Statistics
| Branch: | Revision:

root / linux-user / vm86.c @ 226c9132

History | View | Annotate | Download (13.3 kB)

1
/*
2
 *  vm86 linux syscall support
3
 * 
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, write to the Free Software
18
 *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19
 */
20
#include <stdlib.h>
21
#include <stdio.h>
22
#include <stdarg.h>
23
#include <string.h>
24
#include <errno.h>
25
#include <unistd.h>
26

    
27
#include "qemu.h"
28

    
29
//#define DEBUG_VM86
30

    
31
#define set_flags(X,new,mask) \
32
((X) = ((X) & ~(mask)) | ((new) & (mask)))
33

    
34
#define SAFE_MASK        (0xDD5)
35
#define RETURN_MASK        (0xDFF)
36

    
37
static inline int is_revectored(int nr, struct target_revectored_struct *bitmap)
38
{
39
    return (tswap32(bitmap->__map[nr >> 5]) >> (nr & 0x1f)) & 1;
40
}
41

    
42
static inline void vm_putw(uint8_t *segptr, unsigned int reg16, unsigned int val)
43
{
44
    *(uint16_t *)(segptr + (reg16 & 0xffff)) = tswap16(val);
45
}
46

    
47
static inline void vm_putl(uint8_t *segptr, unsigned int reg16, unsigned int val)
48
{
49
    *(uint32_t *)(segptr + (reg16 & 0xffff)) = tswap32(val);
50
}
51

    
52
static inline unsigned int vm_getw(uint8_t *segptr, unsigned int reg16)
53
{
54
    return tswap16(*(uint16_t *)(segptr + (reg16 & 0xffff)));
55
}
56

    
57
static inline unsigned int vm_getl(uint8_t *segptr, unsigned int reg16)
58
{
59
    return tswap32(*(uint16_t *)(segptr + (reg16 & 0xffff)));
60
}
61

    
62
void save_v86_state(CPUX86State *env)
63
{
64
    TaskState *ts = env->opaque;
65

    
66
    /* put the VM86 registers in the userspace register structure */
67
    ts->target_v86->regs.eax = tswap32(env->regs[R_EAX]);
68
    ts->target_v86->regs.ebx = tswap32(env->regs[R_EBX]);
69
    ts->target_v86->regs.ecx = tswap32(env->regs[R_ECX]);
70
    ts->target_v86->regs.edx = tswap32(env->regs[R_EDX]);
71
    ts->target_v86->regs.esi = tswap32(env->regs[R_ESI]);
72
    ts->target_v86->regs.edi = tswap32(env->regs[R_EDI]);
73
    ts->target_v86->regs.ebp = tswap32(env->regs[R_EBP]);
74
    ts->target_v86->regs.esp = tswap32(env->regs[R_ESP]);
75
    ts->target_v86->regs.eip = tswap32(env->eip);
76
    ts->target_v86->regs.cs = tswap16(env->segs[R_CS]);
77
    ts->target_v86->regs.ss = tswap16(env->segs[R_SS]);
78
    ts->target_v86->regs.ds = tswap16(env->segs[R_DS]);
79
    ts->target_v86->regs.es = tswap16(env->segs[R_ES]);
80
    ts->target_v86->regs.fs = tswap16(env->segs[R_FS]);
81
    ts->target_v86->regs.gs = tswap16(env->segs[R_GS]);
82
    set_flags(env->eflags, ts->v86flags, VIF_MASK | ts->v86mask);
83
    ts->target_v86->regs.eflags = tswap32(env->eflags);
84
#ifdef DEBUG_VM86
85
    fprintf(logfile, "save_v86_state: eflags=%08x cs:ip=%04x:%04x\n", 
86
            env->eflags, env->segs[R_CS], env->eip);
87
#endif
88

