Statistics
| Branch: | Revision:

root / hw / musicpal.c @ 22d83b14

History | View | Annotate | Download (41.7 kB)

1
/*
2
 * Marvell MV88W8618 / Freecom MusicPal emulation.
3
 *
4
 * Copyright (c) 2008 Jan Kiszka
5
 *
6
 * This code is licenced under the GNU GPL v2.
7
 */
8

    
9
#include "hw.h"
10
#include "arm-misc.h"
11
#include "devices.h"
12
#include "net.h"
13
#include "sysemu.h"
14
#include "boards.h"
15
#include "pc.h"
16
#include "qemu-timer.h"
17
#include "block.h"
18
#include "flash.h"
19
#include "console.h"
20
#include "audio/audio.h"
21
#include "i2c.h"
22

    
23
#define MP_MISC_BASE            0x80002000
24
#define MP_MISC_SIZE            0x00001000
25

    
26
#define MP_ETH_BASE             0x80008000
27
#define MP_ETH_SIZE             0x00001000
28

    
29
#define MP_WLAN_BASE            0x8000C000
30
#define MP_WLAN_SIZE            0x00000800
31

    
32
#define MP_UART1_BASE           0x8000C840
33
#define MP_UART2_BASE           0x8000C940
34

    
35
#define MP_GPIO_BASE            0x8000D000
36
#define MP_GPIO_SIZE            0x00001000
37

    
38
#define MP_FLASHCFG_BASE        0x90006000
39
#define MP_FLASHCFG_SIZE        0x00001000
40

    
41
#define MP_AUDIO_BASE           0x90007000
42
#define MP_AUDIO_SIZE           0x00001000
43

    
44
#define MP_PIC_BASE             0x90008000
45
#define MP_PIC_SIZE             0x00001000
46

    
47
#define MP_PIT_BASE             0x90009000
48
#define MP_PIT_SIZE             0x00001000
49

    
50
#define MP_LCD_BASE             0x9000c000
51
#define MP_LCD_SIZE             0x00001000
52

    
53
#define MP_SRAM_BASE            0xC0000000
54
#define MP_SRAM_SIZE            0x00020000
55

    
56
#define MP_RAM_DEFAULT_SIZE     32*1024*1024
57
#define MP_FLASH_SIZE_MAX       32*1024*1024
58

    
59
#define MP_TIMER1_IRQ           4
60
/* ... */
61
#define MP_TIMER4_IRQ           7
62
#define MP_EHCI_IRQ             8
63
#define MP_ETH_IRQ              9
64
#define MP_UART1_IRQ            11
65
#define MP_UART2_IRQ            11
66
#define MP_GPIO_IRQ             12
67
#define MP_RTC_IRQ              28
68
#define MP_AUDIO_IRQ            30
69

    
70
static uint32_t gpio_in_state = 0xffffffff;
71
static uint32_t gpio_isr;
72
static uint32_t gpio_out_state;
73
static ram_addr_t sram_off;
74

    
75
typedef enum i2c_state {
76
    STOPPED = 0,
77
    INITIALIZING,
78
    SENDING_BIT7,
79
    SENDING_BIT6,
80
    SENDING_BIT5,
81
    SENDING_BIT4,
82
    SENDING_BIT3,
83
    SENDING_BIT2,
84
    SENDING_BIT1,
85
    SENDING_BIT0,
86
    WAITING_FOR_ACK,
87
    RECEIVING_BIT7,
88
    RECEIVING_BIT6,
89
    RECEIVING_BIT5,
90
    RECEIVING_BIT4,
91
    RECEIVING_BIT3,
92
    RECEIVING_BIT2,
93
    RECEIVING_BIT1,
94
    RECEIVING_BIT0,
95
    SENDING_ACK
96
} i2c_state;
97

    
98
typedef struct i2c_interface {
99
    i2c_bus *bus;
100
    i2c_state state;
101
    int last_data;
102
    int last_clock;
103
    uint8_t buffer;
104
    int current_addr;
105
} i2c_interface;
106

    
107
static void i2c_enter_stop(i2c_interface *i2c)
108
{
109
    if (i2c->current_addr >= 0)
110
        i2c_end_transfer(i2c->bus);
111
    i2c->current_addr = -1;
112
    i2c->state = STOPPED;
113
}
114

    
115
static void i2c_state_update(i2c_interface *i2c, int data, int clock)
116
{
117
    if (!i2c)
118
        return;
119

    
120
    switch (i2c->state) {
121
    case STOPPED:
122
        if (data == 0 && i2c->last_data == 1 && clock == 1)
123
            i2c->state = INITIALIZING;
124
        break;
125

    
126
    case INITIALIZING:
127
        if (clock == 0 && i2c->last_clock == 1 && data == 0)
128
            i2c->state = SENDING_BIT7;
129
        else
130
            i2c_enter_stop(i2c);
131
        break;
132

    
133
    case SENDING_BIT7 ... SENDING_BIT0:
134
        if (clock == 0 && i2c->last_clock == 1) {
135
            i2c->buffer = (i2c->buffer << 1) | data;
136
            i2c->state++; /* will end up in WAITING_FOR_ACK */
137
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
138
            i2c_enter_stop(i2c);
139
        break;
140

    
141
    case WAITING_FOR_ACK:
142
        if (clock == 0 && i2c->last_clock == 1) {
143
            if (i2c->current_addr < 0) {
144
                i2c->current_addr = i2c->buffer;
145
                i2c_start_transfer(i2c->bus, i2c->current_addr & 0xfe,
146
                                   i2c->buffer & 1);
147
            } else
148
                i2c_send(i2c->bus, i2c->buffer);
149
            if (i2c->current_addr & 1) {
150
                i2c->state = RECEIVING_BIT7;
151
                i2c->buffer = i2c_recv(i2c->bus);
152
            } else
153
                i2c->state = SENDING_BIT7;
154
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
155
            i2c_enter_stop(i2c);
156
        break;
157

    
158
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
159
        if (clock == 0 && i2c->last_clock == 1) {
160
            i2c->state++; /* will end up in SENDING_ACK */
161
            i2c->buffer <<= 1;
162
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
163
            i2c_enter_stop(i2c);
164
        break;
165

    
166
    case SENDING_ACK:
167
        if (clock == 0 && i2c->last_clock == 1) {
168
            i2c->state = RECEIVING_BIT7;
169
            if (data == 0)
170
                i2c->buffer = i2c_recv(i2c->bus);
171
            else
172
                i2c_nack(i2c->bus);
173
        } else if (data == 1 && i2c->last_data == 0 && clock == 1)
174
            i2c_enter_stop(i2c);
175
        break;
176
    }
177

    
178
    i2c->last_data = data;
179
    i2c->last_clock = clock;
180
}
181

    
182
static int i2c_get_data(i2c_interface *i2c)
183
{
184
    if (!i2c)
185
        return 0;
186

    
187
    switch (i2c->state) {
188
    case RECEIVING_BIT7 ... RECEIVING_BIT0:
189
        return (i2c->buffer >> 7);
190

    
191
    case WAITING_FOR_ACK:
192
    default:
193
        return 0;
194
    }
195
}
196

    
197
static i2c_interface *mixer_i2c;
198

    
199
#ifdef HAS_AUDIO
200

    
201
/* Audio register offsets */
202
#define MP_AUDIO_PLAYBACK_MODE  0x00
203
#define MP_AUDIO_CLOCK_DIV      0x18
204
#define MP_AUDIO_IRQ_STATUS     0x20
205
#define MP_AUDIO_IRQ_ENABLE     0x24
206
#define MP_AUDIO_TX_START_LO    0x28
207
#define MP_AUDIO_TX_THRESHOLD   0x2C
208
#define MP_AUDIO_TX_STATUS      0x38
209
#define MP_AUDIO_TX_START_HI    0x40
210

