root / hw / omap1.c @ 22ed1d34
History | View | Annotate | Download (132.1 kB)
1 |
/*
|
---|---|
2 |
* TI OMAP processors emulation.
|
3 |
*
|
4 |
* Copyright (C) 2006-2008 Andrzej Zaborowski <balrog@zabor.org>
|
5 |
*
|
6 |
* This program is free software; you can redistribute it and/or
|
7 |
* modify it under the terms of the GNU General Public License as
|
8 |
* published by the Free Software Foundation; either version 2 or
|
9 |
* (at your option) version 3 of the License.
|
10 |
*
|
11 |
* This program is distributed in the hope that it will be useful,
|
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
14 |
* GNU General Public License for more details.
|
15 |
*
|
16 |
* You should have received a copy of the GNU General Public License along
|
17 |
* with this program; if not, see <http://www.gnu.org/licenses/>.
|
18 |
*/
|
19 |
#include "hw.h" |
20 |
#include "arm-misc.h" |
21 |
#include "omap.h" |
22 |
#include "sysemu.h" |
23 |
#include "qemu-timer.h" |
24 |
#include "qemu-char.h" |
25 |
#include "soc_dma.h" |
26 |
/* We use pc-style serial ports. */
|
27 |
#include "pc.h" |
28 |
|
29 |
/* Should signal the TCMI/GPMC */
|
30 |
uint32_t omap_badwidth_read8(void *opaque, target_phys_addr_t addr)
|
31 |
{ |
32 |
uint8_t ret; |
33 |
|
34 |
OMAP_8B_REG(addr); |
35 |
cpu_physical_memory_read(addr, (void *) &ret, 1); |
36 |
return ret;
|
37 |
} |
38 |
|
39 |
void omap_badwidth_write8(void *opaque, target_phys_addr_t addr, |
40 |
uint32_t value) |
41 |
{ |
42 |
uint8_t val8 = value; |
43 |
|
44 |
OMAP_8B_REG(addr); |
45 |
cpu_physical_memory_write(addr, (void *) &val8, 1); |
46 |
} |
47 |
|
48 |
uint32_t omap_badwidth_read16(void *opaque, target_phys_addr_t addr)
|
49 |
{ |
50 |
uint16_t ret; |
51 |
|
52 |
OMAP_16B_REG(addr); |
53 |
cpu_physical_memory_read(addr, (void *) &ret, 2); |
54 |
return ret;
|
55 |
} |
56 |
|
57 |
void omap_badwidth_write16(void *opaque, target_phys_addr_t addr, |
58 |
uint32_t value) |
59 |
{ |
60 |
uint16_t val16 = value; |
61 |
|
62 |
OMAP_16B_REG(addr); |
63 |
cpu_physical_memory_write(addr, (void *) &val16, 2); |
64 |
} |
65 |
|
66 |
uint32_t omap_badwidth_read32(void *opaque, target_phys_addr_t addr)
|
67 |
{ |
68 |
uint32_t ret; |
69 |
|
70 |
OMAP_32B_REG(addr); |
71 |
cpu_physical_memory_read(addr, (void *) &ret, 4); |
72 |
return ret;
|
73 |
} |
74 |
|
75 |
void omap_badwidth_write32(void *opaque, target_phys_addr_t addr, |
76 |
uint32_t value) |
77 |
{ |
78 |
OMAP_32B_REG(addr); |
79 |
cpu_physical_memory_write(addr, (void *) &value, 4); |
80 |
} |
81 |
|
82 |
/* Interrupt Handlers */
|
83 |
struct omap_intr_handler_bank_s {
|
84 |
uint32_t irqs; |
85 |
uint32_t inputs; |
86 |
uint32_t mask; |
87 |
uint32_t fiq; |
88 |
uint32_t sens_edge; |
89 |
uint32_t swi; |
90 |
unsigned char priority[32]; |
91 |
}; |
92 |
|
93 |
struct omap_intr_handler_s {
|
94 |
qemu_irq *pins; |
95 |
qemu_irq parent_intr[2];
|
96 |
unsigned char nbanks; |
97 |
int level_only;
|
98 |
|
99 |
/* state */
|
100 |
uint32_t new_agr[2];
|
101 |
int sir_intr[2]; |
102 |
int autoidle;
|
103 |
uint32_t mask; |
104 |
struct omap_intr_handler_bank_s bank[];
|
105 |
}; |
106 |
|
107 |
static void omap_inth_sir_update(struct omap_intr_handler_s *s, int is_fiq) |
108 |
{ |
109 |
int i, j, sir_intr, p_intr, p, f;
|
110 |
uint32_t level; |
111 |
sir_intr = 0;
|
112 |
p_intr = 255;
|
113 |
|
114 |
/* Find the interrupt line with the highest dynamic priority.
|
115 |
* Note: 0 denotes the hightest priority.
|
116 |
* If all interrupts have the same priority, the default order is IRQ_N,
|
117 |
* IRQ_N-1,...,IRQ_0. */
|
118 |
for (j = 0; j < s->nbanks; ++j) { |
119 |
level = s->bank[j].irqs & ~s->bank[j].mask & |
120 |
(is_fiq ? s->bank[j].fiq : ~s->bank[j].fiq); |
121 |
for (f = ffs(level), i = f - 1, level >>= f - 1; f; i += f, |
122 |
level >>= f) { |
123 |
p = s->bank[j].priority[i]; |
124 |
if (p <= p_intr) {
|
125 |
p_intr = p; |
126 |
sir_intr = 32 * j + i;
|
127 |
} |
128 |
f = ffs(level >> 1);
|
129 |
} |
130 |
} |
131 |
s->sir_intr[is_fiq] = sir_intr; |
132 |
} |
133 |
|
134 |
static inline void omap_inth_update(struct omap_intr_handler_s *s, int is_fiq) |
135 |
{ |
136 |
int i;
|
137 |
uint32_t has_intr = 0;
|
138 |
|
139 |
for (i = 0; i < s->nbanks; ++i) |
140 |
has_intr |= s->bank[i].irqs & ~s->bank[i].mask & |
141 |
(is_fiq ? s->bank[i].fiq : ~s->bank[i].fiq); |
142 |
|
143 |
if (s->new_agr[is_fiq] & has_intr & s->mask) {
|
144 |
s->new_agr[is_fiq] = 0;
|
145 |
omap_inth_sir_update(s, is_fiq); |
146 |
qemu_set_irq(s->parent_intr[is_fiq], 1);
|
147 |
} |
148 |
} |
149 |
|
150 |
#define INT_FALLING_EDGE 0 |
151 |
#define INT_LOW_LEVEL 1 |
152 |
|
153 |
static void omap_set_intr(void *opaque, int irq, int req) |
154 |
{ |
155 |
struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque; |
156 |
uint32_t rise; |
157 |
|
158 |
struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5]; |
159 |
int n = irq & 31; |
160 |
|
161 |
if (req) {
|
162 |
rise = ~bank->irqs & (1 << n);
|
163 |
if (~bank->sens_edge & (1 << n)) |
164 |
rise &= ~bank->inputs; |
165 |
|
166 |
bank->inputs |= (1 << n);
|
167 |
if (rise) {
|
168 |
bank->irqs |= rise; |
169 |
omap_inth_update(ih, 0);
|
170 |
omap_inth_update(ih, 1);
|
171 |
} |
172 |
} else {
|
173 |
rise = bank->sens_edge & bank->irqs & (1 << n);
|
174 |
bank->irqs &= ~rise; |
175 |
bank->inputs &= ~(1 << n);
|
176 |
} |
177 |
} |
178 |
|
179 |
/* Simplified version with no edge detection */
|
180 |
static void omap_set_intr_noedge(void *opaque, int irq, int req) |
181 |
{ |
182 |
struct omap_intr_handler_s *ih = (struct omap_intr_handler_s *) opaque; |
183 |
uint32_t rise; |
184 |
|
185 |
struct omap_intr_handler_bank_s *bank = &ih->bank[irq >> 5]; |
186 |
int n = irq & 31; |
187 |
|
188 |
if (req) {
|
189 |
rise = ~bank->inputs & (1 << n);
|
190 |
if (rise) {
|
191 |
bank->irqs |= bank->inputs |= rise; |
192 |
omap_inth_update(ih, 0);
|
193 |
omap_inth_update(ih, 1);
|
194 |
} |
195 |
} else
|
196 |
bank->irqs = (bank->inputs &= ~(1 << n)) | bank->swi;
|
197 |
} |
198 |
|
199 |
static uint32_t omap_inth_read(void *opaque, target_phys_addr_t addr) |
200 |
{ |
201 |
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; |
202 |
int i, offset = addr;
|
203 |
int bank_no = offset >> 8; |
204 |
int line_no;
|
205 |
struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
|
206 |
offset &= 0xff;
|
207 |
|
208 |
switch (offset) {
|
209 |
case 0x00: /* ITR */ |
210 |
return bank->irqs;
|
211 |
|
212 |
case 0x04: /* MIR */ |
213 |
return bank->mask;
|
214 |
|
215 |
case 0x10: /* SIR_IRQ_CODE */ |
216 |
case 0x14: /* SIR_FIQ_CODE */ |
217 |
if (bank_no != 0) |
218 |
break;
|
219 |
line_no = s->sir_intr[(offset - 0x10) >> 2]; |
220 |
bank = &s->bank[line_no >> 5];
|
221 |
i = line_no & 31;
|
222 |
if (((bank->sens_edge >> i) & 1) == INT_FALLING_EDGE) |
223 |
bank->irqs &= ~(1 << i);
|
224 |
return line_no;
|
225 |
|
226 |
case 0x18: /* CONTROL_REG */ |
227 |
if (bank_no != 0) |
228 |
break;
|
229 |
return 0; |
230 |
|
231 |
case 0x1c: /* ILR0 */ |
232 |
case 0x20: /* ILR1 */ |
233 |
case 0x24: /* ILR2 */ |
234 |
case 0x28: /* ILR3 */ |
235 |
case 0x2c: /* ILR4 */ |
236 |
case 0x30: /* ILR5 */ |
237 |
case 0x34: /* ILR6 */ |
238 |
case 0x38: /* ILR7 */ |
239 |
case 0x3c: /* ILR8 */ |
240 |
case 0x40: /* ILR9 */ |
241 |
case 0x44: /* ILR10 */ |
242 |
case 0x48: /* ILR11 */ |
243 |
case 0x4c: /* ILR12 */ |
244 |
case 0x50: /* ILR13 */ |
245 |
case 0x54: /* ILR14 */ |
246 |
case 0x58: /* ILR15 */ |
247 |
case 0x5c: /* ILR16 */ |
248 |
case 0x60: /* ILR17 */ |
249 |
case 0x64: /* ILR18 */ |
250 |
case 0x68: /* ILR19 */ |
251 |
case 0x6c: /* ILR20 */ |
252 |
case 0x70: /* ILR21 */ |
253 |
case 0x74: /* ILR22 */ |
254 |
case 0x78: /* ILR23 */ |
255 |
case 0x7c: /* ILR24 */ |
256 |
case 0x80: /* ILR25 */ |
257 |
case 0x84: /* ILR26 */ |
258 |
case 0x88: /* ILR27 */ |
259 |
case 0x8c: /* ILR28 */ |
260 |
case 0x90: /* ILR29 */ |
261 |
case 0x94: /* ILR30 */ |
262 |
case 0x98: /* ILR31 */ |
263 |
i = (offset - 0x1c) >> 2; |
264 |
return (bank->priority[i] << 2) | |
265 |
(((bank->sens_edge >> i) & 1) << 1) | |
266 |
((bank->fiq >> i) & 1);
|
267 |
|
268 |
case 0x9c: /* ISR */ |
269 |
return 0x00000000; |
270 |
|
271 |
} |
272 |
OMAP_BAD_REG(addr); |
273 |
return 0; |
274 |
} |
275 |
|
276 |
static void omap_inth_write(void *opaque, target_phys_addr_t addr, |
277 |
uint32_t value) |
278 |
{ |
279 |
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; |
280 |
int i, offset = addr;
|
281 |
int bank_no = offset >> 8; |
282 |
struct omap_intr_handler_bank_s *bank = &s->bank[bank_no];
|
283 |
offset &= 0xff;
|
284 |
|
285 |
switch (offset) {
|
286 |
case 0x00: /* ITR */ |
287 |
/* Important: ignore the clearing if the IRQ is level-triggered and
|
288 |
the input bit is 1 */
|
289 |
bank->irqs &= value | (bank->inputs & bank->sens_edge); |
290 |
return;
|
291 |
|
292 |
case 0x04: /* MIR */ |
293 |
bank->mask = value; |
294 |
omap_inth_update(s, 0);
|
295 |
omap_inth_update(s, 1);
|
296 |
return;
|
297 |
|
298 |
case 0x10: /* SIR_IRQ_CODE */ |
299 |
case 0x14: /* SIR_FIQ_CODE */ |
300 |
OMAP_RO_REG(addr); |
301 |
break;
|
302 |
|
303 |
case 0x18: /* CONTROL_REG */ |
304 |
if (bank_no != 0) |
305 |
break;
|
306 |
if (value & 2) { |
307 |
qemu_set_irq(s->parent_intr[1], 0); |
308 |
s->new_agr[1] = ~0; |
309 |
omap_inth_update(s, 1);
|
310 |
} |
311 |
if (value & 1) { |
312 |
qemu_set_irq(s->parent_intr[0], 0); |
313 |
s->new_agr[0] = ~0; |
314 |
omap_inth_update(s, 0);
|
315 |
} |
316 |
return;
|
317 |
|
318 |
case 0x1c: /* ILR0 */ |
319 |
case 0x20: /* ILR1 */ |
320 |
case 0x24: /* ILR2 */ |
321 |
case 0x28: /* ILR3 */ |
322 |
case 0x2c: /* ILR4 */ |
323 |
case 0x30: /* ILR5 */ |
324 |
case 0x34: /* ILR6 */ |
325 |
case 0x38: /* ILR7 */ |
326 |
case 0x3c: /* ILR8 */ |
327 |
case 0x40: /* ILR9 */ |
328 |
case 0x44: /* ILR10 */ |
329 |
case 0x48: /* ILR11 */ |
330 |
case 0x4c: /* ILR12 */ |
331 |
case 0x50: /* ILR13 */ |
332 |
case 0x54: /* ILR14 */ |
333 |
case 0x58: /* ILR15 */ |
334 |
case 0x5c: /* ILR16 */ |
335 |
case 0x60: /* ILR17 */ |
336 |
case 0x64: /* ILR18 */ |
337 |
case 0x68: /* ILR19 */ |
338 |
case 0x6c: /* ILR20 */ |
339 |
case 0x70: /* ILR21 */ |
340 |
case 0x74: /* ILR22 */ |
341 |
case 0x78: /* ILR23 */ |
342 |
case 0x7c: /* ILR24 */ |
343 |
case 0x80: /* ILR25 */ |
344 |
case 0x84: /* ILR26 */ |
345 |
case 0x88: /* ILR27 */ |
346 |
case 0x8c: /* ILR28 */ |
347 |
case 0x90: /* ILR29 */ |
348 |
case 0x94: /* ILR30 */ |
349 |
case 0x98: /* ILR31 */ |
350 |
i = (offset - 0x1c) >> 2; |
351 |
bank->priority[i] = (value >> 2) & 0x1f; |
352 |
bank->sens_edge &= ~(1 << i);
|
353 |
bank->sens_edge |= ((value >> 1) & 1) << i; |
354 |
bank->fiq &= ~(1 << i);
|
355 |
bank->fiq |= (value & 1) << i;
|
356 |
return;
|
357 |
|
358 |
case 0x9c: /* ISR */ |
359 |
for (i = 0; i < 32; i ++) |
360 |
if (value & (1 << i)) { |
361 |
omap_set_intr(s, 32 * bank_no + i, 1); |
362 |
return;
|
363 |
} |
364 |
return;
|
365 |
} |
366 |
OMAP_BAD_REG(addr); |
367 |
} |
368 |
|
369 |
static CPUReadMemoryFunc * const omap_inth_readfn[] = { |
370 |
omap_badwidth_read32, |
371 |
omap_badwidth_read32, |
372 |
omap_inth_read, |
373 |
}; |
374 |
|
375 |
static CPUWriteMemoryFunc * const omap_inth_writefn[] = { |
376 |
omap_inth_write, |
377 |
omap_inth_write, |
378 |
omap_inth_write, |
379 |
}; |
380 |
|
381 |
void omap_inth_reset(struct omap_intr_handler_s *s) |
382 |
{ |
383 |
int i;
|
384 |
|
385 |
for (i = 0; i < s->nbanks; ++i){ |
386 |
s->bank[i].irqs = 0x00000000;
|
387 |
s->bank[i].mask = 0xffffffff;
|
388 |
s->bank[i].sens_edge = 0x00000000;
|
389 |
s->bank[i].fiq = 0x00000000;
|
390 |
s->bank[i].inputs = 0x00000000;
|
391 |
s->bank[i].swi = 0x00000000;
|
392 |
memset(s->bank[i].priority, 0, sizeof(s->bank[i].priority)); |
393 |
|
394 |
if (s->level_only)
|
395 |
s->bank[i].sens_edge = 0xffffffff;
|
396 |
} |
397 |
|
398 |
s->new_agr[0] = ~0; |
399 |
s->new_agr[1] = ~0; |
400 |
s->sir_intr[0] = 0; |
401 |
s->sir_intr[1] = 0; |
402 |
s->autoidle = 0;
|
403 |
s->mask = ~0;
|
404 |
|
405 |
qemu_set_irq(s->parent_intr[0], 0); |
406 |
qemu_set_irq(s->parent_intr[1], 0); |
407 |
} |
408 |
|
409 |
struct omap_intr_handler_s *omap_inth_init(target_phys_addr_t base,
|
410 |
unsigned long size, unsigned char nbanks, qemu_irq **pins, |
411 |
qemu_irq parent_irq, qemu_irq parent_fiq, omap_clk clk) |
412 |
{ |
413 |
int iomemtype;
|
414 |
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) |
415 |
qemu_mallocz(sizeof(struct omap_intr_handler_s) + |
416 |
sizeof(struct omap_intr_handler_bank_s) * nbanks); |
417 |
|
418 |
s->parent_intr[0] = parent_irq;
|
419 |
s->parent_intr[1] = parent_fiq;
|
420 |
s->nbanks = nbanks; |
421 |
s->pins = qemu_allocate_irqs(omap_set_intr, s, nbanks * 32);
|
422 |
if (pins)
|
423 |
*pins = s->pins; |
424 |
|
425 |
omap_inth_reset(s); |
426 |
|
427 |
iomemtype = cpu_register_io_memory(omap_inth_readfn, |
428 |
omap_inth_writefn, s); |
429 |
cpu_register_physical_memory(base, size, iomemtype); |
430 |
|
431 |
return s;
|
432 |
} |
433 |
|
434 |
static uint32_t omap2_inth_read(void *opaque, target_phys_addr_t addr) |
435 |
{ |
436 |
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; |
437 |
int offset = addr;
|
438 |
int bank_no, line_no;
|
439 |
struct omap_intr_handler_bank_s *bank = NULL; |
440 |
|
441 |
if ((offset & 0xf80) == 0x80) { |
442 |
bank_no = (offset & 0x60) >> 5; |
443 |
if (bank_no < s->nbanks) {
|
444 |
offset &= ~0x60;
|
445 |
bank = &s->bank[bank_no]; |
446 |
} |
447 |
} |
448 |
|
449 |
switch (offset) {
|
450 |
case 0x00: /* INTC_REVISION */ |
451 |
return 0x21; |
452 |
|
453 |
case 0x10: /* INTC_SYSCONFIG */ |
454 |
return (s->autoidle >> 2) & 1; |
455 |
|
456 |
case 0x14: /* INTC_SYSSTATUS */ |
457 |
return 1; /* RESETDONE */ |
458 |
|
459 |
case 0x40: /* INTC_SIR_IRQ */ |
460 |
return s->sir_intr[0]; |
461 |
|
462 |
case 0x44: /* INTC_SIR_FIQ */ |
463 |
return s->sir_intr[1]; |
464 |
|
465 |
case 0x48: /* INTC_CONTROL */ |
466 |
return (!s->mask) << 2; /* GLOBALMASK */ |
467 |
|
468 |
case 0x4c: /* INTC_PROTECTION */ |
469 |
return 0; |
470 |
|
471 |
case 0x50: /* INTC_IDLE */ |
472 |
return s->autoidle & 3; |
473 |
|
474 |
/* Per-bank registers */
|
475 |
case 0x80: /* INTC_ITR */ |
476 |
return bank->inputs;
|
477 |
|
478 |
case 0x84: /* INTC_MIR */ |
479 |
return bank->mask;
|
480 |
|
481 |
case 0x88: /* INTC_MIR_CLEAR */ |
482 |
case 0x8c: /* INTC_MIR_SET */ |
483 |
return 0; |
484 |
|
485 |
case 0x90: /* INTC_ISR_SET */ |
486 |
return bank->swi;
|
487 |
|
488 |
case 0x94: /* INTC_ISR_CLEAR */ |
489 |
return 0; |
490 |
|
491 |
case 0x98: /* INTC_PENDING_IRQ */ |
492 |
return bank->irqs & ~bank->mask & ~bank->fiq;
|
493 |
|
494 |
case 0x9c: /* INTC_PENDING_FIQ */ |
495 |
return bank->irqs & ~bank->mask & bank->fiq;
|
496 |
|
497 |
/* Per-line registers */
|
498 |
case 0x100 ... 0x300: /* INTC_ILR */ |
499 |
bank_no = (offset - 0x100) >> 7; |
500 |
if (bank_no > s->nbanks)
|
501 |
break;
|
502 |
bank = &s->bank[bank_no]; |
503 |
line_no = (offset & 0x7f) >> 2; |
504 |
return (bank->priority[line_no] << 2) | |
505 |
((bank->fiq >> line_no) & 1);
|
506 |
} |
507 |
OMAP_BAD_REG(addr); |
508 |
return 0; |
509 |
} |
510 |
|
511 |
static void omap2_inth_write(void *opaque, target_phys_addr_t addr, |
512 |
uint32_t value) |
513 |
{ |
514 |
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) opaque; |
515 |
int offset = addr;
|
516 |
int bank_no, line_no;
|
517 |
struct omap_intr_handler_bank_s *bank = NULL; |
518 |
|
519 |
if ((offset & 0xf80) == 0x80) { |
520 |
bank_no = (offset & 0x60) >> 5; |
521 |
if (bank_no < s->nbanks) {
|
522 |
offset &= ~0x60;
|
523 |
bank = &s->bank[bank_no]; |
524 |
} |
525 |
} |
526 |
|
527 |
switch (offset) {
|
528 |
case 0x10: /* INTC_SYSCONFIG */ |
529 |
s->autoidle &= 4;
|
530 |
s->autoidle |= (value & 1) << 2; |
531 |
if (value & 2) /* SOFTRESET */ |
532 |
omap_inth_reset(s); |
533 |
return;
|
534 |
|
535 |
case 0x48: /* INTC_CONTROL */ |
536 |
s->mask = (value & 4) ? 0 : ~0; /* GLOBALMASK */ |
537 |
if (value & 2) { /* NEWFIQAGR */ |
538 |
qemu_set_irq(s->parent_intr[1], 0); |
539 |
s->new_agr[1] = ~0; |
540 |
omap_inth_update(s, 1);
|
541 |
} |
542 |
if (value & 1) { /* NEWIRQAGR */ |
543 |
qemu_set_irq(s->parent_intr[0], 0); |
544 |
s->new_agr[0] = ~0; |
545 |
omap_inth_update(s, 0);
|
546 |
} |
547 |
return;
|
548 |
|
549 |
case 0x4c: /* INTC_PROTECTION */ |
550 |
/* TODO: Make a bitmap (or sizeof(char)map) of access privileges
|
551 |
* for every register, see Chapter 3 and 4 for privileged mode. */
|
552 |
if (value & 1) |
553 |
fprintf(stderr, "%s: protection mode enable attempt\n",
|
554 |
__FUNCTION__); |
555 |
return;
|
556 |
|
557 |
case 0x50: /* INTC_IDLE */ |
558 |
s->autoidle &= ~3;
|
559 |
s->autoidle |= value & 3;
|
560 |
return;
|
561 |
|
562 |
/* Per-bank registers */
|
563 |
case 0x84: /* INTC_MIR */ |
564 |
bank->mask = value; |
565 |
omap_inth_update(s, 0);
|
566 |
omap_inth_update(s, 1);
|
567 |
return;
|
568 |
|
569 |
case 0x88: /* INTC_MIR_CLEAR */ |
570 |
bank->mask &= ~value; |
571 |
omap_inth_update(s, 0);
|
572 |
omap_inth_update(s, 1);
|
573 |
return;
|
574 |
|
575 |
case 0x8c: /* INTC_MIR_SET */ |
576 |
bank->mask |= value; |
577 |
return;
|
578 |
|
579 |
case 0x90: /* INTC_ISR_SET */ |
580 |
bank->irqs |= bank->swi |= value; |
581 |
omap_inth_update(s, 0);
|
582 |
omap_inth_update(s, 1);
|
583 |
return;
|
584 |
|
585 |
case 0x94: /* INTC_ISR_CLEAR */ |
586 |
bank->swi &= ~value; |
587 |
bank->irqs = bank->swi & bank->inputs; |
588 |
return;
|
589 |
|
590 |
/* Per-line registers */
|
591 |
case 0x100 ... 0x300: /* INTC_ILR */ |
592 |
bank_no = (offset - 0x100) >> 7; |
593 |
if (bank_no > s->nbanks)
|
594 |
break;
|
595 |
bank = &s->bank[bank_no]; |
596 |
line_no = (offset & 0x7f) >> 2; |
597 |
bank->priority[line_no] = (value >> 2) & 0x3f; |
598 |
bank->fiq &= ~(1 << line_no);
|
599 |
bank->fiq |= (value & 1) << line_no;
|
600 |
return;
|
601 |
|
602 |
case 0x00: /* INTC_REVISION */ |
603 |
case 0x14: /* INTC_SYSSTATUS */ |
604 |
case 0x40: /* INTC_SIR_IRQ */ |
605 |
case 0x44: /* INTC_SIR_FIQ */ |
606 |
case 0x80: /* INTC_ITR */ |
607 |
case 0x98: /* INTC_PENDING_IRQ */ |
608 |
case 0x9c: /* INTC_PENDING_FIQ */ |
609 |
OMAP_RO_REG(addr); |
610 |
return;
|
611 |
} |
612 |
OMAP_BAD_REG(addr); |
613 |
} |
614 |
|
615 |
static CPUReadMemoryFunc * const omap2_inth_readfn[] = { |
616 |
omap_badwidth_read32, |
617 |
omap_badwidth_read32, |
618 |
omap2_inth_read, |
619 |
}; |
620 |
|
621 |
static CPUWriteMemoryFunc * const omap2_inth_writefn[] = { |
622 |
omap2_inth_write, |
623 |
omap2_inth_write, |
624 |
omap2_inth_write, |
625 |
}; |
626 |
|
627 |
struct omap_intr_handler_s *omap2_inth_init(target_phys_addr_t base,
|
628 |
int size, int nbanks, qemu_irq **pins, |
629 |
qemu_irq parent_irq, qemu_irq parent_fiq, |
630 |
omap_clk fclk, omap_clk iclk) |
631 |
{ |
632 |
int iomemtype;
|
633 |
struct omap_intr_handler_s *s = (struct omap_intr_handler_s *) |
634 |
qemu_mallocz(sizeof(struct omap_intr_handler_s) + |
635 |
sizeof(struct omap_intr_handler_bank_s) * nbanks); |
636 |
|
637 |
s->parent_intr[0] = parent_irq;
|
638 |
s->parent_intr[1] = parent_fiq;
|
639 |
s->nbanks = nbanks; |
640 |
s->level_only = 1;
|
641 |
s->pins = qemu_allocate_irqs(omap_set_intr_noedge, s, nbanks * 32);
