Statistics
| Branch: | Revision:

root / hw / slavio_misc.c @ 22548760

History | View | Annotate | Download (12.1 kB)

1
/*
2
 * QEMU Sparc SLAVIO aux io port emulation
3
 *
4
 * Copyright (c) 2005 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw.h"
25
#include "sun4m.h"
26
#include "sysemu.h"
27

    
28
/* debug misc */
29
//#define DEBUG_MISC
30

    
31
/*
32
 * This is the auxio port, chip control and system control part of
33
 * chip STP2001 (Slave I/O), also produced as NCR89C105. See
34
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
35
 *
36
 * This also includes the PMC CPU idle controller.
37
 */
38

    
39
#ifdef DEBUG_MISC
40
#define MISC_DPRINTF(fmt, args...) \
41
do { printf("MISC: " fmt , ##args); } while (0)
42
#else
43
#define MISC_DPRINTF(fmt, args...)
44
#endif
45

    
46
typedef struct MiscState {
47
    qemu_irq irq;
48
    uint8_t config;
49
    uint8_t aux1, aux2;
50
    uint8_t diag, mctrl;
51
    uint32_t sysctrl;
52
    uint16_t leds;
53
    CPUState *env;
54
    qemu_irq fdc_tc;
55
} MiscState;
56

    
57
#define MISC_SIZE 1
58
#define SYSCTRL_MAXADDR 3
59
#define SYSCTRL_SIZE (SYSCTRL_MAXADDR + 1)
60
#define LED_MAXADDR 1
61
#define LED_SIZE (LED_MAXADDR + 1)
62

    
63
#define MISC_MASK 0x0fff0000
64
#define MISC_LEDS 0x01600000
65
#define MISC_CFG  0x01800000
66
#define MISC_DIAG 0x01a00000
67
#define MISC_MDM  0x01b00000
68
#define MISC_SYS  0x01f00000
69

    
70
#define AUX1_TC        0x02
71

    
72
#define AUX2_PWROFF    0x01
73
#define AUX2_PWRINTCLR 0x02
74
#define AUX2_PWRFAIL   0x20
75

    
76
#define CFG_PWRINTEN   0x08
77

    
78
#define SYS_RESET      0x01
79
#define SYS_RESETSTAT  0x02
80

    
81
static void slavio_misc_update_irq(void *opaque)
82
{
83
    MiscState *s = opaque;
84

    
85
    if ((s->aux2 & AUX2_PWRFAIL) && (s->config & CFG_PWRINTEN)) {
86
        MISC_DPRINTF("Raise IRQ\n");
87
        qemu_irq_raise(s->irq);
88
    } else {
89
        MISC_DPRINTF("Lower IRQ\n");
90
        qemu_irq_lower(s->irq);
91
    }
92
}
93

    
94
static void slavio_misc_reset(void *opaque)
95
{
96
    MiscState *s = opaque;
97

    
98
    // Diagnostic and system control registers not cleared in reset
99
    s->config = s->aux1 = s->aux2 = s->mctrl = 0;
100
}
101

    
102
void slavio_set_power_fail(void *opaque, int power_failing)
103
{
104
    MiscState *s = opaque;
105

    
106
    MISC_DPRINTF("Power fail: %d, config: %d\n", power_failing, s->config);
107
    if (power_failing && (s->config & CFG_PWRINTEN)) {
108
        s->aux2 |= AUX2_PWRFAIL;
109
    } else {
110
        s->aux2 &= ~AUX2_PWRFAIL;
111
    }
112
    slavio_misc_update_irq(s);
113
}
114

    
115
static void slavio_misc_mem_writeb(void *opaque, target_phys_addr_t addr,
116
                                   uint32_t val)
117
{
118
    MiscState *s = opaque;
119

    
120
    switch (addr & MISC_MASK) {
121
    case MISC_CFG:
122
        MISC_DPRINTF("Write config %2.2x\n", val & 0xff);
123
        s->config = val & 0xff;
124
        slavio_misc_update_irq(s);
125
        break;
126
    case MISC_DIAG:
127
        MISC_DPRINTF("Write diag %2.2x\n", val & 0xff);
128
        s->diag = val & 0xff;
129
        break;
130
    case MISC_MDM:
131
        MISC_DPRINTF("Write modem control %2.2x\n", val & 0xff);
132
        s->mctrl = val & 0xff;
133
        break;
134
    default:
135
        break;
136
    }
137
}
138