    
211
/* Status register and IRQ enable bits */
212
#define MP_AUDIO_TX_HALF        (1 << 6)
213
#define MP_AUDIO_TX_FULL        (1 << 7)
214

    
215
/* Playback mode bits */
216
#define MP_AUDIO_16BIT_SAMPLE   (1 << 0)
217
#define MP_AUDIO_PLAYBACK_EN    (1 << 7)
218
#define MP_AUDIO_CLOCK_24MHZ    (1 << 9)
219
#define MP_AUDIO_MONO           (1 << 14)
220

    
221
/* Wolfson 8750 I2C address */
222
#define MP_WM_ADDR              0x34
223

    
224
static const char audio_name[] = "mv88w8618";
225

    
226
typedef struct musicpal_audio_state {
227
    qemu_irq irq;
228
    uint32_t playback_mode;
229
    uint32_t status;
230
    uint32_t irq_enable;
231
    unsigned long phys_buf;
232
    uint32_t target_buffer;
233
    unsigned int threshold;
234
    unsigned int play_pos;
235
    unsigned int last_free;
236
    uint32_t clock_div;
237
    i2c_slave *wm;
238
} musicpal_audio_state;
239

    
240
static void audio_callback(void *opaque, int free_out, int free_in)
241
{
242
    musicpal_audio_state *s = opaque;
243
    int16_t *codec_buffer;
244
    int8_t buf[4096];
245
    int8_t *mem_buffer;
246
    int pos, block_size;
247

    
248
    if (!(s->playback_mode & MP_AUDIO_PLAYBACK_EN))
249
        return;
250

    
251
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE)
252
        free_out <<= 1;
253

    
254
    if (!(s->playback_mode & MP_AUDIO_MONO))
255
        free_out <<= 1;
256

    
257
    block_size = s->threshold/2;
258
    if (free_out - s->last_free < block_size)
259
        return;
260

    
261
    if (block_size > 4096)
262
        return;
263

    
264
    cpu_physical_memory_read(s->target_buffer + s->play_pos, (void *)buf,
265
                             block_size);
266
    mem_buffer = buf;
267
    if (s->playback_mode & MP_AUDIO_16BIT_SAMPLE) {
268
        if (s->playback_mode & MP_AUDIO_MONO) {
269
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
270
            for (pos = 0; pos < block_size; pos += 2) {
271
                *codec_buffer++ = *(int16_t *)mem_buffer;
272
                *codec_buffer++ = *(int16_t *)mem_buffer;
273
                mem_buffer += 2;
274
            }
275
        } else
276
            memcpy(wm8750_dac_buffer(s->wm, block_size >> 2),
277
                   (uint32_t *)mem_buffer, block_size);
278
    } else {
279
        if (s->playback_mode & MP_AUDIO_MONO) {
280
            codec_buffer = wm8750_dac_buffer(s->wm, block_size);
281
            for (pos = 0; pos < block_size; pos++) {
282
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer);
283
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
284
            }
285
        } else {
286
            codec_buffer = wm8750_dac_buffer(s->wm, block_size >> 1);
287
            for (pos = 0; pos < block_size; pos += 2) {
288
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
289
                *codec_buffer++ = cpu_to_le16(256 * *mem_buffer++);
290
            }
291
        }
292
    }
293
    wm8750_dac_commit(s->wm);
294

    
295
    s->last_free = free_out - block_size;
296

    
297
    if (s->play_pos == 0) {
298
        s->status |= MP_AUDIO_TX_HALF;
299
        s->play_pos = block_size;
300
    } else {
301
        s->status |= MP_AUDIO_TX_FULL;
302
        s->play_pos = 0;
303
    }
304

    
305
    if (s->status & s->irq_enable)
306
        qemu_irq_raise(s->irq);
307
}
308

    
309
static void musicpal_audio_clock_update(musicpal_audio_state *s)
310
{
311
    int rate;
312

    
313
    if (s->playback_mode & MP_AUDIO_CLOCK_24MHZ)
314
        rate = 24576000 / 64; /* 24.576MHz */
315
    else
316
        rate = 11289600 / 64; /* 11.2896MHz */
317

    
318
    rate /= ((s->clock_div >> 8) & 0xff) + 1;
319

    
320
    wm8750_set_bclk_in(s->wm, rate);
321
}
322

    
323
static uint32_t musicpal_audio_read(void *opaque, target_phys_addr_t offset)
324
{
325
    musicpal_audio_state *s = opaque;
326

    
327
    switch (offset) {
328
    case MP_AUDIO_PLAYBACK_MODE:
329
        return s->playback_mode;
330

    
331
    case MP_AUDIO_CLOCK_DIV:
332
        return s->clock_div;
333

    
334
    case MP_AUDIO_IRQ_STATUS:
335
        return s->status;
336

    
337
    case MP_AUDIO_IRQ_ENABLE:
338
        return s->irq_enable;
339

    
340
    case MP_AUDIO_TX_STATUS:
341
        return s->play_pos >> 2;
342

    
343
    default:
344
        return 0;
345
    }
346
}
347

    
348
static void musicpal_audio_write(void *opaque, target_phys_addr_t offset,
349
                                 uint32_t value)
350
{
351
    musicpal_audio_state *s = opaque;
352

    
353
    switch (offset) {
354
    case MP_AUDIO_PLAYBACK_MODE:
355
        if (value & MP_AUDIO_PLAYBACK_EN &&
356
            !(s->playback_mode & MP_AUDIO_PLAYBACK_EN)) {
357
            s->status = 0;
358
            s->last_free = 0;
359
            s->play_pos = 0;
360
        }
361
        s->playback_mode = value;
362
        musicpal_audio_clock_update(s);
363
        break;
364

    
365
    case MP_AUDIO_CLOCK_DIV:
366
        s->clock_div = value;
367
        s->last_free = 0;
368
        s->play_pos = 0;
369
        musicpal_audio_clock_update(s);
370
        break;
371

    
372
    case MP_AUDIO_IRQ_STATUS:
373
        s->status &= ~value;
374
        break;
375

    
376
    case MP_AUDIO_IRQ_ENABLE:
377
        s->irq_enable = value;
378
        if (s->status & s->irq_enable)
379
            qemu_irq_raise(s->irq);
380
        break;
381

    
382
    case MP_AUDIO_TX_START_LO:
383
        s->phys_buf = (s->phys_buf & 0xFFFF0000) | (value & 0xFFFF);
384
        s->target_buffer = s->phys_buf;
385
        s->play_pos = 0;
386
        s->last_free = 0;
387
        break;
388

    
389
    case MP_AUDIO_TX_THRESHOLD:
390
        s->threshold = (value + 1) * 4;
391
        break;
392

    
393
    case MP_AUDIO_TX_START_HI:
394
        s->phys_buf = (s->phys_buf & 0xFFFF) | (value << 16);
395
        s->target_buffer = s->phys_buf;
396
        s->play_pos = 0;
397
        s->last_free = 0;
398
        break;
399
    }
400
}
401

    
402
static void musicpal_audio_reset(void *opaque)
403
{
404
    musicpal_audio_state *s = opaque;
405

    
406
    s->playback_mode = 0;
407
    s->status = 0;
408
    s->irq_enable = 0;
409
}
410

    
411
static CPUReadMemoryFunc *musicpal_audio_readfn[] = {
412
    musicpal_audio_read,
413
    musicpal_audio_read,
414
    musicpal_audio_read
415
};
416

    
417
static CPUWriteMemoryFunc *musicpal_audio_writefn[] = {
418
    musicpal_audio_write,
419
    musicpal_audio_write,
420
    musicpal_audio_write
421
};
422

    
423
static i2c_interface *musicpal_audio_init(qemu_irq irq)
424
{
425
    musicpal_audio_state *s;
426
    i2c_interface *i2c;
427
    int iomemtype;
428

    
429
    s = qemu_mallocz(sizeof(musicpal_audio_state));
430
    s->irq = irq;
431

