void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s)
1346
{
1347
    d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1348
    d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1349
    XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1350
    XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1351
    d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1352
    d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1353
    XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1354
    XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1355
}
1356

    
1357
void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s)
1358
{
1359
    d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1360
    XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1361
    d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1362
    XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1363
}
1364

    
1365
void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s)
1366
{
1367
    d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1368
    d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1369
    XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1370
    XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1371
    d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1372
    d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1373
    XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1374
    XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1375
}
1376

    
1377
#define FABSB(_, x) x > INT8_MAX  ? -(int8_t ) x : x
1378
#define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x
1379
#define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x
1380
SSE_HELPER_B(helper_pabsb, FABSB)
1381
SSE_HELPER_W(helper_pabsw, FABSW)
1382
SSE_HELPER_L(helper_pabsd, FABSL)
1383

    
1384
#define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15
1385
SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1386

    
1387
#define FSIGNB(d, s) s <= INT8_MAX  ? s ? d : 0 : -(int8_t ) d
1388
#define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d
1389
#define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d
1390
SSE_HELPER_B(helper_psignb, FSIGNB)
1391
SSE_HELPER_W(helper_psignw, FSIGNW)
1392
SSE_HELPER_L(helper_psignd, FSIGNL)
1393

    
1394
void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift)
1395
{
1396
    Reg r;
1397

    
1398
    /* XXX could be checked during translation */
1399
    if (shift >= (16 << SHIFT)) {
1400
        r.Q(0) = 0;
1401
        XMM_ONLY(r.Q(1) = 0);
1402
    } else {
1403
        shift <<= 3;
1404
#define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1405
#if SHIFT == 0
1406
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1407
                 SHR(d->Q(0), shift -  64);
1408
#else
1409
        r.Q(0) = SHR(s->Q(0), shift -   0) |
1410
                 SHR(s->Q(1), shift -  64) |
1411
                 SHR(d->Q(0), shift - 128) |
1412
                 SHR(d->Q(1), shift - 192);
1413
        r.Q(1) = SHR(s->Q(0), shift +  64) |
1414
                 SHR(s->Q(1), shift -   0) |
1415
                 SHR(d->Q(0), shift -  64) |
1416
                 SHR(d->Q(1), shift - 128);
1417
#endif
1418
#undef SHR
1419
    }
1420

    
1421
    *d = r;
1422
}
1423

    
1424
#define XMM0 env->xmm_regs[0]
1425

    
1426
#if SHIFT == 1
1427
#define SSE_HELPER_V(name, elem, num, F)\
1428
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1429
{\
1430
    d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\
1431
    d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\
1432
    if (num > 2) {\
1433
        d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\
1434
        d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\
1435
        if (num > 4) {\
1436
            d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\
1437
            d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\
1438
            d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\
1439
            d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\
1440
            if (num > 8) {\
1441
                d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\
1442
                d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\
1443
                d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\
1444
                d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\
1445
                d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\
1446
                d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\
1447
                d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\
1448
                d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\
1449
            }\
1450
        }\
1451
    }\
1452
}
1453

    
1454
#define SSE_HELPER_I(name, elem, num, F)\
1455
void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\
1456
{\
1457
    d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\
1458
    d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\
1459
    if (num > 2) {\
1460
        d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\
1461
        d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\
1462
        if (num > 4) {\
1463
            d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\
1464
            d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\
1465
            d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\
1466
            d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\
1467
            if (num > 8) {\
1468
                d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\
1469
                d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\
1470
                d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\
1471
                d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\
1472
                d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\
1473
                d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\
1474
                d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\
1475
                d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\
1476
            }\
1477
        }\
1478
    }\
1479
}
1480

    
1481
/* SSE4.1 op helpers */
1482
#define FBLENDVB(d, s, m) (m & 0x80) ? s : d
1483
#define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d
1484
#define FBLENDVPD(d, s, m) (m & 0x8000000000000000) ? s : d
1485
SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1486
SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1487
SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1488

    
1489
void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s)
1490
{
1491
    uint64_t zf = (s->Q(0) &  d->Q(0)) | (s->Q(1) &  d->Q(1));
1492
    uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1493