|
642 |
if (pins)
|
643 |
*pins = s->pins; |
644 |
|
645 |
omap_inth_reset(s); |
646 |
|
647 |
iomemtype = cpu_register_io_memory(omap2_inth_readfn, |
648 |
omap2_inth_writefn, s); |
649 |
cpu_register_physical_memory(base, size, iomemtype); |
650 |
|
651 |
return s;
|
652 |
} |
653 |
|
654 |
/* MPU OS timers */
|
655 |
struct omap_mpu_timer_s {
|
656 |
qemu_irq irq; |
657 |
omap_clk clk; |
658 |
uint32_t val; |
659 |
int64_t time; |
660 |
QEMUTimer *timer; |
661 |
QEMUBH *tick; |
662 |
int64_t rate; |
663 |
int it_ena;
|
664 |
|
665 |
int enable;
|
666 |
int ptv;
|
667 |
int ar;
|
668 |
int st;
|
669 |
uint32_t reset_val; |
670 |
}; |
671 |
|
672 |
static inline uint32_t omap_timer_read(struct omap_mpu_timer_s *timer) |
673 |
{ |
674 |
uint64_t distance = qemu_get_clock(vm_clock) - timer->time; |
675 |
|
676 |
if (timer->st && timer->enable && timer->rate)
|
677 |
return timer->val - muldiv64(distance >> (timer->ptv + 1), |
678 |
timer->rate, get_ticks_per_sec()); |
679 |
else
|
680 |
return timer->val;
|
681 |
} |
682 |
|
683 |
static inline void omap_timer_sync(struct omap_mpu_timer_s *timer) |
684 |
{ |
685 |
timer->val = omap_timer_read(timer); |
686 |
timer->time = qemu_get_clock(vm_clock); |
687 |
} |
688 |
|
689 |
static inline void omap_timer_update(struct omap_mpu_timer_s *timer) |
690 |
{ |
691 |
int64_t expires; |
692 |
|
693 |
if (timer->enable && timer->st && timer->rate) {
|
694 |
timer->val = timer->reset_val; /* Should skip this on clk enable */
|
695 |
expires = muldiv64((uint64_t) timer->val << (timer->ptv + 1),
|
696 |
get_ticks_per_sec(), timer->rate); |
697 |
|
698 |
/* If timer expiry would be sooner than in about 1 ms and
|
699 |
* auto-reload isn't set, then fire immediately. This is a hack
|
700 |
* to make systems like PalmOS run in acceptable time. PalmOS
|
701 |
* sets the interval to a very low value and polls the status bit
|
702 |
* in a busy loop when it wants to sleep just a couple of CPU
|
703 |
* ticks. */
|
704 |
if (expires > (get_ticks_per_sec() >> 10) || timer->ar) |
705 |
qemu_mod_timer(timer->timer, timer->time + expires); |
706 |
else
|
707 |
qemu_bh_schedule(timer->tick); |
708 |
} else
|
709 |
qemu_del_timer(timer->timer); |
710 |
} |
711 |
|
712 |
static void omap_timer_fire(void *opaque) |
713 |
{ |
714 |
struct omap_mpu_timer_s *timer = opaque;
|
715 |
|
716 |
if (!timer->ar) {
|
717 |
timer->val = 0;
|
718 |
timer->st = 0;
|
719 |
} |
720 |
|
721 |
if (timer->it_ena)
|
722 |
/* Edge-triggered irq */
|
723 |
qemu_irq_pulse(timer->irq); |
724 |
} |
725 |
|
726 |
static void omap_timer_tick(void *opaque) |
727 |
{ |
728 |
struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; |
729 |
|
730 |
omap_timer_sync(timer); |
731 |
omap_timer_fire(timer); |
732 |
omap_timer_update(timer); |
733 |
} |
734 |
|
735 |
static void omap_timer_clk_update(void *opaque, int line, int on) |
736 |
{ |
737 |
struct omap_mpu_timer_s *timer = (struct omap_mpu_timer_s *) opaque; |
738 |
|
739 |
omap_timer_sync(timer); |
740 |
timer->rate = on ? omap_clk_getrate(timer->clk) : 0;
|
741 |
omap_timer_update(timer); |
742 |
} |
743 |
|
744 |
static void omap_timer_clk_setup(struct omap_mpu_timer_s *timer) |
745 |
{ |
746 |
omap_clk_adduser(timer->clk, |
747 |
qemu_allocate_irqs(omap_timer_clk_update, timer, 1)[0]); |
748 |
timer->rate = omap_clk_getrate(timer->clk); |
749 |
} |
750 |
|
751 |
static uint32_t omap_mpu_timer_read(void *opaque, target_phys_addr_t addr) |
752 |
{ |
753 |
struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; |
754 |
|
755 |
switch (addr) {
|
756 |
case 0x00: /* CNTL_TIMER */ |
757 |
return (s->enable << 5) | (s->ptv << 2) | (s->ar << 1) | s->st; |
758 |
|
759 |
case 0x04: /* LOAD_TIM */ |
760 |
break;
|
761 |
|
762 |
case 0x08: /* READ_TIM */ |
763 |
return omap_timer_read(s);
|
764 |
} |
765 |
|
766 |
OMAP_BAD_REG(addr); |
767 |
return 0; |
768 |
} |
769 |
|
770 |
static void omap_mpu_timer_write(void *opaque, target_phys_addr_t addr, |
771 |
uint32_t value) |
772 |
{ |
773 |
struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) opaque; |
774 |
|
775 |
switch (addr) {
|
776 |
case 0x00: /* CNTL_TIMER */ |
777 |
omap_timer_sync(s); |
778 |
s->enable = (value >> 5) & 1; |
779 |
s->ptv = (value >> 2) & 7; |
780 |
s->ar = (value >> 1) & 1; |
781 |
s->st = value & 1;
|
782 |
omap_timer_update(s); |
783 |
return;
|
784 |
|
785 |
case 0x04: /* LOAD_TIM */ |
786 |
s->reset_val = value; |
787 |
return;
|
788 |
|
789 |
case 0x08: /* READ_TIM */ |
790 |
OMAP_RO_REG(addr); |
791 |
break;
|
792 |
|
793 |
default:
|
794 |
OMAP_BAD_REG(addr); |
795 |
} |
796 |
} |
797 |
|
798 |
static CPUReadMemoryFunc * const omap_mpu_timer_readfn[] = { |
799 |
omap_badwidth_read32, |
800 |
omap_badwidth_read32, |
801 |
omap_mpu_timer_read, |
802 |
}; |
803 |
|
804 |
static CPUWriteMemoryFunc * const omap_mpu_timer_writefn[] = { |
805 |
omap_badwidth_write32, |
806 |
omap_badwidth_write32, |
807 |
omap_mpu_timer_write, |
808 |
}; |
809 |
|
810 |
static void omap_mpu_timer_reset(struct omap_mpu_timer_s *s) |
811 |
{ |
812 |
qemu_del_timer(s->timer); |
813 |
s->enable = 0;
|
814 |
s->reset_val = 31337;
|
815 |
s->val = 0;
|
816 |
s->ptv = 0;
|
817 |
s->ar = 0;
|
818 |
s->st = 0;
|
819 |
s->it_ena = 1;
|
820 |
} |
821 |
|
822 |
struct omap_mpu_timer_s *omap_mpu_timer_init(target_phys_addr_t base,
|
823 |
qemu_irq irq, omap_clk clk) |
824 |
{ |
825 |
int iomemtype;
|
826 |
struct omap_mpu_timer_s *s = (struct omap_mpu_timer_s *) |
827 |
qemu_mallocz(sizeof(struct omap_mpu_timer_s)); |
828 |
|
829 |
s->irq = irq; |
830 |
s->clk = clk; |
831 |
s->timer = qemu_new_timer(vm_clock, omap_timer_tick, s); |
832 |
s->tick = qemu_bh_new(omap_timer_fire, s); |
833 |
omap_mpu_timer_reset(s); |
834 |
omap_timer_clk_setup(s); |
835 |
|
836 |
iomemtype = cpu_register_io_memory(omap_mpu_timer_readfn, |
837 |
omap_mpu_timer_writefn, s); |
838 |
cpu_register_physical_memory(base, 0x100, iomemtype);
|
839 |
|
840 |
return s;
|
841 |
} |
842 |
|
843 |
/* Watchdog timer */
|
844 |
struct omap_watchdog_timer_s {
|
845 |
struct omap_mpu_timer_s timer;
|
846 |
uint8_t last_wr; |
847 |
int mode;
|
848 |
int free;
|
849 |
int reset;
|
850 |
}; |
851 |
|
852 |
static uint32_t omap_wd_timer_read(void *opaque, target_phys_addr_t addr) |
853 |
{ |
854 |
struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; |
855 |
|
856 |
switch (addr) {
|
857 |
case 0x00: /* CNTL_TIMER */ |
858 |
return (s->timer.ptv << 9) | (s->timer.ar << 8) | |
859 |
(s->timer.st << 7) | (s->free << 1); |
860 |
|
861 |
case 0x04: /* READ_TIMER */ |
862 |
return omap_timer_read(&s->timer);
|
863 |
|
864 |
case 0x08: /* TIMER_MODE */ |
865 |
return s->mode << 15; |
866 |
} |
867 |
|
868 |
OMAP_BAD_REG(addr); |
869 |
return 0; |
870 |
} |
871 |
|
872 |
static void omap_wd_timer_write(void *opaque, target_phys_addr_t addr, |
873 |
uint32_t value) |
874 |
{ |
875 |
struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) opaque; |
876 |
|
877 |
switch (addr) {
|
878 |
case 0x00: /* CNTL_TIMER */ |
879 |
omap_timer_sync(&s->timer); |
880 |
s->timer.ptv = (value >> 9) & 7; |
881 |
s->timer.ar = (value >> 8) & 1; |
882 |
s->timer.st = (value >> 7) & 1; |
883 |
s->free = (value >> 1) & 1; |
884 |
omap_timer_update(&s->timer); |
885 |
break;
|
886 |
|
887 |
case 0x04: /* LOAD_TIMER */ |
888 |
s->timer.reset_val = value & 0xffff;
|
889 |
break;
|
890 |
|
891 |
case 0x08: /* TIMER_MODE */ |
892 |
if (!s->mode && ((value >> 15) & 1)) |
893 |
omap_clk_get(s->timer.clk); |
894 |
s->mode |= (value >> 15) & 1; |
895 |
if (s->last_wr == 0xf5) { |
896 |
if ((value & 0xff) == 0xa0) { |
897 |
if (s->mode) {
|
898 |
s->mode = 0;
|
899 |
omap_clk_put(s->timer.clk); |
900 |
} |
901 |
} else {
|
902 |
/* XXX: on T|E hardware somehow this has no effect,
|
903 |
* on Zire 71 it works as specified. */
|
904 |
s->reset = 1;
|
905 |
qemu_system_reset_request(); |
906 |
} |
907 |
} |
908 |
s->last_wr = value & 0xff;
|
909 |
break;
|
910 |
|
911 |
default:
|
912 |
OMAP_BAD_REG(addr); |
913 |
} |
914 |
} |
915 |
|
916 |
static CPUReadMemoryFunc * const omap_wd_timer_readfn[] = { |
917 |
omap_badwidth_read16, |
918 |
omap_wd_timer_read, |
919 |
omap_badwidth_read16, |
920 |
}; |
921 |
|
922 |
static CPUWriteMemoryFunc * const omap_wd_timer_writefn[] = { |
923 |
omap_badwidth_write16, |
924 |
omap_wd_timer_write, |
925 |
omap_badwidth_write16, |
926 |
}; |
927 |
|
928 |
static void omap_wd_timer_reset(struct omap_watchdog_timer_s *s) |
929 |
{ |
930 |
qemu_del_timer(s->timer.timer); |
931 |
if (!s->mode)
|
932 |
omap_clk_get(s->timer.clk); |
933 |
s->mode = 1;
|
934 |
s->free = 1;
|
935 |
s->reset = 0;
|
936 |
s->timer.enable = 1;
|
937 |
s->timer.it_ena = 1;
|
938 |
s->timer.reset_val = 0xffff;
|
939 |
s->timer.val = 0;
|
940 |
s->timer.st = 0;
|
941 |
s->timer.ptv = 0;
|
942 |
s->timer.ar = 0;
|
943 |
omap_timer_update(&s->timer); |
944 |
} |
945 |
|
946 |
struct omap_watchdog_timer_s *omap_wd_timer_init(target_phys_addr_t base,
|
947 |
qemu_irq irq, omap_clk clk) |
948 |
{ |
949 |
int iomemtype;
|
950 |
struct omap_watchdog_timer_s *s = (struct omap_watchdog_timer_s *) |
951 |
qemu_mallocz(sizeof(struct omap_watchdog_timer_s)); |
952 |
|
953 |
s->timer.irq = irq; |
954 |
s->timer.clk = clk; |
955 |
s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer); |
956 |
omap_wd_timer_reset(s); |
957 |
omap_timer_clk_setup(&s->timer); |
958 |
|
959 |
iomemtype = cpu_register_io_memory(omap_wd_timer_readfn, |
960 |
omap_wd_timer_writefn, s); |
961 |
cpu_register_physical_memory(base, 0x100, iomemtype);
|
962 |
|
963 |
return s;
|
964 |
} |
965 |
|
966 |
/* 32-kHz timer */
|
967 |
struct omap_32khz_timer_s {
|
968 |
struct omap_mpu_timer_s timer;
|
969 |
}; |
970 |
|
971 |
static uint32_t omap_os_timer_read(void *opaque, target_phys_addr_t addr) |
972 |
{ |
973 |
struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; |
974 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
975 |
|
976 |
switch (offset) {
|
977 |
case 0x00: /* TVR */ |
978 |
return s->timer.reset_val;
|
979 |
|
980 |
case 0x04: /* TCR */ |
981 |
return omap_timer_read(&s->timer);
|
982 |
|
983 |
case 0x08: /* CR */ |
984 |
return (s->timer.ar << 3) | (s->timer.it_ena << 2) | s->timer.st; |
985 |
|
986 |
default:
|
987 |
break;
|
988 |
} |
989 |
OMAP_BAD_REG(addr); |
990 |
return 0; |
991 |
} |
992 |
|
993 |
static void omap_os_timer_write(void *opaque, target_phys_addr_t addr, |
994 |
uint32_t value) |
995 |
{ |
996 |
struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) opaque; |
997 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
998 |
|
999 |
switch (offset) {
|
1000 |
case 0x00: /* TVR */ |
1001 |
s->timer.reset_val = value & 0x00ffffff;
|
1002 |
break;
|
1003 |
|
1004 |
case 0x04: /* TCR */ |
1005 |
OMAP_RO_REG(addr); |
1006 |
break;
|
1007 |
|
1008 |
case 0x08: /* CR */ |
1009 |
s->timer.ar = (value >> 3) & 1; |
1010 |
s->timer.it_ena = (value >> 2) & 1; |
1011 |
if (s->timer.st != (value & 1) || (value & 2)) { |
1012 |
omap_timer_sync(&s->timer); |
1013 |
s->timer.enable = value & 1;
|
1014 |
s->timer.st = value & 1;
|
1015 |
omap_timer_update(&s->timer); |
1016 |
} |
1017 |
break;
|
1018 |
|
1019 |
default:
|
1020 |
OMAP_BAD_REG(addr); |
1021 |
} |
1022 |
} |
1023 |
|
1024 |
static CPUReadMemoryFunc * const omap_os_timer_readfn[] = { |
1025 |
omap_badwidth_read32, |
1026 |
omap_badwidth_read32, |
1027 |
omap_os_timer_read, |
1028 |
}; |
1029 |
|
1030 |
static CPUWriteMemoryFunc * const omap_os_timer_writefn[] = { |
1031 |
omap_badwidth_write32, |
1032 |
omap_badwidth_write32, |
1033 |
omap_os_timer_write, |
1034 |
}; |
1035 |
|
1036 |
static void omap_os_timer_reset(struct omap_32khz_timer_s *s) |
1037 |
{ |
1038 |
qemu_del_timer(s->timer.timer); |
1039 |
s->timer.enable = 0;
|
1040 |
s->timer.it_ena = 0;
|
1041 |
s->timer.reset_val = 0x00ffffff;
|
1042 |
s->timer.val = 0;
|
1043 |
s->timer.st = 0;
|
1044 |
s->timer.ptv = 0;
|
1045 |
s->timer.ar = 1;
|
1046 |
} |
1047 |
|
1048 |
struct omap_32khz_timer_s *omap_os_timer_init(target_phys_addr_t base,
|
1049 |
qemu_irq irq, omap_clk clk) |
1050 |
{ |
1051 |
int iomemtype;
|
1052 |
struct omap_32khz_timer_s *s = (struct omap_32khz_timer_s *) |
1053 |
qemu_mallocz(sizeof(struct omap_32khz_timer_s)); |
1054 |
|
1055 |
s->timer.irq = irq; |
1056 |
s->timer.clk = clk; |
1057 |
s->timer.timer = qemu_new_timer(vm_clock, omap_timer_tick, &s->timer); |
1058 |
omap_os_timer_reset(s); |
1059 |
omap_timer_clk_setup(&s->timer); |
1060 |
|
1061 |
iomemtype = cpu_register_io_memory(omap_os_timer_readfn, |
1062 |
omap_os_timer_writefn, s); |
1063 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
1064 |
|
1065 |
return s;
|
1066 |
} |
1067 |
|
1068 |
/* Ultra Low-Power Device Module */
|
1069 |
static uint32_t omap_ulpd_pm_read(void *opaque, target_phys_addr_t addr) |
1070 |
{ |
1071 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
1072 |
uint16_t ret; |
1073 |
|
1074 |
switch (addr) {
|
1075 |
case 0x14: /* IT_STATUS */ |
1076 |
ret = s->ulpd_pm_regs[addr >> 2];
|
1077 |
s->ulpd_pm_regs[addr >> 2] = 0; |
1078 |
qemu_irq_lower(s->irq[1][OMAP_INT_GAUGE_32K]);
|
1079 |
return ret;
|
1080 |
|
1081 |
case 0x18: /* Reserved */ |
1082 |
case 0x1c: /* Reserved */ |
1083 |
case 0x20: /* Reserved */ |
1084 |
case 0x28: /* Reserved */ |
1085 |
case 0x2c: /* Reserved */ |
1086 |
OMAP_BAD_REG(addr); |
1087 |
case 0x00: /* COUNTER_32_LSB */ |
1088 |
case 0x04: /* COUNTER_32_MSB */ |
1089 |
case 0x08: /* COUNTER_HIGH_FREQ_LSB */ |
1090 |
case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ |
1091 |
case 0x10: /* GAUGING_CTRL */ |
1092 |
case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ |
1093 |
case 0x30: /* CLOCK_CTRL */ |
1094 |
case 0x34: /* SOFT_REQ */ |
1095 |
case 0x38: /* COUNTER_32_FIQ */ |
1096 |
case 0x3c: /* DPLL_CTRL */ |
1097 |
case 0x40: /* STATUS_REQ */ |
1098 |
/* XXX: check clk::usecount state for every clock */
|
1099 |
case 0x48: /* LOCL_TIME */ |
1100 |
case 0x4c: /* APLL_CTRL */ |
1101 |
case 0x50: /* POWER_CTRL */ |
1102 |
return s->ulpd_pm_regs[addr >> 2]; |
1103 |
} |
1104 |
|
1105 |
OMAP_BAD_REG(addr); |
1106 |
return 0; |
1107 |
} |
1108 |
|
1109 |
static inline void omap_ulpd_clk_update(struct omap_mpu_state_s *s, |
1110 |
uint16_t diff, uint16_t value) |
1111 |
{ |
1112 |
if (diff & (1 << 4)) /* USB_MCLK_EN */ |
1113 |
omap_clk_onoff(omap_findclk(s, "usb_clk0"), (value >> 4) & 1); |
1114 |
if (diff & (1 << 5)) /* DIS_USB_PVCI_CLK */ |
1115 |
omap_clk_onoff(omap_findclk(s, "usb_w2fc_ck"), (~value >> 5) & 1); |
1116 |
} |
1117 |
|
1118 |
static inline void omap_ulpd_req_update(struct omap_mpu_state_s *s, |
1119 |
uint16_t diff, uint16_t value) |
1120 |
{ |
1121 |
if (diff & (1 << 0)) /* SOFT_DPLL_REQ */ |
1122 |
omap_clk_canidle(omap_findclk(s, "dpll4"), (~value >> 0) & 1); |
1123 |
if (diff & (1 << 1)) /* SOFT_COM_REQ */ |
1124 |
omap_clk_canidle(omap_findclk(s, "com_mclk_out"), (~value >> 1) & 1); |
1125 |
if (diff & (1 << 2)) /* SOFT_SDW_REQ */ |
1126 |
omap_clk_canidle(omap_findclk(s, "bt_mclk_out"), (~value >> 2) & 1); |
1127 |
if (diff & (1 << 3)) /* SOFT_USB_REQ */ |
1128 |
omap_clk_canidle(omap_findclk(s, "usb_clk0"), (~value >> 3) & 1); |
1129 |
} |
1130 |
|
1131 |
static void omap_ulpd_pm_write(void *opaque, target_phys_addr_t addr, |
1132 |
uint32_t value) |
1133 |
{ |
1134 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
1135 |
int64_t now, ticks; |
1136 |
int div, mult;
|
1137 |
static const int bypass_div[4] = { 1, 2, 4, 4 }; |
1138 |
uint16_t diff; |
1139 |
|
1140 |
switch (addr) {
|
1141 |
case 0x00: /* COUNTER_32_LSB */ |
1142 |
case 0x04: /* COUNTER_32_MSB */ |
1143 |
case 0x08: /* COUNTER_HIGH_FREQ_LSB */ |
1144 |
case 0x0c: /* COUNTER_HIGH_FREQ_MSB */ |
1145 |
case 0x14: /* IT_STATUS */ |
1146 |
case 0x40: /* STATUS_REQ */ |
1147 |
OMAP_RO_REG(addr); |
1148 |
break;
|
1149 |
|
1150 |
case 0x10: /* GAUGING_CTRL */ |
1151 |
/* Bits 0 and 1 seem to be confused in the OMAP 310 TRM */
|
1152 |
if ((s->ulpd_pm_regs[addr >> 2] ^ value) & 1) { |
1153 |
now = qemu_get_clock(vm_clock); |
1154 |
|
1155 |
if (value & 1) |
1156 |
s->ulpd_gauge_start = now; |
1157 |
else {
|
1158 |
now -= s->ulpd_gauge_start; |
1159 |
|
1160 |
/* 32-kHz ticks */
|
1161 |
ticks = muldiv64(now, 32768, get_ticks_per_sec());
|
1162 |
s->ulpd_pm_regs[0x00 >> 2] = (ticks >> 0) & 0xffff; |
1163 |
s->ulpd_pm_regs[0x04 >> 2] = (ticks >> 16) & 0xffff; |
1164 |
if (ticks >> 32) /* OVERFLOW_32K */ |
1165 |
s->ulpd_pm_regs[0x14 >> 2] |= 1 << 2; |
1166 |
|
1167 |
/* High frequency ticks */
|
1168 |
ticks = muldiv64(now, 12000000, get_ticks_per_sec());
|
1169 |
s->ulpd_pm_regs[0x08 >> 2] = (ticks >> 0) & 0xffff; |
1170 |
s->ulpd_pm_regs[0x0c >> 2] = (ticks >> 16) & 0xffff; |
1171 |
if (ticks >> 32) /* OVERFLOW_HI_FREQ */ |
1172 |
s->ulpd_pm_regs[0x14 >> 2] |= 1 << 1; |
1173 |
|
1174 |
s->ulpd_pm_regs[0x14 >> 2] |= 1 << 0; /* IT_GAUGING */ |
1175 |
qemu_irq_raise(s->irq[1][OMAP_INT_GAUGE_32K]);
|
1176 |
} |
1177 |
} |
1178 |
s->ulpd_pm_regs[addr >> 2] = value;
|
1179 |
break;
|
1180 |
|
1181 |
case 0x18: /* Reserved */ |
1182 |
case 0x1c: /* Reserved */ |
1183 |
case 0x20: /* Reserved */ |
1184 |
case 0x28: /* Reserved */ |
1185 |
case 0x2c: /* Reserved */ |
1186 |
OMAP_BAD_REG(addr); |
1187 |
case 0x24: /* SETUP_ANALOG_CELL3_ULPD1 */ |
1188 |
case 0x38: /* COUNTER_32_FIQ */ |
1189 |
case 0x48: /* LOCL_TIME */ |
1190 |
case 0x50: /* POWER_CTRL */ |
1191 |
s->ulpd_pm_regs[addr >> 2] = value;
|
1192 |
break;
|
1193 |
|
1194 |
case 0x30: /* CLOCK_CTRL */ |
1195 |
diff = s->ulpd_pm_regs[addr >> 2] ^ value;
|
1196 |
s->ulpd_pm_regs[addr >> 2] = value & 0x3f; |
1197 |
omap_ulpd_clk_update(s, diff, value); |
1198 |
break;
|
1199 |
|
1200 |
case 0x34: /* SOFT_REQ */ |
1201 |
diff = s->ulpd_pm_regs[addr >> 2] ^ value;
|
1202 |
s->ulpd_pm_regs[addr >> 2] = value & 0x1f; |
1203 |
omap_ulpd_req_update(s, diff, value); |
1204 |
break;
|
1205 |
|
1206 |
case 0x3c: /* DPLL_CTRL */ |
1207 |
/* XXX: OMAP310 TRM claims bit 3 is PLL_ENABLE, and bit 4 is
|
1208 |
* omitted altogether, probably a typo. */
|
1209 |
/* This register has identical semantics with DPLL(1:3) control
|
1210 |
* registers, see omap_dpll_write() */
|
1211 |
diff = s->ulpd_pm_regs[addr >> 2] & value;
|
1212 |
s->ulpd_pm_regs[addr >> 2] = value & 0x2fff; |
1213 |
if (diff & (0x3ff << 2)) { |
1214 |
if (value & (1 << 4)) { /* PLL_ENABLE */ |
1215 |
div = ((value >> 5) & 3) + 1; /* PLL_DIV */ |
1216 |
mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ |
1217 |
} else {
|
1218 |
div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ |
1219 |
mult = 1;
|
1220 |
} |
1221 |
omap_clk_setrate(omap_findclk(s, "dpll4"), div, mult);
|
1222 |
} |
1223 |
|
1224 |
/* Enter the desired mode. */
|
1225 |
s->ulpd_pm_regs[addr >> 2] =
|
1226 |
(s->ulpd_pm_regs[addr >> 2] & 0xfffe) | |
1227 |
((s->ulpd_pm_regs[addr >> 2] >> 4) & 1); |
1228 |
|
1229 |
/* Act as if the lock is restored. */
|
1230 |
s->ulpd_pm_regs[addr >> 2] |= 2; |
1231 |
break;
|
1232 |
|
1233 |
case 0x4c: /* APLL_CTRL */ |
1234 |
diff = s->ulpd_pm_regs[addr >> 2] & value;
|
1235 |
s->ulpd_pm_regs[addr >> 2] = value & 0xf; |
1236 |
if (diff & (1 << 0)) /* APLL_NDPLL_SWITCH */ |
1237 |
omap_clk_reparent(omap_findclk(s, "ck_48m"), omap_findclk(s,
|
1238 |
(value & (1 << 0)) ? "apll" : "dpll4")); |
1239 |
break;