    
432
    i2c = qemu_mallocz(sizeof(i2c_interface));
433
    i2c->bus = i2c_init_bus();
434
    i2c->current_addr = -1;
435

    
436
    s->wm = wm8750_init(i2c->bus);
437
    if (!s->wm)
438
        return NULL;
439
    i2c_set_slave_address(s->wm, MP_WM_ADDR);
440
    wm8750_data_req_set(s->wm, audio_callback, s);
441

    
442
    iomemtype = cpu_register_io_memory(0, musicpal_audio_readfn,
443
                       musicpal_audio_writefn, s);
444
    cpu_register_physical_memory(MP_AUDIO_BASE, MP_AUDIO_SIZE, iomemtype);
445

    
446
    qemu_register_reset(musicpal_audio_reset, s);
447

    
448
    return i2c;
449
}
450
#else  /* !HAS_AUDIO */
451
static i2c_interface *musicpal_audio_init(qemu_irq irq)
452
{
453
    return NULL;
454
}
455
#endif /* !HAS_AUDIO */
456

    
457
/* Ethernet register offsets */
458
#define MP_ETH_SMIR             0x010
459
#define MP_ETH_PCXR             0x408
460
#define MP_ETH_SDCMR            0x448
461
#define MP_ETH_ICR              0x450
462
#define MP_ETH_IMR              0x458
463
#define MP_ETH_FRDP0            0x480
464
#define MP_ETH_FRDP1            0x484
465
#define MP_ETH_FRDP2            0x488
466
#define MP_ETH_FRDP3            0x48C
467
#define MP_ETH_CRDP0            0x4A0
468
#define MP_ETH_CRDP1            0x4A4
469
#define MP_ETH_CRDP2            0x4A8
470
#define MP_ETH_CRDP3            0x4AC
471
#define MP_ETH_CTDP0            0x4E0
472
#define MP_ETH_CTDP1            0x4E4
473
#define MP_ETH_CTDP2            0x4E8
474
#define MP_ETH_CTDP3            0x4EC
475

    
476
/* MII PHY access */
477
#define MP_ETH_SMIR_DATA        0x0000FFFF
478
#define MP_ETH_SMIR_ADDR        0x03FF0000
479
#define MP_ETH_SMIR_OPCODE      (1 << 26) /* Read value */
480
#define MP_ETH_SMIR_RDVALID     (1 << 27)
481

    
482
/* PHY registers */
483
#define MP_ETH_PHY1_BMSR        0x00210000
484
#define MP_ETH_PHY1_PHYSID1     0x00410000
485
#define MP_ETH_PHY1_PHYSID2     0x00610000
486

    
487
#define MP_PHY_BMSR_LINK        0x0004
488
#define MP_PHY_BMSR_AUTONEG     0x0008
489

    
490
#define MP_PHY_88E3015          0x01410E20
491

    
492
/* TX descriptor status */
493
#define MP_ETH_TX_OWN           (1 << 31)
494

    
495
/* RX descriptor status */
496
#define MP_ETH_RX_OWN           (1 << 31)
497

    
498
/* Interrupt cause/mask bits */
499
#define MP_ETH_IRQ_RX_BIT       0
500
#define MP_ETH_IRQ_RX           (1 << MP_ETH_IRQ_RX_BIT)
501
#define MP_ETH_IRQ_TXHI_BIT     2
502
#define MP_ETH_IRQ_TXLO_BIT     3
503

    
504
/* Port config bits */
505
#define MP_ETH_PCXR_2BSM_BIT    28 /* 2-byte incoming suffix */
506

    
507
/* SDMA command bits */
508
#define MP_ETH_CMD_TXHI         (1 << 23)
509
#define MP_ETH_CMD_TXLO         (1 << 22)
510

    
511
typedef struct mv88w8618_tx_desc {
512
    uint32_t cmdstat;
513
    uint16_t res;
514
    uint16_t bytes;
515
    uint32_t buffer;
516
    uint32_t next;
517
} mv88w8618_tx_desc;
518

    
519
typedef struct mv88w8618_rx_desc {
520
    uint32_t cmdstat;
521
    uint16_t bytes;
522
    uint16_t buffer_size;
523
    uint32_t buffer;
524
    uint32_t next;
525
} mv88w8618_rx_desc;
526

    
527
typedef struct mv88w8618_eth_state {
528
    qemu_irq irq;
529
    uint32_t smir;
530
    uint32_t icr;
531
    uint32_t imr;
532
    int mmio_index;
533
    int vlan_header;
534
    uint32_t tx_queue[2];
535
    uint32_t rx_queue[4];
536
    uint32_t frx_queue[4];
537
    uint32_t cur_rx[4];
538
    VLANClientState *vc;
539
} mv88w8618_eth_state;
540

    
541
static void eth_rx_desc_put(uint32_t addr, mv88w8618_rx_desc *desc)
542
{
543
    cpu_to_le32s(&desc->cmdstat);
544
    cpu_to_le16s(&desc->bytes);
545
    cpu_to_le16s(&desc->buffer_size);
546
    cpu_to_le32s(&desc->buffer);
547
    cpu_to_le32s(&desc->next);
548
    cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
549
}
550

    
551
static void eth_rx_desc_get(uint32_t addr, mv88w8618_rx_desc *desc)
552
{
553
    cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
554
    le32_to_cpus(&desc->cmdstat);
555
    le16_to_cpus(&desc->bytes);
556
    le16_to_cpus(&desc->buffer_size);
557
    le32_to_cpus(&desc->buffer);
558
    le32_to_cpus(&desc->next);
559
}
560

    
561
static int eth_can_receive(void *opaque)
562
{
563
    return 1;
564
}
565

    
566
static void eth_receive(void *opaque, const uint8_t *buf, int size)
567
{
568
    mv88w8618_eth_state *s = opaque;
569
    uint32_t desc_addr;
570
    mv88w8618_rx_desc desc;
571
    int i;
572

    
573
    for (i = 0; i < 4; i++) {
574
        desc_addr = s->cur_rx[i];
575
        if (!desc_addr)
576
            continue;
577
        do {
578
            eth_rx_desc_get(desc_addr, &desc);
579
            if ((desc.cmdstat & MP_ETH_RX_OWN) && desc.buffer_size >= size) {
580
                cpu_physical_memory_write(desc.buffer + s->vlan_header,
581
                                          buf, size);
582
                desc.bytes = size + s->vlan_header;
583
                desc.cmdstat &= ~MP_ETH_RX_OWN;
584
                s->cur_rx[i] = desc.next;
585

    
586
                s->icr |= MP_ETH_IRQ_RX;
587
                if (s->icr & s->imr)
588
                    qemu_irq_raise(s->irq);
589
                eth_rx_desc_put(desc_addr, &desc);
590
                return;
591
            }
592
            desc_addr = desc.next;
593
        } while (desc_addr != s->rx_queue[i]);
594
    }
595
}
596

    
597
static void eth_tx_desc_put(uint32_t addr, mv88w8618_tx_desc *desc)
598
{
599
    cpu_to_le32s(&desc->cmdstat);
600
    cpu_to_le16s(&desc->res);
601
    cpu_to_le16s(&desc->bytes);
602
    cpu_to_le32s(&desc->buffer);
603
    cpu_to_le32s(&desc->next);
604
    cpu_physical_memory_write(addr, (void *)desc, sizeof(*desc));
605
}
606

    
607
static void eth_tx_desc_get(uint32_t addr, mv88w8618_tx_desc *desc)
608
{
609
    cpu_physical_memory_read(addr, (void *)desc, sizeof(*desc));
610
    le32_to_cpus(&desc->cmdstat);
611
    le16_to_cpus(&desc->res);
612
    le16_to_cpus(&desc->bytes);
613
    le32_to_cpus(&desc->buffer);
614
    le32_to_cpus(&desc->next);
615
}
616