    
1494
    CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1495
}
1496

    
1497
#define SSE_HELPER_F(name, elem, num, F)\
1498
void glue(name, SUFFIX) (Reg *d, Reg *s)\
1499
{\
1500
    d->elem(0) = F(0);\
1501
    d->elem(1) = F(1);\
1502
    d->elem(2) = F(2);\
1503
    d->elem(3) = F(3);\
1504
    if (num > 3) {\
1505
        d->elem(4) = F(4);\
1506
        d->elem(5) = F(5);\
1507
        if (num > 5) {\
1508
            d->elem(6) = F(6);\
1509
            d->elem(7) = F(7);\
1510
        }\
1511
    }\
1512
}
1513

    
1514
SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1515
SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1516
SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1517
SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1518
SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1519
SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1520
SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1521
SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1522
SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1523
SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1524
SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1525
SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1526

    
1527
void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s)
1528
{
1529
    d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0);
1530
    d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2);
1531
}
1532

    
1533
#define FCMPEQQ(d, s) d == s ? -1 : 0
1534
SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1535

    
1536
void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s)
1537
{
1538
    d->W(0) = satuw((int32_t) d->L(0));
1539
    d->W(1) = satuw((int32_t) d->L(1));
1540
    d->W(2) = satuw((int32_t) d->L(2));
1541
    d->W(3) = satuw((int32_t) d->L(3));
1542
    d->W(4) = satuw((int32_t) s->L(0));
1543
    d->W(5) = satuw((int32_t) s->L(1));
1544
    d->W(6) = satuw((int32_t) s->L(2));
1545
    d->W(7) = satuw((int32_t) s->L(3));
1546
}
1547

    
1548
#define FMINSB(d, s) MIN((int8_t) d, (int8_t) s)
1549
#define FMINSD(d, s) MIN((int32_t) d, (int32_t) s)
1550
#define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s)
1551
#define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s)
1552
SSE_HELPER_B(helper_pminsb, FMINSB)
1553
SSE_HELPER_L(helper_pminsd, FMINSD)
1554
SSE_HELPER_W(helper_pminuw, MIN)
1555
SSE_HELPER_L(helper_pminud, MIN)
1556
SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1557
SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1558
SSE_HELPER_W(helper_pmaxuw, MAX)
1559
SSE_HELPER_L(helper_pmaxud, MAX)
1560

    
1561
#define FMULLD(d, s) (int32_t) d * (int32_t) s
1562
SSE_HELPER_L(helper_pmulld, FMULLD)
1563

    
1564
void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s)
1565
{
1566
    int idx = 0;
1567

    
1568
    if (s->W(1) < s->W(idx))
1569
        idx = 1;
1570
    if (s->W(2) < s->W(idx))
1571
        idx = 2;
1572
    if (s->W(3) < s->W(idx))
1573
        idx = 3;
1574
    if (s->W(4) < s->W(idx))
1575
        idx = 4;
1576
    if (s->W(5) < s->W(idx))
1577
        idx = 5;
1578
    if (s->W(6) < s->W(idx))
1579
        idx = 6;
1580
    if (s->W(7) < s->W(idx))
1581
        idx = 7;
1582

    
1583
    d->Q(1) = 0;
1584
    d->L(1) = 0;
1585
    d->W(1) = idx;
1586
    d->W(0) = s->W(idx);
1587
}
1588

    
1589
void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1590
{
1591
    signed char prev_rounding_mode;
1592

    
1593
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1594
    if (!(mode & (1 << 2)))
1595
        switch (mode & 3) {
1596
        case 0:
1597
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1598
            break;
1599
        case 1:
1600
            set_float_rounding_mode(float_round_down, &env->sse_status);
1601
            break;
1602
        case 2:
1603
            set_float_rounding_mode(float_round_up, &env->sse_status);
1604
            break;
1605
        case 3:
1606
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1607
            break;
1608
        }
1609

    
1610
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1611
    d->L(1) = float64_round_to_int(s->L(1), &env->sse_status);
1612
    d->L(2) = float64_round_to_int(s->L(2), &env->sse_status);
1613
    d->L(3) = float64_round_to_int(s->L(3), &env->sse_status);
1614

    
1615
#if 0 /* TODO */
1616
    if (mode & (1 << 3))
1617
        set_float_exception_flags(
1618
                        get_float_exception_flags(&env->sse_status) &
1619
                        ~float_flag_inexact,
1620
                        &env->sse_status);
1621
#endif
1622
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1623
}
1624

    
1625
void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1626
{
1627
    signed char prev_rounding_mode;
1628