|
1240 |
|
1241 |
default:
|
1242 |
OMAP_BAD_REG(addr); |
1243 |
} |
1244 |
} |
1245 |
|
1246 |
static CPUReadMemoryFunc * const omap_ulpd_pm_readfn[] = { |
1247 |
omap_badwidth_read16, |
1248 |
omap_ulpd_pm_read, |
1249 |
omap_badwidth_read16, |
1250 |
}; |
1251 |
|
1252 |
static CPUWriteMemoryFunc * const omap_ulpd_pm_writefn[] = { |
1253 |
omap_badwidth_write16, |
1254 |
omap_ulpd_pm_write, |
1255 |
omap_badwidth_write16, |
1256 |
}; |
1257 |
|
1258 |
static void omap_ulpd_pm_reset(struct omap_mpu_state_s *mpu) |
1259 |
{ |
1260 |
mpu->ulpd_pm_regs[0x00 >> 2] = 0x0001; |
1261 |
mpu->ulpd_pm_regs[0x04 >> 2] = 0x0000; |
1262 |
mpu->ulpd_pm_regs[0x08 >> 2] = 0x0001; |
1263 |
mpu->ulpd_pm_regs[0x0c >> 2] = 0x0000; |
1264 |
mpu->ulpd_pm_regs[0x10 >> 2] = 0x0000; |
1265 |
mpu->ulpd_pm_regs[0x18 >> 2] = 0x01; |
1266 |
mpu->ulpd_pm_regs[0x1c >> 2] = 0x01; |
1267 |
mpu->ulpd_pm_regs[0x20 >> 2] = 0x01; |
1268 |
mpu->ulpd_pm_regs[0x24 >> 2] = 0x03ff; |
1269 |
mpu->ulpd_pm_regs[0x28 >> 2] = 0x01; |
1270 |
mpu->ulpd_pm_regs[0x2c >> 2] = 0x01; |
1271 |
omap_ulpd_clk_update(mpu, mpu->ulpd_pm_regs[0x30 >> 2], 0x0000); |
1272 |
mpu->ulpd_pm_regs[0x30 >> 2] = 0x0000; |
1273 |
omap_ulpd_req_update(mpu, mpu->ulpd_pm_regs[0x34 >> 2], 0x0000); |
1274 |
mpu->ulpd_pm_regs[0x34 >> 2] = 0x0000; |
1275 |
mpu->ulpd_pm_regs[0x38 >> 2] = 0x0001; |
1276 |
mpu->ulpd_pm_regs[0x3c >> 2] = 0x2211; |
1277 |
mpu->ulpd_pm_regs[0x40 >> 2] = 0x0000; /* FIXME: dump a real STATUS_REQ */ |
1278 |
mpu->ulpd_pm_regs[0x48 >> 2] = 0x960; |
1279 |
mpu->ulpd_pm_regs[0x4c >> 2] = 0x08; |
1280 |
mpu->ulpd_pm_regs[0x50 >> 2] = 0x08; |
1281 |
omap_clk_setrate(omap_findclk(mpu, "dpll4"), 1, 4); |
1282 |
omap_clk_reparent(omap_findclk(mpu, "ck_48m"), omap_findclk(mpu, "dpll4")); |
1283 |
} |
1284 |
|
1285 |
static void omap_ulpd_pm_init(target_phys_addr_t base, |
1286 |
struct omap_mpu_state_s *mpu)
|
1287 |
{ |
1288 |
int iomemtype = cpu_register_io_memory(omap_ulpd_pm_readfn,
|
1289 |
omap_ulpd_pm_writefn, mpu); |
1290 |
|
1291 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
1292 |
omap_ulpd_pm_reset(mpu); |
1293 |
} |
1294 |
|
1295 |
/* OMAP Pin Configuration */
|
1296 |
static uint32_t omap_pin_cfg_read(void *opaque, target_phys_addr_t addr) |
1297 |
{ |
1298 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
1299 |
|
1300 |
switch (addr) {
|
1301 |
case 0x00: /* FUNC_MUX_CTRL_0 */ |
1302 |
case 0x04: /* FUNC_MUX_CTRL_1 */ |
1303 |
case 0x08: /* FUNC_MUX_CTRL_2 */ |
1304 |
return s->func_mux_ctrl[addr >> 2]; |
1305 |
|
1306 |
case 0x0c: /* COMP_MODE_CTRL_0 */ |
1307 |
return s->comp_mode_ctrl[0]; |
1308 |
|
1309 |
case 0x10: /* FUNC_MUX_CTRL_3 */ |
1310 |
case 0x14: /* FUNC_MUX_CTRL_4 */ |
1311 |
case 0x18: /* FUNC_MUX_CTRL_5 */ |
1312 |
case 0x1c: /* FUNC_MUX_CTRL_6 */ |
1313 |
case 0x20: /* FUNC_MUX_CTRL_7 */ |
1314 |
case 0x24: /* FUNC_MUX_CTRL_8 */ |
1315 |
case 0x28: /* FUNC_MUX_CTRL_9 */ |
1316 |
case 0x2c: /* FUNC_MUX_CTRL_A */ |
1317 |
case 0x30: /* FUNC_MUX_CTRL_B */ |
1318 |
case 0x34: /* FUNC_MUX_CTRL_C */ |
1319 |
case 0x38: /* FUNC_MUX_CTRL_D */ |
1320 |
return s->func_mux_ctrl[(addr >> 2) - 1]; |
1321 |
|
1322 |
case 0x40: /* PULL_DWN_CTRL_0 */ |
1323 |
case 0x44: /* PULL_DWN_CTRL_1 */ |
1324 |
case 0x48: /* PULL_DWN_CTRL_2 */ |
1325 |
case 0x4c: /* PULL_DWN_CTRL_3 */ |
1326 |
return s->pull_dwn_ctrl[(addr & 0xf) >> 2]; |
1327 |
|
1328 |
case 0x50: /* GATE_INH_CTRL_0 */ |
1329 |
return s->gate_inh_ctrl[0]; |
1330 |
|
1331 |
case 0x60: /* VOLTAGE_CTRL_0 */ |
1332 |
return s->voltage_ctrl[0]; |
1333 |
|
1334 |
case 0x70: /* TEST_DBG_CTRL_0 */ |
1335 |
return s->test_dbg_ctrl[0]; |
1336 |
|
1337 |
case 0x80: /* MOD_CONF_CTRL_0 */ |
1338 |
return s->mod_conf_ctrl[0]; |
1339 |
} |
1340 |
|
1341 |
OMAP_BAD_REG(addr); |
1342 |
return 0; |
1343 |
} |
1344 |
|
1345 |
static inline void omap_pin_funcmux0_update(struct omap_mpu_state_s *s, |
1346 |
uint32_t diff, uint32_t value) |
1347 |
{ |
1348 |
if (s->compat1509) {
|
1349 |
if (diff & (1 << 9)) /* BLUETOOTH */ |
1350 |
omap_clk_onoff(omap_findclk(s, "bt_mclk_out"),
|
1351 |
(~value >> 9) & 1); |
1352 |
if (diff & (1 << 7)) /* USB.CLKO */ |
1353 |
omap_clk_onoff(omap_findclk(s, "usb.clko"),
|
1354 |
(value >> 7) & 1); |
1355 |
} |
1356 |
} |
1357 |
|
1358 |
static inline void omap_pin_funcmux1_update(struct omap_mpu_state_s *s, |
1359 |
uint32_t diff, uint32_t value) |
1360 |
{ |
1361 |
if (s->compat1509) {
|
1362 |
if (diff & (1 << 31)) /* MCBSP3_CLK_HIZ_DI */ |
1363 |
omap_clk_onoff(omap_findclk(s, "mcbsp3.clkx"),
|
1364 |
(value >> 31) & 1); |
1365 |
if (diff & (1 << 1)) /* CLK32K */ |
1366 |
omap_clk_onoff(omap_findclk(s, "clk32k_out"),
|
1367 |
(~value >> 1) & 1); |
1368 |
} |
1369 |
} |
1370 |
|
1371 |
static inline void omap_pin_modconf1_update(struct omap_mpu_state_s *s, |
1372 |
uint32_t diff, uint32_t value) |
1373 |
{ |
1374 |
if (diff & (1 << 31)) /* CONF_MOD_UART3_CLK_MODE_R */ |
1375 |
omap_clk_reparent(omap_findclk(s, "uart3_ck"),
|
1376 |
omap_findclk(s, ((value >> 31) & 1) ? |
1377 |
"ck_48m" : "armper_ck")); |
1378 |
if (diff & (1 << 30)) /* CONF_MOD_UART2_CLK_MODE_R */ |
1379 |
omap_clk_reparent(omap_findclk(s, "uart2_ck"),
|
1380 |
omap_findclk(s, ((value >> 30) & 1) ? |
1381 |
"ck_48m" : "armper_ck")); |
1382 |
if (diff & (1 << 29)) /* CONF_MOD_UART1_CLK_MODE_R */ |
1383 |
omap_clk_reparent(omap_findclk(s, "uart1_ck"),
|
1384 |
omap_findclk(s, ((value >> 29) & 1) ? |
1385 |
"ck_48m" : "armper_ck")); |
1386 |
if (diff & (1 << 23)) /* CONF_MOD_MMC_SD_CLK_REQ_R */ |
1387 |
omap_clk_reparent(omap_findclk(s, "mmc_ck"),
|
1388 |
omap_findclk(s, ((value >> 23) & 1) ? |
1389 |
"ck_48m" : "armper_ck")); |
1390 |
if (diff & (1 << 12)) /* CONF_MOD_COM_MCLK_12_48_S */ |
1391 |
omap_clk_reparent(omap_findclk(s, "com_mclk_out"),
|
1392 |
omap_findclk(s, ((value >> 12) & 1) ? |
1393 |
"ck_48m" : "armper_ck")); |
1394 |
if (diff & (1 << 9)) /* CONF_MOD_USB_HOST_HHC_UHO */ |
1395 |
omap_clk_onoff(omap_findclk(s, "usb_hhc_ck"), (value >> 9) & 1); |
1396 |
} |
1397 |
|
1398 |
static void omap_pin_cfg_write(void *opaque, target_phys_addr_t addr, |
1399 |
uint32_t value) |
1400 |
{ |
1401 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
1402 |
uint32_t diff; |
1403 |
|
1404 |
switch (addr) {
|
1405 |
case 0x00: /* FUNC_MUX_CTRL_0 */ |
1406 |
diff = s->func_mux_ctrl[addr >> 2] ^ value;
|
1407 |
s->func_mux_ctrl[addr >> 2] = value;
|
1408 |
omap_pin_funcmux0_update(s, diff, value); |
1409 |
return;
|
1410 |
|
1411 |
case 0x04: /* FUNC_MUX_CTRL_1 */ |
1412 |
diff = s->func_mux_ctrl[addr >> 2] ^ value;
|
1413 |
s->func_mux_ctrl[addr >> 2] = value;
|
1414 |
omap_pin_funcmux1_update(s, diff, value); |
1415 |
return;
|
1416 |
|
1417 |
case 0x08: /* FUNC_MUX_CTRL_2 */ |
1418 |
s->func_mux_ctrl[addr >> 2] = value;
|
1419 |
return;
|
1420 |
|
1421 |
case 0x0c: /* COMP_MODE_CTRL_0 */ |
1422 |
s->comp_mode_ctrl[0] = value;
|
1423 |
s->compat1509 = (value != 0x0000eaef);
|
1424 |
omap_pin_funcmux0_update(s, ~0, s->func_mux_ctrl[0]); |
1425 |
omap_pin_funcmux1_update(s, ~0, s->func_mux_ctrl[1]); |
1426 |
return;
|
1427 |
|
1428 |
case 0x10: /* FUNC_MUX_CTRL_3 */ |
1429 |
case 0x14: /* FUNC_MUX_CTRL_4 */ |
1430 |
case 0x18: /* FUNC_MUX_CTRL_5 */ |
1431 |
case 0x1c: /* FUNC_MUX_CTRL_6 */ |
1432 |
case 0x20: /* FUNC_MUX_CTRL_7 */ |
1433 |
case 0x24: /* FUNC_MUX_CTRL_8 */ |
1434 |
case 0x28: /* FUNC_MUX_CTRL_9 */ |
1435 |
case 0x2c: /* FUNC_MUX_CTRL_A */ |
1436 |
case 0x30: /* FUNC_MUX_CTRL_B */ |
1437 |
case 0x34: /* FUNC_MUX_CTRL_C */ |
1438 |
case 0x38: /* FUNC_MUX_CTRL_D */ |
1439 |
s->func_mux_ctrl[(addr >> 2) - 1] = value; |
1440 |
return;
|
1441 |
|
1442 |
case 0x40: /* PULL_DWN_CTRL_0 */ |
1443 |
case 0x44: /* PULL_DWN_CTRL_1 */ |
1444 |
case 0x48: /* PULL_DWN_CTRL_2 */ |
1445 |
case 0x4c: /* PULL_DWN_CTRL_3 */ |
1446 |
s->pull_dwn_ctrl[(addr & 0xf) >> 2] = value; |
1447 |
return;
|
1448 |
|
1449 |
case 0x50: /* GATE_INH_CTRL_0 */ |
1450 |
s->gate_inh_ctrl[0] = value;
|
1451 |
return;
|
1452 |
|
1453 |
case 0x60: /* VOLTAGE_CTRL_0 */ |
1454 |
s->voltage_ctrl[0] = value;
|
1455 |
return;
|
1456 |
|
1457 |
case 0x70: /* TEST_DBG_CTRL_0 */ |
1458 |
s->test_dbg_ctrl[0] = value;
|
1459 |
return;
|
1460 |
|
1461 |
case 0x80: /* MOD_CONF_CTRL_0 */ |
1462 |
diff = s->mod_conf_ctrl[0] ^ value;
|
1463 |
s->mod_conf_ctrl[0] = value;
|
1464 |
omap_pin_modconf1_update(s, diff, value); |
1465 |
return;
|
1466 |
|
1467 |
default:
|
1468 |
OMAP_BAD_REG(addr); |
1469 |
} |
1470 |
} |
1471 |
|
1472 |
static CPUReadMemoryFunc * const omap_pin_cfg_readfn[] = { |
1473 |
omap_badwidth_read32, |
1474 |
omap_badwidth_read32, |
1475 |
omap_pin_cfg_read, |
1476 |
}; |
1477 |
|
1478 |
static CPUWriteMemoryFunc * const omap_pin_cfg_writefn[] = { |
1479 |
omap_badwidth_write32, |
1480 |
omap_badwidth_write32, |
1481 |
omap_pin_cfg_write, |
1482 |
}; |
1483 |
|
1484 |
static void omap_pin_cfg_reset(struct omap_mpu_state_s *mpu) |
1485 |
{ |
1486 |
/* Start in Compatibility Mode. */
|
1487 |
mpu->compat1509 = 1;
|
1488 |
omap_pin_funcmux0_update(mpu, mpu->func_mux_ctrl[0], 0); |
1489 |
omap_pin_funcmux1_update(mpu, mpu->func_mux_ctrl[1], 0); |
1490 |
omap_pin_modconf1_update(mpu, mpu->mod_conf_ctrl[0], 0); |
1491 |
memset(mpu->func_mux_ctrl, 0, sizeof(mpu->func_mux_ctrl)); |
1492 |
memset(mpu->comp_mode_ctrl, 0, sizeof(mpu->comp_mode_ctrl)); |
1493 |
memset(mpu->pull_dwn_ctrl, 0, sizeof(mpu->pull_dwn_ctrl)); |
1494 |
memset(mpu->gate_inh_ctrl, 0, sizeof(mpu->gate_inh_ctrl)); |
1495 |
memset(mpu->voltage_ctrl, 0, sizeof(mpu->voltage_ctrl)); |
1496 |
memset(mpu->test_dbg_ctrl, 0, sizeof(mpu->test_dbg_ctrl)); |
1497 |
memset(mpu->mod_conf_ctrl, 0, sizeof(mpu->mod_conf_ctrl)); |
1498 |
} |
1499 |
|
1500 |
static void omap_pin_cfg_init(target_phys_addr_t base, |
1501 |
struct omap_mpu_state_s *mpu)
|
1502 |
{ |
1503 |
int iomemtype = cpu_register_io_memory(omap_pin_cfg_readfn,
|
1504 |
omap_pin_cfg_writefn, mpu); |
1505 |
|
1506 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
1507 |
omap_pin_cfg_reset(mpu); |
1508 |
} |
1509 |
|
1510 |
/* Device Identification, Die Identification */
|
1511 |
static uint32_t omap_id_read(void *opaque, target_phys_addr_t addr) |
1512 |
{ |
1513 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
1514 |
|
1515 |
switch (addr) {
|
1516 |
case 0xfffe1800: /* DIE_ID_LSB */ |
1517 |
return 0xc9581f0e; |
1518 |
case 0xfffe1804: /* DIE_ID_MSB */ |
1519 |
return 0xa8858bfa; |
1520 |
|
1521 |
case 0xfffe2000: /* PRODUCT_ID_LSB */ |
1522 |
return 0x00aaaafc; |
1523 |
case 0xfffe2004: /* PRODUCT_ID_MSB */ |
1524 |
return 0xcafeb574; |
1525 |
|
1526 |
case 0xfffed400: /* JTAG_ID_LSB */ |
1527 |
switch (s->mpu_model) {
|
1528 |
case omap310:
|
1529 |
return 0x03310315; |
1530 |
case omap1510:
|
1531 |
return 0x03310115; |
1532 |
default:
|
1533 |
hw_error("%s: bad mpu model\n", __FUNCTION__);
|
1534 |
} |
1535 |
break;
|
1536 |
|
1537 |
case 0xfffed404: /* JTAG_ID_MSB */ |
1538 |
switch (s->mpu_model) {
|
1539 |
case omap310:
|
1540 |
return 0xfb57402f; |
1541 |
case omap1510:
|
1542 |
return 0xfb47002f; |
1543 |
default:
|
1544 |
hw_error("%s: bad mpu model\n", __FUNCTION__);
|
1545 |
} |
1546 |
break;
|
1547 |
} |
1548 |
|
1549 |
OMAP_BAD_REG(addr); |
1550 |
return 0; |
1551 |
} |
1552 |
|
1553 |
static void omap_id_write(void *opaque, target_phys_addr_t addr, |
1554 |
uint32_t value) |
1555 |
{ |
1556 |
OMAP_BAD_REG(addr); |
1557 |
} |
1558 |
|
1559 |
static CPUReadMemoryFunc * const omap_id_readfn[] = { |
1560 |
omap_badwidth_read32, |
1561 |
omap_badwidth_read32, |
1562 |
omap_id_read, |
1563 |
}; |
1564 |
|
1565 |
static CPUWriteMemoryFunc * const omap_id_writefn[] = { |
1566 |
omap_badwidth_write32, |
1567 |
omap_badwidth_write32, |
1568 |
omap_id_write, |
1569 |
}; |
1570 |
|
1571 |
static void omap_id_init(struct omap_mpu_state_s *mpu) |
1572 |
{ |
1573 |
int iomemtype = cpu_register_io_memory(omap_id_readfn,
|
1574 |
omap_id_writefn, mpu); |
1575 |
cpu_register_physical_memory_offset(0xfffe1800, 0x800, iomemtype, 0xfffe1800); |
1576 |
cpu_register_physical_memory_offset(0xfffed400, 0x100, iomemtype, 0xfffed400); |
1577 |
if (!cpu_is_omap15xx(mpu))
|
1578 |
cpu_register_physical_memory_offset(0xfffe2000, 0x800, iomemtype, 0xfffe2000); |
1579 |
} |
1580 |
|
1581 |
/* MPUI Control (Dummy) */
|
1582 |
static uint32_t omap_mpui_read(void *opaque, target_phys_addr_t addr) |
1583 |
{ |
1584 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
1585 |
|
1586 |
switch (addr) {
|
1587 |
case 0x00: /* CTRL */ |
1588 |
return s->mpui_ctrl;
|
1589 |
case 0x04: /* DEBUG_ADDR */ |
1590 |
return 0x01ffffff; |
1591 |
case 0x08: /* DEBUG_DATA */ |
1592 |
return 0xffffffff; |
1593 |
case 0x0c: /* DEBUG_FLAG */ |
1594 |
return 0x00000800; |
1595 |
case 0x10: /* STATUS */ |
1596 |
return 0x00000000; |
1597 |
|
1598 |
/* Not in OMAP310 */
|
1599 |
case 0x14: /* DSP_STATUS */ |
1600 |
case 0x18: /* DSP_BOOT_CONFIG */ |
1601 |
return 0x00000000; |
1602 |
case 0x1c: /* DSP_MPUI_CONFIG */ |
1603 |
return 0x0000ffff; |
1604 |
} |
1605 |
|
1606 |
OMAP_BAD_REG(addr); |
1607 |
return 0; |
1608 |
} |
1609 |
|
1610 |
static void omap_mpui_write(void *opaque, target_phys_addr_t addr, |
1611 |
uint32_t value) |
1612 |
{ |
1613 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
1614 |
|
1615 |
switch (addr) {
|
1616 |
case 0x00: /* CTRL */ |
1617 |
s->mpui_ctrl = value & 0x007fffff;
|
1618 |
break;
|
1619 |
|
1620 |
case 0x04: /* DEBUG_ADDR */ |
1621 |
case 0x08: /* DEBUG_DATA */ |
1622 |
case 0x0c: /* DEBUG_FLAG */ |
1623 |
case 0x10: /* STATUS */ |
1624 |
/* Not in OMAP310 */
|
1625 |
case 0x14: /* DSP_STATUS */ |
1626 |
OMAP_RO_REG(addr); |
1627 |
case 0x18: /* DSP_BOOT_CONFIG */ |
1628 |
case 0x1c: /* DSP_MPUI_CONFIG */ |
1629 |
break;
|
1630 |
|
1631 |
default:
|
1632 |
OMAP_BAD_REG(addr); |
1633 |
} |
1634 |
} |
1635 |
|
1636 |
static CPUReadMemoryFunc * const omap_mpui_readfn[] = { |
1637 |
omap_badwidth_read32, |
1638 |
omap_badwidth_read32, |
1639 |
omap_mpui_read, |
1640 |
}; |
1641 |
|
1642 |
static CPUWriteMemoryFunc * const omap_mpui_writefn[] = { |
1643 |
omap_badwidth_write32, |
1644 |
omap_badwidth_write32, |
1645 |
omap_mpui_write, |
1646 |
}; |
1647 |
|
1648 |
static void omap_mpui_reset(struct omap_mpu_state_s *s) |
1649 |
{ |
1650 |
s->mpui_ctrl = 0x0003ff1b;
|
1651 |
} |
1652 |
|
1653 |
static void omap_mpui_init(target_phys_addr_t base, |
1654 |
struct omap_mpu_state_s *mpu)
|
1655 |
{ |
1656 |
int iomemtype = cpu_register_io_memory(omap_mpui_readfn,
|
1657 |
omap_mpui_writefn, mpu); |
1658 |
|
1659 |
cpu_register_physical_memory(base, 0x100, iomemtype);
|
1660 |
|
1661 |
omap_mpui_reset(mpu); |
1662 |
} |
1663 |
|
1664 |
/* TIPB Bridges */
|
1665 |
struct omap_tipb_bridge_s {
|
1666 |
qemu_irq abort; |
1667 |
|
1668 |
int width_intr;
|
1669 |
uint16_t control; |
1670 |
uint16_t alloc; |
1671 |
uint16_t buffer; |
1672 |
uint16_t enh_control; |
1673 |
}; |
1674 |
|
1675 |
static uint32_t omap_tipb_bridge_read(void *opaque, target_phys_addr_t addr) |
1676 |
{ |
1677 |
struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; |
1678 |
|
1679 |
switch (addr) {
|
1680 |
case 0x00: /* TIPB_CNTL */ |
1681 |
return s->control;
|
1682 |
case 0x04: /* TIPB_BUS_ALLOC */ |
1683 |
return s->alloc;
|
1684 |
case 0x08: /* MPU_TIPB_CNTL */ |
1685 |
return s->buffer;
|
1686 |
case 0x0c: /* ENHANCED_TIPB_CNTL */ |
1687 |
return s->enh_control;
|
1688 |
case 0x10: /* ADDRESS_DBG */ |
1689 |
case 0x14: /* DATA_DEBUG_LOW */ |
1690 |
case 0x18: /* DATA_DEBUG_HIGH */ |
1691 |
return 0xffff; |
1692 |
case 0x1c: /* DEBUG_CNTR_SIG */ |
1693 |
return 0x00f8; |
1694 |
} |
1695 |
|
1696 |
OMAP_BAD_REG(addr); |
1697 |
return 0; |
1698 |
} |
1699 |
|
1700 |
static void omap_tipb_bridge_write(void *opaque, target_phys_addr_t addr, |
1701 |
uint32_t value) |
1702 |
{ |
1703 |
struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) opaque; |
1704 |
|
1705 |
switch (addr) {
|
1706 |
case 0x00: /* TIPB_CNTL */ |
1707 |
s->control = value & 0xffff;
|
1708 |
break;
|
1709 |
|
1710 |
case 0x04: /* TIPB_BUS_ALLOC */ |
1711 |
s->alloc = value & 0x003f;
|
1712 |
break;
|
1713 |
|
1714 |
case 0x08: /* MPU_TIPB_CNTL */ |
1715 |
s->buffer = value & 0x0003;
|
1716 |
break;
|
1717 |
|
1718 |
case 0x0c: /* ENHANCED_TIPB_CNTL */ |
1719 |
s->width_intr = !(value & 2);
|
1720 |
s->enh_control = value & 0x000f;
|
1721 |
break;
|
1722 |
|
1723 |
case 0x10: /* ADDRESS_DBG */ |
1724 |
case 0x14: /* DATA_DEBUG_LOW */ |
1725 |
case 0x18: /* DATA_DEBUG_HIGH */ |
1726 |
case 0x1c: /* DEBUG_CNTR_SIG */ |
1727 |
OMAP_RO_REG(addr); |
1728 |
break;
|
1729 |
|
1730 |
default:
|
1731 |
OMAP_BAD_REG(addr); |
1732 |
} |
1733 |
} |
1734 |
|
1735 |
static CPUReadMemoryFunc * const omap_tipb_bridge_readfn[] = { |
1736 |
omap_badwidth_read16, |
1737 |
omap_tipb_bridge_read, |
1738 |
omap_tipb_bridge_read, |
1739 |
}; |
1740 |
|
1741 |
static CPUWriteMemoryFunc * const omap_tipb_bridge_writefn[] = { |
1742 |
omap_badwidth_write16, |
1743 |
omap_tipb_bridge_write, |
1744 |
omap_tipb_bridge_write, |
1745 |
}; |
1746 |
|
1747 |
static void omap_tipb_bridge_reset(struct omap_tipb_bridge_s *s) |
1748 |
{ |
1749 |
s->control = 0xffff;
|
1750 |
s->alloc = 0x0009;
|
1751 |
s->buffer = 0x0000;
|
1752 |
s->enh_control = 0x000f;
|
1753 |
} |
1754 |
|
1755 |
struct omap_tipb_bridge_s *omap_tipb_bridge_init(target_phys_addr_t base,
|
1756 |
qemu_irq abort_irq, omap_clk clk) |
1757 |
{ |
1758 |
int iomemtype;
|
1759 |
struct omap_tipb_bridge_s *s = (struct omap_tipb_bridge_s *) |
1760 |
qemu_mallocz(sizeof(struct omap_tipb_bridge_s)); |
1761 |
|
1762 |
s->abort = abort_irq; |
1763 |
omap_tipb_bridge_reset(s); |
1764 |
|
1765 |
iomemtype = cpu_register_io_memory(omap_tipb_bridge_readfn, |
1766 |
omap_tipb_bridge_writefn, s); |
1767 |
cpu_register_physical_memory(base, 0x100, iomemtype);
|
1768 |
|
1769 |
return s;
|
1770 |
} |
1771 |
|
1772 |
/* Dummy Traffic Controller's Memory Interface */
|
1773 |
static uint32_t omap_tcmi_read(void *opaque, target_phys_addr_t addr) |
1774 |
{ |
1775 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
1776 |
uint32_t ret; |
1777 |
|
1778 |
switch (addr) {
|
1779 |
case 0x00: /* IMIF_PRIO */ |
1780 |
case 0x04: /* EMIFS_PRIO */ |
1781 |
case 0x08: /* EMIFF_PRIO */ |
1782 |
case 0x0c: /* EMIFS_CONFIG */ |
1783 |
case 0x10: /* EMIFS_CS0_CONFIG */ |
1784 |
case 0x14: /* EMIFS_CS1_CONFIG */ |
1785 |
case 0x18: /* EMIFS_CS2_CONFIG */ |
1786 |
case 0x1c: /* EMIFS_CS3_CONFIG */ |
1787 |
case 0x24: /* EMIFF_MRS */ |
1788 |
case 0x28: /* TIMEOUT1 */ |
1789 |
case 0x2c: /* TIMEOUT2 */ |
1790 |
case 0x30: /* TIMEOUT3 */ |
1791 |
case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ |
1792 |
case 0x40: /* EMIFS_CFG_DYN_WAIT */ |
1793 |
return s->tcmi_regs[addr >> 2]; |
1794 |
|
1795 |
case 0x20: /* EMIFF_SDRAM_CONFIG */ |
1796 |
ret = s->tcmi_regs[addr >> 2];
|
1797 |
s->tcmi_regs[addr >> 2] &= ~1; /* XXX: Clear SLRF on SDRAM access */ |
1798 |
/* XXX: We can try using the VGA_DIRTY flag for this */
|
1799 |
return ret;
|
1800 |
} |
1801 |
|
1802 |
OMAP_BAD_REG(addr); |
1803 |
return 0; |
1804 |
} |
1805 |
|
1806 |
static void omap_tcmi_write(void *opaque, target_phys_addr_t addr, |
1807 |
uint32_t value) |
1808 |
{ |
1809 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
1810 |
|
1811 |
switch (addr) {
|
1812 |