    
617
static void eth_send(mv88w8618_eth_state *s, int queue_index)
618
{
619
    uint32_t desc_addr = s->tx_queue[queue_index];
620
    mv88w8618_tx_desc desc;
621
    uint8_t buf[2048];
622
    int len;
623

    
624

    
625
    do {
626
        eth_tx_desc_get(desc_addr, &desc);
627
        if (desc.cmdstat & MP_ETH_TX_OWN) {
628
            len = desc.bytes;
629
            if (len < 2048) {
630
                cpu_physical_memory_read(desc.buffer, buf, len);
631
                qemu_send_packet(s->vc, buf, len);
632
            }
633
            desc.cmdstat &= ~MP_ETH_TX_OWN;
634
            s->icr |= 1 << (MP_ETH_IRQ_TXLO_BIT - queue_index);
635
            eth_tx_desc_put(desc_addr, &desc);
636
        }
637
        desc_addr = desc.next;
638
    } while (desc_addr != s->tx_queue[queue_index]);
639
}
640

    
641
static uint32_t mv88w8618_eth_read(void *opaque, target_phys_addr_t offset)
642
{
643
    mv88w8618_eth_state *s = opaque;
644

    
645
    switch (offset) {
646
    case MP_ETH_SMIR:
647
        if (s->smir & MP_ETH_SMIR_OPCODE) {
648
            switch (s->smir & MP_ETH_SMIR_ADDR) {
649
            case MP_ETH_PHY1_BMSR:
650
                return MP_PHY_BMSR_LINK | MP_PHY_BMSR_AUTONEG |
651
                       MP_ETH_SMIR_RDVALID;
652
            case MP_ETH_PHY1_PHYSID1:
653
                return (MP_PHY_88E3015 >> 16) | MP_ETH_SMIR_RDVALID;
654
            case MP_ETH_PHY1_PHYSID2:
655
                return (MP_PHY_88E3015 & 0xFFFF) | MP_ETH_SMIR_RDVALID;
656
            default:
657
                return MP_ETH_SMIR_RDVALID;
658
            }
659
        }
660
        return 0;
661

    
662
    case MP_ETH_ICR:
663
        return s->icr;
664

    
665
    case MP_ETH_IMR:
666
        return s->imr;
667

    
668
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
669
        return s->frx_queue[(offset - MP_ETH_FRDP0)/4];
670

    
671
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
672
        return s->rx_queue[(offset - MP_ETH_CRDP0)/4];
673

    
674
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
675
        return s->tx_queue[(offset - MP_ETH_CTDP0)/4];
676

    
677
    default:
678
        return 0;
679
    }
680
}
681

    
682
static void mv88w8618_eth_write(void *opaque, target_phys_addr_t offset,
683
                                uint32_t value)
684
{
685
    mv88w8618_eth_state *s = opaque;
686

    
687
    switch (offset) {
688
    case MP_ETH_SMIR:
689
        s->smir = value;
690
        break;
691

    
692
    case MP_ETH_PCXR:
693
        s->vlan_header = ((value >> MP_ETH_PCXR_2BSM_BIT) & 1) * 2;
694
        break;
695

    
696
    case MP_ETH_SDCMR:
697
        if (value & MP_ETH_CMD_TXHI)
698
            eth_send(s, 1);
699
        if (value & MP_ETH_CMD_TXLO)
700
            eth_send(s, 0);
701
        if (value & (MP_ETH_CMD_TXHI | MP_ETH_CMD_TXLO) && s->icr & s->imr)
702
            qemu_irq_raise(s->irq);
703
        break;
704

    
705
    case MP_ETH_ICR:
706
        s->icr &= value;
707
        break;
708

    
709
    case MP_ETH_IMR:
710
        s->imr = value;
711
        if (s->icr & s->imr)
712
            qemu_irq_raise(s->irq);
713
        break;
714

    
715
    case MP_ETH_FRDP0 ... MP_ETH_FRDP3:
716
        s->frx_queue[(offset - MP_ETH_FRDP0)/4] = value;
717
        break;
718

    
719
    case MP_ETH_CRDP0 ... MP_ETH_CRDP3:
720
        s->rx_queue[(offset - MP_ETH_CRDP0)/4] =
721
            s->cur_rx[(offset - MP_ETH_CRDP0)/4] = value;
722
        break;
723

    
724
    case MP_ETH_CTDP0 ... MP_ETH_CTDP3:
725
        s->tx_queue[(offset - MP_ETH_CTDP0)/4] = value;
726
        break;
727
    }
728
}
729

    
730
static CPUReadMemoryFunc *mv88w8618_eth_readfn[] = {
731
    mv88w8618_eth_read,
732
    mv88w8618_eth_read,
733
    mv88w8618_eth_read
734
};
735

    
736
static CPUWriteMemoryFunc *mv88w8618_eth_writefn[] = {
737
    mv88w8618_eth_write,
738
    mv88w8618_eth_write,
739
    mv88w8618_eth_write
740
};
741

    
742
static void eth_cleanup(VLANClientState *vc)
743
{
744
    mv88w8618_eth_state *s = vc->opaque;
745

    
746
    cpu_unregister_io_memory(s->mmio_index);
747

    
748
    qemu_free(s);
749
}
750

    
751
static void mv88w8618_eth_init(NICInfo *nd, uint32_t base, qemu_irq irq)
752
{
753
    mv88w8618_eth_state *s;
754

    
755
    qemu_check_nic_model(nd, "mv88w8618");
756

    
757
    s = qemu_mallocz(sizeof(mv88w8618_eth_state));
758
    s->irq = irq;
759
    s->vc = qemu_new_vlan_client(nd->vlan, nd->model, nd->name,
760
                                 eth_receive, eth_can_receive,
761
                                 eth_cleanup, s);
762
    s->mmio_index = cpu_register_io_memory(0, mv88w8618_eth_readfn,
763
                                           mv88w8618_eth_writefn, s);
764
    cpu_register_physical_memory(base, MP_ETH_SIZE, s->mmio_index);
765
}
766

    
767
/* LCD register offsets */
768
#define MP_LCD_IRQCTRL          0x180
769
#define MP_LCD_IRQSTAT          0x184
770
#define MP_LCD_SPICTRL          0x1ac
771
#define MP_LCD_INST             0x1bc
772
#define MP_LCD_DATA             0x1c0
773

    
774
/* Mode magics */
775
#define MP_LCD_SPI_DATA         0x00100011
776
#define MP_LCD_SPI_CMD          0x00104011
777
#define MP_LCD_SPI_INVALID      0x00000000
778

    
779
/* Commmands */
780
#define MP_LCD_INST_SETPAGE0    0xB0
781
/* ... */
782
#define MP_LCD_INST_SETPAGE7    0xB7
783

    
784
#define MP_LCD_TEXTCOLOR        0xe0e0ff /* RRGGBB */
785

    
786
typedef struct musicpal_lcd_state {
787
    uint32_t mode;
788
    uint32_t irqctrl;
789
    int page;
790
    int page_off;
791
    DisplayState *ds;
792
    uint8_t video_ram[128*64/8];
793
} musicpal_lcd_state;
794

    
795
static uint32_t lcd_brightness;
796

    
797
static uint8_t scale_lcd_color(uint8_t col)
798
{
799
    int tmp = col;
800

    
801
    switch (lcd_brightness) {
802
    case 0x00000007: /* 0 */
803
        return 0;
804

    
805
    case 0x00020000: /* 1 */
806
        return (tmp * 1) / 7;
807

    
808
    case 0x00020001: /* 2 */
809
        return (tmp * 2) / 7;
810

    
811
    case 0x00040000: /* 3 */
812
        return (tmp * 3) / 7;
813

    
814
    case 0x00010006: /* 4 */
815
        return (tmp * 4) / 7;
816

    
817
    case 0x00020005: /* 5 */
818
        return (tmp * 5) / 7;
819

    
820
    case 0x00040003: /* 6 */
821
        return (tmp * 6) / 7;
822

    
823
    case 0x00030004: /* 7 */
824
    default:
825
        return col;
826
    }
827
}
828