    
1629
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1630
    if (!(mode & (1 << 2)))
1631
        switch (mode & 3) {
1632
        case 0:
1633
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1634
            break;
1635
        case 1:
1636
            set_float_rounding_mode(float_round_down, &env->sse_status);
1637
            break;
1638
        case 2:
1639
            set_float_rounding_mode(float_round_up, &env->sse_status);
1640
            break;
1641
        case 3:
1642
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1643
            break;
1644
        }
1645

    
1646
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1647
    d->Q(1) = float64_round_to_int(s->Q(1), &env->sse_status);
1648

    
1649
#if 0 /* TODO */
1650
    if (mode & (1 << 3))
1651
        set_float_exception_flags(
1652
                        get_float_exception_flags(&env->sse_status) &
1653
                        ~float_flag_inexact,
1654
                        &env->sse_status);
1655
#endif
1656
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1657
}
1658

    
1659
void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1660
{
1661
    signed char prev_rounding_mode;
1662

    
1663
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1664
    if (!(mode & (1 << 2)))
1665
        switch (mode & 3) {
1666
        case 0:
1667
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1668
            break;
1669
        case 1:
1670
            set_float_rounding_mode(float_round_down, &env->sse_status);
1671
            break;
1672
        case 2:
1673
            set_float_rounding_mode(float_round_up, &env->sse_status);
1674
            break;
1675
        case 3:
1676
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1677
            break;
1678
        }
1679

    
1680
    d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1681

    
1682
#if 0 /* TODO */
1683
    if (mode & (1 << 3))
1684
        set_float_exception_flags(
1685
                        get_float_exception_flags(&env->sse_status) &
1686
                        ~float_flag_inexact,
1687
                        &env->sse_status);
1688
#endif
1689
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1690
}
1691

    
1692
void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1693
{
1694
    signed char prev_rounding_mode;
1695

    
1696
    prev_rounding_mode = env->sse_status.float_rounding_mode;
1697
    if (!(mode & (1 << 2)))
1698
        switch (mode & 3) {
1699
        case 0:
1700
            set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1701
            break;
1702
        case 1:
1703
            set_float_rounding_mode(float_round_down, &env->sse_status);
1704
            break;
1705
        case 2:
1706
            set_float_rounding_mode(float_round_up, &env->sse_status);
1707
            break;
1708
        case 3:
1709
            set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1710
            break;
1711
        }
1712

    
1713
    d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1714

    
1715
#if 0 /* TODO */
1716
    if (mode & (1 << 3))
1717
        set_float_exception_flags(
1718
                        get_float_exception_flags(&env->sse_status) &
1719
                        ~float_flag_inexact,
1720
                        &env->sse_status);
1721
#endif
1722
    env->sse_status.float_rounding_mode = prev_rounding_mode;
1723
}
1724

    
1725
#define FBLENDP(d, s, m) m ? s : d
1726
SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1727
SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1728
SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1729

    
1730
void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1731
{
1732
    float32 iresult = 0 /*float32_zero*/;
1733

    
1734
    if (mask & (1 << 4))
1735
        iresult = float32_add(iresult,
1736
                        float32_mul(d->L(0), s->L(0), &env->sse_status),
1737
                        &env->sse_status);
1738
    if (mask & (1 << 5))
1739
        iresult = float32_add(iresult,
1740
                        float32_mul(d->L(1), s->L(1), &env->sse_status),
1741
                        &env->sse_status);
1742
    if (mask & (1 << 6))
1743
        iresult = float32_add(iresult,
1744
                        float32_mul(d->L(2), s->L(2), &env->sse_status),
1745
                        &env->sse_status);
1746
    if (mask & (1 << 7))
1747
        iresult = float32_add(iresult,
1748
                        float32_mul(d->L(3), s->L(3), &env->sse_status),
1749
                        &env->sse_status);
1750
    d->L(0) = (mask & (1 << 0)) ? iresult : 0 /*float32_zero*/;
1751
    d->L(1) = (mask & (1 << 1)) ? iresult : 0 /*float32_zero*/;
1752
    d->L(2) = (mask & (1 << 2)) ? iresult : 0 /*float32_zero*/;
1753
    d->L(3) = (mask & (1 << 3)) ? iresult : 0 /*float32_zero*/;
1754
}
1755

    
1756
void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1757
{
1758
    float64 iresult = 0 /*float64_zero*/;
1759