case 0x00: /* IMIF_PRIO */ |
1813 |
case 0x04: /* EMIFS_PRIO */ |
1814 |
case 0x08: /* EMIFF_PRIO */ |
1815 |
case 0x10: /* EMIFS_CS0_CONFIG */ |
1816 |
case 0x14: /* EMIFS_CS1_CONFIG */ |
1817 |
case 0x18: /* EMIFS_CS2_CONFIG */ |
1818 |
case 0x1c: /* EMIFS_CS3_CONFIG */ |
1819 |
case 0x20: /* EMIFF_SDRAM_CONFIG */ |
1820 |
case 0x24: /* EMIFF_MRS */ |
1821 |
case 0x28: /* TIMEOUT1 */ |
1822 |
case 0x2c: /* TIMEOUT2 */ |
1823 |
case 0x30: /* TIMEOUT3 */ |
1824 |
case 0x3c: /* EMIFF_SDRAM_CONFIG_2 */ |
1825 |
case 0x40: /* EMIFS_CFG_DYN_WAIT */ |
1826 |
s->tcmi_regs[addr >> 2] = value;
|
1827 |
break;
|
1828 |
case 0x0c: /* EMIFS_CONFIG */ |
1829 |
s->tcmi_regs[addr >> 2] = (value & 0xf) | (1 << 4); |
1830 |
break;
|
1831 |
|
1832 |
default:
|
1833 |
OMAP_BAD_REG(addr); |
1834 |
} |
1835 |
} |
1836 |
|
1837 |
static CPUReadMemoryFunc * const omap_tcmi_readfn[] = { |
1838 |
omap_badwidth_read32, |
1839 |
omap_badwidth_read32, |
1840 |
omap_tcmi_read, |
1841 |
}; |
1842 |
|
1843 |
static CPUWriteMemoryFunc * const omap_tcmi_writefn[] = { |
1844 |
omap_badwidth_write32, |
1845 |
omap_badwidth_write32, |
1846 |
omap_tcmi_write, |
1847 |
}; |
1848 |
|
1849 |
static void omap_tcmi_reset(struct omap_mpu_state_s *mpu) |
1850 |
{ |
1851 |
mpu->tcmi_regs[0x00 >> 2] = 0x00000000; |
1852 |
mpu->tcmi_regs[0x04 >> 2] = 0x00000000; |
1853 |
mpu->tcmi_regs[0x08 >> 2] = 0x00000000; |
1854 |
mpu->tcmi_regs[0x0c >> 2] = 0x00000010; |
1855 |
mpu->tcmi_regs[0x10 >> 2] = 0x0010fffb; |
1856 |
mpu->tcmi_regs[0x14 >> 2] = 0x0010fffb; |
1857 |
mpu->tcmi_regs[0x18 >> 2] = 0x0010fffb; |
1858 |
mpu->tcmi_regs[0x1c >> 2] = 0x0010fffb; |
1859 |
mpu->tcmi_regs[0x20 >> 2] = 0x00618800; |
1860 |
mpu->tcmi_regs[0x24 >> 2] = 0x00000037; |
1861 |
mpu->tcmi_regs[0x28 >> 2] = 0x00000000; |
1862 |
mpu->tcmi_regs[0x2c >> 2] = 0x00000000; |
1863 |
mpu->tcmi_regs[0x30 >> 2] = 0x00000000; |
1864 |
mpu->tcmi_regs[0x3c >> 2] = 0x00000003; |
1865 |
mpu->tcmi_regs[0x40 >> 2] = 0x00000000; |
1866 |
} |
1867 |
|
1868 |
static void omap_tcmi_init(target_phys_addr_t base, |
1869 |
struct omap_mpu_state_s *mpu)
|
1870 |
{ |
1871 |
int iomemtype = cpu_register_io_memory(omap_tcmi_readfn,
|
1872 |
omap_tcmi_writefn, mpu); |
1873 |
|
1874 |
cpu_register_physical_memory(base, 0x100, iomemtype);
|
1875 |
omap_tcmi_reset(mpu); |
1876 |
} |
1877 |
|
1878 |
/* Digital phase-locked loops control */
|
1879 |
static uint32_t omap_dpll_read(void *opaque, target_phys_addr_t addr) |
1880 |
{ |
1881 |
struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; |
1882 |
|
1883 |
if (addr == 0x00) /* CTL_REG */ |
1884 |
return s->mode;
|
1885 |
|
1886 |
OMAP_BAD_REG(addr); |
1887 |
return 0; |
1888 |
} |
1889 |
|
1890 |
static void omap_dpll_write(void *opaque, target_phys_addr_t addr, |
1891 |
uint32_t value) |
1892 |
{ |
1893 |
struct dpll_ctl_s *s = (struct dpll_ctl_s *) opaque; |
1894 |
uint16_t diff; |
1895 |
static const int bypass_div[4] = { 1, 2, 4, 4 }; |
1896 |
int div, mult;
|
1897 |
|
1898 |
if (addr == 0x00) { /* CTL_REG */ |
1899 |
/* See omap_ulpd_pm_write() too */
|
1900 |
diff = s->mode & value; |
1901 |
s->mode = value & 0x2fff;
|
1902 |
if (diff & (0x3ff << 2)) { |
1903 |
if (value & (1 << 4)) { /* PLL_ENABLE */ |
1904 |
div = ((value >> 5) & 3) + 1; /* PLL_DIV */ |
1905 |
mult = MIN((value >> 7) & 0x1f, 1); /* PLL_MULT */ |
1906 |
} else {
|
1907 |
div = bypass_div[((value >> 2) & 3)]; /* BYPASS_DIV */ |
1908 |
mult = 1;
|
1909 |
} |
1910 |
omap_clk_setrate(s->dpll, div, mult); |
1911 |
} |
1912 |
|
1913 |
/* Enter the desired mode. */
|
1914 |
s->mode = (s->mode & 0xfffe) | ((s->mode >> 4) & 1); |
1915 |
|
1916 |
/* Act as if the lock is restored. */
|
1917 |
s->mode |= 2;
|
1918 |
} else {
|
1919 |
OMAP_BAD_REG(addr); |
1920 |
} |
1921 |
} |
1922 |
|
1923 |
static CPUReadMemoryFunc * const omap_dpll_readfn[] = { |
1924 |
omap_badwidth_read16, |
1925 |
omap_dpll_read, |
1926 |
omap_badwidth_read16, |
1927 |
}; |
1928 |
|
1929 |
static CPUWriteMemoryFunc * const omap_dpll_writefn[] = { |
1930 |
omap_badwidth_write16, |
1931 |
omap_dpll_write, |
1932 |
omap_badwidth_write16, |
1933 |
}; |
1934 |
|
1935 |
static void omap_dpll_reset(struct dpll_ctl_s *s) |
1936 |
{ |
1937 |
s->mode = 0x2002;
|
1938 |
omap_clk_setrate(s->dpll, 1, 1); |
1939 |
} |
1940 |
|
1941 |
static void omap_dpll_init(struct dpll_ctl_s *s, target_phys_addr_t base, |
1942 |
omap_clk clk) |
1943 |
{ |
1944 |
int iomemtype = cpu_register_io_memory(omap_dpll_readfn,
|
1945 |
omap_dpll_writefn, s); |
1946 |
|
1947 |
s->dpll = clk; |
1948 |
omap_dpll_reset(s); |
1949 |
|
1950 |
cpu_register_physical_memory(base, 0x100, iomemtype);
|
1951 |
} |
1952 |
|
1953 |
/* UARTs */
|
1954 |
struct omap_uart_s {
|
1955 |
target_phys_addr_t base; |
1956 |
SerialState *serial; /* TODO */
|
1957 |
struct omap_target_agent_s *ta;
|
1958 |
omap_clk fclk; |
1959 |
qemu_irq irq; |
1960 |
|
1961 |
uint8_t eblr; |
1962 |
uint8_t syscontrol; |
1963 |
uint8_t wkup; |
1964 |
uint8_t cfps; |
1965 |
uint8_t mdr[2];
|
1966 |
uint8_t scr; |
1967 |
uint8_t clksel; |
1968 |
}; |
1969 |
|
1970 |
void omap_uart_reset(struct omap_uart_s *s) |
1971 |
{ |
1972 |
s->eblr = 0x00;
|
1973 |
s->syscontrol = 0;
|
1974 |
s->wkup = 0x3f;
|
1975 |
s->cfps = 0x69;
|
1976 |
s->clksel = 0;
|
1977 |
} |
1978 |
|
1979 |
struct omap_uart_s *omap_uart_init(target_phys_addr_t base,
|
1980 |
qemu_irq irq, omap_clk fclk, omap_clk iclk, |
1981 |
qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr) |
1982 |
{ |
1983 |
struct omap_uart_s *s = (struct omap_uart_s *) |
1984 |
qemu_mallocz(sizeof(struct omap_uart_s)); |
1985 |
|
1986 |
s->base = base; |
1987 |
s->fclk = fclk; |
1988 |
s->irq = irq; |
1989 |
#ifdef TARGET_WORDS_BIGENDIAN
|
1990 |
s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16, |
1991 |
chr ?: qemu_chr_open("null", "null", NULL), 1, |
1992 |
1);
|
1993 |
#else
|
1994 |
s->serial = serial_mm_init(base, 2, irq, omap_clk_getrate(fclk)/16, |
1995 |
chr ?: qemu_chr_open("null", "null", NULL), 1, |
1996 |
0);
|
1997 |
#endif
|
1998 |
return s;
|
1999 |
} |
2000 |
|
2001 |
static uint32_t omap_uart_read(void *opaque, target_phys_addr_t addr) |
2002 |
{ |
2003 |
struct omap_uart_s *s = (struct omap_uart_s *) opaque; |
2004 |
|
2005 |
addr &= 0xff;
|
2006 |
switch (addr) {
|
2007 |
case 0x20: /* MDR1 */ |
2008 |
return s->mdr[0]; |
2009 |
case 0x24: /* MDR2 */ |
2010 |
return s->mdr[1]; |
2011 |
case 0x40: /* SCR */ |
2012 |
return s->scr;
|
2013 |
case 0x44: /* SSR */ |
2014 |
return 0x0; |
2015 |
case 0x48: /* EBLR (OMAP2) */ |
2016 |
return s->eblr;
|
2017 |
case 0x4C: /* OSC_12M_SEL (OMAP1) */ |
2018 |
return s->clksel;
|
2019 |
case 0x50: /* MVR */ |
2020 |
return 0x30; |
2021 |
case 0x54: /* SYSC (OMAP2) */ |
2022 |
return s->syscontrol;
|
2023 |
case 0x58: /* SYSS (OMAP2) */ |
2024 |
return 1; |
2025 |
case 0x5c: /* WER (OMAP2) */ |
2026 |
return s->wkup;
|
2027 |
case 0x60: /* CFPS (OMAP2) */ |
2028 |
return s->cfps;
|
2029 |
} |
2030 |
|
2031 |
OMAP_BAD_REG(addr); |
2032 |
return 0; |
2033 |
} |
2034 |
|
2035 |
static void omap_uart_write(void *opaque, target_phys_addr_t addr, |
2036 |
uint32_t value) |
2037 |
{ |
2038 |
struct omap_uart_s *s = (struct omap_uart_s *) opaque; |
2039 |
|
2040 |
addr &= 0xff;
|
2041 |
switch (addr) {
|
2042 |
case 0x20: /* MDR1 */ |
2043 |
s->mdr[0] = value & 0x7f; |
2044 |
break;
|
2045 |
case 0x24: /* MDR2 */ |
2046 |
s->mdr[1] = value & 0xff; |
2047 |
break;
|
2048 |
case 0x40: /* SCR */ |
2049 |
s->scr = value & 0xff;
|
2050 |
break;
|
2051 |
case 0x48: /* EBLR (OMAP2) */ |
2052 |
s->eblr = value & 0xff;
|
2053 |
break;
|
2054 |
case 0x4C: /* OSC_12M_SEL (OMAP1) */ |
2055 |
s->clksel = value & 1;
|
2056 |
break;
|
2057 |
case 0x44: /* SSR */ |
2058 |
case 0x50: /* MVR */ |
2059 |
case 0x58: /* SYSS (OMAP2) */ |
2060 |
OMAP_RO_REG(addr); |
2061 |
break;
|
2062 |
case 0x54: /* SYSC (OMAP2) */ |
2063 |
s->syscontrol = value & 0x1d;
|
2064 |
if (value & 2) |
2065 |
omap_uart_reset(s); |
2066 |
break;
|
2067 |
case 0x5c: /* WER (OMAP2) */ |
2068 |
s->wkup = value & 0x7f;
|
2069 |
break;
|
2070 |
case 0x60: /* CFPS (OMAP2) */ |
2071 |
s->cfps = value & 0xff;
|
2072 |
break;
|
2073 |
default:
|
2074 |
OMAP_BAD_REG(addr); |
2075 |
} |
2076 |
} |
2077 |
|
2078 |
static CPUReadMemoryFunc * const omap_uart_readfn[] = { |
2079 |
omap_uart_read, |
2080 |
omap_uart_read, |
2081 |
omap_badwidth_read8, |
2082 |
}; |
2083 |
|
2084 |
static CPUWriteMemoryFunc * const omap_uart_writefn[] = { |
2085 |
omap_uart_write, |
2086 |
omap_uart_write, |
2087 |
omap_badwidth_write8, |
2088 |
}; |
2089 |
|
2090 |
struct omap_uart_s *omap2_uart_init(struct omap_target_agent_s *ta, |
2091 |
qemu_irq irq, omap_clk fclk, omap_clk iclk, |
2092 |
qemu_irq txdma, qemu_irq rxdma, CharDriverState *chr) |
2093 |
{ |
2094 |
target_phys_addr_t base = omap_l4_attach(ta, 0, 0); |
2095 |
struct omap_uart_s *s = omap_uart_init(base, irq,
|
2096 |
fclk, iclk, txdma, rxdma, chr); |
2097 |
int iomemtype = cpu_register_io_memory(omap_uart_readfn,
|
2098 |
omap_uart_writefn, s); |
2099 |
|
2100 |
s->ta = ta; |
2101 |
|
2102 |
cpu_register_physical_memory(base + 0x20, 0x100, iomemtype); |
2103 |
|
2104 |
return s;
|
2105 |
} |
2106 |
|
2107 |
void omap_uart_attach(struct omap_uart_s *s, CharDriverState *chr) |
2108 |
{ |
2109 |
/* TODO: Should reuse or destroy current s->serial */
|
2110 |
#ifdef TARGET_WORDS_BIGENDIAN
|
2111 |
s->serial = serial_mm_init(s->base, 2, s->irq,
|
2112 |
omap_clk_getrate(s->fclk) / 16,
|
2113 |
chr ?: qemu_chr_open("null", "null", NULL), 1, |
2114 |
1);
|
2115 |
#else
|
2116 |
s->serial = serial_mm_init(s->base, 2, s->irq,
|
2117 |
omap_clk_getrate(s->fclk) / 16,
|
2118 |
chr ?: qemu_chr_open("null", "null", NULL), 1, |
2119 |
0);
|
2120 |
#endif
|
2121 |
} |
2122 |
|
2123 |
/* MPU Clock/Reset/Power Mode Control */
|
2124 |
static uint32_t omap_clkm_read(void *opaque, target_phys_addr_t addr) |
2125 |
{ |
2126 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
2127 |
|
2128 |
switch (addr) {
|
2129 |
case 0x00: /* ARM_CKCTL */ |
2130 |
return s->clkm.arm_ckctl;
|
2131 |
|
2132 |
case 0x04: /* ARM_IDLECT1 */ |
2133 |
return s->clkm.arm_idlect1;
|
2134 |
|
2135 |
case 0x08: /* ARM_IDLECT2 */ |
2136 |
return s->clkm.arm_idlect2;
|
2137 |
|
2138 |
case 0x0c: /* ARM_EWUPCT */ |
2139 |
return s->clkm.arm_ewupct;
|
2140 |
|
2141 |
case 0x10: /* ARM_RSTCT1 */ |
2142 |
return s->clkm.arm_rstct1;
|
2143 |
|
2144 |
case 0x14: /* ARM_RSTCT2 */ |
2145 |
return s->clkm.arm_rstct2;
|
2146 |
|
2147 |
case 0x18: /* ARM_SYSST */ |
2148 |
return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start; |
2149 |
|
2150 |
case 0x1c: /* ARM_CKOUT1 */ |
2151 |
return s->clkm.arm_ckout1;
|
2152 |
|
2153 |
case 0x20: /* ARM_CKOUT2 */ |
2154 |
break;
|
2155 |
} |
2156 |
|
2157 |
OMAP_BAD_REG(addr); |
2158 |
return 0; |
2159 |
} |
2160 |
|
2161 |
static inline void omap_clkm_ckctl_update(struct omap_mpu_state_s *s, |
2162 |
uint16_t diff, uint16_t value) |
2163 |
{ |
2164 |
omap_clk clk; |
2165 |
|
2166 |
if (diff & (1 << 14)) { /* ARM_INTHCK_SEL */ |
2167 |
if (value & (1 << 14)) |
2168 |
/* Reserved */;
|
2169 |
else {
|
2170 |
clk = omap_findclk(s, "arminth_ck");
|
2171 |
omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
|
2172 |
} |
2173 |
} |
2174 |
if (diff & (1 << 12)) { /* ARM_TIMXO */ |
2175 |
clk = omap_findclk(s, "armtim_ck");
|
2176 |
if (value & (1 << 12)) |
2177 |
omap_clk_reparent(clk, omap_findclk(s, "clkin"));
|
2178 |
else
|
2179 |
omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
|
2180 |
} |
2181 |
/* XXX: en_dspck */
|
2182 |
if (diff & (3 << 10)) { /* DSPMMUDIV */ |
2183 |
clk = omap_findclk(s, "dspmmu_ck");
|
2184 |
omap_clk_setrate(clk, 1 << ((value >> 10) & 3), 1); |
2185 |
} |
2186 |
if (diff & (3 << 8)) { /* TCDIV */ |
2187 |
clk = omap_findclk(s, "tc_ck");
|
2188 |
omap_clk_setrate(clk, 1 << ((value >> 8) & 3), 1); |
2189 |
} |
2190 |
if (diff & (3 << 6)) { /* DSPDIV */ |
2191 |
clk = omap_findclk(s, "dsp_ck");
|
2192 |
omap_clk_setrate(clk, 1 << ((value >> 6) & 3), 1); |
2193 |
} |
2194 |
if (diff & (3 << 4)) { /* ARMDIV */ |
2195 |
clk = omap_findclk(s, "arm_ck");
|
2196 |
omap_clk_setrate(clk, 1 << ((value >> 4) & 3), 1); |
2197 |
} |
2198 |
if (diff & (3 << 2)) { /* LCDDIV */ |
2199 |
clk = omap_findclk(s, "lcd_ck");
|
2200 |
omap_clk_setrate(clk, 1 << ((value >> 2) & 3), 1); |
2201 |
} |
2202 |
if (diff & (3 << 0)) { /* PERDIV */ |
2203 |
clk = omap_findclk(s, "armper_ck");
|
2204 |
omap_clk_setrate(clk, 1 << ((value >> 0) & 3), 1); |
2205 |
} |
2206 |
} |
2207 |
|
2208 |
static inline void omap_clkm_idlect1_update(struct omap_mpu_state_s *s, |
2209 |
uint16_t diff, uint16_t value) |
2210 |
{ |
2211 |
omap_clk clk; |
2212 |
|
2213 |
if (value & (1 << 11)) /* SETARM_IDLE */ |
2214 |
cpu_interrupt(s->env, CPU_INTERRUPT_HALT); |
2215 |
if (!(value & (1 << 10))) /* WKUP_MODE */ |
2216 |
qemu_system_shutdown_request(); /* XXX: disable wakeup from IRQ */
|
2217 |
|
2218 |
#define SET_CANIDLE(clock, bit) \
|
2219 |
if (diff & (1 << bit)) { \ |
2220 |
clk = omap_findclk(s, clock); \ |
2221 |
omap_clk_canidle(clk, (value >> bit) & 1); \
|
2222 |
} |
2223 |
SET_CANIDLE("mpuwd_ck", 0) /* IDLWDT_ARM */ |
2224 |
SET_CANIDLE("armxor_ck", 1) /* IDLXORP_ARM */ |
2225 |
SET_CANIDLE("mpuper_ck", 2) /* IDLPER_ARM */ |
2226 |
SET_CANIDLE("lcd_ck", 3) /* IDLLCD_ARM */ |
2227 |
SET_CANIDLE("lb_ck", 4) /* IDLLB_ARM */ |
2228 |
SET_CANIDLE("hsab_ck", 5) /* IDLHSAB_ARM */ |
2229 |
SET_CANIDLE("tipb_ck", 6) /* IDLIF_ARM */ |
2230 |
SET_CANIDLE("dma_ck", 6) /* IDLIF_ARM */ |
2231 |
SET_CANIDLE("tc_ck", 6) /* IDLIF_ARM */ |
2232 |
SET_CANIDLE("dpll1", 7) /* IDLDPLL_ARM */ |
2233 |
SET_CANIDLE("dpll2", 7) /* IDLDPLL_ARM */ |
2234 |
SET_CANIDLE("dpll3", 7) /* IDLDPLL_ARM */ |
2235 |
SET_CANIDLE("mpui_ck", 8) /* IDLAPI_ARM */ |
2236 |
SET_CANIDLE("armtim_ck", 9) /* IDLTIM_ARM */ |
2237 |
} |
2238 |
|
2239 |
static inline void omap_clkm_idlect2_update(struct omap_mpu_state_s *s, |
2240 |
uint16_t diff, uint16_t value) |
2241 |
{ |
2242 |
omap_clk clk; |
2243 |
|
2244 |
#define SET_ONOFF(clock, bit) \
|
2245 |
if (diff & (1 << bit)) { \ |
2246 |
clk = omap_findclk(s, clock); \ |
2247 |
omap_clk_onoff(clk, (value >> bit) & 1); \
|
2248 |
} |
2249 |
SET_ONOFF("mpuwd_ck", 0) /* EN_WDTCK */ |
2250 |
SET_ONOFF("armxor_ck", 1) /* EN_XORPCK */ |
2251 |
SET_ONOFF("mpuper_ck", 2) /* EN_PERCK */ |
2252 |
SET_ONOFF("lcd_ck", 3) /* EN_LCDCK */ |
2253 |
SET_ONOFF("lb_ck", 4) /* EN_LBCK */ |
2254 |
SET_ONOFF("hsab_ck", 5) /* EN_HSABCK */ |
2255 |
SET_ONOFF("mpui_ck", 6) /* EN_APICK */ |
2256 |
SET_ONOFF("armtim_ck", 7) /* EN_TIMCK */ |
2257 |
SET_CANIDLE("dma_ck", 8) /* DMACK_REQ */ |
2258 |
SET_ONOFF("arm_gpio_ck", 9) /* EN_GPIOCK */ |
2259 |
SET_ONOFF("lbfree_ck", 10) /* EN_LBFREECK */ |
2260 |
} |
2261 |
|
2262 |
static inline void omap_clkm_ckout1_update(struct omap_mpu_state_s *s, |
2263 |
uint16_t diff, uint16_t value) |
2264 |
{ |
2265 |
omap_clk clk; |
2266 |
|
2267 |
if (diff & (3 << 4)) { /* TCLKOUT */ |
2268 |
clk = omap_findclk(s, "tclk_out");
|
2269 |
switch ((value >> 4) & 3) { |
2270 |
case 1: |
2271 |
omap_clk_reparent(clk, omap_findclk(s, "ck_gen3"));
|
2272 |
omap_clk_onoff(clk, 1);
|
2273 |
break;
|
2274 |
case 2: |
2275 |
omap_clk_reparent(clk, omap_findclk(s, "tc_ck"));
|
2276 |
omap_clk_onoff(clk, 1);
|
2277 |
break;
|
2278 |
default:
|
2279 |
omap_clk_onoff(clk, 0);
|
2280 |
} |
2281 |
} |
2282 |
if (diff & (3 << 2)) { /* DCLKOUT */ |
2283 |
clk = omap_findclk(s, "dclk_out");
|
2284 |
switch ((value >> 2) & 3) { |
2285 |
case 0: |
2286 |
omap_clk_reparent(clk, omap_findclk(s, "dspmmu_ck"));
|
2287 |
break;
|
2288 |
case 1: |
2289 |
omap_clk_reparent(clk, omap_findclk(s, "ck_gen2"));
|
2290 |
break;
|
2291 |
case 2: |
2292 |
omap_clk_reparent(clk, omap_findclk(s, "dsp_ck"));
|
2293 |
break;
|
2294 |
case 3: |
2295 |
omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
|
2296 |
break;
|
2297 |
} |
2298 |
} |
2299 |
if (diff & (3 << 0)) { /* ACLKOUT */ |
2300 |
clk = omap_findclk(s, "aclk_out");
|
2301 |
switch ((value >> 0) & 3) { |
2302 |
case 1: |
2303 |
omap_clk_reparent(clk, omap_findclk(s, "ck_gen1"));
|
2304 |
omap_clk_onoff(clk, 1);
|
2305 |
break;
|
2306 |
case 2: |
2307 |
omap_clk_reparent(clk, omap_findclk(s, "arm_ck"));
|
2308 |
omap_clk_onoff(clk, 1);
|
2309 |
break;
|
2310 |
case 3: |
2311 |
omap_clk_reparent(clk, omap_findclk(s, "ck_ref14"));
|
2312 |
omap_clk_onoff(clk, 1);
|
2313 |
break;
|
2314 |
default:
|
2315 |
omap_clk_onoff(clk, 0);
|
2316 |
} |
2317 |
} |
2318 |
} |
2319 |
|
2320 |
static void omap_clkm_write(void *opaque, target_phys_addr_t addr, |
2321 |
uint32_t value) |
2322 |
{ |
2323 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
2324 |
uint16_t diff; |
2325 |
omap_clk clk; |
2326 |
static const char *clkschemename[8] = { |
2327 |
"fully synchronous", "fully asynchronous", "synchronous scalable", |
2328 |
"mix mode 1", "mix mode 2", "bypass mode", "mix mode 3", "mix mode 4", |
2329 |
}; |
2330 |
|
2331 |
switch (addr) {
|
2332 |
case 0x00: /* ARM_CKCTL */ |
2333 |
diff = s->clkm.arm_ckctl ^ value; |
2334 |
s->clkm.arm_ckctl = value & 0x7fff;
|
2335 |
omap_clkm_ckctl_update(s, diff, value); |
2336 |
return;
|
2337 |
|
2338 |
case 0x04: /* ARM_IDLECT1 */ |
2339 |
diff = s->clkm.arm_idlect1 ^ value; |
2340 |
s->clkm.arm_idlect1 = value & 0x0fff;
|
2341 |
omap_clkm_idlect1_update(s, diff, value); |
2342 |
return;
|
2343 |
|
2344 |
case 0x08: /* ARM_IDLECT2 */ |
2345 |
diff = s->clkm.arm_idlect2 ^ value; |
2346 |
s->clkm.arm_idlect2 = value & 0x07ff;
|
2347 |
omap_clkm_idlect2_update(s, diff, value); |
2348 |
return;
|
2349 |
|
2350 |
case 0x0c: /* ARM_EWUPCT */ |
2351 |
s->clkm.arm_ewupct = value & 0x003f;
|
2352 |
return;
|
2353 |
|
2354 |
case 0x10: /* ARM_RSTCT1 */ |
2355 |
diff = s->clkm.arm_rstct1 ^ value; |
2356 |
s->clkm.arm_rstct1 = value & 0x0007;
|
2357 |
if (value & 9) { |
2358 |
qemu_system_reset_request(); |
2359 |
s->clkm.cold_start = 0xa;
|
2360 |
} |
2361 |
if (diff & ~value & 4) { /* DSP_RST */ |
2362 |
omap_mpui_reset(s); |
2363 |
omap_tipb_bridge_reset(s->private_tipb); |
2364 |
omap_tipb_bridge_reset(s->public_tipb); |
2365 |
} |
2366 |
if (diff & 2) { /* DSP_EN */ |
2367 |
clk = omap_findclk(s, "dsp_ck");
|
2368 |
omap_clk_canidle(clk, (~value >> 1) & 1); |
2369 |
} |
2370 |
return;
|
2371 |
|
2372 |
case 0x14: /* ARM_RSTCT2 */ |
2373 |
s->clkm.arm_rstct2 = value & 0x0001;
|
2374 |
return;
|
2375 |
|
2376 |
case 0x18: /* ARM_SYSST */ |
2377 |
if ((s->clkm.clocking_scheme ^ (value >> 11)) & 7) { |
2378 |
s->clkm.clocking_scheme = (value >> 11) & 7; |
2379 |
printf("%s: clocking scheme set to %s\n", __FUNCTION__,
|
2380 |
clkschemename[s->clkm.clocking_scheme]); |
2381 |
} |
2382 |
s->clkm.cold_start &= value & 0x3f;
|
2383 |
return;
|
2384 |
|
2385 |
case 0x1c: /* ARM_CKOUT1 */ |
2386 |
diff = s->clkm.arm_ckout1 ^ value; |
2387 |
s->clkm.arm_ckout1 = value & 0x003f;
|
2388 |
omap_clkm_ckout1_update(s, diff, value); |
2389 |
return;
|
2390 |
|
2391 |
case 0x20: /* ARM_CKOUT2 */ |
2392 |
default:
|
2393 |
OMAP_BAD_REG(addr); |
2394 |
} |
2395 |
} |
2396 |
|
2397 |
static CPUReadMemoryFunc * const omap_clkm_readfn[] = { |
2398 |
omap_badwidth_read16, |
2399 |
omap_clkm_read, |
2400 |
omap_badwidth_read16, |
2401 |
}; |
2402 |
|
2403 |
