Statistics
| Branch: | Revision:

root / hw / lsi53c895a.c @ 2507c12a

History | View | Annotate | Download (62.6 kB)

1
/*
2
 * QEMU LSI53C895A SCSI Host Bus Adapter emulation
3
 *
4
 * Copyright (c) 2006 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the LGPL.
8
 */
9

    
10
/* ??? Need to check if the {read,write}[wl] routines work properly on
11
   big-endian targets.  */
12

    
13
#include <assert.h>
14

    
15
#include "hw.h"
16
#include "pci.h"
17
#include "scsi.h"
18
#include "block_int.h"
19

    
20
//#define DEBUG_LSI
21
//#define DEBUG_LSI_REG
22

    
23
#ifdef DEBUG_LSI
24
#define DPRINTF(fmt, ...) \
25
do { printf("lsi_scsi: " fmt , ## __VA_ARGS__); } while (0)
26
#define BADF(fmt, ...) \
27
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__); exit(1);} while (0)
28
#else
29
#define DPRINTF(fmt, ...) do {} while(0)
30
#define BADF(fmt, ...) \
31
do { fprintf(stderr, "lsi_scsi: error: " fmt , ## __VA_ARGS__);} while (0)
32
#endif
33

    
34
#define LSI_MAX_DEVS 7
35

    
36
#define LSI_SCNTL0_TRG    0x01
37
#define LSI_SCNTL0_AAP    0x02
38
#define LSI_SCNTL0_EPC    0x08
39
#define LSI_SCNTL0_WATN   0x10
40
#define LSI_SCNTL0_START  0x20
41

    
42
#define LSI_SCNTL1_SST    0x01
43
#define LSI_SCNTL1_IARB   0x02
44
#define LSI_SCNTL1_AESP   0x04
45
#define LSI_SCNTL1_RST    0x08
46
#define LSI_SCNTL1_CON    0x10
47
#define LSI_SCNTL1_DHP    0x20
48
#define LSI_SCNTL1_ADB    0x40
49
#define LSI_SCNTL1_EXC    0x80
50

    
51
#define LSI_SCNTL2_WSR    0x01
52
#define LSI_SCNTL2_VUE0   0x02
53
#define LSI_SCNTL2_VUE1   0x04
54
#define LSI_SCNTL2_WSS    0x08
55
#define LSI_SCNTL2_SLPHBEN 0x10
56
#define LSI_SCNTL2_SLPMD  0x20
57
#define LSI_SCNTL2_CHM    0x40
58
#define LSI_SCNTL2_SDU    0x80
59

    
60
#define LSI_ISTAT0_DIP    0x01
61
#define LSI_ISTAT0_SIP    0x02
62
#define LSI_ISTAT0_INTF   0x04
63
#define LSI_ISTAT0_CON    0x08
64
#define LSI_ISTAT0_SEM    0x10
65
#define LSI_ISTAT0_SIGP   0x20
66
#define LSI_ISTAT0_SRST   0x40
67
#define LSI_ISTAT0_ABRT   0x80
68

    
69
#define LSI_ISTAT1_SI     0x01
70
#define LSI_ISTAT1_SRUN   0x02
71
#define LSI_ISTAT1_FLSH   0x04
72

    
73
#define LSI_SSTAT0_SDP0   0x01
74
#define LSI_SSTAT0_RST    0x02
75
#define LSI_SSTAT0_WOA    0x04
76
#define LSI_SSTAT0_LOA    0x08
77
#define LSI_SSTAT0_AIP    0x10
78
#define LSI_SSTAT0_OLF    0x20
79
#define LSI_SSTAT0_ORF    0x40
80
#define LSI_SSTAT0_ILF    0x80
81

    
82
#define LSI_SIST0_PAR     0x01
83
#define LSI_SIST0_RST     0x02
84
#define LSI_SIST0_UDC     0x04
85
#define LSI_SIST0_SGE     0x08
86
#define LSI_SIST0_RSL     0x10
87
#define LSI_SIST0_SEL     0x20
88
#define LSI_SIST0_CMP     0x40
89
#define LSI_SIST0_MA      0x80
90

    
91
#define LSI_SIST1_HTH     0x01
92
#define LSI_SIST1_GEN     0x02
93
#define LSI_SIST1_STO     0x04
94
#define LSI_SIST1_SBMC    0x10
95

    
96
#define LSI_SOCL_IO       0x01
97
#define LSI_SOCL_CD       0x02
98
#define LSI_SOCL_MSG      0x04
99
#define LSI_SOCL_ATN      0x08
100
#define LSI_SOCL_SEL      0x10
101
#define LSI_SOCL_BSY      0x20
102
#define LSI_SOCL_ACK      0x40
103
#define LSI_SOCL_REQ      0x80
104

    
105
#define LSI_DSTAT_IID     0x01
106
#define LSI_DSTAT_SIR     0x04
107
#define LSI_DSTAT_SSI     0x08
108
#define LSI_DSTAT_ABRT    0x10
109
#define LSI_DSTAT_BF      0x20
110
#define LSI_DSTAT_MDPE    0x40
111
#define LSI_DSTAT_DFE     0x80
112

    
113
#define LSI_DCNTL_COM     0x01
114
#define LSI_DCNTL_IRQD    0x02
115
#define LSI_DCNTL_STD     0x04
116
#define LSI_DCNTL_IRQM    0x08
117
#define LSI_DCNTL_SSM     0x10
118
#define LSI_DCNTL_PFEN    0x20
119
#define LSI_DCNTL_PFF     0x40
120
#define LSI_DCNTL_CLSE    0x80
121

    
122
#define LSI_DMODE_MAN     0x01
123
#define LSI_DMODE_BOF     0x02
124
#define LSI_DMODE_ERMP    0x04
125
#define LSI_DMODE_ERL     0x08
126
#define LSI_DMODE_DIOM    0x10
127
#define LSI_DMODE_SIOM    0x20
128

    
129
#define LSI_CTEST2_DACK   0x01
130
#define LSI_CTEST2_DREQ   0x02
131
#define LSI_CTEST2_TEOP   0x04
132
#define LSI_CTEST2_PCICIE 0x08
133
#define LSI_CTEST2_CM     0x10
134
#define LSI_CTEST2_CIO    0x20
135
#define LSI_CTEST2_SIGP   0x40
136
#define LSI_CTEST2_DDIR   0x80
137

    
138
#define LSI_CTEST5_BL2    0x04
139
#define LSI_CTEST5_DDIR   0x08
140
#define LSI_CTEST5_MASR   0x10
141
#define LSI_CTEST5_DFSN   0x20
142
#define LSI_CTEST5_BBCK   0x40
143
#define LSI_CTEST5_ADCK   0x80
144

    
145
#define LSI_CCNTL0_DILS   0x01
146
#define LSI_CCNTL0_DISFC  0x10
147
#define LSI_CCNTL0_ENNDJ  0x20
148
#define LSI_CCNTL0_PMJCTL 0x40
149
#define LSI_CCNTL0_ENPMJ  0x80
150

    
151
#define LSI_CCNTL1_EN64DBMV  0x01
152
#define LSI_CCNTL1_EN64TIBMV 0x02
153
#define LSI_CCNTL1_64TIMOD   0x04
154
#define LSI_CCNTL1_DDAC      0x08
155
#define LSI_CCNTL1_ZMOD      0x80
156

    
157
/* Enable Response to Reselection */
158
#define LSI_SCID_RRE      0x60
159

    
160
#define LSI_CCNTL1_40BIT (LSI_CCNTL1_EN64TIBMV|LSI_CCNTL1_64TIMOD)
161

    
162
#define PHASE_DO          0
163
#define PHASE_DI          1
164
#define PHASE_CMD         2
165
#define PHASE_ST          3
166
#define PHASE_MO          6
167
#define PHASE_MI          7
168
#define PHASE_MASK        7
169

    
170
/* Maximum length of MSG IN data.  */
171
#define LSI_MAX_MSGIN_LEN 8
172

    
173
/* Flag set if this is a tagged command.  */
174
#define LSI_TAG_VALID     (1 << 16)
175

    
176
typedef struct lsi_request {
177
    uint32_t tag;
178
    uint32_t dma_len;
179
    uint8_t *dma_buf;
180
    uint32_t pending;
181
    int out;
182
    QTAILQ_ENTRY(lsi_request) next;
183
} lsi_request;
184