    
1760
    if (mask & (1 << 4))
1761
        iresult = float64_add(iresult,
1762
                        float64_mul(d->Q(0), s->Q(0), &env->sse_status),
1763
                        &env->sse_status);
1764
    if (mask & (1 << 5))
1765
        iresult = float64_add(iresult,
1766
                        float64_mul(d->Q(1), s->Q(1), &env->sse_status),
1767
                        &env->sse_status);
1768
    d->Q(0) = (mask & (1 << 0)) ? iresult : 0 /*float64_zero*/;
1769
    d->Q(1) = (mask & (1 << 1)) ? iresult : 0 /*float64_zero*/;
1770
}
1771

    
1772
void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset)
1773
{
1774
    int s0 = (offset & 3) << 2;
1775
    int d0 = (offset & 4) << 0;
1776
    int i;
1777
    Reg r;
1778

    
1779
    for (i = 0; i < 8; i++, d0++) {
1780
        r.W(i) = 0;
1781
        r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1782
        r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1783
        r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1784
        r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1785
    }
1786

    
1787
    *d = r;
1788
}
1789

    
1790
/* SSE4.2 op helpers */
1791
/* it's unclear whether signed or unsigned */
1792
#define FCMPGTQ(d, s) d > s ? -1 : 0
1793
SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1794

    
1795
static inline int pcmp_elen(int reg, uint32_t ctrl)
1796
{
1797
    int val;
1798

    
1799
    /* Presence of REX.W is indicated by a bit higher than 7 set */
1800
    if (ctrl >> 8)
1801
        val = abs1((int64_t) env->regs[reg]);
1802
    else
1803
        val = abs1((int32_t) env->regs[reg]);
1804

    
1805
    if (ctrl & 1) {
1806
        if (val > 8)
1807
            return 8;
1808
    } else
1809
        if (val > 16)
1810
            return 16;
1811

    
1812
    return val;
1813
}
1814

    
1815
static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1816
{
1817
    int val = 0;
1818

    
1819
    if (ctrl & 1) {
1820
        while (val < 8 && r->W(val))
1821
            val++;
1822
    } else
1823
        while (val < 16 && r->B(val))
1824
            val++;
1825

    
1826
    return val;
1827
}
1828

    
1829
static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1830
{
1831
    switch ((ctrl >> 0) & 3) {
1832
    case 0:
1833
        return r->B(i);
1834
    case 1:
1835
        return r->W(i);
1836
    case 2:
1837
        return (int8_t) r->B(i);
1838
    case 3:
1839
    default:
1840
        return (int16_t) r->W(i);
1841
    }
1842
}
1843

    
1844
static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1845
                int8_t ctrl, int valids, int validd)
1846
{
1847
    unsigned int res = 0;
1848
    int v;
1849
    int j, i;
1850
    int upper = (ctrl & 1) ? 7 : 15;
1851

    
1852
    valids--;
1853
    validd--;
1854

    
1855
    CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1856

    
1857
    switch ((ctrl >> 2) & 3) {
1858
    case 0:
1859
        for (j = valids; j >= 0; j--) {
1860
            res <<= 1;
1861
            v = pcmp_val(s, ctrl, j);
1862
            for (i = validd; i >= 0; i--)
1863
                res |= (v == pcmp_val(d, ctrl, i));
1864
        }
1865
        break;
1866
    case 1:
1867
        for (j = valids; j >= 0; j--) {
1868
            res <<= 1;
1869
            v = pcmp_val(s, ctrl, j);
1870
            for (i = ((validd - 1) | 1); i >= 0; i -= 2)
1871
                res |= (pcmp_val(d, ctrl, i - 0) <= v &&
1872
                        pcmp_val(d, ctrl, i - 1) >= v);
1873
        }
1874
        break;
1875
    case 2:
1876
        res = (2 << (upper - MAX(valids, validd))) - 1;
1877
        res <<= MAX(valids, validd) - MIN(valids, validd);
1878
        for (i = MIN(valids, validd); i >= 0; i--) {
1879
            res <<= 1;
1880
            v = pcmp_val(s, ctrl, i);
1881
            res |= (v == pcmp_val(d, ctrl, i));
1882
        }
1883
        break;
1884
    case 3:
1885
        for (j = valids - validd; j >= 0; j--) {
1886
            res <<= 1;
1887
            res |= 1;
1888
            for (i = MIN(upper - j, validd); i >= 0; i--)
1889
                res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
1890
        }
1891
        break;
1892
    }
1893

    
1894
    switch ((ctrl >> 4) & 3) {
1895
    case 1:
1896
        res ^= (2 << upper) - 1;
1897
        break;
1898
    case 3:
1899
        res ^= (2 << valids) - 1;
1900
        break;
1901
    }
1902