static CPUWriteMemoryFunc * const omap_clkm_writefn[] = { |
2404 |
omap_badwidth_write16, |
2405 |
omap_clkm_write, |
2406 |
omap_badwidth_write16, |
2407 |
}; |
2408 |
|
2409 |
static uint32_t omap_clkdsp_read(void *opaque, target_phys_addr_t addr) |
2410 |
{ |
2411 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
2412 |
|
2413 |
switch (addr) {
|
2414 |
case 0x04: /* DSP_IDLECT1 */ |
2415 |
return s->clkm.dsp_idlect1;
|
2416 |
|
2417 |
case 0x08: /* DSP_IDLECT2 */ |
2418 |
return s->clkm.dsp_idlect2;
|
2419 |
|
2420 |
case 0x14: /* DSP_RSTCT2 */ |
2421 |
return s->clkm.dsp_rstct2;
|
2422 |
|
2423 |
case 0x18: /* DSP_SYSST */ |
2424 |
return (s->clkm.clocking_scheme << 11) | s->clkm.cold_start | |
2425 |
(s->env->halted << 6); /* Quite useless... */ |
2426 |
} |
2427 |
|
2428 |
OMAP_BAD_REG(addr); |
2429 |
return 0; |
2430 |
} |
2431 |
|
2432 |
static inline void omap_clkdsp_idlect1_update(struct omap_mpu_state_s *s, |
2433 |
uint16_t diff, uint16_t value) |
2434 |
{ |
2435 |
omap_clk clk; |
2436 |
|
2437 |
SET_CANIDLE("dspxor_ck", 1); /* IDLXORP_DSP */ |
2438 |
} |
2439 |
|
2440 |
static inline void omap_clkdsp_idlect2_update(struct omap_mpu_state_s *s, |
2441 |
uint16_t diff, uint16_t value) |
2442 |
{ |
2443 |
omap_clk clk; |
2444 |
|
2445 |
SET_ONOFF("dspxor_ck", 1); /* EN_XORPCK */ |
2446 |
} |
2447 |
|
2448 |
static void omap_clkdsp_write(void *opaque, target_phys_addr_t addr, |
2449 |
uint32_t value) |
2450 |
{ |
2451 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
2452 |
uint16_t diff; |
2453 |
|
2454 |
switch (addr) {
|
2455 |
case 0x04: /* DSP_IDLECT1 */ |
2456 |
diff = s->clkm.dsp_idlect1 ^ value; |
2457 |
s->clkm.dsp_idlect1 = value & 0x01f7;
|
2458 |
omap_clkdsp_idlect1_update(s, diff, value); |
2459 |
break;
|
2460 |
|
2461 |
case 0x08: /* DSP_IDLECT2 */ |
2462 |
s->clkm.dsp_idlect2 = value & 0x0037;
|
2463 |
diff = s->clkm.dsp_idlect1 ^ value; |
2464 |
omap_clkdsp_idlect2_update(s, diff, value); |
2465 |
break;
|
2466 |
|
2467 |
case 0x14: /* DSP_RSTCT2 */ |
2468 |
s->clkm.dsp_rstct2 = value & 0x0001;
|
2469 |
break;
|
2470 |
|
2471 |
case 0x18: /* DSP_SYSST */ |
2472 |
s->clkm.cold_start &= value & 0x3f;
|
2473 |
break;
|
2474 |
|
2475 |
default:
|
2476 |
OMAP_BAD_REG(addr); |
2477 |
} |
2478 |
} |
2479 |
|
2480 |
static CPUReadMemoryFunc * const omap_clkdsp_readfn[] = { |
2481 |
omap_badwidth_read16, |
2482 |
omap_clkdsp_read, |
2483 |
omap_badwidth_read16, |
2484 |
}; |
2485 |
|
2486 |
static CPUWriteMemoryFunc * const omap_clkdsp_writefn[] = { |
2487 |
omap_badwidth_write16, |
2488 |
omap_clkdsp_write, |
2489 |
omap_badwidth_write16, |
2490 |
}; |
2491 |
|
2492 |
static void omap_clkm_reset(struct omap_mpu_state_s *s) |
2493 |
{ |
2494 |
if (s->wdt && s->wdt->reset)
|
2495 |
s->clkm.cold_start = 0x6;
|
2496 |
s->clkm.clocking_scheme = 0;
|
2497 |
omap_clkm_ckctl_update(s, ~0, 0x3000); |
2498 |
s->clkm.arm_ckctl = 0x3000;
|
2499 |
omap_clkm_idlect1_update(s, s->clkm.arm_idlect1 ^ 0x0400, 0x0400); |
2500 |
s->clkm.arm_idlect1 = 0x0400;
|
2501 |
omap_clkm_idlect2_update(s, s->clkm.arm_idlect2 ^ 0x0100, 0x0100); |
2502 |
s->clkm.arm_idlect2 = 0x0100;
|
2503 |
s->clkm.arm_ewupct = 0x003f;
|
2504 |
s->clkm.arm_rstct1 = 0x0000;
|
2505 |
s->clkm.arm_rstct2 = 0x0000;
|
2506 |
s->clkm.arm_ckout1 = 0x0015;
|
2507 |
s->clkm.dpll1_mode = 0x2002;
|
2508 |
omap_clkdsp_idlect1_update(s, s->clkm.dsp_idlect1 ^ 0x0040, 0x0040); |
2509 |
s->clkm.dsp_idlect1 = 0x0040;
|
2510 |
omap_clkdsp_idlect2_update(s, ~0, 0x0000); |
2511 |
s->clkm.dsp_idlect2 = 0x0000;
|
2512 |
s->clkm.dsp_rstct2 = 0x0000;
|
2513 |
} |
2514 |
|
2515 |
static void omap_clkm_init(target_phys_addr_t mpu_base, |
2516 |
target_phys_addr_t dsp_base, struct omap_mpu_state_s *s)
|
2517 |
{ |
2518 |
int iomemtype[2] = { |
2519 |
cpu_register_io_memory(omap_clkm_readfn, omap_clkm_writefn, s), |
2520 |
cpu_register_io_memory(omap_clkdsp_readfn, omap_clkdsp_writefn, s), |
2521 |
}; |
2522 |
|
2523 |
s->clkm.arm_idlect1 = 0x03ff;
|
2524 |
s->clkm.arm_idlect2 = 0x0100;
|
2525 |
s->clkm.dsp_idlect1 = 0x0002;
|
2526 |
omap_clkm_reset(s); |
2527 |
s->clkm.cold_start = 0x3a;
|
2528 |
|
2529 |
cpu_register_physical_memory(mpu_base, 0x100, iomemtype[0]); |
2530 |
cpu_register_physical_memory(dsp_base, 0x1000, iomemtype[1]); |
2531 |
} |
2532 |
|
2533 |
/* MPU I/O */
|
2534 |
struct omap_mpuio_s {
|
2535 |
qemu_irq irq; |
2536 |
qemu_irq kbd_irq; |
2537 |
qemu_irq *in; |
2538 |
qemu_irq handler[16];
|
2539 |
qemu_irq wakeup; |
2540 |
|
2541 |
uint16_t inputs; |
2542 |
uint16_t outputs; |
2543 |
uint16_t dir; |
2544 |
uint16_t edge; |
2545 |
uint16_t mask; |
2546 |
uint16_t ints; |
2547 |
|
2548 |
uint16_t debounce; |
2549 |
uint16_t latch; |
2550 |
uint8_t event; |
2551 |
|
2552 |
uint8_t buttons[5];
|
2553 |
uint8_t row_latch; |
2554 |
uint8_t cols; |
2555 |
int kbd_mask;
|
2556 |
int clk;
|
2557 |
}; |
2558 |
|
2559 |
static void omap_mpuio_set(void *opaque, int line, int level) |
2560 |
{ |
2561 |
struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; |
2562 |
uint16_t prev = s->inputs; |
2563 |
|
2564 |
if (level)
|
2565 |
s->inputs |= 1 << line;
|
2566 |
else
|
2567 |
s->inputs &= ~(1 << line);
|
2568 |
|
2569 |
if (((1 << line) & s->dir & ~s->mask) && s->clk) { |
2570 |
if ((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) {
|
2571 |
s->ints |= 1 << line;
|
2572 |
qemu_irq_raise(s->irq); |
2573 |
/* TODO: wakeup */
|
2574 |
} |
2575 |
if ((s->event & (1 << 0)) && /* SET_GPIO_EVENT_MODE */ |
2576 |
(s->event >> 1) == line) /* PIN_SELECT */ |
2577 |
s->latch = s->inputs; |
2578 |
} |
2579 |
} |
2580 |
|
2581 |
static void omap_mpuio_kbd_update(struct omap_mpuio_s *s) |
2582 |
{ |
2583 |
int i;
|
2584 |
uint8_t *row, rows = 0, cols = ~s->cols;
|
2585 |
|
2586 |
for (row = s->buttons + 4, i = 1 << 4; i; row --, i >>= 1) |
2587 |
if (*row & cols)
|
2588 |
rows |= i; |
2589 |
|
2590 |
qemu_set_irq(s->kbd_irq, rows && !s->kbd_mask && s->clk); |
2591 |
s->row_latch = ~rows; |
2592 |
} |
2593 |
|
2594 |
static uint32_t omap_mpuio_read(void *opaque, target_phys_addr_t addr) |
2595 |
{ |
2596 |
struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; |
2597 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
2598 |
uint16_t ret; |
2599 |
|
2600 |
switch (offset) {
|
2601 |
case 0x00: /* INPUT_LATCH */ |
2602 |
return s->inputs;
|
2603 |
|
2604 |
case 0x04: /* OUTPUT_REG */ |
2605 |
return s->outputs;
|
2606 |
|
2607 |
case 0x08: /* IO_CNTL */ |
2608 |
return s->dir;
|
2609 |
|
2610 |
case 0x10: /* KBR_LATCH */ |
2611 |
return s->row_latch;
|
2612 |
|
2613 |
case 0x14: /* KBC_REG */ |
2614 |
return s->cols;
|
2615 |
|
2616 |
case 0x18: /* GPIO_EVENT_MODE_REG */ |
2617 |
return s->event;
|
2618 |
|
2619 |
case 0x1c: /* GPIO_INT_EDGE_REG */ |
2620 |
return s->edge;
|
2621 |
|
2622 |
case 0x20: /* KBD_INT */ |
2623 |
return (~s->row_latch & 0x1f) && !s->kbd_mask; |
2624 |
|
2625 |
case 0x24: /* GPIO_INT */ |
2626 |
ret = s->ints; |
2627 |
s->ints &= s->mask; |
2628 |
if (ret)
|
2629 |
qemu_irq_lower(s->irq); |
2630 |
return ret;
|
2631 |
|
2632 |
case 0x28: /* KBD_MASKIT */ |
2633 |
return s->kbd_mask;
|
2634 |
|
2635 |
case 0x2c: /* GPIO_MASKIT */ |
2636 |
return s->mask;
|
2637 |
|
2638 |
case 0x30: /* GPIO_DEBOUNCING_REG */ |
2639 |
return s->debounce;
|
2640 |
|
2641 |
case 0x34: /* GPIO_LATCH_REG */ |
2642 |
return s->latch;
|
2643 |
} |
2644 |
|
2645 |
OMAP_BAD_REG(addr); |
2646 |
return 0; |
2647 |
} |
2648 |
|
2649 |
static void omap_mpuio_write(void *opaque, target_phys_addr_t addr, |
2650 |
uint32_t value) |
2651 |
{ |
2652 |
struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; |
2653 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
2654 |
uint16_t diff; |
2655 |
int ln;
|
2656 |
|
2657 |
switch (offset) {
|
2658 |
case 0x04: /* OUTPUT_REG */ |
2659 |
diff = (s->outputs ^ value) & ~s->dir; |
2660 |
s->outputs = value; |
2661 |
while ((ln = ffs(diff))) {
|
2662 |
ln --; |
2663 |
if (s->handler[ln])
|
2664 |
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
|
2665 |
diff &= ~(1 << ln);
|
2666 |
} |
2667 |
break;
|
2668 |
|
2669 |
case 0x08: /* IO_CNTL */ |
2670 |
diff = s->outputs & (s->dir ^ value); |
2671 |
s->dir = value; |
2672 |
|
2673 |
value = s->outputs & ~s->dir; |
2674 |
while ((ln = ffs(diff))) {
|
2675 |
ln --; |
2676 |
if (s->handler[ln])
|
2677 |
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
|
2678 |
diff &= ~(1 << ln);
|
2679 |
} |
2680 |
break;
|
2681 |
|
2682 |
case 0x14: /* KBC_REG */ |
2683 |
s->cols = value; |
2684 |
omap_mpuio_kbd_update(s); |
2685 |
break;
|
2686 |
|
2687 |
case 0x18: /* GPIO_EVENT_MODE_REG */ |
2688 |
s->event = value & 0x1f;
|
2689 |
break;
|
2690 |
|
2691 |
case 0x1c: /* GPIO_INT_EDGE_REG */ |
2692 |
s->edge = value; |
2693 |
break;
|
2694 |
|
2695 |
case 0x28: /* KBD_MASKIT */ |
2696 |
s->kbd_mask = value & 1;
|
2697 |
omap_mpuio_kbd_update(s); |
2698 |
break;
|
2699 |
|
2700 |
case 0x2c: /* GPIO_MASKIT */ |
2701 |
s->mask = value; |
2702 |
break;
|
2703 |
|
2704 |
case 0x30: /* GPIO_DEBOUNCING_REG */ |
2705 |
s->debounce = value & 0x1ff;
|
2706 |
break;
|
2707 |
|
2708 |
case 0x00: /* INPUT_LATCH */ |
2709 |
case 0x10: /* KBR_LATCH */ |
2710 |
case 0x20: /* KBD_INT */ |
2711 |
case 0x24: /* GPIO_INT */ |
2712 |
case 0x34: /* GPIO_LATCH_REG */ |
2713 |
OMAP_RO_REG(addr); |
2714 |
return;
|
2715 |
|
2716 |
default:
|
2717 |
OMAP_BAD_REG(addr); |
2718 |
return;
|
2719 |
} |
2720 |
} |
2721 |
|
2722 |
static CPUReadMemoryFunc * const omap_mpuio_readfn[] = { |
2723 |
omap_badwidth_read16, |
2724 |
omap_mpuio_read, |
2725 |
omap_badwidth_read16, |
2726 |
}; |
2727 |
|
2728 |
static CPUWriteMemoryFunc * const omap_mpuio_writefn[] = { |
2729 |
omap_badwidth_write16, |
2730 |
omap_mpuio_write, |
2731 |
omap_badwidth_write16, |
2732 |
}; |
2733 |
|
2734 |
static void omap_mpuio_reset(struct omap_mpuio_s *s) |
2735 |
{ |
2736 |
s->inputs = 0;
|
2737 |
s->outputs = 0;
|
2738 |
s->dir = ~0;
|
2739 |
s->event = 0;
|
2740 |
s->edge = 0;
|
2741 |
s->kbd_mask = 0;
|
2742 |
s->mask = 0;
|
2743 |
s->debounce = 0;
|
2744 |
s->latch = 0;
|
2745 |
s->ints = 0;
|
2746 |
s->row_latch = 0x1f;
|
2747 |
s->clk = 1;
|
2748 |
} |
2749 |
|
2750 |
static void omap_mpuio_onoff(void *opaque, int line, int on) |
2751 |
{ |
2752 |
struct omap_mpuio_s *s = (struct omap_mpuio_s *) opaque; |
2753 |
|
2754 |
s->clk = on; |
2755 |
if (on)
|
2756 |
omap_mpuio_kbd_update(s); |
2757 |
} |
2758 |
|
2759 |
struct omap_mpuio_s *omap_mpuio_init(target_phys_addr_t base,
|
2760 |
qemu_irq kbd_int, qemu_irq gpio_int, qemu_irq wakeup, |
2761 |
omap_clk clk) |
2762 |
{ |
2763 |
int iomemtype;
|
2764 |
struct omap_mpuio_s *s = (struct omap_mpuio_s *) |
2765 |
qemu_mallocz(sizeof(struct omap_mpuio_s)); |
2766 |
|
2767 |
s->irq = gpio_int; |
2768 |
s->kbd_irq = kbd_int; |
2769 |
s->wakeup = wakeup; |
2770 |
s->in = qemu_allocate_irqs(omap_mpuio_set, s, 16);
|
2771 |
omap_mpuio_reset(s); |
2772 |
|
2773 |
iomemtype = cpu_register_io_memory(omap_mpuio_readfn, |
2774 |
omap_mpuio_writefn, s); |
2775 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
2776 |
|
2777 |
omap_clk_adduser(clk, qemu_allocate_irqs(omap_mpuio_onoff, s, 1)[0]); |
2778 |
|
2779 |
return s;
|
2780 |
} |
2781 |
|
2782 |
qemu_irq *omap_mpuio_in_get(struct omap_mpuio_s *s)
|
2783 |
{ |
2784 |
return s->in;
|
2785 |
} |
2786 |
|
2787 |
void omap_mpuio_out_set(struct omap_mpuio_s *s, int line, qemu_irq handler) |
2788 |
{ |
2789 |
if (line >= 16 || line < 0) |
2790 |
hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
|
2791 |
s->handler[line] = handler; |
2792 |
} |
2793 |
|
2794 |
void omap_mpuio_key(struct omap_mpuio_s *s, int row, int col, int down) |
2795 |
{ |
2796 |
if (row >= 5 || row < 0) |
2797 |
hw_error("%s: No key %i-%i\n", __FUNCTION__, col, row);
|
2798 |
|
2799 |
if (down)
|
2800 |
s->buttons[row] |= 1 << col;
|
2801 |
else
|
2802 |
s->buttons[row] &= ~(1 << col);
|
2803 |
|
2804 |
omap_mpuio_kbd_update(s); |
2805 |
} |
2806 |
|
2807 |
/* General-Purpose I/O */
|
2808 |
struct omap_gpio_s {
|
2809 |
qemu_irq irq; |
2810 |
qemu_irq *in; |
2811 |
qemu_irq handler[16];
|
2812 |
|
2813 |
uint16_t inputs; |
2814 |
uint16_t outputs; |
2815 |
uint16_t dir; |
2816 |
uint16_t edge; |
2817 |
uint16_t mask; |
2818 |
uint16_t ints; |
2819 |
uint16_t pins; |
2820 |
}; |
2821 |
|
2822 |
static void omap_gpio_set(void *opaque, int line, int level) |
2823 |
{ |
2824 |
struct omap_gpio_s *s = (struct omap_gpio_s *) opaque; |
2825 |
uint16_t prev = s->inputs; |
2826 |
|
2827 |
if (level)
|
2828 |
s->inputs |= 1 << line;
|
2829 |
else
|
2830 |
s->inputs &= ~(1 << line);
|
2831 |
|
2832 |
if (((s->edge & s->inputs & ~prev) | (~s->edge & ~s->inputs & prev)) &
|
2833 |
(1 << line) & s->dir & ~s->mask) {
|
2834 |
s->ints |= 1 << line;
|
2835 |
qemu_irq_raise(s->irq); |
2836 |
} |
2837 |
} |
2838 |
|
2839 |
static uint32_t omap_gpio_read(void *opaque, target_phys_addr_t addr) |
2840 |
{ |
2841 |
struct omap_gpio_s *s = (struct omap_gpio_s *) opaque; |
2842 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
2843 |
|
2844 |
switch (offset) {
|
2845 |
case 0x00: /* DATA_INPUT */ |
2846 |
return s->inputs & s->pins;
|
2847 |
|
2848 |
case 0x04: /* DATA_OUTPUT */ |
2849 |
return s->outputs;
|
2850 |
|
2851 |
case 0x08: /* DIRECTION_CONTROL */ |
2852 |
return s->dir;
|
2853 |
|
2854 |
case 0x0c: /* INTERRUPT_CONTROL */ |
2855 |
return s->edge;
|
2856 |
|
2857 |
case 0x10: /* INTERRUPT_MASK */ |
2858 |
return s->mask;
|
2859 |
|
2860 |
case 0x14: /* INTERRUPT_STATUS */ |
2861 |
return s->ints;
|
2862 |
|
2863 |
case 0x18: /* PIN_CONTROL (not in OMAP310) */ |
2864 |
OMAP_BAD_REG(addr); |
2865 |
return s->pins;
|
2866 |
} |
2867 |
|
2868 |
OMAP_BAD_REG(addr); |
2869 |
return 0; |
2870 |
} |
2871 |
|
2872 |
static void omap_gpio_write(void *opaque, target_phys_addr_t addr, |
2873 |
uint32_t value) |
2874 |
{ |
2875 |
struct omap_gpio_s *s = (struct omap_gpio_s *) opaque; |
2876 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
2877 |
uint16_t diff; |
2878 |
int ln;
|
2879 |
|
2880 |
switch (offset) {
|
2881 |
case 0x00: /* DATA_INPUT */ |
2882 |
OMAP_RO_REG(addr); |
2883 |
return;
|
2884 |
|
2885 |
case 0x04: /* DATA_OUTPUT */ |
2886 |
diff = (s->outputs ^ value) & ~s->dir; |
2887 |
s->outputs = value; |
2888 |
while ((ln = ffs(diff))) {
|
2889 |
ln --; |
2890 |
if (s->handler[ln])
|
2891 |
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
|
2892 |
diff &= ~(1 << ln);
|
2893 |
} |
2894 |
break;
|
2895 |
|
2896 |
case 0x08: /* DIRECTION_CONTROL */ |
2897 |
diff = s->outputs & (s->dir ^ value); |
2898 |
s->dir = value; |
2899 |
|
2900 |
value = s->outputs & ~s->dir; |
2901 |
while ((ln = ffs(diff))) {
|
2902 |
ln --; |
2903 |
if (s->handler[ln])
|
2904 |
qemu_set_irq(s->handler[ln], (value >> ln) & 1);
|
2905 |
diff &= ~(1 << ln);
|
2906 |
} |
2907 |
break;
|
2908 |
|
2909 |
case 0x0c: /* INTERRUPT_CONTROL */ |
2910 |
s->edge = value; |
2911 |
break;
|
2912 |
|
2913 |
case 0x10: /* INTERRUPT_MASK */ |
2914 |
s->mask = value; |
2915 |
break;
|
2916 |
|
2917 |
case 0x14: /* INTERRUPT_STATUS */ |
2918 |
s->ints &= ~value; |
2919 |
if (!s->ints)
|
2920 |
qemu_irq_lower(s->irq); |
2921 |
break;
|
2922 |
|
2923 |
case 0x18: /* PIN_CONTROL (not in OMAP310 TRM) */ |
2924 |
OMAP_BAD_REG(addr); |
2925 |
s->pins = value; |
2926 |
break;
|
2927 |
|
2928 |
default:
|
2929 |
OMAP_BAD_REG(addr); |
2930 |
return;
|
2931 |
} |
2932 |
} |
2933 |
|
2934 |
/* *Some* sources say the memory region is 32-bit. */
|
2935 |
static CPUReadMemoryFunc * const omap_gpio_readfn[] = { |
2936 |
omap_badwidth_read16, |
2937 |
omap_gpio_read, |
2938 |
omap_badwidth_read16, |
2939 |
}; |
2940 |
|
2941 |
static CPUWriteMemoryFunc * const omap_gpio_writefn[] = { |
2942 |
omap_badwidth_write16, |
2943 |
omap_gpio_write, |
2944 |
omap_badwidth_write16, |
2945 |
}; |
2946 |
|
2947 |
static void omap_gpio_reset(struct omap_gpio_s *s) |
2948 |
{ |
2949 |
s->inputs = 0;
|
2950 |
s->outputs = ~0;
|
2951 |
s->dir = ~0;
|
2952 |
s->edge = ~0;
|
2953 |
s->mask = ~0;
|
2954 |
s->ints = 0;
|
2955 |
s->pins = ~0;
|
2956 |
} |
2957 |
|
2958 |
struct omap_gpio_s *omap_gpio_init(target_phys_addr_t base,
|
2959 |
qemu_irq irq, omap_clk clk) |
2960 |
{ |
2961 |
int iomemtype;
|
2962 |
struct omap_gpio_s *s = (struct omap_gpio_s *) |
2963 |
qemu_mallocz(sizeof(struct omap_gpio_s)); |
2964 |
|
2965 |
s->irq = irq; |
2966 |
s->in = qemu_allocate_irqs(omap_gpio_set, s, 16);
|
2967 |
omap_gpio_reset(s); |
2968 |
|
2969 |
iomemtype = cpu_register_io_memory(omap_gpio_readfn, |
2970 |
omap_gpio_writefn, s); |
2971 |
cpu_register_physical_memory(base, 0x1000, iomemtype);
|
2972 |
|
2973 |
return s;
|
2974 |
} |
2975 |
|
2976 |
qemu_irq *omap_gpio_in_get(struct omap_gpio_s *s)
|
2977 |
{ |
2978 |
return s->in;
|
2979 |
} |
2980 |
|
2981 |
void omap_gpio_out_set(struct omap_gpio_s *s, int line, qemu_irq handler) |
2982 |
{ |
2983 |
if (line >= 16 || line < 0) |
2984 |
hw_error("%s: No GPIO line %i\n", __FUNCTION__, line);
|
2985 |
s->handler[line] = handler; |
2986 |
} |
2987 |
|
2988 |
/* MicroWire Interface */
|
2989 |
struct omap_uwire_s {
|
2990 |
qemu_irq txirq; |
2991 |
qemu_irq rxirq; |
2992 |
qemu_irq txdrq; |
2993 |
|
2994 |
uint16_t txbuf; |
2995 |
uint16_t rxbuf; |
2996 |
uint16_t control; |
2997 |
uint16_t setup[5];
|
2998 |
|
2999 |
uWireSlave *chip[4];
|
3000 |
}; |
3001 |
|
3002 |
static void omap_uwire_transfer_start(struct omap_uwire_s *s) |
3003 |
{ |
3004 |
int chipselect = (s->control >> 10) & 3; /* INDEX */ |
3005 |
uWireSlave *slave = s->chip[chipselect]; |
3006 |
|
3007 |
if ((s->control >> 5) & 0x1f) { /* NB_BITS_WR */ |
3008 |
if (s->control & (1 << 12)) /* CS_CMD */ |
3009 |
if (slave && slave->send)
|
3010 |
slave->send(slave->opaque, |
3011 |
s->txbuf >> (16 - ((s->control >> 5) & 0x1f))); |
3012 |
s->control &= ~(1 << 14); /* CSRB */ |
3013 |
/* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
|
3014 |
* a DRQ. When is the level IRQ supposed to be reset? */
|
3015 |
} |
3016 |
|
3017 |
if ((s->control >> 0) & 0x1f) { /* NB_BITS_RD */ |
3018 |
if (s->control & (1 << 12)) /* CS_CMD */ |
3019 |
if (slave && slave->receive)
|
3020 |
s->rxbuf = slave->receive(slave->opaque); |
3021 |
s->control |= 1 << 15; /* RDRB */ |
3022 |
/* TODO: depending on s->setup[4] bits [1:0] assert an IRQ or
|
3023 |
* a DRQ. When is the level IRQ supposed to be reset? */
|
3024 |
} |
3025 |
} |
3026 |
|
3027 |
static uint32_t omap_uwire_read(void *opaque, target_phys_addr_t addr) |
3028 |
{ |
3029 |
struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; |
3030 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
3031 |
|
3032 |
switch (offset) {
|
3033 |
case 0x00: /* RDR */ |
3034 |
s->control &= ~(1 << 15); /* RDRB */ |
3035 |
return s->rxbuf;
|
3036 |
|
3037 |
case 0x04: /* CSR */ |
3038 |
return s->control;
|
3039 |
|
3040 |
case 0x08: /* SR1 */ |
3041 |
return s->setup[0]; |
3042 |
case 0x0c: /* SR2 */ |
3043 |
return s->setup[1]; |
3044 |
case 0x10: /* SR3 */ |
3045 |
return s->setup[2]; |
3046 |
case 0x14: /* SR4 */ |
3047 |
return s->setup[3]; |
3048 |
case 0x18: /* SR5 */ |
3049 |
return s->setup[4]; |
3050 |
} |
3051 |
|
3052 |
OMAP_BAD_REG(addr); |
3053 |
return 0; |
3054 |
} |
3055 |
|
3056 |
static void omap_uwire_write(void *opaque, target_phys_addr_t addr, |
3057 |
uint32_t value) |
3058 |
{ |