    
89
    /* restore 32 bit registers */
90
    env->regs[R_EAX] = ts->vm86_saved_regs.eax;
91
    env->regs[R_EBX] = ts->vm86_saved_regs.ebx;
92
    env->regs[R_ECX] = ts->vm86_saved_regs.ecx;
93
    env->regs[R_EDX] = ts->vm86_saved_regs.edx;
94
    env->regs[R_ESI] = ts->vm86_saved_regs.esi;
95
    env->regs[R_EDI] = ts->vm86_saved_regs.edi;
96
    env->regs[R_EBP] = ts->vm86_saved_regs.ebp;
97
    env->regs[R_ESP] = ts->vm86_saved_regs.esp;
98
    env->eflags = ts->vm86_saved_regs.eflags;
99
    env->eip = ts->vm86_saved_regs.eip;
100

    
101
    cpu_x86_load_seg(env, R_CS, ts->vm86_saved_regs.cs);
102
    cpu_x86_load_seg(env, R_SS, ts->vm86_saved_regs.ss);
103
    cpu_x86_load_seg(env, R_DS, ts->vm86_saved_regs.ds);
104
    cpu_x86_load_seg(env, R_ES, ts->vm86_saved_regs.es);
105
    cpu_x86_load_seg(env, R_FS, ts->vm86_saved_regs.fs);
106
    cpu_x86_load_seg(env, R_GS, ts->vm86_saved_regs.gs);
107
}
108

    
109
/* return from vm86 mode to 32 bit. The vm86() syscall will return
110
   'retval' */
111
static inline void return_to_32bit(CPUX86State *env, int retval)
112
{
113
#ifdef DEBUG_VM86
114
    fprintf(logfile, "return_to_32bit: ret=0x%x\n", retval);
115
#endif
116
    save_v86_state(env);
117
    env->regs[R_EAX] = retval;
118
}
119

    
120
static inline int set_IF(CPUX86State *env)
121
{
122
    TaskState *ts = env->opaque;
123
    
124
    ts->v86flags |= VIF_MASK;
125
    if (ts->v86flags & VIP_MASK) {
126
        return_to_32bit(env, TARGET_VM86_STI);
127
        return 1;
128
    }
129
    return 0;
130
}
131

    
132
static inline void clear_IF(CPUX86State *env)
133
{
134
    TaskState *ts = env->opaque;
135

    
136
    ts->v86flags &= ~VIF_MASK;
137
}
138

    
139
static inline void clear_TF(CPUX86State *env)
140
{
141
    env->eflags &= ~TF_MASK;
142
}
143

    
144
static inline void clear_AC(CPUX86State *env)
145
{
146
    env->eflags &= ~AC_MASK;
147
}
148

    
149
static inline int set_vflags_long(unsigned long eflags, CPUX86State *env)
150
{
151
    TaskState *ts = env->opaque;
152

    
153
    set_flags(ts->v86flags, eflags, ts->v86mask);
154
    set_flags(env->eflags, eflags, SAFE_MASK);
155
    if (eflags & IF_MASK)
156
        return set_IF(env);
157
    else
158
        clear_IF(env);
159
    return 0;
160
}
161

    
162
static inline int set_vflags_short(unsigned short flags, CPUX86State *env)
163
{
164
    TaskState *ts = env->opaque;
165

    
166
    set_flags(ts->v86flags, flags, ts->v86mask & 0xffff);
167
    set_flags(env->eflags, flags, SAFE_MASK);
168
    if (flags & IF_MASK)
169
        return set_IF(env);
170
    else
171
        clear_IF(env);
172
    return 0;
173
}
174

    
175
static inline unsigned int get_vflags(CPUX86State *env)
176
{
177
    TaskState *ts = env->opaque;
178
    unsigned int flags;
179

    
180
    flags = env->eflags & RETURN_MASK;
181
    if (ts->v86flags & VIF_MASK)
182
        flags |= IF_MASK;
183
    return flags | (ts->v86flags & ts->v86mask);
184
}
185