    
1903
    if (res)
1904
       CC_SRC |= CC_C;
1905
    if (res & 1)
1906
       CC_SRC |= CC_O;
1907

    
1908
    return res;
1909
}
1910

    
1911
static inline int rffs1(unsigned int val)
1912
{
1913
    int ret = 1, hi;
1914

    
1915
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1916
        if (val >> hi) {
1917
            val >>= hi;
1918
            ret += hi;
1919
        }
1920

    
1921
    return ret;
1922
}
1923

    
1924
static inline int ffs1(unsigned int val)
1925
{
1926
    int ret = 1, hi;
1927

    
1928
    for (hi = sizeof(val) * 4; hi; hi /= 2)
1929
        if (val << hi) {
1930
            val <<= hi;
1931
            ret += hi;
1932
        }
1933

    
1934
    return ret;
1935
}
1936

    
1937
void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1938
{
1939
    unsigned int res = pcmpxstrx(d, s, ctrl,
1940
                    pcmp_elen(R_EDX, ctrl),
1941
                    pcmp_elen(R_EAX, ctrl));
1942

    
1943
    if (res)
1944
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1945
    else
1946
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1947
}
1948

    
1949
void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1950
{
1951
    int i;
1952
    unsigned int res = pcmpxstrx(d, s, ctrl,
1953
                    pcmp_elen(R_EDX, ctrl),
1954
                    pcmp_elen(R_EAX, ctrl));
1955

    
1956
    if ((ctrl >> 6) & 1) {
1957
        if (ctrl & 1)
1958
            for (i = 0; i <= 8; i--, res >>= 1)
1959
                d->W(i) = (res & 1) ? ~0 : 0;
1960
        else
1961
            for (i = 0; i <= 16; i--, res >>= 1)
1962
                d->B(i) = (res & 1) ? ~0 : 0;
1963
    } else {
1964
        d->Q(1) = 0;
1965
        d->Q(0) = res;
1966
    }
1967
}
1968

    
1969
void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1970
{
1971
    unsigned int res = pcmpxstrx(d, s, ctrl,
1972
                    pcmp_ilen(s, ctrl),
1973
                    pcmp_ilen(d, ctrl));
1974

    
1975
    if (res)
1976
        env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1977
    else
1978
        env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1979
}
1980

    
1981
void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1982
{
1983
    int i;
1984
    unsigned int res = pcmpxstrx(d, s, ctrl,
1985
                    pcmp_ilen(s, ctrl),
1986
                    pcmp_ilen(d, ctrl));
1987

    
1988
    if ((ctrl >> 6) & 1) {
1989
        if (ctrl & 1)
1990
            for (i = 0; i <= 8; i--, res >>= 1)
1991
                d->W(i) = (res & 1) ? ~0 : 0;
1992
        else
1993
            for (i = 0; i <= 16; i--, res >>= 1)
1994
                d->B(i) = (res & 1) ? ~0 : 0;
1995
    } else {
1996
        d->Q(1) = 0;
1997
        d->Q(0) = res;
1998
    }
1999
}
2000

    
2001
#define CRCPOLY        0x1edc6f41
2002
#define CRCPOLY_BITREV 0x82f63b78
2003
target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2004
{
2005
    target_ulong crc = (msg & ((target_ulong) -1 >>
2006
                            (TARGET_LONG_BITS - len))) ^ crc1;
2007

    
2008
    while (len--)
2009
        crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2010

    
2011
    return crc;
2012
}
2013

    
2014
#define POPMASK(i)     ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2015
#define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))
2016
target_ulong helper_popcnt(target_ulong n, uint32_t type)
2017
{
2018
    CC_SRC = n ? 0 : CC_Z;
2019

    
2020
    n = POPCOUNT(n, 0);
2021
    n = POPCOUNT(n, 1);
2022
    n = POPCOUNT(n, 2);
2023
    n = POPCOUNT(n, 3);
2024
    if (type == 1)
2025
        return n & 0xff;
2026

    
2027
    n = POPCOUNT(n, 4);
2028
#ifndef TARGET_X86_64
2029
    return n;
2030
#else
2031
    if (type == 2)
2032
        return n & 0xff;
2033

    
2034
    return POPCOUNT(n, 5);
2035
#endif
2036
}
2037
#endif
2038

    
2039
#undef SHIFT
2040
#undef XMM_ONLY
2041
#undef Reg
2042
#undef B
2043
#undef W
2044
#undef L
2045
#undef Q
2046
#undef SUFFIX