    
139
static uint32_t slavio_misc_mem_readb(void *opaque, target_phys_addr_t addr)
140
{
141
    MiscState *s = opaque;
142
    uint32_t ret = 0;
143

    
144
    switch (addr & MISC_MASK) {
145
    case MISC_CFG:
146
        ret = s->config;
147
        MISC_DPRINTF("Read config %2.2x\n", ret);
148
        break;
149
    case MISC_DIAG:
150
        ret = s->diag;
151
        MISC_DPRINTF("Read diag %2.2x\n", ret);
152
        break;
153
    case MISC_MDM:
154
        ret = s->mctrl;
155
        MISC_DPRINTF("Read modem control %2.2x\n", ret);
156
        break;
157
    default:
158
        break;
159
    }
160
    return ret;
161
}
162

    
163
static CPUReadMemoryFunc *slavio_misc_mem_read[3] = {
164
    slavio_misc_mem_readb,
165
    NULL,
166
    NULL,
167
};
168

    
169
static CPUWriteMemoryFunc *slavio_misc_mem_write[3] = {
170
    slavio_misc_mem_writeb,
171
    NULL,
172
    NULL,
173
};
174

    
175
static void slavio_aux1_mem_writeb(void *opaque, target_phys_addr_t addr,
176
                                   uint32_t val)
177
{
178
    MiscState *s = opaque;
179

    
180
    MISC_DPRINTF("Write aux1 %2.2x\n", val & 0xff);
181
    if (val & AUX1_TC) {
182
        // Send a pulse to floppy terminal count line
183
        if (s->fdc_tc) {
184
            qemu_irq_raise(s->fdc_tc);
185
            qemu_irq_lower(s->fdc_tc);
186
        }
187
        val &= ~AUX1_TC;
188
    }
189
    s->aux1 = val & 0xff;
190
}
191

    
192
static uint32_t slavio_aux1_mem_readb(void *opaque, target_phys_addr_t addr)
193
{
194
    MiscState *s = opaque;
195
    uint32_t ret = 0;
196

    
197
    ret = s->aux1;
198
    MISC_DPRINTF("Read aux1 %2.2x\n", ret);
199

    
200
    return ret;
201
}
202

    
203
static CPUReadMemoryFunc *slavio_aux1_mem_read[3] = {
204
    slavio_aux1_mem_readb,
205
    NULL,
206
    NULL,
207
};
208

    
209
static CPUWriteMemoryFunc *slavio_aux1_mem_write[3] = {
210
    slavio_aux1_mem_writeb,
211
    NULL,
212
    NULL,
213
};
214

    
215
static void slavio_aux2_mem_writeb(void *opaque, target_phys_addr_t addr,
216
                                   uint32_t val)
217
{
218
    MiscState *s = opaque;
219

    
220
    val &= AUX2_PWRINTCLR | AUX2_PWROFF;
221
    MISC_DPRINTF("Write aux2 %2.2x\n", val);
222
    val |= s->aux2 & AUX2_PWRFAIL;
223
    if (val & AUX2_PWRINTCLR) // Clear Power Fail int
224
        val &= AUX2_PWROFF;
225
    s->aux2 = val;
226
    if (val & AUX2_PWROFF)
227
        qemu_system_shutdown_request();
228
    slavio_misc_update_irq(s);
229
}
230

    
231
static uint32_t slavio_aux2_mem_readb(void *opaque, target_phys_addr_t addr)
232
{
233
    MiscState *s = opaque;
234
    uint32_t ret = 0;
235

    
236
    ret = s->aux2;
237
    MISC_DPRINTF("Read aux2 %2.2x\n", ret);
238

    
239
    return ret;
240
}
241

    
242
static CPUReadMemoryFunc *slavio_aux2_mem_read[3] = {
243
    slavio_aux2_mem_readb,
244
    NULL,
245
    NULL,
246
};
247

    
248
static CPUWriteMemoryFunc *slavio_aux2_mem_write[3] = {
249
    slavio_aux2_mem_writeb,
250
    NULL,
251
    NULL,
252
};
253