    
185
typedef struct {
186
    PCIDevice dev;
187
    int mmio_io_addr;
188
    int ram_io_addr;
189
    uint32_t script_ram_base;
190

    
191
    int carry; /* ??? Should this be an a visible register somewhere?  */
192
    int sense;
193
    /* Action to take at the end of a MSG IN phase.
194
       0 = COMMAND, 1 = disconnect, 2 = DATA OUT, 3 = DATA IN.  */
195
    int msg_action;
196
    int msg_len;
197
    uint8_t msg[LSI_MAX_MSGIN_LEN];
198
    /* 0 if SCRIPTS are running or stopped.
199
     * 1 if a Wait Reselect instruction has been issued.
200
     * 2 if processing DMA from lsi_execute_script.
201
     * 3 if a DMA operation is in progress.  */
202
    int waiting;
203
    SCSIBus bus;
204
    int current_lun;
205
    /* The tag is a combination of the device ID and the SCSI tag.  */
206
    uint32_t select_tag;
207
    int command_complete;
208
    QTAILQ_HEAD(, lsi_request) queue;
209
    lsi_request *current;
210

    
211
    uint32_t dsa;
212
    uint32_t temp;
213
    uint32_t dnad;
214
    uint32_t dbc;
215
    uint8_t istat0;
216
    uint8_t istat1;
217
    uint8_t dcmd;
218
    uint8_t dstat;
219
    uint8_t dien;
220
    uint8_t sist0;
221
    uint8_t sist1;
222
    uint8_t sien0;
223
    uint8_t sien1;
224
    uint8_t mbox0;
225
    uint8_t mbox1;
226
    uint8_t dfifo;
227
    uint8_t ctest2;
228
    uint8_t ctest3;
229
    uint8_t ctest4;
230
    uint8_t ctest5;
231
    uint8_t ccntl0;
232
    uint8_t ccntl1;
233
    uint32_t dsp;
234
    uint32_t dsps;
235
    uint8_t dmode;
236
    uint8_t dcntl;
237
    uint8_t scntl0;
238
    uint8_t scntl1;
239
    uint8_t scntl2;
240
    uint8_t scntl3;
241
    uint8_t sstat0;
242
    uint8_t sstat1;
243
    uint8_t scid;
244
    uint8_t sxfer;
245
    uint8_t socl;
246
    uint8_t sdid;
247
    uint8_t ssid;
248
    uint8_t sfbr;
249
    uint8_t stest1;
250
    uint8_t stest2;
251
    uint8_t stest3;
252
    uint8_t sidl;
253
    uint8_t stime0;
254
    uint8_t respid0;
255
    uint8_t respid1;
256
    uint32_t mmrs;
257
    uint32_t mmws;
258
    uint32_t sfs;
259
    uint32_t drs;
260
    uint32_t sbms;
261
    uint32_t dbms;
262
    uint32_t dnad64;
263
    uint32_t pmjad1;
264
    uint32_t pmjad2;
265
    uint32_t rbc;
266
    uint32_t ua;
267
    uint32_t ia;
268
    uint32_t sbc;
269
    uint32_t csbc;
270
    uint32_t scratch[18]; /* SCRATCHA-SCRATCHR */
271
    uint8_t sbr;
272

    
273
    /* Script ram is stored as 32-bit words in host byteorder.  */
274
    uint32_t script_ram[2048];
275
} LSIState;
276

    
277
static inline int lsi_irq_on_rsl(LSIState *s)
278
{
279
    return (s->sien0 & LSI_SIST0_RSL) && (s->scid & LSI_SCID_RRE);
280
}
281

    
282
static void lsi_soft_reset(LSIState *s)
283
{
284
    lsi_request *p;
285

    
286
    DPRINTF("Reset\n");
287
    s->carry = 0;
288

    
289
    s->msg_action = 0;
290
    s->msg_len = 0;
291
    s->waiting = 0;
292
    s->dsa = 0;
293
    s->dnad = 0;
294
    s->dbc = 0;
295
    s->temp = 0;
296
    memset(s->scratch, 0, sizeof(s->scratch));
297
    s->istat0 = 0;
298
    s->istat1 = 0;
299
    s->dcmd = 0x40;
300
    s->dstat = LSI_DSTAT_DFE;
301
    s->dien = 0;
302
    s->sist0 = 0;
303
    s->sist1 = 0;
304
    s->sien0 = 0;
305
    s->sien1 = 0;
306
    s->mbox0 = 0;
307
    s->mbox1 = 0;
308
    s->dfifo = 0;
309
    s->ctest2 = LSI_CTEST2_DACK;
310
    s->ctest3 = 0;
311
    s->ctest4 = 0;
312
    s->ctest5 = 0;
313
    s->ccntl0 = 0;
314
    s->ccntl1 = 0;
315
    s->dsp = 0;
316
    s->dsps = 0;
317
    s->dmode = 0;
318
    s->dcntl = 0;
319
    s->scntl0 = 0xc0;
320
    s->scntl1 = 0;
321
    s->scntl2 = 0;
322
    s->scntl3 = 0;
323
    s->sstat0 = 0;
324
    s->sstat1 = 0;
325
    s->scid = 7;
326
    s->sxfer = 0;
327
    s->socl = 0;
328
    s->sdid = 0;
329
    s->ssid = 0;
330
    s->stest1 = 0;
331
    s->stest2 = 0;
332
    s->stest3 = 0;
333
    s->sidl = 0;
334
    s->stime0 = 0;
335
    s->respid0 = 0x80;
336
    s->respid1 = 0;
337
    s->mmrs = 0;
338
    s->mmws = 0;
339
    s->sfs = 0;
340
    s->drs = 0;
341
    s->sbms = 0;
342
    s->dbms = 0;
343
    s->dnad64 = 0;
344
    s->pmjad1 = 0;
345
    s->pmjad2 = 0;
346
    s->rbc = 0;
347
    s->ua = 0;
348
    s->ia = 0;
349
    s->sbc = 0;
350
    s->csbc = 0;
351
    s->sbr = 0;
352
    while (!QTAILQ_EMPTY(&s->queue)) {
353
        p = QTAILQ_FIRST(&s->queue);
354
        QTAILQ_REMOVE(&s->queue, p, next);
355
        qemu_free(p);
356
    }
357
    if (s->current) {
358
        qemu_free(s->current);
359
        s->current = NULL;
360
    }
361
}
362

    
363
static int lsi_dma_40bit(LSIState *s)
364
{
365
    if ((s->ccntl1 & LSI_CCNTL1_40BIT) == LSI_CCNTL1_40BIT)
366
        return 1;
367
    return 0;
368
}
369

    
370
static int lsi_dma_ti64bit(LSIState *s)
371
{
372
    if ((s->ccntl1 & LSI_CCNTL1_EN64TIBMV) == LSI_CCNTL1_EN64TIBMV)
373
        return 1;
374
    return 0;
375
}
376

    
377
static int lsi_dma_64bit(LSIState *s)
378
{
379
    if ((s->ccntl1 & LSI_CCNTL1_EN64DBMV) == LSI_CCNTL1_EN64DBMV)
380
        return 1;
381
    return 0;
382
}
383

    
384
static uint8_t lsi_reg_readb(LSIState *s, int offset);
385
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val);
386
static void lsi_execute_script(LSIState *s);
387
static void lsi_reselect(LSIState *s, lsi_request *p);
388

    
389
static inline uint32_t read_dword(LSIState *s, uint32_t addr)
390
{
391
    uint32_t buf;
392

    
393
    /* Optimize reading from SCRIPTS RAM.  */
394
    if ((addr & 0xffffe000) == s->script_ram_base) {
395
        return s->script_ram[(addr & 0x1fff) >> 2];
396
    }
397
    cpu_physical_memory_read(addr, (uint8_t *)&buf, 4);
398
    return cpu_to_le32(buf);
399
}
400

    
401
static void lsi_stop_script(LSIState *s)
402
{
403
    s->istat1 &= ~LSI_ISTAT1_SRUN;
404
}
405

    
406
static void lsi_update_irq(LSIState *s)
407
{
408
    int level;
409
    static int last_level;
410
    lsi_request *p;
411

    
412
    /* It's unclear whether the DIP/SIP bits should be cleared when the
413
       Interrupt Status Registers are cleared or when istat0 is read.
414
       We currently do the formwer, which seems to work.  */
415
    level = 0;
416
    if (s->dstat) {
417
        if (s->dstat & s->dien)
418
            level = 1;
419
        s->istat0 |= LSI_ISTAT0_DIP;
420
    } else {
421
        s->istat0 &= ~LSI_ISTAT0_DIP;
422
    }
423