    
186
#define ADD16(reg, val) reg = (reg & ~0xffff) | ((reg + (val)) & 0xffff)
187

    
188
/* handle VM86 interrupt (NOTE: the CPU core currently does not
189
   support TSS interrupt revectoring, so this code is always executed) */
190
static void do_int(CPUX86State *env, int intno)
191
{
192
    TaskState *ts = env->opaque;
193
    uint32_t *int_ptr, segoffs;
194
    uint8_t *ssp;
195
    unsigned int sp;
196

    
197
#if 1
198
    if (intno == 0xe6 && (env->regs[R_EAX] & 0xffff) == 0x00c0)
199
        loglevel = 1;
200
#endif
201

    
202
    if (env->segs[R_CS] == TARGET_BIOSSEG)
203
        goto cannot_handle;
204
    if (is_revectored(intno, &ts->target_v86->int_revectored))
205
        goto cannot_handle;
206
    if (intno == 0x21 && is_revectored((env->regs[R_EAX] >> 8) & 0xff, 
207
                                       &ts->target_v86->int21_revectored))
208
        goto cannot_handle;
209
    int_ptr = (uint32_t *)(intno << 2);
210
    segoffs = tswap32(*int_ptr);
211
    if ((segoffs >> 16) == TARGET_BIOSSEG)
212
        goto cannot_handle;
213
#if defined(DEBUG_VM86)
214
    fprintf(logfile, "VM86: emulating int 0x%x. CS:IP=%04x:%04x\n", 
215
            intno, segoffs >> 16, segoffs & 0xffff);
216
#endif
217
    /* save old state */
218
    ssp = (uint8_t *)(env->segs[R_SS] << 4);
219
    sp = env->regs[R_ESP] & 0xffff;
220
    vm_putw(ssp, sp - 2, get_vflags(env));
221
    vm_putw(ssp, sp - 4, env->segs[R_CS]);
222
    vm_putw(ssp, sp - 6, env->eip);
223
    ADD16(env->regs[R_ESP], -6);
224
    /* goto interrupt handler */
225
    env->eip = segoffs & 0xffff;
226
    cpu_x86_load_seg(env, R_CS, segoffs >> 16);
227
    clear_TF(env);
228
    clear_IF(env);
229
    clear_AC(env);
230
    return;
231
 cannot_handle:
232
#if defined(DEBUG_VM86)
233
    fprintf(logfile, "VM86: return to 32 bits int 0x%x\n", intno);
234
#endif
235
    return_to_32bit(env, TARGET_VM86_INTx | (intno << 8));
236
}
237

    
238
void handle_vm86_trap(CPUX86State *env, int trapno)
239
{
240
    if (trapno == 1 || trapno == 3) {
241
        return_to_32bit(env, TARGET_VM86_TRAP + (trapno << 8));
242
    } else {
243
        do_int(env, trapno);
244
    }
245
}
246

    
247
#define CHECK_IF_IN_TRAP(disp) \
248
      if ((tswap32(ts->target_v86->vm86plus.flags) & TARGET_vm86dbg_active) && \
249
          (tswap32(ts->target_v86->vm86plus.flags) & TARGET_vm86dbg_TFpendig)) \
250
                vm_putw(ssp,sp + disp,vm_getw(ssp,sp + disp) | TF_MASK)
251

    
252
#define VM86_FAULT_RETURN \
253
        if ((tswap32(ts->target_v86->vm86plus.flags) & TARGET_force_return_for_pic) && \
254
            (ts->v86flags & (IF_MASK | VIF_MASK))) \
255
            return_to_32bit(env, TARGET_VM86_PICRETURN); \
256
        return
257

    
258
void handle_vm86_fault(CPUX86State *env)
259
{
260
    TaskState *ts = env->opaque;
261
    uint8_t *csp, *pc, *ssp;
262
    unsigned int ip, sp;
263

    
264
    csp = (uint8_t *)(env->segs[R_CS] << 4);
265
    ip = env->eip & 0xffff;
266
    pc = csp + ip;
267
    