    
254
static void apc_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
255
{
256
    MiscState *s = opaque;
257

    
258
    MISC_DPRINTF("Write power management %2.2x\n", val & 0xff);
259
    cpu_interrupt(s->env, CPU_INTERRUPT_HALT);
260
}
261

    
262
static uint32_t apc_mem_readb(void *opaque, target_phys_addr_t addr)
263
{
264
    uint32_t ret = 0;
265

    
266
    MISC_DPRINTF("Read power management %2.2x\n", ret);
267
    return ret;
268
}
269

    
270
static CPUReadMemoryFunc *apc_mem_read[3] = {
271
    apc_mem_readb,
272
    NULL,
273
    NULL,
274
};
275

    
276
static CPUWriteMemoryFunc *apc_mem_write[3] = {
277
    apc_mem_writeb,
278
    NULL,
279
    NULL,
280
};
281

    
282
static uint32_t slavio_sysctrl_mem_readl(void *opaque, target_phys_addr_t addr)
283
{
284
    MiscState *s = opaque;
285
    uint32_t ret = 0, saddr;
286

    
287
    saddr = addr & SYSCTRL_MAXADDR;
288
    switch (saddr) {
289
    case 0:
290
        ret = s->sysctrl;
291
        break;
292
    default:
293
        break;
294
    }
295
    MISC_DPRINTF("Read system control reg 0x" TARGET_FMT_plx " = %x\n", addr,
296
                 ret);
297
    return ret;
298
}
299

    
300
static void slavio_sysctrl_mem_writel(void *opaque, target_phys_addr_t addr,
301
                                      uint32_t val)
302
{
303
    MiscState *s = opaque;
304
    uint32_t saddr;
305

    
306
    saddr = addr & SYSCTRL_MAXADDR;
307
    MISC_DPRINTF("Write system control reg 0x" TARGET_FMT_plx " =  %x\n", addr,
308
                 val);
309
    switch (saddr) {
310
    case 0:
311
        if (val & SYS_RESET) {
312
            s->sysctrl = SYS_RESETSTAT;
313
            qemu_system_reset_request();
314
        }
315
        break;
316
    default:
317
        break;
318
    }
319
}
320

    
321
static CPUReadMemoryFunc *slavio_sysctrl_mem_read[3] = {
322
    NULL,
323
    NULL,
324
    slavio_sysctrl_mem_readl,
325
};
326

    
327
static CPUWriteMemoryFunc *slavio_sysctrl_mem_write[3] = {
328
    NULL,
329
    NULL,
330
    slavio_sysctrl_mem_writel,
331
};
332

    
333
static uint32_t slavio_led_mem_readw(void *opaque, target_phys_addr_t addr)
334
{
335
    MiscState *s = opaque;
336
    uint32_t ret = 0, saddr;
337

    
338
    saddr = addr & LED_MAXADDR;
339
    switch (saddr) {
340
    case 0:
341
        ret = s->leds;
342
        break;
343
    default:
344
        break;
345
    }
346
    MISC_DPRINTF("Read diagnostic LED reg 0x" TARGET_FMT_plx " = %x\n", addr,
347
                 ret);
348
    return ret;
349
}
350

    
351
static void slavio_led_mem_writew(void *opaque, target_phys_addr_t addr,
352
                                  uint32_t val)
353
{
354
    MiscState *s = opaque;
355
    uint32_t saddr;
356

    
357
    saddr = addr & LED_MAXADDR;
358
    MISC_DPRINTF("Write diagnostic LED reg 0x" TARGET_FMT_plx " =  %x\n", addr,
359
                 val);
360
    switch (saddr) {
361
    case 0:
362
        s->leds = val;
363
        break;
364
    default:
365
        break;
366
    }
367
}
368

    
369
static CPUReadMemoryFunc *slavio_led_mem_read[3] = {
370
    NULL,
371
    slavio_led_mem_readw,
372
    NULL,
373
};
374

    
375
static CPUWriteMemoryFunc *slavio_led_mem_write[3] = {
376
    NULL,
377
    slavio_led_mem_writew,
378
    NULL,
379
};
380

    
381
static void slavio_misc_save(QEMUFile *f, void *opaque)
382
{
383
    MiscState *s = opaque;
384
    uint32_t tmp = 0;
385
    uint8_t tmp8;
386