    
424
    if (s->sist0 || s->sist1) {
425
        if ((s->sist0 & s->sien0) || (s->sist1 & s->sien1))
426
            level = 1;
427
        s->istat0 |= LSI_ISTAT0_SIP;
428
    } else {
429
        s->istat0 &= ~LSI_ISTAT0_SIP;
430
    }
431
    if (s->istat0 & LSI_ISTAT0_INTF)
432
        level = 1;
433

    
434
    if (level != last_level) {
435
        DPRINTF("Update IRQ level %d dstat %02x sist %02x%02x\n",
436
                level, s->dstat, s->sist1, s->sist0);
437
        last_level = level;
438
    }
439
    qemu_set_irq(s->dev.irq[0], level);
440

    
441
    if (!level && lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON)) {
442
        DPRINTF("Handled IRQs & disconnected, looking for pending "
443
                "processes\n");
444
        QTAILQ_FOREACH(p, &s->queue, next) {
445
            if (p->pending) {
446
                lsi_reselect(s, p);
447
                break;
448
            }
449
        }
450
    }
451
}
452

    
453
/* Stop SCRIPTS execution and raise a SCSI interrupt.  */
454
static void lsi_script_scsi_interrupt(LSIState *s, int stat0, int stat1)
455
{
456
    uint32_t mask0;
457
    uint32_t mask1;
458

    
459
    DPRINTF("SCSI Interrupt 0x%02x%02x prev 0x%02x%02x\n",
460
            stat1, stat0, s->sist1, s->sist0);
461
    s->sist0 |= stat0;
462
    s->sist1 |= stat1;
463
    /* Stop processor on fatal or unmasked interrupt.  As a special hack
464
       we don't stop processing when raising STO.  Instead continue
465
       execution and stop at the next insn that accesses the SCSI bus.  */
466
    mask0 = s->sien0 | ~(LSI_SIST0_CMP | LSI_SIST0_SEL | LSI_SIST0_RSL);
467
    mask1 = s->sien1 | ~(LSI_SIST1_GEN | LSI_SIST1_HTH);
468
    mask1 &= ~LSI_SIST1_STO;
469
    if (s->sist0 & mask0 || s->sist1 & mask1) {
470
        lsi_stop_script(s);
471
    }
472
    lsi_update_irq(s);
473
}
474

    
475
/* Stop SCRIPTS execution and raise a DMA interrupt.  */
476
static void lsi_script_dma_interrupt(LSIState *s, int stat)
477
{
478
    DPRINTF("DMA Interrupt 0x%x prev 0x%x\n", stat, s->dstat);
479
    s->dstat |= stat;
480
    lsi_update_irq(s);
481
    lsi_stop_script(s);
482
}
483

    
484
static inline void lsi_set_phase(LSIState *s, int phase)
485
{
486
    s->sstat1 = (s->sstat1 & ~PHASE_MASK) | phase;
487
}
488

    
489
static void lsi_bad_phase(LSIState *s, int out, int new_phase)
490
{
491
    /* Trigger a phase mismatch.  */
492
    if (s->ccntl0 & LSI_CCNTL0_ENPMJ) {
493
        if ((s->ccntl0 & LSI_CCNTL0_PMJCTL)) {
494
            s->dsp = out ? s->pmjad1 : s->pmjad2;
495
        } else {
496
            s->dsp = (s->scntl2 & LSI_SCNTL2_WSR ? s->pmjad2 : s->pmjad1);
497
        }
498
        DPRINTF("Data phase mismatch jump to %08x\n", s->dsp);
499
    } else {
500
        DPRINTF("Phase mismatch interrupt\n");
501
        lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
502
        lsi_stop_script(s);
503
    }
504
    lsi_set_phase(s, new_phase);
505
}
506

    
507

    
508
/* Resume SCRIPTS execution after a DMA operation.  */
509
static void lsi_resume_script(LSIState *s)
510
{
511
    if (s->waiting != 2) {
512
        s->waiting = 0;
513
        lsi_execute_script(s);
514
    } else {
515
        s->waiting = 0;
516
    }
517
}
518

    
519
static void lsi_disconnect(LSIState *s)
520
{
521
    s->scntl1 &= ~LSI_SCNTL1_CON;
522
    s->sstat1 &= ~PHASE_MASK;
523
}
524

    
525
static void lsi_bad_selection(LSIState *s, uint32_t id)
526
{
527
    DPRINTF("Selected absent target %d\n", id);
528
    lsi_script_scsi_interrupt(s, 0, LSI_SIST1_STO);
529
    lsi_disconnect(s);
530
}
531

    
532
/* Initiate a SCSI layer data transfer.  */
533
static void lsi_do_dma(LSIState *s, int out)
534
{
535
    uint32_t count, id;
536
    target_phys_addr_t addr;
537
    SCSIDevice *dev;
538

    
539
    assert(s->current);
540
    if (!s->current->dma_len) {
541
        /* Wait until data is available.  */
542
        DPRINTF("DMA no data available\n");
543
        return;
544
    }
545

    
546
    id = (s->current->tag >> 8) & 0xf;
547
    dev = s->bus.devs[id];
548
    if (!dev) {
549
        lsi_bad_selection(s, id);
550
        return;
551
    }
552

    
553
    count = s->dbc;
554
    if (count > s->current->dma_len)
555
        count = s->current->dma_len;
556

    
557
    addr = s->dnad;
558
    /* both 40 and Table Indirect 64-bit DMAs store upper bits in dnad64 */
559
    if (lsi_dma_40bit(s) || lsi_dma_ti64bit(s))
560
        addr |= ((uint64_t)s->dnad64 << 32);
561
    else if (s->dbms)
562
        addr |= ((uint64_t)s->dbms << 32);
563
    else if (s->sbms)
564
        addr |= ((uint64_t)s->sbms << 32);
565

    
566
    DPRINTF("DMA addr=0x" TARGET_FMT_plx " len=%d\n", addr, count);
567
    s->csbc += count;
568
    s->dnad += count;
569
    s->dbc -= count;
570

    
571
    if (s->current->dma_buf == NULL) {
572
        s->current->dma_buf = dev->info->get_buf(dev, s->current->tag);
573
    }
574

    
575
    /* ??? Set SFBR to first data byte.  */
576
    if (out) {
577
        cpu_physical_memory_read(addr, s->current->dma_buf, count);
578
    } else {
579
        cpu_physical_memory_write(addr, s->current->dma_buf, count);
580
    }
581
    s->current->dma_len -= count;
582
    if (s->current->dma_len == 0) {
583
        s->current->dma_buf = NULL;
584
        if (out) {
585
            /* Write the data.  */
586
            dev->info->write_data(dev, s->current->tag);
587
        } else {
588
            /* Request any remaining data.  */
589
            dev->info->read_data(dev, s->current->tag);
590
        }
591
    } else {
592
        s->current->dma_buf += count;
593
        lsi_resume_script(s);
594
    }
595
}
596

    
597

    
598
/* Add a command to the queue.  */
599
static void lsi_queue_command(LSIState *s)
600
{
601
    lsi_request *p = s->current;
602

    
603
    DPRINTF("Queueing tag=0x%x\n", p->tag);
604
    assert(s->current != NULL);
605
    assert(s->current->dma_len == 0);
606
    QTAILQ_INSERT_TAIL(&s->queue, s->current, next);
607
    s->current = NULL;
608

    
609
    p->pending = 0;
610
    p->out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
611
}
612

    
613
/* Queue a byte for a MSG IN phase.  */
614
static void lsi_add_msg_byte(LSIState *s, uint8_t data)
615
{
616
    if (s->msg_len >= LSI_MAX_MSGIN_LEN) {
617
        BADF("MSG IN data too long\n");
618
    } else {
619
        DPRINTF("MSG IN 0x%02x\n", data);
620
        s->msg[s->msg_len++] = data;
621
    }
622
}
623

    
624
/* Perform reselection to continue a command.  */
625
static void lsi_reselect(LSIState *s, lsi_request *p)
626
{
627
    int id;
628

    
629
    assert(s->current == NULL);
630
    QTAILQ_REMOVE(&s->queue, p, next);
631
    s->current = p;
632