268
    ssp = (uint8_t *)(env->segs[R_SS] << 4);
269
    sp = env->regs[R_ESP] & 0xffff;
270

    
271
#if defined(DEBUG_VM86)
272
    fprintf(logfile, "VM86 exception %04x:%08x %02x %02x\n",
273
            env->segs[R_CS], env->eip, pc[0], pc[1]);
274
#endif
275

    
276
    /* VM86 mode */
277
    switch(pc[0]) {
278
    case 0x66:
279
        switch(pc[1]) {
280
        case 0x9c: /* pushfd */
281
            ADD16(env->eip, 2);
282
            ADD16(env->regs[R_ESP], -4);
283
            vm_putl(ssp, sp - 4, get_vflags(env));
284
            VM86_FAULT_RETURN;
285

    
286
        case 0x9d: /* popfd */
287
            ADD16(env->eip, 2);
288
            ADD16(env->regs[R_ESP], 4);
289
            CHECK_IF_IN_TRAP(0);
290
            if (set_vflags_long(vm_getl(ssp, sp), env))
291
                return;
292
            VM86_FAULT_RETURN;
293

    
294
        case 0xcf: /* iretd */
295
            ADD16(env->regs[R_ESP], 12);
296
            env->eip = vm_getl(ssp, sp) & 0xffff;
297
            cpu_x86_load_seg(env, R_CS, vm_getl(ssp, sp + 4) & 0xffff);
298
            CHECK_IF_IN_TRAP(8);
299
            if (set_vflags_long(vm_getl(ssp, sp + 8), env))
300
                return;
301
            VM86_FAULT_RETURN;
302

    
303
        default:
304
            goto vm86_gpf;
305
        }
306
        break;
307
    case 0x9c: /* pushf */
308
        ADD16(env->eip, 1);
309
        ADD16(env->regs[R_ESP], -2);
310
        vm_putw(ssp, sp - 2, get_vflags(env));
311
        VM86_FAULT_RETURN;
312

    
313
    case 0x9d: /* popf */
314
        ADD16(env->eip, 1);
315
        ADD16(env->regs[R_ESP], 2);
316
        CHECK_IF_IN_TRAP(0);
317
        if (set_vflags_short(vm_getw(ssp, sp), env))
318
            return;
319
        VM86_FAULT_RETURN;
320

    
321
    case 0xcd: /* int */
322
        ADD16(env->eip, 2);
323
        do_int(env, pc[1]);
324
        break;
325

    
326
    case 0xcf: /* iret */
327
        ADD16(env->regs[R_ESP], 6);
328
        env->eip = vm_getw(ssp, sp);
329
        cpu_x86_load_seg(env, R_CS, vm_getw(ssp, sp + 2));
330
        CHECK_IF_IN_TRAP(4);
331
        if (set_vflags_short(vm_getw(ssp, sp + 4), env))
332
            return;
333
        VM86_FAULT_RETURN;
334

    
335
    case 0xfa: /* cli */
336
        ADD16(env->eip, 1);
337
        clear_IF(env);
338
        VM86_FAULT_RETURN;
339
        
340
    case 0xfb: /* sti */
341
        ADD16(env->eip, 1);
342
        if (set_IF(env))
343
            return;
344
        VM86_FAULT_RETURN;
345

    
346
    default:
347
    vm86_gpf:
348
        /* real VM86 GPF exception */
349
        return_to_32bit(env, TARGET_VM86_UNKNOWN);
350
        break;
351
    }
352
}
353

    
354
int do_vm86(CPUX86State *env, long subfunction, 
355
            struct target_vm86plus_struct * target_v86)
356
{
357
    TaskState *ts = env->opaque;
358
    int ret;
359
    