    
387
    qemu_put_be32s(f, &tmp); /* ignored, was IRQ.  */
388
    qemu_put_8s(f, &s->config);
389
    qemu_put_8s(f, &s->aux1);
390
    qemu_put_8s(f, &s->aux2);
391
    qemu_put_8s(f, &s->diag);
392
    qemu_put_8s(f, &s->mctrl);
393
    tmp8 = s->sysctrl & 0xff;
394
    qemu_put_8s(f, &tmp8);
395
}
396

    
397
static int slavio_misc_load(QEMUFile *f, void *opaque, int version_id)
398
{
399
    MiscState *s = opaque;
400
    uint32_t tmp;
401
    uint8_t tmp8;
402

    
403
    if (version_id != 1)
404
        return -EINVAL;
405

    
406
    qemu_get_be32s(f, &tmp);
407
    qemu_get_8s(f, &s->config);
408
    qemu_get_8s(f, &s->aux1);
409
    qemu_get_8s(f, &s->aux2);
410
    qemu_get_8s(f, &s->diag);
411
    qemu_get_8s(f, &s->mctrl);
412
    qemu_get_8s(f, &tmp8);
413
    s->sysctrl = (uint32_t)tmp8;
414
    return 0;
415
}
416

    
417
void *slavio_misc_init(target_phys_addr_t base, target_phys_addr_t power_base,
418
                       target_phys_addr_t aux1_base,
419
                       target_phys_addr_t aux2_base, qemu_irq irq,
420
                       CPUState *env, qemu_irq **fdc_tc)
421
{
422
    int io;
423
    MiscState *s;
424

    
425
    s = qemu_mallocz(sizeof(MiscState));
426
    if (!s)
427
        return NULL;
428

    
429
    if (base) {
430
        /* 8 bit registers */
431
        io = cpu_register_io_memory(0, slavio_misc_mem_read,
432
                                    slavio_misc_mem_write, s);
433
        // Slavio control
434
        cpu_register_physical_memory(base + MISC_CFG, MISC_SIZE, io);
435
        // Diagnostics
436
        cpu_register_physical_memory(base + MISC_DIAG, MISC_SIZE, io);
437
        // Modem control
438
        cpu_register_physical_memory(base + MISC_MDM, MISC_SIZE, io);
439

    
440
        /* 16 bit registers */
441
        io = cpu_register_io_memory(0, slavio_led_mem_read,
442
                                    slavio_led_mem_write, s);
443
        /* ss600mp diag LEDs */
444
        cpu_register_physical_memory(base + MISC_LEDS, MISC_SIZE, io);
445

    
446
        /* 32 bit registers */
447
        io = cpu_register_io_memory(0, slavio_sysctrl_mem_read,
448
                                    slavio_sysctrl_mem_write, s);
449
        // System control
450
        cpu_register_physical_memory(base + MISC_SYS, SYSCTRL_SIZE, io);
451
    }
452

    
453
    // AUX 1 (Misc System Functions)
454
    if (aux1_base) {
455
        io = cpu_register_io_memory(0, slavio_aux1_mem_read,
456
                                    slavio_aux1_mem_write, s);
457
        cpu_register_physical_memory(aux1_base, MISC_SIZE, io);
458
    }
459

    
460
    // AUX 2 (Software Powerdown Control)
461
    if (aux2_base) {
462
        io = cpu_register_io_memory(0, slavio_aux2_mem_read,
463
                                    slavio_aux2_mem_write, s);
464
        cpu_register_physical_memory(aux2_base, MISC_SIZE, io);
465
    }
466

    
467
    // Power management (APC) XXX: not a Slavio device
468
    if (power_base) {
469
        io = cpu_register_io_memory(0, apc_mem_read, apc_mem_write, s);
470
        cpu_register_physical_memory(power_base, MISC_SIZE, io);
471
    }
472

    
473
    s->irq = irq;
474
    s->env = env;
475
    *fdc_tc = &s->fdc_tc;
476

    
477
    register_savevm("slavio_misc", base, 1, slavio_misc_save, slavio_misc_load,
478
                    s);
479
    qemu_register_reset(slavio_misc_reset, s);
480
    slavio_misc_reset(s);
481

    
482
    return s;
483
}