    
633
    id = (p->tag >> 8) & 0xf;
634
    s->ssid = id | 0x80;
635
    /* LSI53C700 Family Compatibility, see LSI53C895A 4-73 */
636
    if (!(s->dcntl & LSI_DCNTL_COM)) {
637
        s->sfbr = 1 << (id & 0x7);
638
    }
639
    DPRINTF("Reselected target %d\n", id);
640
    s->scntl1 |= LSI_SCNTL1_CON;
641
    lsi_set_phase(s, PHASE_MI);
642
    s->msg_action = p->out ? 2 : 3;
643
    s->current->dma_len = p->pending;
644
    lsi_add_msg_byte(s, 0x80);
645
    if (s->current->tag & LSI_TAG_VALID) {
646
        lsi_add_msg_byte(s, 0x20);
647
        lsi_add_msg_byte(s, p->tag & 0xff);
648
    }
649

    
650
    if (lsi_irq_on_rsl(s)) {
651
        lsi_script_scsi_interrupt(s, LSI_SIST0_RSL, 0);
652
    }
653
}
654

    
655
/* Record that data is available for a queued command.  Returns zero if
656
   the device was reselected, nonzero if the IO is deferred.  */
657
static int lsi_queue_tag(LSIState *s, uint32_t tag, uint32_t arg)
658
{
659
    lsi_request *p;
660

    
661
    QTAILQ_FOREACH(p, &s->queue, next) {
662
        if (p->tag == tag) {
663
            if (p->pending) {
664
                BADF("Multiple IO pending for tag %d\n", tag);
665
            }
666
            p->pending = arg;
667
            /* Reselect if waiting for it, or if reselection triggers an IRQ
668
               and the bus is free.
669
               Since no interrupt stacking is implemented in the emulation, it
670
               is also required that there are no pending interrupts waiting
671
               for service from the device driver. */
672
            if (s->waiting == 1 ||
673
                (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON) &&
674
                 !(s->istat0 & (LSI_ISTAT0_SIP | LSI_ISTAT0_DIP)))) {
675
                /* Reselect device.  */
676
                lsi_reselect(s, p);
677
                return 0;
678
            } else {
679
                DPRINTF("Queueing IO tag=0x%x\n", tag);
680
                p->pending = arg;
681
                return 1;
682
            }
683
        }
684
    }
685
    BADF("IO with unknown tag %d\n", tag);
686
    return 1;
687
}
688

    
689
/* Callback to indicate that the SCSI layer has completed a transfer.  */
690
static void lsi_command_complete(SCSIBus *bus, int reason, uint32_t tag,
691
                                 uint32_t arg)
692
{
693
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, bus->qbus.parent);
694
    int out;
695

    
696
    out = (s->sstat1 & PHASE_MASK) == PHASE_DO;
697
    if (reason == SCSI_REASON_DONE) {
698
        DPRINTF("Command complete sense=%d\n", (int)arg);
699
        s->sense = arg;
700
        s->command_complete = 2;
701
        if (s->waiting && s->dbc != 0) {
702
            /* Raise phase mismatch for short transfers.  */
703
            lsi_bad_phase(s, out, PHASE_ST);
704
        } else {
705
            lsi_set_phase(s, PHASE_ST);
706
        }
707

    
708
        qemu_free(s->current);
709
        s->current = NULL;
710

    
711
        lsi_resume_script(s);
712
        return;
713
    }
714

    
715
    if (s->waiting == 1 || !s->current || tag != s->current->tag ||
716
        (lsi_irq_on_rsl(s) && !(s->scntl1 & LSI_SCNTL1_CON))) {
717
        if (lsi_queue_tag(s, tag, arg))
718
            return;
719
    }
720

    
721
    /* host adapter (re)connected */
722
    DPRINTF("Data ready tag=0x%x len=%d\n", tag, arg);
723
    s->current->dma_len = arg;
724
    s->command_complete = 1;
725
    if (!s->waiting)
726
        return;
727
    if (s->waiting == 1 || s->dbc == 0) {
728
        lsi_resume_script(s);
729
    } else {
730
        lsi_do_dma(s, out);
731
    }
732
}
733

    
734
static void lsi_do_command(LSIState *s)
735
{
736
    SCSIDevice *dev;
737
    uint8_t buf[16];
738
    uint32_t id;
739
    int n;
740

    
741
    DPRINTF("Send command len=%d\n", s->dbc);
742
    if (s->dbc > 16)
743
        s->dbc = 16;
744
    cpu_physical_memory_read(s->dnad, buf, s->dbc);
745
    s->sfbr = buf[0];
746
    s->command_complete = 0;
747

    
748
    id = (s->select_tag >> 8) & 0xf;
749
    dev = s->bus.devs[id];
750
    if (!dev) {
751
        lsi_bad_selection(s, id);
752
        return;
753
    }
754

    
755
    assert(s->current == NULL);
756
    s->current = qemu_mallocz(sizeof(lsi_request));
757
    s->current->tag = s->select_tag;
758

    
759
    n = dev->info->send_command(dev, s->current->tag, buf, s->current_lun);
760
    if (n > 0) {
761
        lsi_set_phase(s, PHASE_DI);
762
        dev->info->read_data(dev, s->current->tag);
763
    } else if (n < 0) {
764
        lsi_set_phase(s, PHASE_DO);
765
        dev->info->write_data(dev, s->current->tag);
766
    }
767

    
768
    if (!s->command_complete) {
769
        if (n) {
770
            /* Command did not complete immediately so disconnect.  */
771
            lsi_add_msg_byte(s, 2); /* SAVE DATA POINTER */
772
            lsi_add_msg_byte(s, 4); /* DISCONNECT */
773
            /* wait data */
774
            lsi_set_phase(s, PHASE_MI);
775
            s->msg_action = 1;
776
            lsi_queue_command(s);
777
        } else {
778
            /* wait command complete */
779
            lsi_set_phase(s, PHASE_DI);
780
        }
781
    }
782
}
783

    
784
static void lsi_do_status(LSIState *s)
785
{
786
    uint8_t sense;
787
    DPRINTF("Get status len=%d sense=%d\n", s->dbc, s->sense);
788
    if (s->dbc != 1)
789
        BADF("Bad Status move\n");
790
    s->dbc = 1;
791
    sense = s->sense;
792
    s->sfbr = sense;
793
    cpu_physical_memory_write(s->dnad, &sense, 1);
794
    lsi_set_phase(s, PHASE_MI);
795
    s->msg_action = 1;
796
    lsi_add_msg_byte(s, 0); /* COMMAND COMPLETE */
797
}
798

    
799
static void lsi_do_msgin(LSIState *s)
800
{
801
    int len;
802
    DPRINTF("Message in len=%d/%d\n", s->dbc, s->msg_len);
803
    s->sfbr = s->msg[0];
804
    len = s->msg_len;
805
    if (len > s->dbc)
806
        len = s->dbc;
807
    cpu_physical_memory_write(s->dnad, s->msg, len);
808
    /* Linux drivers rely on the last byte being in the SIDL.  */
809
    s->sidl = s->msg[len - 1];
810
    s->msg_len -= len;
811
    if (s->msg_len) {
812
        memmove(s->msg, s->msg + len, s->msg_len);
813
    } else {
814
        /* ??? Check if ATN (not yet implemented) is asserted and maybe
815
           switch to PHASE_MO.  */
816
        switch (s->msg_action) {
817
        case 0:
818
            lsi_set_phase(s, PHASE_CMD);
819
            break;
820
        case 1:
821
            lsi_disconnect(s);
822
            break;
823
        case 2:
824
            lsi_set_phase(s, PHASE_DO);
825
            break;
826
        case 3:
827
            lsi_set_phase(s, PHASE_DI);
828
            break;
829
        default:
830
            abort();
831
        }
832
    }
833
}
834

    
835
/* Read the next byte during a MSGOUT phase.  */
836
static uint8_t lsi_get_msgbyte(LSIState *s)
837
{
838
    uint8_t data;
839
    cpu_physical_memory_read(s->dnad, &data, 1);
840
    s->dnad++;
841
    s->dbc--;
842
    return data;
843
}
844

    
845
static void lsi_do_msgout(LSIState *s)
846
{
847
    uint8_t msg;
848
    int len;
849

    
850
    DPRINTF("MSG out len=%d\n", s->dbc);
851
    while (s->dbc) {
852
        msg = lsi_get_msgbyte(s);
853
        s->sfbr = msg;
854