3059 |
struct omap_uwire_s *s = (struct omap_uwire_s *) opaque; |
3060 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
3061 |
|
3062 |
switch (offset) {
|
3063 |
case 0x00: /* TDR */ |
3064 |
s->txbuf = value; /* TD */
|
3065 |
if ((s->setup[4] & (1 << 2)) && /* AUTO_TX_EN */ |
3066 |
((s->setup[4] & (1 << 3)) || /* CS_TOGGLE_TX_EN */ |
3067 |
(s->control & (1 << 12)))) { /* CS_CMD */ |
3068 |
s->control |= 1 << 14; /* CSRB */ |
3069 |
omap_uwire_transfer_start(s); |
3070 |
} |
3071 |
break;
|
3072 |
|
3073 |
case 0x04: /* CSR */ |
3074 |
s->control = value & 0x1fff;
|
3075 |
if (value & (1 << 13)) /* START */ |
3076 |
omap_uwire_transfer_start(s); |
3077 |
break;
|
3078 |
|
3079 |
case 0x08: /* SR1 */ |
3080 |
s->setup[0] = value & 0x003f; |
3081 |
break;
|
3082 |
|
3083 |
case 0x0c: /* SR2 */ |
3084 |
s->setup[1] = value & 0x0fc0; |
3085 |
break;
|
3086 |
|
3087 |
case 0x10: /* SR3 */ |
3088 |
s->setup[2] = value & 0x0003; |
3089 |
break;
|
3090 |
|
3091 |
case 0x14: /* SR4 */ |
3092 |
s->setup[3] = value & 0x0001; |
3093 |
break;
|
3094 |
|
3095 |
case 0x18: /* SR5 */ |
3096 |
s->setup[4] = value & 0x000f; |
3097 |
break;
|
3098 |
|
3099 |
default:
|
3100 |
OMAP_BAD_REG(addr); |
3101 |
return;
|
3102 |
} |
3103 |
} |
3104 |
|
3105 |
static CPUReadMemoryFunc * const omap_uwire_readfn[] = { |
3106 |
omap_badwidth_read16, |
3107 |
omap_uwire_read, |
3108 |
omap_badwidth_read16, |
3109 |
}; |
3110 |
|
3111 |
static CPUWriteMemoryFunc * const omap_uwire_writefn[] = { |
3112 |
omap_badwidth_write16, |
3113 |
omap_uwire_write, |
3114 |
omap_badwidth_write16, |
3115 |
}; |
3116 |
|
3117 |
static void omap_uwire_reset(struct omap_uwire_s *s) |
3118 |
{ |
3119 |
s->control = 0;
|
3120 |
s->setup[0] = 0; |
3121 |
s->setup[1] = 0; |
3122 |
s->setup[2] = 0; |
3123 |
s->setup[3] = 0; |
3124 |
s->setup[4] = 0; |
3125 |
} |
3126 |
|
3127 |
struct omap_uwire_s *omap_uwire_init(target_phys_addr_t base,
|
3128 |
qemu_irq *irq, qemu_irq dma, omap_clk clk) |
3129 |
{ |
3130 |
int iomemtype;
|
3131 |
struct omap_uwire_s *s = (struct omap_uwire_s *) |
3132 |
qemu_mallocz(sizeof(struct omap_uwire_s)); |
3133 |
|
3134 |
s->txirq = irq[0];
|
3135 |
s->rxirq = irq[1];
|
3136 |
s->txdrq = dma; |
3137 |
omap_uwire_reset(s); |
3138 |
|
3139 |
iomemtype = cpu_register_io_memory(omap_uwire_readfn, |
3140 |
omap_uwire_writefn, s); |
3141 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
3142 |
|
3143 |
return s;
|
3144 |
} |
3145 |
|
3146 |
void omap_uwire_attach(struct omap_uwire_s *s, |
3147 |
uWireSlave *slave, int chipselect)
|
3148 |
{ |
3149 |
if (chipselect < 0 || chipselect > 3) { |
3150 |
fprintf(stderr, "%s: Bad chipselect %i\n", __FUNCTION__, chipselect);
|
3151 |
exit(-1);
|
3152 |
} |
3153 |
|
3154 |
s->chip[chipselect] = slave; |
3155 |
} |
3156 |
|
3157 |
/* Pseudonoise Pulse-Width Light Modulator */
|
3158 |
static void omap_pwl_update(struct omap_mpu_state_s *s) |
3159 |
{ |
3160 |
int output = (s->pwl.clk && s->pwl.enable) ? s->pwl.level : 0; |
3161 |
|
3162 |
if (output != s->pwl.output) {
|
3163 |
s->pwl.output = output; |
3164 |
printf("%s: Backlight now at %i/256\n", __FUNCTION__, output);
|
3165 |
} |
3166 |
} |
3167 |
|
3168 |
static uint32_t omap_pwl_read(void *opaque, target_phys_addr_t addr) |
3169 |
{ |
3170 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
3171 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
3172 |
|
3173 |
switch (offset) {
|
3174 |
case 0x00: /* PWL_LEVEL */ |
3175 |
return s->pwl.level;
|
3176 |
case 0x04: /* PWL_CTRL */ |
3177 |
return s->pwl.enable;
|
3178 |
} |
3179 |
OMAP_BAD_REG(addr); |
3180 |
return 0; |
3181 |
} |
3182 |
|
3183 |
static void omap_pwl_write(void *opaque, target_phys_addr_t addr, |
3184 |
uint32_t value) |
3185 |
{ |
3186 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
3187 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
3188 |
|
3189 |
switch (offset) {
|
3190 |
case 0x00: /* PWL_LEVEL */ |
3191 |
s->pwl.level = value; |
3192 |
omap_pwl_update(s); |
3193 |
break;
|
3194 |
case 0x04: /* PWL_CTRL */ |
3195 |
s->pwl.enable = value & 1;
|
3196 |
omap_pwl_update(s); |
3197 |
break;
|
3198 |
default:
|
3199 |
OMAP_BAD_REG(addr); |
3200 |
return;
|
3201 |
} |
3202 |
} |
3203 |
|
3204 |
static CPUReadMemoryFunc * const omap_pwl_readfn[] = { |
3205 |
omap_pwl_read, |
3206 |
omap_badwidth_read8, |
3207 |
omap_badwidth_read8, |
3208 |
}; |
3209 |
|
3210 |
static CPUWriteMemoryFunc * const omap_pwl_writefn[] = { |
3211 |
omap_pwl_write, |
3212 |
omap_badwidth_write8, |
3213 |
omap_badwidth_write8, |
3214 |
}; |
3215 |
|
3216 |
static void omap_pwl_reset(struct omap_mpu_state_s *s) |
3217 |
{ |
3218 |
s->pwl.output = 0;
|
3219 |
s->pwl.level = 0;
|
3220 |
s->pwl.enable = 0;
|
3221 |
s->pwl.clk = 1;
|
3222 |
omap_pwl_update(s); |
3223 |
} |
3224 |
|
3225 |
static void omap_pwl_clk_update(void *opaque, int line, int on) |
3226 |
{ |
3227 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
3228 |
|
3229 |
s->pwl.clk = on; |
3230 |
omap_pwl_update(s); |
3231 |
} |
3232 |
|
3233 |
static void omap_pwl_init(target_phys_addr_t base, struct omap_mpu_state_s *s, |
3234 |
omap_clk clk) |
3235 |
{ |
3236 |
int iomemtype;
|
3237 |
|
3238 |
omap_pwl_reset(s); |
3239 |
|
3240 |
iomemtype = cpu_register_io_memory(omap_pwl_readfn, |
3241 |
omap_pwl_writefn, s); |
3242 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
3243 |
|
3244 |
omap_clk_adduser(clk, qemu_allocate_irqs(omap_pwl_clk_update, s, 1)[0]); |
3245 |
} |
3246 |
|
3247 |
/* Pulse-Width Tone module */
|
3248 |
static uint32_t omap_pwt_read(void *opaque, target_phys_addr_t addr) |
3249 |
{ |
3250 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
3251 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
3252 |
|
3253 |
switch (offset) {
|
3254 |
case 0x00: /* FRC */ |
3255 |
return s->pwt.frc;
|
3256 |
case 0x04: /* VCR */ |
3257 |
return s->pwt.vrc;
|
3258 |
case 0x08: /* GCR */ |
3259 |
return s->pwt.gcr;
|
3260 |
} |
3261 |
OMAP_BAD_REG(addr); |
3262 |
return 0; |
3263 |
} |
3264 |
|
3265 |
static void omap_pwt_write(void *opaque, target_phys_addr_t addr, |
3266 |
uint32_t value) |
3267 |
{ |
3268 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) opaque; |
3269 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
3270 |
|
3271 |
switch (offset) {
|
3272 |
case 0x00: /* FRC */ |
3273 |
s->pwt.frc = value & 0x3f;
|
3274 |
break;
|
3275 |
case 0x04: /* VRC */ |
3276 |
if ((value ^ s->pwt.vrc) & 1) { |
3277 |
if (value & 1) |
3278 |
printf("%s: %iHz buzz on\n", __FUNCTION__, (int) |
3279 |
/* 1.5 MHz from a 12-MHz or 13-MHz PWT_CLK */
|
3280 |
((omap_clk_getrate(s->pwt.clk) >> 3) /
|
3281 |
/* Pre-multiplexer divider */
|
3282 |
((s->pwt.gcr & 2) ? 1 : 154) / |
3283 |
/* Octave multiplexer */
|
3284 |
(2 << (value & 3)) * |
3285 |
/* 101/107 divider */
|
3286 |
((value & (1 << 2)) ? 101 : 107) * |
3287 |
/* 49/55 divider */
|
3288 |
((value & (1 << 3)) ? 49 : 55) * |
3289 |
/* 50/63 divider */
|
3290 |
((value & (1 << 4)) ? 50 : 63) * |
3291 |
/* 80/127 divider */
|
3292 |
((value & (1 << 5)) ? 80 : 127) / |
3293 |
(107 * 55 * 63 * 127))); |
3294 |
else
|
3295 |
printf("%s: silence!\n", __FUNCTION__);
|
3296 |
} |
3297 |
s->pwt.vrc = value & 0x7f;
|
3298 |
break;
|
3299 |
case 0x08: /* GCR */ |
3300 |
s->pwt.gcr = value & 3;
|
3301 |
break;
|
3302 |
default:
|
3303 |
OMAP_BAD_REG(addr); |
3304 |
return;
|
3305 |
} |
3306 |
} |
3307 |
|
3308 |
static CPUReadMemoryFunc * const omap_pwt_readfn[] = { |
3309 |
omap_pwt_read, |
3310 |
omap_badwidth_read8, |
3311 |
omap_badwidth_read8, |
3312 |
}; |
3313 |
|
3314 |
static CPUWriteMemoryFunc * const omap_pwt_writefn[] = { |
3315 |
omap_pwt_write, |
3316 |
omap_badwidth_write8, |
3317 |
omap_badwidth_write8, |
3318 |
}; |
3319 |
|
3320 |
static void omap_pwt_reset(struct omap_mpu_state_s *s) |
3321 |
{ |
3322 |
s->pwt.frc = 0;
|
3323 |
s->pwt.vrc = 0;
|
3324 |
s->pwt.gcr = 0;
|
3325 |
} |
3326 |
|
3327 |
static void omap_pwt_init(target_phys_addr_t base, struct omap_mpu_state_s *s, |
3328 |
omap_clk clk) |
3329 |
{ |
3330 |
int iomemtype;
|
3331 |
|
3332 |
s->pwt.clk = clk; |
3333 |
omap_pwt_reset(s); |
3334 |
|
3335 |
iomemtype = cpu_register_io_memory(omap_pwt_readfn, |
3336 |
omap_pwt_writefn, s); |
3337 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
3338 |
} |
3339 |
|
3340 |
/* Real-time Clock module */
|
3341 |
struct omap_rtc_s {
|
3342 |
qemu_irq irq; |
3343 |
qemu_irq alarm; |
3344 |
QEMUTimer *clk; |
3345 |
|
3346 |
uint8_t interrupts; |
3347 |
uint8_t status; |
3348 |
int16_t comp_reg; |
3349 |
int running;
|
3350 |
int pm_am;
|
3351 |
int auto_comp;
|
3352 |
int round;
|
3353 |
struct tm alarm_tm;
|
3354 |
time_t alarm_ti; |
3355 |
|
3356 |
struct tm current_tm;
|
3357 |
time_t ti; |
3358 |
uint64_t tick; |
3359 |
}; |
3360 |
|
3361 |
static void omap_rtc_interrupts_update(struct omap_rtc_s *s) |
3362 |
{ |
3363 |
/* s->alarm is level-triggered */
|
3364 |
qemu_set_irq(s->alarm, (s->status >> 6) & 1); |
3365 |
} |
3366 |
|
3367 |
static void omap_rtc_alarm_update(struct omap_rtc_s *s) |
3368 |
{ |
3369 |
s->alarm_ti = mktimegm(&s->alarm_tm); |
3370 |
if (s->alarm_ti == -1) |
3371 |
printf("%s: conversion failed\n", __FUNCTION__);
|
3372 |
} |
3373 |
|
3374 |
static uint32_t omap_rtc_read(void *opaque, target_phys_addr_t addr) |
3375 |
{ |
3376 |
struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; |
3377 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
3378 |
uint8_t i; |
3379 |
|
3380 |
switch (offset) {
|
3381 |
case 0x00: /* SECONDS_REG */ |
3382 |
return to_bcd(s->current_tm.tm_sec);
|
3383 |
|
3384 |
case 0x04: /* MINUTES_REG */ |
3385 |
return to_bcd(s->current_tm.tm_min);
|
3386 |
|
3387 |
case 0x08: /* HOURS_REG */ |
3388 |
if (s->pm_am)
|
3389 |
return ((s->current_tm.tm_hour > 11) << 7) | |
3390 |
to_bcd(((s->current_tm.tm_hour - 1) % 12) + 1); |
3391 |
else
|
3392 |
return to_bcd(s->current_tm.tm_hour);
|
3393 |
|
3394 |
case 0x0c: /* DAYS_REG */ |
3395 |
return to_bcd(s->current_tm.tm_mday);
|
3396 |
|
3397 |
case 0x10: /* MONTHS_REG */ |
3398 |
return to_bcd(s->current_tm.tm_mon + 1); |
3399 |
|
3400 |
case 0x14: /* YEARS_REG */ |
3401 |
return to_bcd(s->current_tm.tm_year % 100); |
3402 |
|
3403 |
case 0x18: /* WEEK_REG */ |
3404 |
return s->current_tm.tm_wday;
|
3405 |
|
3406 |
case 0x20: /* ALARM_SECONDS_REG */ |
3407 |
return to_bcd(s->alarm_tm.tm_sec);
|
3408 |
|
3409 |
case 0x24: /* ALARM_MINUTES_REG */ |
3410 |
return to_bcd(s->alarm_tm.tm_min);
|
3411 |
|
3412 |
case 0x28: /* ALARM_HOURS_REG */ |
3413 |
if (s->pm_am)
|
3414 |
return ((s->alarm_tm.tm_hour > 11) << 7) | |
3415 |
to_bcd(((s->alarm_tm.tm_hour - 1) % 12) + 1); |
3416 |
else
|
3417 |
return to_bcd(s->alarm_tm.tm_hour);
|
3418 |
|
3419 |
case 0x2c: /* ALARM_DAYS_REG */ |
3420 |
return to_bcd(s->alarm_tm.tm_mday);
|
3421 |
|
3422 |
case 0x30: /* ALARM_MONTHS_REG */ |
3423 |
return to_bcd(s->alarm_tm.tm_mon + 1); |
3424 |
|
3425 |
case 0x34: /* ALARM_YEARS_REG */ |
3426 |
return to_bcd(s->alarm_tm.tm_year % 100); |
3427 |
|
3428 |
case 0x40: /* RTC_CTRL_REG */ |
3429 |
return (s->pm_am << 3) | (s->auto_comp << 2) | |
3430 |
(s->round << 1) | s->running;
|
3431 |
|
3432 |
case 0x44: /* RTC_STATUS_REG */ |
3433 |
i = s->status; |
3434 |
s->status &= ~0x3d;
|
3435 |
return i;
|
3436 |
|
3437 |
case 0x48: /* RTC_INTERRUPTS_REG */ |
3438 |
return s->interrupts;
|
3439 |
|
3440 |
case 0x4c: /* RTC_COMP_LSB_REG */ |
3441 |
return ((uint16_t) s->comp_reg) & 0xff; |
3442 |
|
3443 |
case 0x50: /* RTC_COMP_MSB_REG */ |
3444 |
return ((uint16_t) s->comp_reg) >> 8; |
3445 |
} |
3446 |
|
3447 |
OMAP_BAD_REG(addr); |
3448 |
return 0; |
3449 |
} |
3450 |
|
3451 |
static void omap_rtc_write(void *opaque, target_phys_addr_t addr, |
3452 |
uint32_t value) |
3453 |
{ |
3454 |
struct omap_rtc_s *s = (struct omap_rtc_s *) opaque; |
3455 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
3456 |
struct tm new_tm;
|
3457 |
time_t ti[2];
|
3458 |
|
3459 |
switch (offset) {
|
3460 |
case 0x00: /* SECONDS_REG */ |
3461 |
#ifdef ALMDEBUG
|
3462 |
printf("RTC SEC_REG <-- %02x\n", value);
|
3463 |
#endif
|
3464 |
s->ti -= s->current_tm.tm_sec; |
3465 |
s->ti += from_bcd(value); |
3466 |
return;
|
3467 |
|
3468 |
case 0x04: /* MINUTES_REG */ |
3469 |
#ifdef ALMDEBUG
|
3470 |
printf("RTC MIN_REG <-- %02x\n", value);
|
3471 |
#endif
|
3472 |
s->ti -= s->current_tm.tm_min * 60;
|
3473 |
s->ti += from_bcd(value) * 60;
|
3474 |
return;
|
3475 |
|
3476 |
case 0x08: /* HOURS_REG */ |
3477 |
#ifdef ALMDEBUG
|
3478 |
printf("RTC HRS_REG <-- %02x\n", value);
|
3479 |
#endif
|
3480 |
s->ti -= s->current_tm.tm_hour * 3600;
|
3481 |
if (s->pm_am) {
|
3482 |
s->ti += (from_bcd(value & 0x3f) & 12) * 3600; |
3483 |
s->ti += ((value >> 7) & 1) * 43200; |
3484 |
} else
|
3485 |
s->ti += from_bcd(value & 0x3f) * 3600; |
3486 |
return;
|
3487 |
|
3488 |
case 0x0c: /* DAYS_REG */ |
3489 |
#ifdef ALMDEBUG
|
3490 |
printf("RTC DAY_REG <-- %02x\n", value);
|
3491 |
#endif
|
3492 |
s->ti -= s->current_tm.tm_mday * 86400;
|
3493 |
s->ti += from_bcd(value) * 86400;
|
3494 |
return;
|
3495 |
|
3496 |
case 0x10: /* MONTHS_REG */ |
3497 |
#ifdef ALMDEBUG
|
3498 |
printf("RTC MTH_REG <-- %02x\n", value);
|
3499 |
#endif
|
3500 |
memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
|
3501 |
new_tm.tm_mon = from_bcd(value); |
3502 |
ti[0] = mktimegm(&s->current_tm);
|
3503 |
ti[1] = mktimegm(&new_tm);
|
3504 |
|
3505 |
if (ti[0] != -1 && ti[1] != -1) { |
3506 |
s->ti -= ti[0];
|
3507 |
s->ti += ti[1];
|
3508 |
} else {
|
3509 |
/* A less accurate version */
|
3510 |
s->ti -= s->current_tm.tm_mon * 2592000;
|
3511 |
s->ti += from_bcd(value) * 2592000;
|
3512 |
} |
3513 |
return;
|
3514 |
|
3515 |
case 0x14: /* YEARS_REG */ |
3516 |
#ifdef ALMDEBUG
|
3517 |
printf("RTC YRS_REG <-- %02x\n", value);
|
3518 |
#endif
|
3519 |
memcpy(&new_tm, &s->current_tm, sizeof(new_tm));
|
3520 |
new_tm.tm_year += from_bcd(value) - (new_tm.tm_year % 100);
|
3521 |
ti[0] = mktimegm(&s->current_tm);
|
3522 |
ti[1] = mktimegm(&new_tm);
|
3523 |
|
3524 |
if (ti[0] != -1 && ti[1] != -1) { |
3525 |
s->ti -= ti[0];
|
3526 |
s->ti += ti[1];
|
3527 |
} else {
|
3528 |
/* A less accurate version */
|
3529 |
s->ti -= (s->current_tm.tm_year % 100) * 31536000; |
3530 |
s->ti += from_bcd(value) * 31536000;
|
3531 |
} |
3532 |
return;
|
3533 |
|
3534 |
case 0x18: /* WEEK_REG */ |
3535 |
return; /* Ignored */ |
3536 |
|
3537 |
case 0x20: /* ALARM_SECONDS_REG */ |
3538 |
#ifdef ALMDEBUG
|
3539 |
printf("ALM SEC_REG <-- %02x\n", value);
|
3540 |
#endif
|
3541 |
s->alarm_tm.tm_sec = from_bcd(value); |
3542 |
omap_rtc_alarm_update(s); |
3543 |
return;
|
3544 |
|
3545 |
case 0x24: /* ALARM_MINUTES_REG */ |
3546 |
#ifdef ALMDEBUG
|
3547 |
printf("ALM MIN_REG <-- %02x\n", value);
|
3548 |
#endif
|
3549 |
s->alarm_tm.tm_min = from_bcd(value); |
3550 |
omap_rtc_alarm_update(s); |
3551 |
return;
|
3552 |
|
3553 |
case 0x28: /* ALARM_HOURS_REG */ |
3554 |
#ifdef ALMDEBUG
|
3555 |
printf("ALM HRS_REG <-- %02x\n", value);
|
3556 |
#endif
|
3557 |
if (s->pm_am)
|
3558 |
s->alarm_tm.tm_hour = |
3559 |
((from_bcd(value & 0x3f)) % 12) + |
3560 |
((value >> 7) & 1) * 12; |
3561 |
else
|
3562 |
s->alarm_tm.tm_hour = from_bcd(value); |
3563 |
omap_rtc_alarm_update(s); |
3564 |
return;
|
3565 |
|
3566 |
case 0x2c: /* ALARM_DAYS_REG */ |
3567 |
#ifdef ALMDEBUG
|
3568 |
printf("ALM DAY_REG <-- %02x\n", value);
|
3569 |
#endif
|
3570 |
s->alarm_tm.tm_mday = from_bcd(value); |
3571 |
omap_rtc_alarm_update(s); |
3572 |
return;
|
3573 |
|
3574 |
case 0x30: /* ALARM_MONTHS_REG */ |
3575 |
#ifdef ALMDEBUG
|
3576 |
printf("ALM MON_REG <-- %02x\n", value);
|
3577 |
#endif
|
3578 |
s->alarm_tm.tm_mon = from_bcd(value); |
3579 |
omap_rtc_alarm_update(s); |
3580 |
return;
|
3581 |
|
3582 |
case 0x34: /* ALARM_YEARS_REG */ |
3583 |
#ifdef ALMDEBUG
|
3584 |
printf("ALM YRS_REG <-- %02x\n", value);
|
3585 |
#endif
|
3586 |
s->alarm_tm.tm_year = from_bcd(value); |
3587 |
omap_rtc_alarm_update(s); |
3588 |
return;
|
3589 |
|
3590 |
case 0x40: /* RTC_CTRL_REG */ |
3591 |
#ifdef ALMDEBUG
|
3592 |
printf("RTC CONTROL <-- %02x\n", value);
|
3593 |
#endif
|
3594 |
s->pm_am = (value >> 3) & 1; |
3595 |
s->auto_comp = (value >> 2) & 1; |
3596 |
s->round = (value >> 1) & 1; |
3597 |
s->running = value & 1;
|
3598 |
s->status &= 0xfd;
|
3599 |
s->status |= s->running << 1;
|
3600 |
return;
|
3601 |
|
3602 |
case 0x44: /* RTC_STATUS_REG */ |
3603 |
#ifdef ALMDEBUG
|
3604 |
printf("RTC STATUSL <-- %02x\n", value);
|
3605 |
#endif
|
3606 |
s->status &= ~((value & 0xc0) ^ 0x80); |
3607 |
omap_rtc_interrupts_update(s); |
3608 |
return;
|
3609 |
|
3610 |
case 0x48: /* RTC_INTERRUPTS_REG */ |
3611 |
#ifdef ALMDEBUG
|
3612 |
printf("RTC INTRS <-- %02x\n", value);
|
3613 |
#endif
|
3614 |
s->interrupts = value; |
3615 |
return;
|
3616 |
|
3617 |
case 0x4c: /* RTC_COMP_LSB_REG */ |
3618 |
#ifdef ALMDEBUG
|
3619 |
printf("RTC COMPLSB <-- %02x\n", value);
|
3620 |
#endif
|
3621 |
s->comp_reg &= 0xff00;
|
3622 |
s->comp_reg |= 0x00ff & value;
|
3623 |
return;
|
3624 |
|
3625 |
case 0x50: /* RTC_COMP_MSB_REG */ |
3626 |
#ifdef ALMDEBUG
|
3627 |
printf("RTC COMPMSB <-- %02x\n", value);
|
3628 |
#endif
|
3629 |
s->comp_reg &= 0x00ff;
|
3630 |
s->comp_reg |= 0xff00 & (value << 8); |
3631 |
return;
|
3632 |
|
3633 |
default:
|
3634 |
OMAP_BAD_REG(addr); |
3635 |
return;
|
3636 |
} |
3637 |
} |
3638 |
|
3639 |
static CPUReadMemoryFunc * const omap_rtc_readfn[] = { |
3640 |
omap_rtc_read, |
3641 |
omap_badwidth_read8, |
3642 |
omap_badwidth_read8, |
3643 |
}; |
3644 |
|
3645 |
static CPUWriteMemoryFunc * const omap_rtc_writefn[] = { |
3646 |
omap_rtc_write, |
3647 |
omap_badwidth_write8, |
3648 |
omap_badwidth_write8, |
3649 |
}; |
3650 |
|
3651 |
static void omap_rtc_tick(void *opaque) |
3652 |
{ |
3653 |
struct omap_rtc_s *s = opaque;
|
3654 |
|
3655 |
if (s->round) {
|
3656 |
/* Round to nearest full minute. */
|
3657 |
if (s->current_tm.tm_sec < 30) |
3658 |
s->ti -= s->current_tm.tm_sec; |
3659 |
else
|
3660 |
s->ti += 60 - s->current_tm.tm_sec;
|
3661 |
|
3662 |
s->round = 0;
|
3663 |
} |
3664 |
|
3665 |
memcpy(&s->current_tm, localtime(&s->ti), sizeof(s->current_tm));
|
3666 |
|
3667 |
if ((s->interrupts & 0x08) && s->ti == s->alarm_ti) { |
3668 |
s->status |= 0x40;
|
3669 |
omap_rtc_interrupts_update(s); |
3670 |
} |
3671 |
|
3672 |
if (s->interrupts & 0x04) |
3673 |
switch (s->interrupts & 3) { |
3674 |
case 0: |
3675 |
s->status |= 0x04;
|
3676 |
qemu_irq_pulse(s->irq); |
3677 |
break;
|
3678 |
case 1: |
3679 |
if (s->current_tm.tm_sec)
|
3680 |
break;
|
3681 |
s->status |= 0x08;
|
3682 |
qemu_irq_pulse(s->irq); |
3683 |
break;
|
3684 |
case 2: |
3685 |
if (s->current_tm.tm_sec || s->current_tm.tm_min)
|
3686 |
break;
|
3687 |
s->status |= 0x10;
|
3688 |
qemu_irq_pulse(s->irq); |
3689 |
break;
|
3690 |
case 3: |
3691 |
if (s->current_tm.tm_sec ||
|
3692 |
s->current_tm.tm_min || s->current_tm.tm_hour) |
3693 |
break;
|
3694 |
s->status |= 0x20;
|
3695 |
qemu_irq_pulse(s->irq); |
3696 |
break;
|
3697 |
} |
3698 |
|
3699 |
/* Move on */
|
3700 |
if (s->running)
|
3701 |
s->ti ++; |
3702 |
s->tick += 1000;
|
3703 |
|
3704 |
/*
|
3705 |
* Every full hour add a rough approximation of the compensation
|
3706 |
* register to the 32kHz Timer (which drives the RTC) value.