    
829
#define SET_LCD_PIXEL(depth, type) \
830
static inline void glue(set_lcd_pixel, depth) \
831
        (musicpal_lcd_state *s, int x, int y, type col) \
832
{ \
833
    int dx, dy; \
834
    type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
835
\
836
    for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
837
        for (dx = 0; dx < 3; dx++, pixel++) \
838
            *pixel = col; \
839
}
840
SET_LCD_PIXEL(8, uint8_t)
841
SET_LCD_PIXEL(16, uint16_t)
842
SET_LCD_PIXEL(32, uint32_t)
843

    
844
#include "pixel_ops.h"
845

    
846
static void lcd_refresh(void *opaque)
847
{
848
    musicpal_lcd_state *s = opaque;
849
    int x, y, col;
850

    
851
    switch (ds_get_bits_per_pixel(s->ds)) {
852
    case 0:
853
        return;
854
#define LCD_REFRESH(depth, func) \
855
    case depth: \
856
        col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
857
                   scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
858
                   scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
859
        for (x = 0; x < 128; x++) \
860
            for (y = 0; y < 64; y++) \
861
                if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
862
                    glue(set_lcd_pixel, depth)(s, x, y, col); \
863
                else \
864
                    glue(set_lcd_pixel, depth)(s, x, y, 0); \
865
        break;
866
    LCD_REFRESH(8, rgb_to_pixel8)
867
    LCD_REFRESH(16, rgb_to_pixel16)
868
    LCD_REFRESH(32, (is_surface_bgr(s->ds->surface) ?
869
                     rgb_to_pixel32bgr : rgb_to_pixel32))
870
    default:
871
        hw_error("unsupported colour depth %i\n",
872
                  ds_get_bits_per_pixel(s->ds));
873
    }
874

    
875
    dpy_update(s->ds, 0, 0, 128*3, 64*3);
876
}
877

    
878
static void lcd_invalidate(void *opaque)
879
{
880
}
881

    
882
static uint32_t musicpal_lcd_read(void *opaque, target_phys_addr_t offset)
883
{
884
    musicpal_lcd_state *s = opaque;
885

    
886
    switch (offset) {
887
    case MP_LCD_IRQCTRL:
888
        return s->irqctrl;
889

    
890
    default:
891
        return 0;
892
    }
893
}
894

    
895
static void musicpal_lcd_write(void *opaque, target_phys_addr_t offset,
896
                               uint32_t value)
897
{
898
    musicpal_lcd_state *s = opaque;
899

    
900
    switch (offset) {
901
    case MP_LCD_IRQCTRL:
902
        s->irqctrl = value;
903
        break;
904

    
905
    case MP_LCD_SPICTRL:
906
        if (value == MP_LCD_SPI_DATA || value == MP_LCD_SPI_CMD)
907
            s->mode = value;
908
        else
909
            s->mode = MP_LCD_SPI_INVALID;
910
        break;
911

    
912
    case MP_LCD_INST:
913
        if (value >= MP_LCD_INST_SETPAGE0 && value <= MP_LCD_INST_SETPAGE7) {
914
            s->page = value - MP_LCD_INST_SETPAGE0;
915
            s->page_off = 0;
916
        }
917
        break;
918

    
919
    case MP_LCD_DATA:
920
        if (s->mode == MP_LCD_SPI_CMD) {
921
            if (value >= MP_LCD_INST_SETPAGE0 &&
922
                value <= MP_LCD_INST_SETPAGE7) {
923
                s->page = value - MP_LCD_INST_SETPAGE0;
924
                s->page_off = 0;
925
            }
926
        } else if (s->mode == MP_LCD_SPI_DATA) {
927
            s->video_ram[s->page*128 + s->page_off] = value;
928
            s->page_off = (s->page_off + 1) & 127;
929
        }
930
        break;
931
    }
932
}
933

    
934
static CPUReadMemoryFunc *musicpal_lcd_readfn[] = {
935
    musicpal_lcd_read,
936
    musicpal_lcd_read,
937
    musicpal_lcd_read
938
};
939

    
940
static CPUWriteMemoryFunc *musicpal_lcd_writefn[] = {
941
    musicpal_lcd_write,
942
    musicpal_lcd_write,
943
    musicpal_lcd_write
944
};
945

    
946
static void musicpal_lcd_init(void)
947
{
948
    musicpal_lcd_state *s;
949
    int iomemtype;
950

    
951
    s = qemu_mallocz(sizeof(musicpal_lcd_state));
952
    iomemtype = cpu_register_io_memory(0, musicpal_lcd_readfn,
953
                                       musicpal_lcd_writefn, s);
954
    cpu_register_physical_memory(MP_LCD_BASE, MP_LCD_SIZE, iomemtype);
955

    
956
    s->ds = graphic_console_init(lcd_refresh, lcd_invalidate,
957
                                 NULL, NULL, s);
958
    qemu_console_resize(s->ds, 128*3, 64*3);
959
}
960

    
961
/* PIC register offsets */
962
#define MP_PIC_STATUS           0x00
963
#define MP_PIC_ENABLE_SET       0x08
964
#define MP_PIC_ENABLE_CLR       0x0C
965

    
966
typedef struct mv88w8618_pic_state
967
{
968
    uint32_t level;
969
    uint32_t enabled;
970
    qemu_irq parent_irq;
971
} mv88w8618_pic_state;
972

    
973
static void mv88w8618_pic_update(mv88w8618_pic_state *s)
974
{
975
    qemu_set_irq(s->parent_irq, (s->level & s->enabled));
976
}
977

    
978
static void mv88w8618_pic_set_irq(void *opaque, int irq, int level)
979
{
980
    mv88w8618_pic_state *s = opaque;
981

    
982
    if (level)
983
        s->level |= 1 << irq;
984
    else
985
        s->level &= ~(1 << irq);
986
    mv88w8618_pic_update(s);
987
}
988

    
989
static uint32_t mv88w8618_pic_read(void *opaque, target_phys_addr_t offset)
990
{
991
    mv88w8618_pic_state *s = opaque;
992

    
993
    switch (offset) {
994
    case MP_PIC_STATUS:
995
        return s->level & s->enabled;
996

    
997
    default:
998
        return 0;
999
    }
1000
}
1001

    
1002
static void mv88w8618_pic_write(void *opaque, target_phys_addr_t offset,
1003
                                uint32_t value)
1004
{
1005
    mv88w8618_pic_state *s = opaque;
1006

    
1007
    switch (offset) {
1008
    case MP_PIC_ENABLE_SET:
1009
        s->enabled |= value;
1010
        break;
1011

    
1012
    case MP_PIC_ENABLE_CLR:
1013
        s->enabled &= ~value;
1014
        s->level &= ~value;
1015
        break;
1016
    }
1017
    mv88w8618_pic_update(s);
1018
}
1019

    
1020
static void mv88w8618_pic_reset(void *opaque)
1021
{
1022
    mv88w8618_pic_state *s = opaque;
1023

    
1024
    s->level = 0;
1025
    s->enabled = 0;
1026
}
1027

    
1028
static CPUReadMemoryFunc *mv88w8618_pic_readfn[] = {
1029
    mv88w8618_pic_read,
1030
    mv88w8618_pic_read,
1031
    mv88w8618_pic_read
1032
};
1033

    
1034
static CPUWriteMemoryFunc *mv88w8618_pic_writefn[] = {
1035
    mv88w8618_pic_write,
1036
    mv88w8618_pic_write,
1037
    mv88w8618_pic_write
1038
};
1039