    
855
        switch (msg) {
856
        case 0x04:
857
            DPRINTF("MSG: Disconnect\n");
858
            lsi_disconnect(s);
859
            break;
860
        case 0x08:
861
            DPRINTF("MSG: No Operation\n");
862
            lsi_set_phase(s, PHASE_CMD);
863
            break;
864
        case 0x01:
865
            len = lsi_get_msgbyte(s);
866
            msg = lsi_get_msgbyte(s);
867
            (void)len; /* avoid a warning about unused variable*/
868
            DPRINTF("Extended message 0x%x (len %d)\n", msg, len);
869
            switch (msg) {
870
            case 1:
871
                DPRINTF("SDTR (ignored)\n");
872
                s->dbc -= 2;
873
                break;
874
            case 3:
875
                DPRINTF("WDTR (ignored)\n");
876
                s->dbc -= 1;
877
                break;
878
            default:
879
                goto bad;
880
            }
881
            break;
882
        case 0x20: /* SIMPLE queue */
883
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
884
            DPRINTF("SIMPLE queue tag=0x%x\n", s->select_tag & 0xff);
885
            break;
886
        case 0x21: /* HEAD of queue */
887
            BADF("HEAD queue not implemented\n");
888
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
889
            break;
890
        case 0x22: /* ORDERED queue */
891
            BADF("ORDERED queue not implemented\n");
892
            s->select_tag |= lsi_get_msgbyte(s) | LSI_TAG_VALID;
893
            break;
894
        default:
895
            if ((msg & 0x80) == 0) {
896
                goto bad;
897
            }
898
            s->current_lun = msg & 7;
899
            DPRINTF("Select LUN %d\n", s->current_lun);
900
            lsi_set_phase(s, PHASE_CMD);
901
            break;
902
        }
903
    }
904
    return;
905
bad:
906
    BADF("Unimplemented message 0x%02x\n", msg);
907
    lsi_set_phase(s, PHASE_MI);
908
    lsi_add_msg_byte(s, 7); /* MESSAGE REJECT */
909
    s->msg_action = 0;
910
}
911

    
912
/* Sign extend a 24-bit value.  */
913
static inline int32_t sxt24(int32_t n)
914
{
915
    return (n << 8) >> 8;
916
}
917

    
918
#define LSI_BUF_SIZE 4096
919
static void lsi_memcpy(LSIState *s, uint32_t dest, uint32_t src, int count)
920
{
921
    int n;
922
    uint8_t buf[LSI_BUF_SIZE];
923

    
924
    DPRINTF("memcpy dest 0x%08x src 0x%08x count %d\n", dest, src, count);
925
    while (count) {
926
        n = (count > LSI_BUF_SIZE) ? LSI_BUF_SIZE : count;
927
        cpu_physical_memory_read(src, buf, n);
928
        cpu_physical_memory_write(dest, buf, n);
929
        src += n;
930
        dest += n;
931
        count -= n;
932
    }
933
}
934

    
935
static void lsi_wait_reselect(LSIState *s)
936
{
937
    lsi_request *p;
938

    
939
    DPRINTF("Wait Reselect\n");
940

    
941
    QTAILQ_FOREACH(p, &s->queue, next) {
942
        if (p->pending) {
943
            lsi_reselect(s, p);
944
            break;
945
        }
946
    }
947
    if (s->current == NULL) {
948
        s->waiting = 1;
949
    }
950
}
951

    
952
static void lsi_execute_script(LSIState *s)
953
{
954
    uint32_t insn;
955
    uint32_t addr, addr_high;
956
    int opcode;
957
    int insn_processed = 0;
958

    
959
    s->istat1 |= LSI_ISTAT1_SRUN;
960
again:
961
    insn_processed++;
962
    insn = read_dword(s, s->dsp);
963
    if (!insn) {
964
        /* If we receive an empty opcode increment the DSP by 4 bytes
965
           instead of 8 and execute the next opcode at that location */
966
        s->dsp += 4;
967
        goto again;
968
    }
969
    addr = read_dword(s, s->dsp + 4);
970
    addr_high = 0;
971
    DPRINTF("SCRIPTS dsp=%08x opcode %08x arg %08x\n", s->dsp, insn, addr);
972
    s->dsps = addr;
973
    s->dcmd = insn >> 24;
974
    s->dsp += 8;
975
    switch (insn >> 30) {
976
    case 0: /* Block move.  */
977
        if (s->sist1 & LSI_SIST1_STO) {
978
            DPRINTF("Delayed select timeout\n");
979
            lsi_stop_script(s);
980
            break;
981
        }
982
        s->dbc = insn & 0xffffff;
983
        s->rbc = s->dbc;
984
        /* ??? Set ESA.  */
985
        s->ia = s->dsp - 8;
986
        if (insn & (1 << 29)) {
987
            /* Indirect addressing.  */
988
            addr = read_dword(s, addr);
989
        } else if (insn & (1 << 28)) {
990
            uint32_t buf[2];
991
            int32_t offset;
992
            /* Table indirect addressing.  */
993

    
994
            /* 32-bit Table indirect */
995
            offset = sxt24(addr);
996
            cpu_physical_memory_read(s->dsa + offset, (uint8_t *)buf, 8);
997
            /* byte count is stored in bits 0:23 only */
998
            s->dbc = cpu_to_le32(buf[0]) & 0xffffff;
999
            s->rbc = s->dbc;
1000
            addr = cpu_to_le32(buf[1]);
1001

    
1002
            /* 40-bit DMA, upper addr bits [39:32] stored in first DWORD of
1003
             * table, bits [31:24] */
1004
            if (lsi_dma_40bit(s))
1005
                addr_high = cpu_to_le32(buf[0]) >> 24;
1006
            else if (lsi_dma_ti64bit(s)) {
1007
                int selector = (cpu_to_le32(buf[0]) >> 24) & 0x1f;
1008
                switch (selector) {
1009
                case 0 ... 0x0f:
1010
                    /* offset index into scratch registers since
1011
                     * TI64 mode can use registers C to R */
1012
                    addr_high = s->scratch[2 + selector];
1013
                    break;
1014
                case 0x10:
1015
                    addr_high = s->mmrs;
1016
                    break;
1017
                case 0x11:
1018
                    addr_high = s->mmws;
1019
                    break;
1020
                case 0x12:
1021
                    addr_high = s->sfs;
1022
                    break;
1023
                case 0x13:
1024
                    addr_high = s->drs;
1025
                    break;
1026
                case 0x14:
1027
                    addr_high = s->sbms;
1028
                    break;
1029
                case 0x15:
1030
                    addr_high = s->dbms;
1031
                    break;
1032
                default:
1033
                    BADF("Illegal selector specified (0x%x > 0x15)"
1034
                         " for 64-bit DMA block move", selector);
1035
                    break;
1036
                }
1037
            }
1038
        } else if (lsi_dma_64bit(s)) {
1039
            /* fetch a 3rd dword if 64-bit direct move is enabled and
1040
               only if we're not doing table indirect or indirect addressing */
1041
            s->dbms = read_dword(s, s->dsp);
1042
            s->dsp += 4;
1043
            s->ia = s->dsp - 12;
1044
        }
1045
        if ((s->sstat1 & PHASE_MASK) != ((insn >> 24) & 7)) {
1046
            DPRINTF("Wrong phase got %d expected %d\n",
1047
                    s->sstat1 & PHASE_MASK, (insn >> 24) & 7);
1048
            lsi_script_scsi_interrupt(s, LSI_SIST0_MA, 0);
1049
            break;
1050
        }
1051
        s->dnad = addr;
1052
        s->dnad64 = addr_high;
1053
        switch (s->sstat1 & 0x7) {
1054
        case PHASE_DO:
1055
            s->waiting = 2;
1056
            lsi_do_dma(s, 1);
1057
            if (s->waiting)
1058
                s->waiting = 3;
1059
            break;
1060
        case PHASE_DI:
1061
            s->waiting = 2;
1062
            lsi_do_dma(s, 0);
1063
            if (s->waiting)
1064
                s->waiting = 3;
1065
            break;
1066
        case PHASE_CMD:
1067
            lsi_do_command(s);
1068
            break;
1069
        case PHASE_ST:
1070
            lsi_do_status(s);
1071
            break;
1072
        case PHASE_MO:
1073
            lsi_do_msgout(s);
1074
            break;
1075
        case PHASE_MI:
1076
            lsi_do_msgin(s);
1077
            break;
1078
        default:
1079
            BADF("Unimplemented phase %d\n", s->sstat1 & PHASE_MASK);
1080
            exit(1);
1081
        }
1082
        s->dfifo = s->dbc & 0xff;
1083
        s->ctest5 = (s->ctest5 & 0xfc) | ((s->dbc >> 8) & 3);
1084
        s->sbc = s->dbc;
1085
        s->rbc -= s->dbc;
1086
        s->ua = addr + s->dbc;
1087
        break;
1088