|
3707 |
*/
|
3708 |
if (s->auto_comp && !s->current_tm.tm_sec && !s->current_tm.tm_min)
|
3709 |
s->tick += s->comp_reg * 1000 / 32768; |
3710 |
|
3711 |
qemu_mod_timer(s->clk, s->tick); |
3712 |
} |
3713 |
|
3714 |
static void omap_rtc_reset(struct omap_rtc_s *s) |
3715 |
{ |
3716 |
struct tm tm;
|
3717 |
|
3718 |
s->interrupts = 0;
|
3719 |
s->comp_reg = 0;
|
3720 |
s->running = 0;
|
3721 |
s->pm_am = 0;
|
3722 |
s->auto_comp = 0;
|
3723 |
s->round = 0;
|
3724 |
s->tick = qemu_get_clock(rt_clock); |
3725 |
memset(&s->alarm_tm, 0, sizeof(s->alarm_tm)); |
3726 |
s->alarm_tm.tm_mday = 0x01;
|
3727 |
s->status = 1 << 7; |
3728 |
qemu_get_timedate(&tm, 0);
|
3729 |
s->ti = mktimegm(&tm); |
3730 |
|
3731 |
omap_rtc_alarm_update(s); |
3732 |
omap_rtc_tick(s); |
3733 |
} |
3734 |
|
3735 |
struct omap_rtc_s *omap_rtc_init(target_phys_addr_t base,
|
3736 |
qemu_irq *irq, omap_clk clk) |
3737 |
{ |
3738 |
int iomemtype;
|
3739 |
struct omap_rtc_s *s = (struct omap_rtc_s *) |
3740 |
qemu_mallocz(sizeof(struct omap_rtc_s)); |
3741 |
|
3742 |
s->irq = irq[0];
|
3743 |
s->alarm = irq[1];
|
3744 |
s->clk = qemu_new_timer(rt_clock, omap_rtc_tick, s); |
3745 |
|
3746 |
omap_rtc_reset(s); |
3747 |
|
3748 |
iomemtype = cpu_register_io_memory(omap_rtc_readfn, |
3749 |
omap_rtc_writefn, s); |
3750 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
3751 |
|
3752 |
return s;
|
3753 |
} |
3754 |
|
3755 |
/* Multi-channel Buffered Serial Port interfaces */
|
3756 |
struct omap_mcbsp_s {
|
3757 |
qemu_irq txirq; |
3758 |
qemu_irq rxirq; |
3759 |
qemu_irq txdrq; |
3760 |
qemu_irq rxdrq; |
3761 |
|
3762 |
uint16_t spcr[2];
|
3763 |
uint16_t rcr[2];
|
3764 |
uint16_t xcr[2];
|
3765 |
uint16_t srgr[2];
|
3766 |
uint16_t mcr[2];
|
3767 |
uint16_t pcr; |
3768 |
uint16_t rcer[8];
|
3769 |
uint16_t xcer[8];
|
3770 |
int tx_rate;
|
3771 |
int rx_rate;
|
3772 |
int tx_req;
|
3773 |
int rx_req;
|
3774 |
|
3775 |
I2SCodec *codec; |
3776 |
QEMUTimer *source_timer; |
3777 |
QEMUTimer *sink_timer; |
3778 |
}; |
3779 |
|
3780 |
static void omap_mcbsp_intr_update(struct omap_mcbsp_s *s) |
3781 |
{ |
3782 |
int irq;
|
3783 |
|
3784 |
switch ((s->spcr[0] >> 4) & 3) { /* RINTM */ |
3785 |
case 0: |
3786 |
irq = (s->spcr[0] >> 1) & 1; /* RRDY */ |
3787 |
break;
|
3788 |
case 3: |
3789 |
irq = (s->spcr[0] >> 3) & 1; /* RSYNCERR */ |
3790 |
break;
|
3791 |
default:
|
3792 |
irq = 0;
|
3793 |
break;
|
3794 |
} |
3795 |
|
3796 |
if (irq)
|
3797 |
qemu_irq_pulse(s->rxirq); |
3798 |
|
3799 |
switch ((s->spcr[1] >> 4) & 3) { /* XINTM */ |
3800 |
case 0: |
3801 |
irq = (s->spcr[1] >> 1) & 1; /* XRDY */ |
3802 |
break;
|
3803 |
case 3: |
3804 |
irq = (s->spcr[1] >> 3) & 1; /* XSYNCERR */ |
3805 |
break;
|
3806 |
default:
|
3807 |
irq = 0;
|
3808 |
break;
|
3809 |
} |
3810 |
|
3811 |
if (irq)
|
3812 |
qemu_irq_pulse(s->txirq); |
3813 |
} |
3814 |
|
3815 |
static void omap_mcbsp_rx_newdata(struct omap_mcbsp_s *s) |
3816 |
{ |
3817 |
if ((s->spcr[0] >> 1) & 1) /* RRDY */ |
3818 |
s->spcr[0] |= 1 << 2; /* RFULL */ |
3819 |
s->spcr[0] |= 1 << 1; /* RRDY */ |
3820 |
qemu_irq_raise(s->rxdrq); |
3821 |
omap_mcbsp_intr_update(s); |
3822 |
} |
3823 |
|
3824 |
static void omap_mcbsp_source_tick(void *opaque) |
3825 |
{ |
3826 |
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; |
3827 |
static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; |
3828 |
|
3829 |
if (!s->rx_rate)
|
3830 |
return;
|
3831 |
if (s->rx_req)
|
3832 |
printf("%s: Rx FIFO overrun\n", __FUNCTION__);
|
3833 |
|
3834 |
s->rx_req = s->rx_rate << bps[(s->rcr[0] >> 5) & 7]; |
3835 |
|
3836 |
omap_mcbsp_rx_newdata(s); |
3837 |
qemu_mod_timer(s->source_timer, qemu_get_clock(vm_clock) + |
3838 |
get_ticks_per_sec()); |
3839 |
} |
3840 |
|
3841 |
static void omap_mcbsp_rx_start(struct omap_mcbsp_s *s) |
3842 |
{ |
3843 |
if (!s->codec || !s->codec->rts)
|
3844 |
omap_mcbsp_source_tick(s); |
3845 |
else if (s->codec->in.len) { |
3846 |
s->rx_req = s->codec->in.len; |
3847 |
omap_mcbsp_rx_newdata(s); |
3848 |
} |
3849 |
} |
3850 |
|
3851 |
static void omap_mcbsp_rx_stop(struct omap_mcbsp_s *s) |
3852 |
{ |
3853 |
qemu_del_timer(s->source_timer); |
3854 |
} |
3855 |
|
3856 |
static void omap_mcbsp_rx_done(struct omap_mcbsp_s *s) |
3857 |
{ |
3858 |
s->spcr[0] &= ~(1 << 1); /* RRDY */ |
3859 |
qemu_irq_lower(s->rxdrq); |
3860 |
omap_mcbsp_intr_update(s); |
3861 |
} |
3862 |
|
3863 |
static void omap_mcbsp_tx_newdata(struct omap_mcbsp_s *s) |
3864 |
{ |
3865 |
s->spcr[1] |= 1 << 1; /* XRDY */ |
3866 |
qemu_irq_raise(s->txdrq); |
3867 |
omap_mcbsp_intr_update(s); |
3868 |
} |
3869 |
|
3870 |
static void omap_mcbsp_sink_tick(void *opaque) |
3871 |
{ |
3872 |
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; |
3873 |
static const int bps[8] = { 0, 1, 1, 2, 2, 2, -255, -255 }; |
3874 |
|
3875 |
if (!s->tx_rate)
|
3876 |
return;
|
3877 |
if (s->tx_req)
|
3878 |
printf("%s: Tx FIFO underrun\n", __FUNCTION__);
|
3879 |
|
3880 |
s->tx_req = s->tx_rate << bps[(s->xcr[0] >> 5) & 7]; |
3881 |
|
3882 |
omap_mcbsp_tx_newdata(s); |
3883 |
qemu_mod_timer(s->sink_timer, qemu_get_clock(vm_clock) + |
3884 |
get_ticks_per_sec()); |
3885 |
} |
3886 |
|
3887 |
static void omap_mcbsp_tx_start(struct omap_mcbsp_s *s) |
3888 |
{ |
3889 |
if (!s->codec || !s->codec->cts)
|
3890 |
omap_mcbsp_sink_tick(s); |
3891 |
else if (s->codec->out.size) { |
3892 |
s->tx_req = s->codec->out.size; |
3893 |
omap_mcbsp_tx_newdata(s); |
3894 |
} |
3895 |
} |
3896 |
|
3897 |
static void omap_mcbsp_tx_done(struct omap_mcbsp_s *s) |
3898 |
{ |
3899 |
s->spcr[1] &= ~(1 << 1); /* XRDY */ |
3900 |
qemu_irq_lower(s->txdrq); |
3901 |
omap_mcbsp_intr_update(s); |
3902 |
if (s->codec && s->codec->cts)
|
3903 |
s->codec->tx_swallow(s->codec->opaque); |
3904 |
} |
3905 |
|
3906 |
static void omap_mcbsp_tx_stop(struct omap_mcbsp_s *s) |
3907 |
{ |
3908 |
s->tx_req = 0;
|
3909 |
omap_mcbsp_tx_done(s); |
3910 |
qemu_del_timer(s->sink_timer); |
3911 |
} |
3912 |
|
3913 |
static void omap_mcbsp_req_update(struct omap_mcbsp_s *s) |
3914 |
{ |
3915 |
int prev_rx_rate, prev_tx_rate;
|
3916 |
int rx_rate = 0, tx_rate = 0; |
3917 |
int cpu_rate = 1500000; /* XXX */ |
3918 |
|
3919 |
/* TODO: check CLKSTP bit */
|
3920 |
if (s->spcr[1] & (1 << 6)) { /* GRST */ |
3921 |
if (s->spcr[0] & (1 << 0)) { /* RRST */ |
3922 |
if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ |
3923 |
(s->pcr & (1 << 8))) { /* CLKRM */ |
3924 |
if (~s->pcr & (1 << 7)) /* SCLKME */ |
3925 |
rx_rate = cpu_rate / |
3926 |
((s->srgr[0] & 0xff) + 1); /* CLKGDV */ |
3927 |
} else
|
3928 |
if (s->codec)
|
3929 |
rx_rate = s->codec->rx_rate; |
3930 |
} |
3931 |
|
3932 |
if (s->spcr[1] & (1 << 0)) { /* XRST */ |
3933 |
if ((s->srgr[1] & (1 << 13)) && /* CLKSM */ |
3934 |
(s->pcr & (1 << 9))) { /* CLKXM */ |
3935 |
if (~s->pcr & (1 << 7)) /* SCLKME */ |
3936 |
tx_rate = cpu_rate / |
3937 |
((s->srgr[0] & 0xff) + 1); /* CLKGDV */ |
3938 |
} else
|
3939 |
if (s->codec)
|
3940 |
tx_rate = s->codec->tx_rate; |
3941 |
} |
3942 |
} |
3943 |
prev_tx_rate = s->tx_rate; |
3944 |
prev_rx_rate = s->rx_rate; |
3945 |
s->tx_rate = tx_rate; |
3946 |
s->rx_rate = rx_rate; |
3947 |
|
3948 |
if (s->codec)
|
3949 |
s->codec->set_rate(s->codec->opaque, rx_rate, tx_rate); |
3950 |
|
3951 |
if (!prev_tx_rate && tx_rate)
|
3952 |
omap_mcbsp_tx_start(s); |
3953 |
else if (s->tx_rate && !tx_rate) |
3954 |
omap_mcbsp_tx_stop(s); |
3955 |
|
3956 |
if (!prev_rx_rate && rx_rate)
|
3957 |
omap_mcbsp_rx_start(s); |
3958 |
else if (prev_tx_rate && !tx_rate) |
3959 |
omap_mcbsp_rx_stop(s); |
3960 |
} |
3961 |
|
3962 |
static uint32_t omap_mcbsp_read(void *opaque, target_phys_addr_t addr) |
3963 |
{ |
3964 |
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; |
3965 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
3966 |
uint16_t ret; |
3967 |
|
3968 |
switch (offset) {
|
3969 |
case 0x00: /* DRR2 */ |
3970 |
if (((s->rcr[0] >> 5) & 7) < 3) /* RWDLEN1 */ |
3971 |
return 0x0000; |
3972 |
/* Fall through. */
|
3973 |
case 0x02: /* DRR1 */ |
3974 |
if (s->rx_req < 2) { |
3975 |
printf("%s: Rx FIFO underrun\n", __FUNCTION__);
|
3976 |
omap_mcbsp_rx_done(s); |
3977 |
} else {
|
3978 |
s->tx_req -= 2;
|
3979 |
if (s->codec && s->codec->in.len >= 2) { |
3980 |
ret = s->codec->in.fifo[s->codec->in.start ++] << 8;
|
3981 |
ret |= s->codec->in.fifo[s->codec->in.start ++]; |
3982 |
s->codec->in.len -= 2;
|
3983 |
} else
|
3984 |
ret = 0x0000;
|
3985 |
if (!s->tx_req)
|
3986 |
omap_mcbsp_rx_done(s); |
3987 |
return ret;
|
3988 |
} |
3989 |
return 0x0000; |
3990 |
|
3991 |
case 0x04: /* DXR2 */ |
3992 |
case 0x06: /* DXR1 */ |
3993 |
return 0x0000; |
3994 |
|
3995 |
case 0x08: /* SPCR2 */ |
3996 |
return s->spcr[1]; |
3997 |
case 0x0a: /* SPCR1 */ |
3998 |
return s->spcr[0]; |
3999 |
case 0x0c: /* RCR2 */ |
4000 |
return s->rcr[1]; |
4001 |
case 0x0e: /* RCR1 */ |
4002 |
return s->rcr[0]; |
4003 |
case 0x10: /* XCR2 */ |
4004 |
return s->xcr[1]; |
4005 |
case 0x12: /* XCR1 */ |
4006 |
return s->xcr[0]; |
4007 |
case 0x14: /* SRGR2 */ |
4008 |
return s->srgr[1]; |
4009 |
case 0x16: /* SRGR1 */ |
4010 |
return s->srgr[0]; |
4011 |
case 0x18: /* MCR2 */ |
4012 |
return s->mcr[1]; |
4013 |
case 0x1a: /* MCR1 */ |
4014 |
return s->mcr[0]; |
4015 |
case 0x1c: /* RCERA */ |
4016 |
return s->rcer[0]; |
4017 |
case 0x1e: /* RCERB */ |
4018 |
return s->rcer[1]; |
4019 |
case 0x20: /* XCERA */ |
4020 |
return s->xcer[0]; |
4021 |
case 0x22: /* XCERB */ |
4022 |
return s->xcer[1]; |
4023 |
case 0x24: /* PCR0 */ |
4024 |
return s->pcr;
|
4025 |
case 0x26: /* RCERC */ |
4026 |
return s->rcer[2]; |
4027 |
case 0x28: /* RCERD */ |
4028 |
return s->rcer[3]; |
4029 |
case 0x2a: /* XCERC */ |
4030 |
return s->xcer[2]; |
4031 |
case 0x2c: /* XCERD */ |
4032 |
return s->xcer[3]; |
4033 |
case 0x2e: /* RCERE */ |
4034 |
return s->rcer[4]; |
4035 |
case 0x30: /* RCERF */ |
4036 |
return s->rcer[5]; |
4037 |
case 0x32: /* XCERE */ |
4038 |
return s->xcer[4]; |
4039 |
case 0x34: /* XCERF */ |
4040 |
return s->xcer[5]; |
4041 |
case 0x36: /* RCERG */ |
4042 |
return s->rcer[6]; |
4043 |
case 0x38: /* RCERH */ |
4044 |
return s->rcer[7]; |
4045 |
case 0x3a: /* XCERG */ |
4046 |
return s->xcer[6]; |
4047 |
case 0x3c: /* XCERH */ |
4048 |
return s->xcer[7]; |
4049 |
} |
4050 |
|
4051 |
OMAP_BAD_REG(addr); |
4052 |
return 0; |
4053 |
} |
4054 |
|
4055 |
static void omap_mcbsp_writeh(void *opaque, target_phys_addr_t addr, |
4056 |
uint32_t value) |
4057 |
{ |
4058 |
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; |
4059 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
4060 |
|
4061 |
switch (offset) {
|
4062 |
case 0x00: /* DRR2 */ |
4063 |
case 0x02: /* DRR1 */ |
4064 |
OMAP_RO_REG(addr); |
4065 |
return;
|
4066 |
|
4067 |
case 0x04: /* DXR2 */ |
4068 |
if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ |
4069 |
return;
|
4070 |
/* Fall through. */
|
4071 |
case 0x06: /* DXR1 */ |
4072 |
if (s->tx_req > 1) { |
4073 |
s->tx_req -= 2;
|
4074 |
if (s->codec && s->codec->cts) {
|
4075 |
s->codec->out.fifo[s->codec->out.len ++] = (value >> 8) & 0xff; |
4076 |
s->codec->out.fifo[s->codec->out.len ++] = (value >> 0) & 0xff; |
4077 |
} |
4078 |
if (s->tx_req < 2) |
4079 |
omap_mcbsp_tx_done(s); |
4080 |
} else
|
4081 |
printf("%s: Tx FIFO overrun\n", __FUNCTION__);
|
4082 |
return;
|
4083 |
|
4084 |
case 0x08: /* SPCR2 */ |
4085 |
s->spcr[1] &= 0x0002; |
4086 |
s->spcr[1] |= 0x03f9 & value; |
4087 |
s->spcr[1] |= 0x0004 & (value << 2); /* XEMPTY := XRST */ |
4088 |
if (~value & 1) /* XRST */ |
4089 |
s->spcr[1] &= ~6; |
4090 |
omap_mcbsp_req_update(s); |
4091 |
return;
|
4092 |
case 0x0a: /* SPCR1 */ |
4093 |
s->spcr[0] &= 0x0006; |
4094 |
s->spcr[0] |= 0xf8f9 & value; |
4095 |
if (value & (1 << 15)) /* DLB */ |
4096 |
printf("%s: Digital Loopback mode enable attempt\n", __FUNCTION__);
|
4097 |
if (~value & 1) { /* RRST */ |
4098 |
s->spcr[0] &= ~6; |
4099 |
s->rx_req = 0;
|
4100 |
omap_mcbsp_rx_done(s); |
4101 |
} |
4102 |
omap_mcbsp_req_update(s); |
4103 |
return;
|
4104 |
|
4105 |
case 0x0c: /* RCR2 */ |
4106 |
s->rcr[1] = value & 0xffff; |
4107 |
return;
|
4108 |
case 0x0e: /* RCR1 */ |
4109 |
s->rcr[0] = value & 0x7fe0; |
4110 |
return;
|
4111 |
case 0x10: /* XCR2 */ |
4112 |
s->xcr[1] = value & 0xffff; |
4113 |
return;
|
4114 |
case 0x12: /* XCR1 */ |
4115 |
s->xcr[0] = value & 0x7fe0; |
4116 |
return;
|
4117 |
case 0x14: /* SRGR2 */ |
4118 |
s->srgr[1] = value & 0xffff; |
4119 |
omap_mcbsp_req_update(s); |
4120 |
return;
|
4121 |
case 0x16: /* SRGR1 */ |
4122 |
s->srgr[0] = value & 0xffff; |
4123 |
omap_mcbsp_req_update(s); |
4124 |
return;
|
4125 |
case 0x18: /* MCR2 */ |
4126 |
s->mcr[1] = value & 0x03e3; |
4127 |
if (value & 3) /* XMCM */ |
4128 |
printf("%s: Tx channel selection mode enable attempt\n",
|
4129 |
__FUNCTION__); |
4130 |
return;
|
4131 |
case 0x1a: /* MCR1 */ |
4132 |
s->mcr[0] = value & 0x03e1; |
4133 |
if (value & 1) /* RMCM */ |
4134 |
printf("%s: Rx channel selection mode enable attempt\n",
|
4135 |
__FUNCTION__); |
4136 |
return;
|
4137 |
case 0x1c: /* RCERA */ |
4138 |
s->rcer[0] = value & 0xffff; |
4139 |
return;
|
4140 |
case 0x1e: /* RCERB */ |
4141 |
s->rcer[1] = value & 0xffff; |
4142 |
return;
|
4143 |
case 0x20: /* XCERA */ |
4144 |
s->xcer[0] = value & 0xffff; |
4145 |
return;
|
4146 |
case 0x22: /* XCERB */ |
4147 |
s->xcer[1] = value & 0xffff; |
4148 |
return;
|
4149 |
case 0x24: /* PCR0 */ |
4150 |
s->pcr = value & 0x7faf;
|
4151 |
return;
|
4152 |
case 0x26: /* RCERC */ |
4153 |
s->rcer[2] = value & 0xffff; |
4154 |
return;
|
4155 |
case 0x28: /* RCERD */ |
4156 |
s->rcer[3] = value & 0xffff; |
4157 |
return;
|
4158 |
case 0x2a: /* XCERC */ |
4159 |
s->xcer[2] = value & 0xffff; |
4160 |
return;
|
4161 |
case 0x2c: /* XCERD */ |
4162 |
s->xcer[3] = value & 0xffff; |
4163 |
return;
|
4164 |
case 0x2e: /* RCERE */ |
4165 |
s->rcer[4] = value & 0xffff; |
4166 |
return;
|
4167 |
case 0x30: /* RCERF */ |
4168 |
s->rcer[5] = value & 0xffff; |
4169 |
return;
|
4170 |
case 0x32: /* XCERE */ |
4171 |
s->xcer[4] = value & 0xffff; |
4172 |
return;
|
4173 |
case 0x34: /* XCERF */ |
4174 |
s->xcer[5] = value & 0xffff; |
4175 |
return;
|
4176 |
case 0x36: /* RCERG */ |
4177 |
s->rcer[6] = value & 0xffff; |
4178 |
return;
|
4179 |
case 0x38: /* RCERH */ |
4180 |
s->rcer[7] = value & 0xffff; |
4181 |
return;
|
4182 |
case 0x3a: /* XCERG */ |
4183 |
s->xcer[6] = value & 0xffff; |
4184 |
return;
|
4185 |
case 0x3c: /* XCERH */ |
4186 |
s->xcer[7] = value & 0xffff; |
4187 |
return;
|
4188 |
} |
4189 |
|
4190 |
OMAP_BAD_REG(addr); |
4191 |
} |
4192 |
|
4193 |
static void omap_mcbsp_writew(void *opaque, target_phys_addr_t addr, |
4194 |
uint32_t value) |
4195 |
{ |
4196 |
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; |
4197 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
4198 |
|
4199 |
if (offset == 0x04) { /* DXR */ |
4200 |
if (((s->xcr[0] >> 5) & 7) < 3) /* XWDLEN1 */ |
4201 |
return;
|
4202 |
if (s->tx_req > 3) { |
4203 |
s->tx_req -= 4;
|
4204 |
if (s->codec && s->codec->cts) {
|
4205 |
s->codec->out.fifo[s->codec->out.len ++] = |
4206 |
(value >> 24) & 0xff; |
4207 |
s->codec->out.fifo[s->codec->out.len ++] = |
4208 |
(value >> 16) & 0xff; |
4209 |
s->codec->out.fifo[s->codec->out.len ++] = |
4210 |
(value >> 8) & 0xff; |
4211 |
s->codec->out.fifo[s->codec->out.len ++] = |
4212 |
(value >> 0) & 0xff; |
4213 |
} |
4214 |
if (s->tx_req < 4) |
4215 |
omap_mcbsp_tx_done(s); |
4216 |
} else
|
4217 |
printf("%s: Tx FIFO overrun\n", __FUNCTION__);
|
4218 |
return;
|
4219 |
} |
4220 |
|
4221 |
omap_badwidth_write16(opaque, addr, value); |
4222 |
} |
4223 |
|
4224 |
static CPUReadMemoryFunc * const omap_mcbsp_readfn[] = { |
4225 |
omap_badwidth_read16, |
4226 |
omap_mcbsp_read, |
4227 |
omap_badwidth_read16, |
4228 |
}; |
4229 |
|
4230 |
static CPUWriteMemoryFunc * const omap_mcbsp_writefn[] = { |
4231 |
omap_badwidth_write16, |
4232 |
omap_mcbsp_writeh, |
4233 |
omap_mcbsp_writew, |
4234 |
}; |
4235 |
|
4236 |
static void omap_mcbsp_reset(struct omap_mcbsp_s *s) |
4237 |
{ |
4238 |
memset(&s->spcr, 0, sizeof(s->spcr)); |
4239 |
memset(&s->rcr, 0, sizeof(s->rcr)); |
4240 |
memset(&s->xcr, 0, sizeof(s->xcr)); |
4241 |
s->srgr[0] = 0x0001; |
4242 |
s->srgr[1] = 0x2000; |
4243 |
memset(&s->mcr, 0, sizeof(s->mcr)); |
4244 |
memset(&s->pcr, 0, sizeof(s->pcr)); |
4245 |
memset(&s->rcer, 0, sizeof(s->rcer)); |
4246 |
memset(&s->xcer, 0, sizeof(s->xcer)); |
4247 |
s->tx_req = 0;
|
4248 |
s->rx_req = 0;
|
4249 |
s->tx_rate = 0;
|
4250 |
s->rx_rate = 0;
|
4251 |
qemu_del_timer(s->source_timer); |
4252 |
qemu_del_timer(s->sink_timer); |
4253 |
} |
4254 |
|
4255 |
struct omap_mcbsp_s *omap_mcbsp_init(target_phys_addr_t base,
|
4256 |
qemu_irq *irq, qemu_irq *dma, omap_clk clk) |
4257 |
{ |
4258 |
int iomemtype;
|
4259 |
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) |
4260 |
qemu_mallocz(sizeof(struct omap_mcbsp_s)); |
4261 |
|
4262 |
s->txirq = irq[0];
|
4263 |
s->rxirq = irq[1];
|
4264 |
s->txdrq = dma[0];
|
4265 |
s->rxdrq = dma[1];
|
4266 |
s->sink_timer = qemu_new_timer(vm_clock, omap_mcbsp_sink_tick, s); |