    
1040
static qemu_irq *mv88w8618_pic_init(uint32_t base, qemu_irq parent_irq)
1041
{
1042
    mv88w8618_pic_state *s;
1043
    int iomemtype;
1044
    qemu_irq *qi;
1045

    
1046
    s = qemu_mallocz(sizeof(mv88w8618_pic_state));
1047
    qi = qemu_allocate_irqs(mv88w8618_pic_set_irq, s, 32);
1048
    s->parent_irq = parent_irq;
1049
    iomemtype = cpu_register_io_memory(0, mv88w8618_pic_readfn,
1050
                                       mv88w8618_pic_writefn, s);
1051
    cpu_register_physical_memory(base, MP_PIC_SIZE, iomemtype);
1052

    
1053
    qemu_register_reset(mv88w8618_pic_reset, s);
1054

    
1055
    return qi;
1056
}
1057

    
1058
/* PIT register offsets */
1059
#define MP_PIT_TIMER1_LENGTH    0x00
1060
/* ... */
1061
#define MP_PIT_TIMER4_LENGTH    0x0C
1062
#define MP_PIT_CONTROL          0x10
1063
#define MP_PIT_TIMER1_VALUE     0x14
1064
/* ... */
1065
#define MP_PIT_TIMER4_VALUE     0x20
1066
#define MP_BOARD_RESET          0x34
1067

    
1068
/* Magic board reset value (probably some watchdog behind it) */
1069
#define MP_BOARD_RESET_MAGIC    0x10000
1070

    
1071
typedef struct mv88w8618_timer_state {
1072
    ptimer_state *timer;
1073
    uint32_t limit;
1074
    int freq;
1075
    qemu_irq irq;
1076
} mv88w8618_timer_state;
1077

    
1078
typedef struct mv88w8618_pit_state {
1079
    void *timer[4];
1080
    uint32_t control;
1081
} mv88w8618_pit_state;
1082

    
1083
static void mv88w8618_timer_tick(void *opaque)
1084
{
1085
    mv88w8618_timer_state *s = opaque;
1086

    
1087
    qemu_irq_raise(s->irq);
1088
}
1089

    
1090
static void *mv88w8618_timer_init(uint32_t freq, qemu_irq irq)
1091
{
1092
    mv88w8618_timer_state *s;
1093
    QEMUBH *bh;
1094

    
1095
    s = qemu_mallocz(sizeof(mv88w8618_timer_state));
1096
    s->irq = irq;
1097
    s->freq = freq;
1098

    
1099
    bh = qemu_bh_new(mv88w8618_timer_tick, s);
1100
    s->timer = ptimer_init(bh);
1101

    
1102
    return s;
1103
}
1104

    
1105
static uint32_t mv88w8618_pit_read(void *opaque, target_phys_addr_t offset)
1106
{
1107
    mv88w8618_pit_state *s = opaque;
1108
    mv88w8618_timer_state *t;
1109

    
1110
    switch (offset) {
1111
    case MP_PIT_TIMER1_VALUE ... MP_PIT_TIMER4_VALUE:
1112
        t = s->timer[(offset-MP_PIT_TIMER1_VALUE) >> 2];
1113
        return ptimer_get_count(t->timer);
1114

    
1115
    default:
1116
        return 0;
1117
    }
1118
}
1119

    
1120
static void mv88w8618_pit_write(void *opaque, target_phys_addr_t offset,
1121
                                uint32_t value)
1122
{
1123
    mv88w8618_pit_state *s = opaque;
1124
    mv88w8618_timer_state *t;
1125
    int i;
1126

    
1127
    switch (offset) {
1128
    case MP_PIT_TIMER1_LENGTH ... MP_PIT_TIMER4_LENGTH:
1129
        t = s->timer[offset >> 2];
1130
        t->limit = value;
1131
        ptimer_set_limit(t->timer, t->limit, 1);
1132
        break;
1133

    
1134
    case MP_PIT_CONTROL:
1135
        for (i = 0; i < 4; i++) {
1136
            if (value & 0xf) {
1137
                t = s->timer[i];
1138
                ptimer_set_limit(t->timer, t->limit, 0);
1139
                ptimer_set_freq(t->timer, t->freq);
1140
                ptimer_run(t->timer, 0);
1141
            }
1142
            value >>= 4;
1143
        }
1144
        break;
1145

    
1146
    case MP_BOARD_RESET:
1147
        if (value == MP_BOARD_RESET_MAGIC)
1148
            qemu_system_reset_request();
1149
        break;
1150
    }
1151
}
1152

    
1153
static CPUReadMemoryFunc *mv88w8618_pit_readfn[] = {
1154
    mv88w8618_pit_read,
1155
    mv88w8618_pit_read,
1156
    mv88w8618_pit_read
1157
};
1158

    
1159
static CPUWriteMemoryFunc *mv88w8618_pit_writefn[] = {
1160
    mv88w8618_pit_write,
1161
    mv88w8618_pit_write,
1162
    mv88w8618_pit_write
1163
};
1164

    
1165
static void mv88w8618_pit_init(uint32_t base, qemu_irq *pic, int irq)
1166
{
1167
    int iomemtype;
1168
    mv88w8618_pit_state *s;
1169

    
1170
    s = qemu_mallocz(sizeof(mv88w8618_pit_state));
1171

    
1172
    /* Letting them all run at 1 MHz is likely just a pragmatic
1173
     * simplification. */
1174
    s->timer[0] = mv88w8618_timer_init(1000000, pic[irq]);
1175
    s->timer[1] = mv88w8618_timer_init(1000000, pic[irq + 1]);
1176
    s->timer[2] = mv88w8618_timer_init(1000000, pic[irq + 2]);
1177
    s->timer[3] = mv88w8618_timer_init(1000000, pic[irq + 3]);
1178

    
1179
    iomemtype = cpu_register_io_memory(0, mv88w8618_pit_readfn,
1180
                                       mv88w8618_pit_writefn, s);
1181
    cpu_register_physical_memory(base, MP_PIT_SIZE, iomemtype);
1182
}
1183

    
1184
/* Flash config register offsets */
1185
#define MP_FLASHCFG_CFGR0    0x04
1186

    
1187
typedef struct mv88w8618_flashcfg_state {
1188
    uint32_t cfgr0;
1189
} mv88w8618_flashcfg_state;
1190

    
1191
static uint32_t mv88w8618_flashcfg_read(void *opaque,
1192
                                        target_phys_addr_t offset)
1193
{
1194
    mv88w8618_flashcfg_state *s = opaque;
1195

    
1196
    switch (offset) {
1197
    case MP_FLASHCFG_CFGR0:
1198
        return s->cfgr0;
1199

    
1200
    default:
1201
        return 0;
1202
    }
1203
}
1204

    
1205
static void mv88w8618_flashcfg_write(void *opaque, target_phys_addr_t offset,
1206
                                     uint32_t value)
1207
{
1208
    mv88w8618_flashcfg_state *s = opaque;
1209

    
1210
    switch (offset) {
1211
    case MP_FLASHCFG_CFGR0:
1212
        s->cfgr0 = value;
1213
        break;
1214
    }
1215
}
1216

    
1217
static CPUReadMemoryFunc *mv88w8618_flashcfg_readfn[] = {
1218
    mv88w8618_flashcfg_read,
1219
    mv88w8618_flashcfg_read,
1220
    mv88w8618_flashcfg_read
1221
};
1222

    
1223
static CPUWriteMemoryFunc *mv88w8618_flashcfg_writefn[] = {
1224
    mv88w8618_flashcfg_write,
1225
    mv88w8618_flashcfg_write,
1226
    mv88w8618_flashcfg_write
1227
};
1228

    
1229
static void mv88w8618_flashcfg_init(uint32_t base)
1230
{
1231
    int iomemtype;
1232
    mv88w8618_flashcfg_state *s;
1233