    
1089
    case 1: /* IO or Read/Write instruction.  */
1090
        opcode = (insn >> 27) & 7;
1091
        if (opcode < 5) {
1092
            uint32_t id;
1093

    
1094
            if (insn & (1 << 25)) {
1095
                id = read_dword(s, s->dsa + sxt24(insn));
1096
            } else {
1097
                id = insn;
1098
            }
1099
            id = (id >> 16) & 0xf;
1100
            if (insn & (1 << 26)) {
1101
                addr = s->dsp + sxt24(addr);
1102
            }
1103
            s->dnad = addr;
1104
            switch (opcode) {
1105
            case 0: /* Select */
1106
                s->sdid = id;
1107
                if (s->scntl1 & LSI_SCNTL1_CON) {
1108
                    DPRINTF("Already reselected, jumping to alternative address\n");
1109
                    s->dsp = s->dnad;
1110
                    break;
1111
                }
1112
                s->sstat0 |= LSI_SSTAT0_WOA;
1113
                s->scntl1 &= ~LSI_SCNTL1_IARB;
1114
                if (id >= LSI_MAX_DEVS || !s->bus.devs[id]) {
1115
                    lsi_bad_selection(s, id);
1116
                    break;
1117
                }
1118
                DPRINTF("Selected target %d%s\n",
1119
                        id, insn & (1 << 3) ? " ATN" : "");
1120
                /* ??? Linux drivers compain when this is set.  Maybe
1121
                   it only applies in low-level mode (unimplemented).
1122
                lsi_script_scsi_interrupt(s, LSI_SIST0_CMP, 0); */
1123
                s->select_tag = id << 8;
1124
                s->scntl1 |= LSI_SCNTL1_CON;
1125
                if (insn & (1 << 3)) {
1126
                    s->socl |= LSI_SOCL_ATN;
1127
                }
1128
                lsi_set_phase(s, PHASE_MO);
1129
                break;
1130
            case 1: /* Disconnect */
1131
                DPRINTF("Wait Disconnect\n");
1132
                s->scntl1 &= ~LSI_SCNTL1_CON;
1133
                break;
1134
            case 2: /* Wait Reselect */
1135
                if (!lsi_irq_on_rsl(s)) {
1136
                    lsi_wait_reselect(s);
1137
                }
1138
                break;
1139
            case 3: /* Set */
1140
                DPRINTF("Set%s%s%s%s\n",
1141
                        insn & (1 << 3) ? " ATN" : "",
1142
                        insn & (1 << 6) ? " ACK" : "",
1143
                        insn & (1 << 9) ? " TM" : "",
1144
                        insn & (1 << 10) ? " CC" : "");
1145
                if (insn & (1 << 3)) {
1146
                    s->socl |= LSI_SOCL_ATN;
1147
                    lsi_set_phase(s, PHASE_MO);
1148
                }
1149
                if (insn & (1 << 9)) {
1150
                    BADF("Target mode not implemented\n");
1151
                    exit(1);
1152
                }
1153
                if (insn & (1 << 10))
1154
                    s->carry = 1;
1155
                break;
1156
            case 4: /* Clear */
1157
                DPRINTF("Clear%s%s%s%s\n",
1158
                        insn & (1 << 3) ? " ATN" : "",
1159
                        insn & (1 << 6) ? " ACK" : "",
1160
                        insn & (1 << 9) ? " TM" : "",
1161
                        insn & (1 << 10) ? " CC" : "");
1162
                if (insn & (1 << 3)) {
1163
                    s->socl &= ~LSI_SOCL_ATN;
1164
                }
1165
                if (insn & (1 << 10))
1166
                    s->carry = 0;
1167
                break;
1168
            }
1169
        } else {
1170
            uint8_t op0;
1171
            uint8_t op1;
1172
            uint8_t data8;
1173
            int reg;
1174
            int operator;
1175
#ifdef DEBUG_LSI
1176
            static const char *opcode_names[3] =
1177
                {"Write", "Read", "Read-Modify-Write"};
1178
            static const char *operator_names[8] =
1179
                {"MOV", "SHL", "OR", "XOR", "AND", "SHR", "ADD", "ADC"};
1180
#endif
1181

    
1182
            reg = ((insn >> 16) & 0x7f) | (insn & 0x80);
1183
            data8 = (insn >> 8) & 0xff;
1184
            opcode = (insn >> 27) & 7;
1185
            operator = (insn >> 24) & 7;
1186
            DPRINTF("%s reg 0x%x %s data8=0x%02x sfbr=0x%02x%s\n",
1187
                    opcode_names[opcode - 5], reg,
1188
                    operator_names[operator], data8, s->sfbr,
1189
                    (insn & (1 << 23)) ? " SFBR" : "");
1190
            op0 = op1 = 0;
1191
            switch (opcode) {
1192
            case 5: /* From SFBR */
1193
                op0 = s->sfbr;
1194
                op1 = data8;
1195
                break;
1196
            case 6: /* To SFBR */
1197
                if (operator)
1198
                    op0 = lsi_reg_readb(s, reg);
1199
                op1 = data8;
1200
                break;
1201
            case 7: /* Read-modify-write */
1202
                if (operator)
1203
                    op0 = lsi_reg_readb(s, reg);
1204
                if (insn & (1 << 23)) {
1205
                    op1 = s->sfbr;
1206
                } else {
1207
                    op1 = data8;
1208
                }
1209
                break;
1210
            }
1211

    
1212
            switch (operator) {
1213
            case 0: /* move */
1214
                op0 = op1;
1215
                break;
1216
            case 1: /* Shift left */
1217
                op1 = op0 >> 7;
1218
                op0 = (op0 << 1) | s->carry;
1219
                s->carry = op1;
1220
                break;
1221
            case 2: /* OR */
1222
                op0 |= op1;
1223
                break;
1224
            case 3: /* XOR */
1225
                op0 ^= op1;
1226
                break;
1227
            case 4: /* AND */
1228
                op0 &= op1;
1229
                break;
1230
            case 5: /* SHR */
1231
                op1 = op0 & 1;
1232
                op0 = (op0 >> 1) | (s->carry << 7);
1233
                s->carry = op1;
1234
                break;
1235
            case 6: /* ADD */
1236
                op0 += op1;
1237
                s->carry = op0 < op1;
1238
                break;
1239
            case 7: /* ADC */
1240
                op0 += op1 + s->carry;
1241
                if (s->carry)
1242
                    s->carry = op0 <= op1;
1243
                else
1244
                    s->carry = op0 < op1;
1245
                break;
1246
            }
1247

    
1248
            switch (opcode) {
1249
            case 5: /* From SFBR */
1250
            case 7: /* Read-modify-write */
1251
                lsi_reg_writeb(s, reg, op0);
1252
                break;
1253
            case 6: /* To SFBR */
1254
                s->sfbr = op0;
1255
                break;
1256
            }
1257
        }
1258
        break;
1259

    
1260
    case 2: /* Transfer Control.  */
1261
        {
1262
            int cond;
1263
            int jmp;
1264

    
1265
            if ((insn & 0x002e0000) == 0) {
1266
                DPRINTF("NOP\n");
1267
                break;
1268
            }
1269
            if (s->sist1 & LSI_SIST1_STO) {
1270
                DPRINTF("Delayed select timeout\n");
1271
                lsi_stop_script(s);
1272
                break;
1273
            }
1274
            cond = jmp = (insn & (1 << 19)) != 0;
1275
            if (cond == jmp && (insn & (1 << 21))) {
1276
                DPRINTF("Compare carry %d\n", s->carry == jmp);
1277
                cond = s->carry != 0;
1278
            }
1279
            if (cond == jmp && (insn & (1 << 17))) {
1280
                DPRINTF("Compare phase %d %c= %d\n",
1281
                        (s->sstat1 & PHASE_MASK),
1282
                        jmp ? '=' : '!',
1283
                        ((insn >> 24) & 7));
1284
                cond = (s->sstat1 & PHASE_MASK) == ((insn >> 24) & 7);
1285
            }
1286
            if (cond == jmp && (insn & (1 << 18))) {
1287
                uint8_t mask;
1288