4267 |
s->source_timer = qemu_new_timer(vm_clock, omap_mcbsp_source_tick, s); |
4268 |
omap_mcbsp_reset(s); |
4269 |
|
4270 |
iomemtype = cpu_register_io_memory(omap_mcbsp_readfn, |
4271 |
omap_mcbsp_writefn, s); |
4272 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
4273 |
|
4274 |
return s;
|
4275 |
} |
4276 |
|
4277 |
static void omap_mcbsp_i2s_swallow(void *opaque, int line, int level) |
4278 |
{ |
4279 |
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; |
4280 |
|
4281 |
if (s->rx_rate) {
|
4282 |
s->rx_req = s->codec->in.len; |
4283 |
omap_mcbsp_rx_newdata(s); |
4284 |
} |
4285 |
} |
4286 |
|
4287 |
static void omap_mcbsp_i2s_start(void *opaque, int line, int level) |
4288 |
{ |
4289 |
struct omap_mcbsp_s *s = (struct omap_mcbsp_s *) opaque; |
4290 |
|
4291 |
if (s->tx_rate) {
|
4292 |
s->tx_req = s->codec->out.size; |
4293 |
omap_mcbsp_tx_newdata(s); |
4294 |
} |
4295 |
} |
4296 |
|
4297 |
void omap_mcbsp_i2s_attach(struct omap_mcbsp_s *s, I2SCodec *slave) |
4298 |
{ |
4299 |
s->codec = slave; |
4300 |
slave->rx_swallow = qemu_allocate_irqs(omap_mcbsp_i2s_swallow, s, 1)[0]; |
4301 |
slave->tx_start = qemu_allocate_irqs(omap_mcbsp_i2s_start, s, 1)[0]; |
4302 |
} |
4303 |
|
4304 |
/* LED Pulse Generators */
|
4305 |
struct omap_lpg_s {
|
4306 |
QEMUTimer *tm; |
4307 |
|
4308 |
uint8_t control; |
4309 |
uint8_t power; |
4310 |
int64_t on; |
4311 |
int64_t period; |
4312 |
int clk;
|
4313 |
int cycle;
|
4314 |
}; |
4315 |
|
4316 |
static void omap_lpg_tick(void *opaque) |
4317 |
{ |
4318 |
struct omap_lpg_s *s = opaque;
|
4319 |
|
4320 |
if (s->cycle)
|
4321 |
qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->period - s->on); |
4322 |
else
|
4323 |
qemu_mod_timer(s->tm, qemu_get_clock(rt_clock) + s->on); |
4324 |
|
4325 |
s->cycle = !s->cycle; |
4326 |
printf("%s: LED is %s\n", __FUNCTION__, s->cycle ? "on" : "off"); |
4327 |
} |
4328 |
|
4329 |
static void omap_lpg_update(struct omap_lpg_s *s) |
4330 |
{ |
4331 |
int64_t on, period = 1, ticks = 1000; |
4332 |
static const int per[8] = { 1, 2, 4, 8, 12, 16, 20, 24 }; |
4333 |
|
4334 |
if (~s->control & (1 << 6)) /* LPGRES */ |
4335 |
on = 0;
|
4336 |
else if (s->control & (1 << 7)) /* PERM_ON */ |
4337 |
on = period; |
4338 |
else {
|
4339 |
period = muldiv64(ticks, per[s->control & 7], /* PERCTRL */ |
4340 |
256 / 32); |
4341 |
on = (s->clk && s->power) ? muldiv64(ticks, |
4342 |
per[(s->control >> 3) & 7], 256) : 0; /* ONCTRL */ |
4343 |
} |
4344 |
|
4345 |
qemu_del_timer(s->tm); |
4346 |
if (on == period && s->on < s->period)
|
4347 |
printf("%s: LED is on\n", __FUNCTION__);
|
4348 |
else if (on == 0 && s->on) |
4349 |
printf("%s: LED is off\n", __FUNCTION__);
|
4350 |
else if (on && (on != s->on || period != s->period)) { |
4351 |
s->cycle = 0;
|
4352 |
s->on = on; |
4353 |
s->period = period; |
4354 |
omap_lpg_tick(s); |
4355 |
return;
|
4356 |
} |
4357 |
|
4358 |
s->on = on; |
4359 |
s->period = period; |
4360 |
} |
4361 |
|
4362 |
static void omap_lpg_reset(struct omap_lpg_s *s) |
4363 |
{ |
4364 |
s->control = 0x00;
|
4365 |
s->power = 0x00;
|
4366 |
s->clk = 1;
|
4367 |
omap_lpg_update(s); |
4368 |
} |
4369 |
|
4370 |
static uint32_t omap_lpg_read(void *opaque, target_phys_addr_t addr) |
4371 |
{ |
4372 |
struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; |
4373 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
4374 |
|
4375 |
switch (offset) {
|
4376 |
case 0x00: /* LCR */ |
4377 |
return s->control;
|
4378 |
|
4379 |
case 0x04: /* PMR */ |
4380 |
return s->power;
|
4381 |
} |
4382 |
|
4383 |
OMAP_BAD_REG(addr); |
4384 |
return 0; |
4385 |
} |
4386 |
|
4387 |
static void omap_lpg_write(void *opaque, target_phys_addr_t addr, |
4388 |
uint32_t value) |
4389 |
{ |
4390 |
struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; |
4391 |
int offset = addr & OMAP_MPUI_REG_MASK;
|
4392 |
|
4393 |
switch (offset) {
|
4394 |
case 0x00: /* LCR */ |
4395 |
if (~value & (1 << 6)) /* LPGRES */ |
4396 |
omap_lpg_reset(s); |
4397 |
s->control = value & 0xff;
|
4398 |
omap_lpg_update(s); |
4399 |
return;
|
4400 |
|
4401 |
case 0x04: /* PMR */ |
4402 |
s->power = value & 0x01;
|
4403 |
omap_lpg_update(s); |
4404 |
return;
|
4405 |
|
4406 |
default:
|
4407 |
OMAP_BAD_REG(addr); |
4408 |
return;
|
4409 |
} |
4410 |
} |
4411 |
|
4412 |
static CPUReadMemoryFunc * const omap_lpg_readfn[] = { |
4413 |
omap_lpg_read, |
4414 |
omap_badwidth_read8, |
4415 |
omap_badwidth_read8, |
4416 |
}; |
4417 |
|
4418 |
static CPUWriteMemoryFunc * const omap_lpg_writefn[] = { |
4419 |
omap_lpg_write, |
4420 |
omap_badwidth_write8, |
4421 |
omap_badwidth_write8, |
4422 |
}; |
4423 |
|
4424 |
static void omap_lpg_clk_update(void *opaque, int line, int on) |
4425 |
{ |
4426 |
struct omap_lpg_s *s = (struct omap_lpg_s *) opaque; |
4427 |
|
4428 |
s->clk = on; |
4429 |
omap_lpg_update(s); |
4430 |
} |
4431 |
|
4432 |
struct omap_lpg_s *omap_lpg_init(target_phys_addr_t base, omap_clk clk)
|
4433 |
{ |
4434 |
int iomemtype;
|
4435 |
struct omap_lpg_s *s = (struct omap_lpg_s *) |
4436 |
qemu_mallocz(sizeof(struct omap_lpg_s)); |
4437 |
|
4438 |
s->tm = qemu_new_timer(rt_clock, omap_lpg_tick, s); |
4439 |
|
4440 |
omap_lpg_reset(s); |
4441 |
|
4442 |
iomemtype = cpu_register_io_memory(omap_lpg_readfn, |
4443 |
omap_lpg_writefn, s); |
4444 |
cpu_register_physical_memory(base, 0x800, iomemtype);
|
4445 |
|
4446 |
omap_clk_adduser(clk, qemu_allocate_irqs(omap_lpg_clk_update, s, 1)[0]); |
4447 |
|
4448 |
return s;
|
4449 |
} |
4450 |
|
4451 |
/* MPUI Peripheral Bridge configuration */
|
4452 |
static uint32_t omap_mpui_io_read(void *opaque, target_phys_addr_t addr) |
4453 |
{ |
4454 |
if (addr == OMAP_MPUI_BASE) /* CMR */ |
4455 |
return 0xfe4d; |
4456 |
|
4457 |
OMAP_BAD_REG(addr); |
4458 |
return 0; |
4459 |
} |
4460 |
|
4461 |
static CPUReadMemoryFunc * const omap_mpui_io_readfn[] = { |
4462 |
omap_badwidth_read16, |
4463 |
omap_mpui_io_read, |
4464 |
omap_badwidth_read16, |
4465 |
}; |
4466 |
|
4467 |
static CPUWriteMemoryFunc * const omap_mpui_io_writefn[] = { |
4468 |
omap_badwidth_write16, |
4469 |
omap_badwidth_write16, |
4470 |
omap_badwidth_write16, |
4471 |
}; |
4472 |
|
4473 |
static void omap_setup_mpui_io(struct omap_mpu_state_s *mpu) |
4474 |
{ |
4475 |
int iomemtype = cpu_register_io_memory(omap_mpui_io_readfn,
|
4476 |
omap_mpui_io_writefn, mpu); |
4477 |
cpu_register_physical_memory(OMAP_MPUI_BASE, 0x7fff, iomemtype);
|
4478 |
} |
4479 |
|
4480 |
/* General chip reset */
|
4481 |
static void omap1_mpu_reset(void *opaque) |
4482 |
{ |
4483 |
struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; |
4484 |
|
4485 |
omap_inth_reset(mpu->ih[0]);
|
4486 |
omap_inth_reset(mpu->ih[1]);
|
4487 |
omap_dma_reset(mpu->dma); |
4488 |
omap_mpu_timer_reset(mpu->timer[0]);
|
4489 |
omap_mpu_timer_reset(mpu->timer[1]);
|
4490 |
omap_mpu_timer_reset(mpu->timer[2]);
|
4491 |
omap_wd_timer_reset(mpu->wdt); |
4492 |
omap_os_timer_reset(mpu->os_timer); |
4493 |
omap_lcdc_reset(mpu->lcd); |
4494 |
omap_ulpd_pm_reset(mpu); |
4495 |
omap_pin_cfg_reset(mpu); |
4496 |
omap_mpui_reset(mpu); |
4497 |
omap_tipb_bridge_reset(mpu->private_tipb); |
4498 |
omap_tipb_bridge_reset(mpu->public_tipb); |
4499 |
omap_dpll_reset(&mpu->dpll[0]);
|
4500 |
omap_dpll_reset(&mpu->dpll[1]);
|
4501 |
omap_dpll_reset(&mpu->dpll[2]);
|
4502 |
omap_uart_reset(mpu->uart[0]);
|
4503 |
omap_uart_reset(mpu->uart[1]);
|
4504 |
omap_uart_reset(mpu->uart[2]);
|
4505 |
omap_mmc_reset(mpu->mmc); |
4506 |
omap_mpuio_reset(mpu->mpuio); |
4507 |
omap_gpio_reset(mpu->gpio); |
4508 |
omap_uwire_reset(mpu->microwire); |
4509 |
omap_pwl_reset(mpu); |
4510 |
omap_pwt_reset(mpu); |
4511 |
omap_i2c_reset(mpu->i2c[0]);
|
4512 |
omap_rtc_reset(mpu->rtc); |
4513 |
omap_mcbsp_reset(mpu->mcbsp1); |
4514 |
omap_mcbsp_reset(mpu->mcbsp2); |
4515 |
omap_mcbsp_reset(mpu->mcbsp3); |
4516 |
omap_lpg_reset(mpu->led[0]);
|
4517 |
omap_lpg_reset(mpu->led[1]);
|
4518 |
omap_clkm_reset(mpu); |
4519 |
cpu_reset(mpu->env); |
4520 |
} |
4521 |
|
4522 |
static const struct omap_map_s { |
4523 |
target_phys_addr_t phys_dsp; |
4524 |
target_phys_addr_t phys_mpu; |
4525 |
uint32_t size; |
4526 |
const char *name; |
4527 |
} omap15xx_dsp_mm[] = { |
4528 |
/* Strobe 0 */
|
4529 |
{ 0xe1010000, 0xfffb0000, 0x800, "UART1 BT" }, /* CS0 */ |
4530 |
{ 0xe1010800, 0xfffb0800, 0x800, "UART2 COM" }, /* CS1 */ |
4531 |
{ 0xe1011800, 0xfffb1800, 0x800, "McBSP1 audio" }, /* CS3 */ |
4532 |
{ 0xe1012000, 0xfffb2000, 0x800, "MCSI2 communication" }, /* CS4 */ |
4533 |
{ 0xe1012800, 0xfffb2800, 0x800, "MCSI1 BT u-Law" }, /* CS5 */ |
4534 |
{ 0xe1013000, 0xfffb3000, 0x800, "uWire" }, /* CS6 */ |
4535 |
{ 0xe1013800, 0xfffb3800, 0x800, "I^2C" }, /* CS7 */ |
4536 |
{ 0xe1014000, 0xfffb4000, 0x800, "USB W2FC" }, /* CS8 */ |
4537 |
{ 0xe1014800, 0xfffb4800, 0x800, "RTC" }, /* CS9 */ |
4538 |
{ 0xe1015000, 0xfffb5000, 0x800, "MPUIO" }, /* CS10 */ |
4539 |
{ 0xe1015800, 0xfffb5800, 0x800, "PWL" }, /* CS11 */ |
4540 |
{ 0xe1016000, 0xfffb6000, 0x800, "PWT" }, /* CS12 */ |
4541 |
{ 0xe1017000, 0xfffb7000, 0x800, "McBSP3" }, /* CS14 */ |
4542 |
{ 0xe1017800, 0xfffb7800, 0x800, "MMC" }, /* CS15 */ |
4543 |
{ 0xe1019000, 0xfffb9000, 0x800, "32-kHz timer" }, /* CS18 */ |
4544 |
{ 0xe1019800, 0xfffb9800, 0x800, "UART3" }, /* CS19 */ |
4545 |
{ 0xe101c800, 0xfffbc800, 0x800, "TIPB switches" }, /* CS25 */ |
4546 |
/* Strobe 1 */
|
4547 |
{ 0xe101e000, 0xfffce000, 0x800, "GPIOs" }, /* CS28 */ |
4548 |
|
4549 |
{ 0 }
|
4550 |
}; |
4551 |
|
4552 |
static void omap_setup_dsp_mapping(const struct omap_map_s *map) |
4553 |
{ |
4554 |
int io;
|
4555 |
|
4556 |
for (; map->phys_dsp; map ++) {
|
4557 |
io = cpu_get_physical_page_desc(map->phys_mpu); |
4558 |
|
4559 |
cpu_register_physical_memory(map->phys_dsp, map->size, io); |
4560 |
} |
4561 |
} |
4562 |
|
4563 |
void omap_mpu_wakeup(void *opaque, int irq, int req) |
4564 |
{ |
4565 |
struct omap_mpu_state_s *mpu = (struct omap_mpu_state_s *) opaque; |
4566 |
|
4567 |
if (mpu->env->halted)
|
4568 |
cpu_interrupt(mpu->env, CPU_INTERRUPT_EXITTB); |
4569 |
} |
4570 |
|
4571 |
static const struct dma_irq_map omap1_dma_irq_map[] = { |
4572 |
{ 0, OMAP_INT_DMA_CH0_6 },
|
4573 |
{ 0, OMAP_INT_DMA_CH1_7 },
|
4574 |
{ 0, OMAP_INT_DMA_CH2_8 },
|
4575 |
{ 0, OMAP_INT_DMA_CH3 },
|
4576 |
{ 0, OMAP_INT_DMA_CH4 },
|
4577 |
{ 0, OMAP_INT_DMA_CH5 },
|
4578 |
{ 1, OMAP_INT_1610_DMA_CH6 },
|
4579 |
{ 1, OMAP_INT_1610_DMA_CH7 },
|
4580 |
{ 1, OMAP_INT_1610_DMA_CH8 },
|
4581 |
{ 1, OMAP_INT_1610_DMA_CH9 },
|
4582 |
{ 1, OMAP_INT_1610_DMA_CH10 },
|
4583 |
{ 1, OMAP_INT_1610_DMA_CH11 },
|
4584 |
{ 1, OMAP_INT_1610_DMA_CH12 },
|
4585 |
{ 1, OMAP_INT_1610_DMA_CH13 },
|
4586 |
{ 1, OMAP_INT_1610_DMA_CH14 },
|
4587 |
{ 1, OMAP_INT_1610_DMA_CH15 }
|
4588 |
}; |
4589 |
|
4590 |
/* DMA ports for OMAP1 */
|
4591 |
static int omap_validate_emiff_addr(struct omap_mpu_state_s *s, |
4592 |
target_phys_addr_t addr) |
4593 |
{ |
4594 |
return addr >= OMAP_EMIFF_BASE && addr < OMAP_EMIFF_BASE + s->sdram_size;
|
4595 |
} |
4596 |
|
4597 |
static int omap_validate_emifs_addr(struct omap_mpu_state_s *s, |
4598 |
target_phys_addr_t addr) |
4599 |
{ |
4600 |
return addr >= OMAP_EMIFS_BASE && addr < OMAP_EMIFF_BASE;
|
4601 |
} |
4602 |
|
4603 |
static int omap_validate_imif_addr(struct omap_mpu_state_s *s, |
4604 |
target_phys_addr_t addr) |
4605 |
{ |
4606 |
return addr >= OMAP_IMIF_BASE && addr < OMAP_IMIF_BASE + s->sram_size;
|
4607 |
} |
4608 |
|
4609 |
static int omap_validate_tipb_addr(struct omap_mpu_state_s *s, |
4610 |
target_phys_addr_t addr) |
4611 |
{ |
4612 |
return addr >= 0xfffb0000 && addr < 0xffff0000; |
4613 |
} |
4614 |
|
4615 |
static int omap_validate_local_addr(struct omap_mpu_state_s *s, |
4616 |
target_phys_addr_t addr) |
4617 |
{ |
4618 |
return addr >= OMAP_LOCALBUS_BASE && addr < OMAP_LOCALBUS_BASE + 0x1000000; |
4619 |
} |
4620 |
|
4621 |
static int omap_validate_tipb_mpui_addr(struct omap_mpu_state_s *s, |
4622 |
target_phys_addr_t addr) |
4623 |
{ |
4624 |
return addr >= 0xe1010000 && addr < 0xe1020004; |
4625 |
} |
4626 |
|
4627 |
struct omap_mpu_state_s *omap310_mpu_init(unsigned long sdram_size, |
4628 |
const char *core) |
4629 |
{ |
4630 |
int i;
|
4631 |
struct omap_mpu_state_s *s = (struct omap_mpu_state_s *) |
4632 |
qemu_mallocz(sizeof(struct omap_mpu_state_s)); |
4633 |
ram_addr_t imif_base, emiff_base; |
4634 |
qemu_irq *cpu_irq; |
4635 |
qemu_irq dma_irqs[6];
|
4636 |
DriveInfo *dinfo; |
4637 |
|
4638 |
if (!core)
|
4639 |
core = "ti925t";
|
4640 |
|
4641 |
/* Core */
|
4642 |
s->mpu_model = omap310; |
4643 |
s->env = cpu_init(core); |
4644 |
if (!s->env) {
|
4645 |
fprintf(stderr, "Unable to find CPU definition\n");
|
4646 |
exit(1);
|
4647 |
} |
4648 |
s->sdram_size = sdram_size; |
4649 |
s->sram_size = OMAP15XX_SRAM_SIZE; |
4650 |
|
4651 |
s->wakeup = qemu_allocate_irqs(omap_mpu_wakeup, s, 1)[0]; |
4652 |
|
4653 |
/* Clocks */
|
4654 |
omap_clk_init(s); |
4655 |
|
4656 |
/* Memory-mapped stuff */
|
4657 |
cpu_register_physical_memory(OMAP_EMIFF_BASE, s->sdram_size, |
4658 |
(emiff_base = qemu_ram_alloc(s->sdram_size)) | IO_MEM_RAM); |
4659 |
cpu_register_physical_memory(OMAP_IMIF_BASE, s->sram_size, |
4660 |
(imif_base = qemu_ram_alloc(s->sram_size)) | IO_MEM_RAM); |
4661 |
|
4662 |
omap_clkm_init(0xfffece00, 0xe1008000, s); |
4663 |
|
4664 |
cpu_irq = arm_pic_init_cpu(s->env); |
4665 |
s->ih[0] = omap_inth_init(0xfffecb00, 0x100, 1, &s->irq[0], |
4666 |
cpu_irq[ARM_PIC_CPU_IRQ], cpu_irq[ARM_PIC_CPU_FIQ], |
4667 |
omap_findclk(s, "arminth_ck"));
|
4668 |
s->ih[1] = omap_inth_init(0xfffe0000, 0x800, 1, &s->irq[1], |
4669 |
s->ih[0]->pins[OMAP_INT_15XX_IH2_IRQ], NULL, |
4670 |
omap_findclk(s, "arminth_ck"));
|
4671 |
|
4672 |
for (i = 0; i < 6; i ++) |
4673 |
dma_irqs[i] = |
4674 |
s->irq[omap1_dma_irq_map[i].ih][omap1_dma_irq_map[i].intr]; |
4675 |
s->dma = omap_dma_init(0xfffed800, dma_irqs, s->irq[0][OMAP_INT_DMA_LCD], |
4676 |
s, omap_findclk(s, "dma_ck"), omap_dma_3_1);
|
4677 |
|
4678 |
s->port[emiff ].addr_valid = omap_validate_emiff_addr; |
4679 |
s->port[emifs ].addr_valid = omap_validate_emifs_addr; |
4680 |
s->port[imif ].addr_valid = omap_validate_imif_addr; |
4681 |
s->port[tipb ].addr_valid = omap_validate_tipb_addr; |
4682 |
s->port[local ].addr_valid = omap_validate_local_addr; |
4683 |
s->port[tipb_mpui].addr_valid = omap_validate_tipb_mpui_addr; |
4684 |
|
4685 |
/* Register SDRAM and SRAM DMA ports for fast transfers. */
|
4686 |
soc_dma_port_add_mem_ram(s->dma, |
4687 |
emiff_base, OMAP_EMIFF_BASE, s->sdram_size); |
4688 |
soc_dma_port_add_mem_ram(s->dma, |
4689 |
imif_base, OMAP_IMIF_BASE, s->sram_size); |
4690 |
|
4691 |
s->timer[0] = omap_mpu_timer_init(0xfffec500, |
4692 |
s->irq[0][OMAP_INT_TIMER1],
|
4693 |
omap_findclk(s, "mputim_ck"));
|
4694 |
s->timer[1] = omap_mpu_timer_init(0xfffec600, |
4695 |
s->irq[0][OMAP_INT_TIMER2],
|
4696 |
omap_findclk(s, "mputim_ck"));
|
4697 |
s->timer[2] = omap_mpu_timer_init(0xfffec700, |
4698 |
s->irq[0][OMAP_INT_TIMER3],
|
4699 |
omap_findclk(s, "mputim_ck"));
|
4700 |
|
4701 |
s->wdt = omap_wd_timer_init(0xfffec800,
|
4702 |
s->irq[0][OMAP_INT_WD_TIMER],
|
4703 |
omap_findclk(s, "armwdt_ck"));
|
4704 |
|
4705 |
s->os_timer = omap_os_timer_init(0xfffb9000,
|
4706 |
s->irq[1][OMAP_INT_OS_TIMER],
|
4707 |
omap_findclk(s, "clk32-kHz"));
|
4708 |
|
4709 |
s->lcd = omap_lcdc_init(0xfffec000, s->irq[0][OMAP_INT_LCD_CTRL], |
4710 |
omap_dma_get_lcdch(s->dma), imif_base, emiff_base, |
4711 |
omap_findclk(s, "lcd_ck"));
|
4712 |
|
4713 |
omap_ulpd_pm_init(0xfffe0800, s);
|
4714 |
omap_pin_cfg_init(0xfffe1000, s);
|
4715 |
omap_id_init(s); |
4716 |
|
4717 |
omap_mpui_init(0xfffec900, s);
|
4718 |
|
4719 |
s->private_tipb = omap_tipb_bridge_init(0xfffeca00,
|
4720 |
s->irq[0][OMAP_INT_BRIDGE_PRIV],
|
4721 |
omap_findclk(s, "tipb_ck"));
|
4722 |
s->public_tipb = omap_tipb_bridge_init(0xfffed300,
|
4723 |
s->irq[0][OMAP_INT_BRIDGE_PUB],
|
4724 |
omap_findclk(s, "tipb_ck"));
|
4725 |
|
4726 |
omap_tcmi_init(0xfffecc00, s);
|
4727 |
|
4728 |
s->uart[0] = omap_uart_init(0xfffb0000, s->irq[1][OMAP_INT_UART1], |
4729 |
omap_findclk(s, "uart1_ck"),
|
4730 |
omap_findclk(s, "uart1_ck"),
|
4731 |
s->drq[OMAP_DMA_UART1_TX], s->drq[OMAP_DMA_UART1_RX], |
4732 |
serial_hds[0]);
|
4733 |
s->uart[1] = omap_uart_init(0xfffb0800, s->irq[1][OMAP_INT_UART2], |
4734 |
omap_findclk(s, "uart2_ck"),
|
4735 |
omap_findclk(s, "uart2_ck"),
|
4736 |
s->drq[OMAP_DMA_UART2_TX], s->drq[OMAP_DMA_UART2_RX], |
4737 |
serial_hds[0] ? serial_hds[1] : NULL); |
4738 |
s->uart[2] = omap_uart_init(0xfffb9800, s->irq[0][OMAP_INT_UART3], |
4739 |
omap_findclk(s, "uart3_ck"),
|
4740 |
omap_findclk(s, "uart3_ck"),
|
4741 |
s->drq[OMAP_DMA_UART3_TX], s->drq[OMAP_DMA_UART3_RX], |
4742 |
serial_hds[0] && serial_hds[1] ? serial_hds[2] : NULL); |
4743 |
|
4744 |
omap_dpll_init(&s->dpll[0], 0xfffecf00, omap_findclk(s, "dpll1")); |
4745 |
omap_dpll_init(&s->dpll[1], 0xfffed000, omap_findclk(s, "dpll2")); |
4746 |
omap_dpll_init(&s->dpll[2], 0xfffed100 |