    
1234
    s = qemu_mallocz(sizeof(mv88w8618_flashcfg_state));
1235

    
1236
    s->cfgr0 = 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1237
    iomemtype = cpu_register_io_memory(0, mv88w8618_flashcfg_readfn,
1238
                       mv88w8618_flashcfg_writefn, s);
1239
    cpu_register_physical_memory(base, MP_FLASHCFG_SIZE, iomemtype);
1240
}
1241

    
1242
/* Misc register offsets */
1243
#define MP_MISC_BOARD_REVISION  0x18
1244

    
1245
#define MP_BOARD_REVISION       0x31
1246

    
1247
static uint32_t musicpal_misc_read(void *opaque, target_phys_addr_t offset)
1248
{
1249
    switch (offset) {
1250
    case MP_MISC_BOARD_REVISION:
1251
        return MP_BOARD_REVISION;
1252

    
1253
    default:
1254
        return 0;
1255
    }
1256
}
1257

    
1258
static void musicpal_misc_write(void *opaque, target_phys_addr_t offset,
1259
                                uint32_t value)
1260
{
1261
}
1262

    
1263
static CPUReadMemoryFunc *musicpal_misc_readfn[] = {
1264
    musicpal_misc_read,
1265
    musicpal_misc_read,
1266
    musicpal_misc_read,
1267
};
1268

    
1269
static CPUWriteMemoryFunc *musicpal_misc_writefn[] = {
1270
    musicpal_misc_write,
1271
    musicpal_misc_write,
1272
    musicpal_misc_write,
1273
};
1274

    
1275
static void musicpal_misc_init(void)
1276
{
1277
    int iomemtype;
1278

    
1279
    iomemtype = cpu_register_io_memory(0, musicpal_misc_readfn,
1280
                                       musicpal_misc_writefn, NULL);
1281
    cpu_register_physical_memory(MP_MISC_BASE, MP_MISC_SIZE, iomemtype);
1282
}
1283

    
1284
/* WLAN register offsets */
1285
#define MP_WLAN_MAGIC1          0x11c
1286
#define MP_WLAN_MAGIC2          0x124
1287

    
1288
static uint32_t mv88w8618_wlan_read(void *opaque, target_phys_addr_t offset)
1289
{
1290
    switch (offset) {
1291
    /* Workaround to allow loading the binary-only wlandrv.ko crap
1292
     * from the original Freecom firmware. */
1293
    case MP_WLAN_MAGIC1:
1294
        return ~3;
1295
    case MP_WLAN_MAGIC2:
1296
        return -1;
1297

    
1298
    default:
1299
        return 0;
1300
    }
1301
}
1302

    
1303
static void mv88w8618_wlan_write(void *opaque, target_phys_addr_t offset,
1304
                                 uint32_t value)
1305
{
1306
}
1307

    
1308
static CPUReadMemoryFunc *mv88w8618_wlan_readfn[] = {
1309
    mv88w8618_wlan_read,
1310
    mv88w8618_wlan_read,
1311
    mv88w8618_wlan_read,
1312
};
1313

    
1314
static CPUWriteMemoryFunc *mv88w8618_wlan_writefn[] = {
1315
    mv88w8618_wlan_write,
1316
    mv88w8618_wlan_write,
1317
    mv88w8618_wlan_write,
1318
};
1319

    
1320
static void mv88w8618_wlan_init(uint32_t base)
1321
{
1322
    int iomemtype;
1323

    
1324
    iomemtype = cpu_register_io_memory(0, mv88w8618_wlan_readfn,
1325
                                       mv88w8618_wlan_writefn, NULL);
1326
    cpu_register_physical_memory(base, MP_WLAN_SIZE, iomemtype);
1327
}
1328

    
1329
/* GPIO register offsets */
1330
#define MP_GPIO_OE_LO           0x008
1331
#define MP_GPIO_OUT_LO          0x00c
1332
#define MP_GPIO_IN_LO           0x010
1333
#define MP_GPIO_ISR_LO          0x020
1334
#define MP_GPIO_OE_HI           0x508
1335
#define MP_GPIO_OUT_HI          0x50c
1336
#define MP_GPIO_IN_HI           0x510
1337
#define MP_GPIO_ISR_HI          0x520
1338

    
1339
/* GPIO bits & masks */
1340
#define MP_GPIO_WHEEL_VOL       (1 << 8)
1341
#define MP_GPIO_WHEEL_VOL_INV   (1 << 9)
1342
#define MP_GPIO_WHEEL_NAV       (1 << 10)
1343
#define MP_GPIO_WHEEL_NAV_INV   (1 << 11)
1344
#define MP_GPIO_LCD_BRIGHTNESS  0x00070000
1345
#define MP_GPIO_BTN_FAVORITS    (1 << 19)
1346
#define MP_GPIO_BTN_MENU        (1 << 20)
1347
#define MP_GPIO_BTN_VOLUME      (1 << 21)
1348
#define MP_GPIO_BTN_NAVIGATION  (1 << 22)
1349
#define MP_GPIO_I2C_DATA_BIT    29
1350
#define MP_GPIO_I2C_DATA        (1 << MP_GPIO_I2C_DATA_BIT)
1351
#define MP_GPIO_I2C_CLOCK_BIT   30
1352

    
1353
/* LCD brightness bits in GPIO_OE_HI */
1354
#define MP_OE_LCD_BRIGHTNESS    0x0007
1355

    
1356
static uint32_t musicpal_gpio_read(void *opaque, target_phys_addr_t offset)
1357
{
1358
    switch (offset) {
1359
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1360
        return lcd_brightness & MP_OE_LCD_BRIGHTNESS;
1361

    
1362
    case MP_GPIO_OUT_LO:
1363
        return gpio_out_state & 0xFFFF;
1364
    case MP_GPIO_OUT_HI:
1365
        return gpio_out_state >> 16;
1366

    
1367
    case MP_GPIO_IN_LO:
1368
        return gpio_in_state & 0xFFFF;
1369
    case MP_GPIO_IN_HI:
1370
        /* Update received I2C data */
1371
        gpio_in_state = (gpio_in_state & ~MP_GPIO_I2C_DATA) |
1372
                        (i2c_get_data(mixer_i2c) << MP_GPIO_I2C_DATA_BIT);
1373
        return gpio_in_state >> 16;
1374

    
1375
    case MP_GPIO_ISR_LO:
1376
        return gpio_isr & 0xFFFF;
1377
    case MP_GPIO_ISR_HI:
1378
        return gpio_isr >> 16;
1379

    
1380
    default:
1381
        return 0;
1382
    }
1383
}
1384

    
1385
static void musicpal_gpio_write(void *opaque, target_phys_addr_t offset,
1386
                                uint32_t value)
1387
{
1388
    switch (offset) {
1389
    case MP_GPIO_OE_HI: /* used for LCD brightness control */
1390
        lcd_brightness = (lcd_brightness & MP_GPIO_LCD_BRIGHTNESS) |
1391
                         (value & MP_OE_LCD_BRIGHTNESS);
1392
        break;
1393

    
1394
    case MP_GPIO_OUT_LO:
1395
        gpio_out_state = (gpio_out_state & 0xFFFF0000) | (value & 0xFFFF);
1396
        break;
1397
    case MP_GPIO_OUT_HI:
1398
        gpio_out_state = (gpio_out_state & 0xFFFF) | (value << 16);
1399
        lcd_brightness = (lcd_brightness & 0xFFFF) |
1400
                         (gpio_out_state & MP_GPIO_LCD_BRIGHTNESS);
1401
        i2c_state_update(mixer_i2c,
1402
                         (gpio_out_state >> MP_GPIO_I2C_DATA_BIT) & 1,
1403
                         (gpio_out_state >> MP_GPIO_I2C_CLOCK_BIT) & 1);
1404
        break;
1405

    
1406
    }
1407
}
1408

    
1409
static CPUReadMemoryFunc *musicpal_gpio_readfn[] = {
1410
    musicpal_gpio_read,
1411
    musicpal_gpio_read,
1412
    musicpal_gpio_read,
1413
};
1414