    
1289
                mask = (~insn >> 8) & 0xff;
1290
                DPRINTF("Compare data 0x%x & 0x%x %c= 0x%x\n",
1291
                        s->sfbr, mask, jmp ? '=' : '!', insn & mask);
1292
                cond = (s->sfbr & mask) == (insn & mask);
1293
            }
1294
            if (cond == jmp) {
1295
                if (insn & (1 << 23)) {
1296
                    /* Relative address.  */
1297
                    addr = s->dsp + sxt24(addr);
1298
                }
1299
                switch ((insn >> 27) & 7) {
1300
                case 0: /* Jump */
1301
                    DPRINTF("Jump to 0x%08x\n", addr);
1302
                    s->dsp = addr;
1303
                    break;
1304
                case 1: /* Call */
1305
                    DPRINTF("Call 0x%08x\n", addr);
1306
                    s->temp = s->dsp;
1307
                    s->dsp = addr;
1308
                    break;
1309
                case 2: /* Return */
1310
                    DPRINTF("Return to 0x%08x\n", s->temp);
1311
                    s->dsp = s->temp;
1312
                    break;
1313
                case 3: /* Interrupt */
1314
                    DPRINTF("Interrupt 0x%08x\n", s->dsps);
1315
                    if ((insn & (1 << 20)) != 0) {
1316
                        s->istat0 |= LSI_ISTAT0_INTF;
1317
                        lsi_update_irq(s);
1318
                    } else {
1319
                        lsi_script_dma_interrupt(s, LSI_DSTAT_SIR);
1320
                    }
1321
                    break;
1322
                default:
1323
                    DPRINTF("Illegal transfer control\n");
1324
                    lsi_script_dma_interrupt(s, LSI_DSTAT_IID);
1325
                    break;
1326
                }
1327
            } else {
1328
                DPRINTF("Control condition failed\n");
1329
            }
1330
        }
1331
        break;
1332

    
1333
    case 3:
1334
        if ((insn & (1 << 29)) == 0) {
1335
            /* Memory move.  */
1336
            uint32_t dest;
1337
            /* ??? The docs imply the destination address is loaded into
1338
               the TEMP register.  However the Linux drivers rely on
1339
               the value being presrved.  */
1340
            dest = read_dword(s, s->dsp);
1341
            s->dsp += 4;
1342
            lsi_memcpy(s, dest, addr, insn & 0xffffff);
1343
        } else {
1344
            uint8_t data[7];
1345
            int reg;
1346
            int n;
1347
            int i;
1348

    
1349
            if (insn & (1 << 28)) {
1350
                addr = s->dsa + sxt24(addr);
1351
            }
1352
            n = (insn & 7);
1353
            reg = (insn >> 16) & 0xff;
1354
            if (insn & (1 << 24)) {
1355
                cpu_physical_memory_read(addr, data, n);
1356
                DPRINTF("Load reg 0x%x size %d addr 0x%08x = %08x\n", reg, n,
1357
                        addr, *(int *)data);
1358
                for (i = 0; i < n; i++) {
1359
                    lsi_reg_writeb(s, reg + i, data[i]);
1360
                }
1361
            } else {
1362
                DPRINTF("Store reg 0x%x size %d addr 0x%08x\n", reg, n, addr);
1363
                for (i = 0; i < n; i++) {
1364
                    data[i] = lsi_reg_readb(s, reg + i);
1365
                }
1366
                cpu_physical_memory_write(addr, data, n);
1367
            }
1368
        }
1369
    }
1370
    if (insn_processed > 10000 && !s->waiting) {
1371
        /* Some windows drivers make the device spin waiting for a memory
1372
           location to change.  If we have been executed a lot of code then
1373
           assume this is the case and force an unexpected device disconnect.
1374
           This is apparently sufficient to beat the drivers into submission.
1375
         */
1376
        if (!(s->sien0 & LSI_SIST0_UDC))
1377
            fprintf(stderr, "inf. loop with UDC masked\n");
1378
        lsi_script_scsi_interrupt(s, LSI_SIST0_UDC, 0);
1379
        lsi_disconnect(s);
1380
    } else if (s->istat1 & LSI_ISTAT1_SRUN && !s->waiting) {
1381
        if (s->dcntl & LSI_DCNTL_SSM) {
1382
            lsi_script_dma_interrupt(s, LSI_DSTAT_SSI);
1383
        } else {
1384
            goto again;
1385
        }
1386
    }
1387
    DPRINTF("SCRIPTS execution stopped\n");
1388
}
1389

    
1390
static uint8_t lsi_reg_readb(LSIState *s, int offset)
1391
{
1392
    uint8_t tmp;
1393
#define CASE_GET_REG24(name, addr) \
1394
    case addr: return s->name & 0xff; \
1395
    case addr + 1: return (s->name >> 8) & 0xff; \
1396
    case addr + 2: return (s->name >> 16) & 0xff;
1397

    
1398
#define CASE_GET_REG32(name, addr) \
1399
    case addr: return s->name & 0xff; \
1400
    case addr + 1: return (s->name >> 8) & 0xff; \
1401
    case addr + 2: return (s->name >> 16) & 0xff; \
1402
    case addr + 3: return (s->name >> 24) & 0xff;
1403