360
    switch (subfunction) {
361
    case TARGET_VM86_REQUEST_IRQ:
362
    case TARGET_VM86_FREE_IRQ:
363
    case TARGET_VM86_GET_IRQ_BITS:
364
    case TARGET_VM86_GET_AND_RESET_IRQ:
365
        gemu_log("qemu: unsupported vm86 subfunction (%ld)\n", subfunction);
366
        ret = -EINVAL;
367
        goto out;
368
    case TARGET_VM86_PLUS_INSTALL_CHECK:
369
        /* NOTE: on old vm86 stuff this will return the error
370
           from verify_area(), because the subfunction is
371
           interpreted as (invalid) address to vm86_struct.
372
           So the installation check works.
373
            */
374
        ret = 0;
375
        goto out;
376
    }
377

    
378
    ts->target_v86 = target_v86;
379
    /* save current CPU regs */
380
    ts->vm86_saved_regs.eax = 0; /* default vm86 syscall return code */
381
    ts->vm86_saved_regs.ebx = env->regs[R_EBX];
382
    ts->vm86_saved_regs.ecx = env->regs[R_ECX];
383
    ts->vm86_saved_regs.edx = env->regs[R_EDX];
384
    ts->vm86_saved_regs.esi = env->regs[R_ESI];
385
    ts->vm86_saved_regs.edi = env->regs[R_EDI];
386
    ts->vm86_saved_regs.ebp = env->regs[R_EBP];
387
    ts->vm86_saved_regs.esp = env->regs[R_ESP];
388
    ts->vm86_saved_regs.eflags = env->eflags;
389
    ts->vm86_saved_regs.eip  = env->eip;
390
    ts->vm86_saved_regs.cs = env->segs[R_CS];
391
    ts->vm86_saved_regs.ss = env->segs[R_SS];
392
    ts->vm86_saved_regs.ds = env->segs[R_DS];
393
    ts->vm86_saved_regs.es = env->segs[R_ES];
394
    ts->vm86_saved_regs.fs = env->segs[R_FS];
395
    ts->vm86_saved_regs.gs = env->segs[R_GS];
396

    
397
    /* build vm86 CPU state */
398
    ts->v86flags = tswap32(target_v86->regs.eflags);
399
    env->eflags = (env->eflags & ~SAFE_MASK) | 
400
        (tswap32(target_v86->regs.eflags) & SAFE_MASK) | VM_MASK;
401
    ts->v86mask = ID_MASK | AC_MASK | NT_MASK | IOPL_MASK;
402

    
403
    env->regs[R_EBX] = tswap32(target_v86->regs.ebx);
404
    env->regs[R_ECX] = tswap32(target_v86->regs.ecx);
405
    env->regs[R_EDX] = tswap32(target_v86->regs.edx);
406
    env->regs[R_ESI] = tswap32(target_v86->regs.esi);
407
    env->regs[R_EDI] = tswap32(target_v86->regs.edi);
408
    env->regs[R_EBP] = tswap32(target_v86->regs.ebp);
409
    env->regs[R_ESP] = tswap32(target_v86->regs.esp);
410
    env->eip = tswap32(target_v86->regs.eip);
411
    cpu_x86_load_seg(env, R_CS, tswap16(target_v86->regs.cs));
412
    cpu_x86_load_seg(env, R_SS, tswap16(target_v86->regs.ss));
413
    cpu_x86_load_seg(env, R_DS, tswap16(target_v86->regs.ds));
414
    cpu_x86_load_seg(env, R_ES, tswap16(target_v86->regs.es));
415
    cpu_x86_load_seg(env, R_FS, tswap16(target_v86->regs.fs));
416
    cpu_x86_load_seg(env, R_GS, tswap16(target_v86->regs.gs));
417
    ret = tswap32(target_v86->regs.eax); /* eax will be restored at
418
                                            the end of the syscall */
419
#ifdef DEBUG_VM86
420
    fprintf(logfile, "do_vm86: cs:ip=%04x:%04x\n", env->segs[R_CS], env->eip);
421
#endif
422
    /* now the virtual CPU is ready for vm86 execution ! */
423
 out:
424
    return ret;
425
}
426