    
1415
static CPUWriteMemoryFunc *musicpal_gpio_writefn[] = {
1416
    musicpal_gpio_write,
1417
    musicpal_gpio_write,
1418
    musicpal_gpio_write,
1419
};
1420

    
1421
static void musicpal_gpio_init(void)
1422
{
1423
    int iomemtype;
1424

    
1425
    iomemtype = cpu_register_io_memory(0, musicpal_gpio_readfn,
1426
                                       musicpal_gpio_writefn, NULL);
1427
    cpu_register_physical_memory(MP_GPIO_BASE, MP_GPIO_SIZE, iomemtype);
1428
}
1429

    
1430
/* Keyboard codes & masks */
1431
#define KEY_RELEASED            0x80
1432
#define KEY_CODE                0x7f
1433

    
1434
#define KEYCODE_TAB             0x0f
1435
#define KEYCODE_ENTER           0x1c
1436
#define KEYCODE_F               0x21
1437
#define KEYCODE_M               0x32
1438

    
1439
#define KEYCODE_EXTENDED        0xe0
1440
#define KEYCODE_UP              0x48
1441
#define KEYCODE_DOWN            0x50
1442
#define KEYCODE_LEFT            0x4b
1443
#define KEYCODE_RIGHT           0x4d
1444

    
1445
static void musicpal_key_event(void *opaque, int keycode)
1446
{
1447
    qemu_irq irq = opaque;
1448
    uint32_t event = 0;
1449
    static int kbd_extended;
1450

    
1451
    if (keycode == KEYCODE_EXTENDED) {
1452
        kbd_extended = 1;
1453
        return;
1454
    }
1455

    
1456
    if (kbd_extended)
1457
        switch (keycode & KEY_CODE) {
1458
        case KEYCODE_UP:
1459
            event = MP_GPIO_WHEEL_NAV | MP_GPIO_WHEEL_NAV_INV;
1460
            break;
1461

    
1462
        case KEYCODE_DOWN:
1463
            event = MP_GPIO_WHEEL_NAV;
1464
            break;
1465

    
1466
        case KEYCODE_LEFT:
1467
            event = MP_GPIO_WHEEL_VOL | MP_GPIO_WHEEL_VOL_INV;
1468
            break;
1469

    
1470
        case KEYCODE_RIGHT:
1471
            event = MP_GPIO_WHEEL_VOL;
1472
            break;
1473
        }
1474
    else {
1475
        switch (keycode & KEY_CODE) {
1476
        case KEYCODE_F:
1477
            event = MP_GPIO_BTN_FAVORITS;
1478
            break;
1479

    
1480
        case KEYCODE_TAB:
1481
            event = MP_GPIO_BTN_VOLUME;
1482
            break;
1483

    
1484
        case KEYCODE_ENTER:
1485
            event = MP_GPIO_BTN_NAVIGATION;
1486
            break;
1487

    
1488
        case KEYCODE_M:
1489
            event = MP_GPIO_BTN_MENU;
1490
            break;
1491
        }
1492
        /* Do not repeat already pressed buttons */
1493
        if (!(keycode & KEY_RELEASED) && !(gpio_in_state & event))
1494
            event = 0;
1495
    }
1496

    
1497
    if (event) {
1498
        if (keycode & KEY_RELEASED) {
1499
            gpio_in_state |= event;
1500
        } else {
1501
            gpio_in_state &= ~event;
1502
            gpio_isr = event;
1503
            qemu_irq_raise(irq);
1504
        }
1505
    }
1506

    
1507
    kbd_extended = 0;
1508
}
1509

    
1510
static struct arm_boot_info musicpal_binfo = {
1511
    .loader_start = 0x0,
1512
    .board_id = 0x20e,
1513
};
1514

    
1515
static void musicpal_init(ram_addr_t ram_size, int vga_ram_size,
1516
               const char *boot_device,
1517
               const char *kernel_filename, const char *kernel_cmdline,
1518
               const char *initrd_filename, const char *cpu_model)
1519
{
1520
    CPUState *env;
1521
    qemu_irq *pic;
1522
    int index;
1523
    unsigned long flash_size;
1524

    
1525
    if (!cpu_model)
1526
        cpu_model = "arm926";
1527

    
1528
    env = cpu_init(cpu_model);
1529
    if (!env) {
1530
        fprintf(stderr, "Unable to find CPU definition\n");
1531
        exit(1);
1532
    }
1533
    pic = arm_pic_init_cpu(env);
1534

    
1535
    /* For now we use a fixed - the original - RAM size */
1536
    cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE,
1537
                                 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE));
1538

    
1539
    sram_off = qemu_ram_alloc(MP_SRAM_SIZE);
1540
    cpu_register_physical_memory(MP_SRAM_BASE, MP_SRAM_SIZE, sram_off);
1541

    
1542
    pic = mv88w8618_pic_init(MP_PIC_BASE, pic[ARM_PIC_CPU_IRQ]);
1543
    mv88w8618_pit_init(MP_PIT_BASE, pic, MP_TIMER1_IRQ);
1544

    
1545
    if (serial_hds[0])
1546
        serial_mm_init(MP_UART1_BASE, 2, pic[MP_UART1_IRQ], 1825000,
1547
                   serial_hds[0], 1);
1548
    if (serial_hds[1])
1549
        serial_mm_init(MP_UART2_BASE, 2, pic[MP_UART2_IRQ], 1825000,
1550
                   serial_hds[1], 1);
1551

    
1552
    /* Register flash */
1553
    index = drive_get_index(IF_PFLASH, 0, 0);
1554
    if (index != -1) {
1555
        flash_size = bdrv_getlength(drives_table[index].bdrv);
1556
        if (flash_size != 8*1024*1024 && flash_size != 16*1024*1024 &&
1557
            flash_size != 32*1024*1024) {
1558
            fprintf(stderr, "Invalid flash image size\n");
1559
            exit(1);
1560
        }
1561

    
1562
        /*
1563
         * The original U-Boot accesses the flash at 0xFE000000 instead of
1564
         * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1565
         * image is smaller than 32 MB.
1566
         */
1567
        pflash_cfi02_register(0-MP_FLASH_SIZE_MAX, qemu_ram_alloc(flash_size),
1568
                              drives_table[index].bdrv, 0x10000,
1569
                              (flash_size + 0xffff) >> 16,
1570
                              MP_FLASH_SIZE_MAX / flash_size,
1571
                              2, 0x00BF, 0x236D, 0x0000, 0x0000,
1572
                              0x5555, 0x2AAA);
1573
    }
1574
    mv88w8618_flashcfg_init(MP_FLASHCFG_BASE);
1575

    
1576
    musicpal_lcd_init();
1577

    
1578
    qemu_add_kbd_event_handler(musicpal_key_event, pic[MP_GPIO_IRQ]);
1579

    
1580
    mv88w8618_eth_init(&nd_table[0], MP_ETH_BASE, pic[MP_ETH_IRQ]);
1581

    
1582
    mixer_i2c = musicpal_audio_init(pic[MP_AUDIO_IRQ]);
1583

    
1584
    mv88w8618_wlan_init(MP_WLAN_BASE);
1585

    
1586
    musicpal_misc_init();
1587
    musicpal_gpio_init();
1588

    
1589
    musicpal_binfo.ram_size = MP_RAM_DEFAULT_SIZE;
1590
    musicpal_binfo.kernel_filename = kernel_filename;
1591
    musicpal_binfo.kernel_cmdline = kernel_cmdline;
1592
    musicpal_binfo.initrd_filename = initrd_filename;
1593
    arm_load_kernel(env, &musicpal_binfo);
1594
}
1595

    
1596
QEMUMachine musicpal_machine = {
1597
    .name = "musicpal",
1598
    .desc = "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1599
    .init = musicpal_init,
1600
};