    
1404
#ifdef DEBUG_LSI_REG
1405
    DPRINTF("Read reg %x\n", offset);
1406
#endif
1407
    switch (offset) {
1408
    case 0x00: /* SCNTL0 */
1409
        return s->scntl0;
1410
    case 0x01: /* SCNTL1 */
1411
        return s->scntl1;
1412
    case 0x02: /* SCNTL2 */
1413
        return s->scntl2;
1414
    case 0x03: /* SCNTL3 */
1415
        return s->scntl3;
1416
    case 0x04: /* SCID */
1417
        return s->scid;
1418
    case 0x05: /* SXFER */
1419
        return s->sxfer;
1420
    case 0x06: /* SDID */
1421
        return s->sdid;
1422
    case 0x07: /* GPREG0 */
1423
        return 0x7f;
1424
    case 0x08: /* Revision ID */
1425
        return 0x00;
1426
    case 0xa: /* SSID */
1427
        return s->ssid;
1428
    case 0xb: /* SBCL */
1429
        /* ??? This is not correct. However it's (hopefully) only
1430
           used for diagnostics, so should be ok.  */
1431
        return 0;
1432
    case 0xc: /* DSTAT */
1433
        tmp = s->dstat | 0x80;
1434
        if ((s->istat0 & LSI_ISTAT0_INTF) == 0)
1435
            s->dstat = 0;
1436
        lsi_update_irq(s);
1437
        return tmp;
1438
    case 0x0d: /* SSTAT0 */
1439
        return s->sstat0;
1440
    case 0x0e: /* SSTAT1 */
1441
        return s->sstat1;
1442
    case 0x0f: /* SSTAT2 */
1443
        return s->scntl1 & LSI_SCNTL1_CON ? 0 : 2;
1444
    CASE_GET_REG32(dsa, 0x10)
1445
    case 0x14: /* ISTAT0 */
1446
        return s->istat0;
1447
    case 0x15: /* ISTAT1 */
1448
        return s->istat1;
1449
    case 0x16: /* MBOX0 */
1450
        return s->mbox0;
1451
    case 0x17: /* MBOX1 */
1452
        return s->mbox1;
1453
    case 0x18: /* CTEST0 */
1454
        return 0xff;
1455
    case 0x19: /* CTEST1 */
1456
        return 0;
1457
    case 0x1a: /* CTEST2 */
1458
        tmp = s->ctest2 | LSI_CTEST2_DACK | LSI_CTEST2_CM;
1459
        if (s->istat0 & LSI_ISTAT0_SIGP) {
1460
            s->istat0 &= ~LSI_ISTAT0_SIGP;
1461
            tmp |= LSI_CTEST2_SIGP;
1462
        }
1463
        return tmp;
1464
    case 0x1b: /* CTEST3 */
1465
        return s->ctest3;
1466
    CASE_GET_REG32(temp, 0x1c)
1467
    case 0x20: /* DFIFO */
1468
        return 0;
1469
    case 0x21: /* CTEST4 */
1470
        return s->ctest4;
1471
    case 0x22: /* CTEST5 */
1472
        return s->ctest5;
1473
    case 0x23: /* CTEST6 */
1474
         return 0;
1475
    CASE_GET_REG24(dbc, 0x24)
1476
    case 0x27: /* DCMD */
1477
        return s->dcmd;
1478
    CASE_GET_REG32(dnad, 0x28)
1479
    CASE_GET_REG32(dsp, 0x2c)
1480
    CASE_GET_REG32(dsps, 0x30)
1481
    CASE_GET_REG32(scratch[0], 0x34)
1482
    case 0x38: /* DMODE */
1483
        return s->dmode;
1484
    case 0x39: /* DIEN */
1485
        return s->dien;
1486
    case 0x3a: /* SBR */
1487
        return s->sbr;
1488
    case 0x3b: /* DCNTL */
1489
        return s->dcntl;
1490
    case 0x40: /* SIEN0 */
1491
        return s->sien0;
1492
    case 0x41: /* SIEN1 */
1493
        return s->sien1;
1494
    case 0x42: /* SIST0 */
1495
        tmp = s->sist0;
1496
        s->sist0 = 0;
1497
        lsi_update_irq(s);
1498
        return tmp;
1499
    case 0x43: /* SIST1 */
1500
        tmp = s->sist1;
1501
        s->sist1 = 0;
1502
        lsi_update_irq(s);
1503
        return tmp;
1504
    case 0x46: /* MACNTL */
1505
        return 0x0f;
1506
    case 0x47: /* GPCNTL0 */
1507
        return 0x0f;
1508
    case 0x48: /* STIME0 */
1509
        return s->stime0;
1510
    case 0x4a: /* RESPID0 */
1511
        return s->respid0;
1512
    case 0x4b: /* RESPID1 */
1513
        return s->respid1;
1514
    case 0x4d: /* STEST1 */
1515
        return s->stest1;
1516
    case 0x4e: /* STEST2 */
1517
        return s->stest2;
1518
    case 0x4f: /* STEST3 */
1519
        return s->stest3;
1520
    case 0x50: /* SIDL */
1521
        /* This is needed by the linux drivers.  We currently only update it
1522
           during the MSG IN phase.  */
1523
        return s->sidl;
1524
    case 0x52: /* STEST4 */
1525
        return 0xe0;
1526
    case 0x56: /* CCNTL0 */
1527
        return s->ccntl0;
1528
    case 0x57: /* CCNTL1 */
1529
        return s->ccntl1;
1530
    case 0x58: /* SBDL */
1531
        /* Some drivers peek at the data bus during the MSG IN phase.  */
1532
        if ((s->sstat1 & PHASE_MASK) == PHASE_MI)
1533
            return s->msg[0];
1534
        return 0;
1535
    case 0x59: /* SBDL high */
1536
        return 0;
1537
    CASE_GET_REG32(mmrs, 0xa0)
1538
    CASE_GET_REG32(mmws, 0xa4)
1539
    CASE_GET_REG32(sfs, 0xa8)
1540
    CASE_GET_REG32(drs, 0xac)
1541
    CASE_GET_REG32(sbms, 0xb0)
1542
    CASE_GET_REG32(dbms, 0xb4)
1543
    CASE_GET_REG32(dnad64, 0xb8)
1544
    CASE_GET_REG32(pmjad1, 0xc0)
1545
    CASE_GET_REG32(pmjad2, 0xc4)
1546
    CASE_GET_REG32(rbc, 0xc8)
1547
    CASE_GET_REG32(ua, 0xcc)
1548
    CASE_GET_REG32(ia, 0xd4)
1549
    CASE_GET_REG32(sbc, 0xd8)
1550
    CASE_GET_REG32(csbc, 0xdc)
1551
    }
1552
    if (offset >= 0x5c && offset < 0xa0) {
1553
        int n;
1554
        int shift;
1555
        n = (offset - 0x58) >> 2;
1556
        shift = (offset & 3) * 8;
1557
        return (s->scratch[n] >> shift) & 0xff;
1558
    }
1559
    BADF("readb 0x%x\n", offset);
1560
    exit(1);
1561
#undef CASE_GET_REG24
1562
#undef CASE_GET_REG32
1563
}
1564

    
1565
static void lsi_reg_writeb(LSIState *s, int offset, uint8_t val)
1566
{
1567
#define CASE_SET_REG24(name, addr) \
1568
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1569
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1570
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break;
1571

    
1572
#define CASE_SET_REG32(name, addr) \
1573
    case addr    : s->name &= 0xffffff00; s->name |= val;       break; \
1574
    case addr + 1: s->name &= 0xffff00ff; s->name |= val << 8;  break; \
1575
    case addr + 2: s->name &= 0xff00ffff; s->name |= val << 16; break; \
1576
    case addr + 3: s->name &= 0x00ffffff; s->name |= val << 24; break;
1577

    
1578
#ifdef DEBUG_LSI_REG
1579
    DPRINTF("Write reg %x = %02x\n", offset, val);
1580
#endif
1581
    switch (offset) {
1582
    case 0x00: /* SCNTL0 */
1583
        s->scntl0 = val;
1584
        if (val & LSI_SCNTL0_START) {
1585
            BADF("Start sequence not implemented\n");
1586
        }
1587
        break;
1588
    case 0x01: /* SCNTL1 */
1589
        s->scntl1 = val & ~LSI_SCNTL1_SST;
1590
        if (val & LSI_SCNTL1_IARB) {
1591
            BADF("Immediate Arbritration not implemented\n");
1592
        }
1593
        if (val & LSI_SCNTL1_RST) {
1594
            if (!(s->sstat0 & LSI_SSTAT0_RST)) {
1595
                DeviceState *dev;
1596
                int id;
1597

    
1598
                for (id = 0; id < s->bus.ndev; id++) {
1599
                    if (s->bus.devs[id]) {
1600
                        dev = &s->bus.devs[id]->qdev;
1601
                        dev->info->reset(dev);
1602
                    }
1603
                }
1604
                s->sstat0 |= LSI_SSTAT0_RST;
1605
                lsi_script_scsi_interrupt(s, LSI_SIST0_RST, 0);
1606
            }
1607
        } else {
1608
            s->sstat0 &= ~LSI_SSTAT0_RST;
1609
        }
1610
        break;
1611
    case 0x02: /* SCNTL2 */
1612
        val &= ~(LSI_SCNTL2_WSR | LSI_SCNTL2_WSS);
1613
        s->scntl2 = val;
1614
        break;
1615
    case 0x03: /* SCNTL3 */
1616
        s->scntl3 = val;
1617
        break;
1618
    case 0x04: /* SCID */
1619
        s->scid = val;
1620
        break;
1621
    case 0x05: /* SXFER */
1622
        s->sxfer = val;
1623
        break;
1624
    case 0x06: /* SDID */
1625
        if ((val & 0xf) != (s->ssid & 0xf))
1626
            BADF("Destination ID does not match SSID\n");
1627
        s->sdid = val & 0xf;
1628
        break;
1629
    case 0x07: /* GPREG0 */
1630
        break;
1631
    case 0x08: /* SFBR */
1632
        /* The CPU is not allowed to write to this register.  However the
1633
           SCRIPTS register move instructions are.  */
1634
        s->sfbr = val;
1635
        break;
1636
    case 0x0a: case 0x0b:
1637
        /* Openserver writes to these readonly registers on startup */
1638
        return;
1639
    case 0x0c: case 0x0d: case 0x0e: case 0x0f:
1640
        /* Linux writes to these readonly registers on startup.  */
1641
        return;
1642
    CASE_SET_REG32(dsa, 0x10)
1643
    case 0x14: /* ISTAT0 */
1644
        s->istat0 = (s->istat0 & 0x0f) | (val & 0xf0);
1645
        if (val & LSI_ISTAT0_ABRT) {
1646
            lsi_script_dma_interrupt(s, LSI_DSTAT_ABRT);
1647
        }
1648
        if (val & LSI_ISTAT0_INTF) {
1649
            s->istat0 &= ~LSI_ISTAT0_INTF;
1650
            lsi_update_irq(s);
1651
        }
1652
        if (s->waiting == 1 && val & LSI_ISTAT0_SIGP) {
1653
            DPRINTF("Woken by SIGP\n");
1654
            s->waiting = 0;
1655
            s->dsp = s->dnad;
1656
            lsi_execute_script(s);
1657
        }
1658
        if (val & LSI_ISTAT0_SRST) {
1659
            lsi_soft_reset(s);
1660
        }
1661
        break;
1662
    case 0x16: /* MBOX0 */
1663
        s->mbox0 = val;
1664
        break;
1665
    case 0x17: /* MBOX1 */
1666
        s->mbox1 = val;
1667
        break;
1668
    case 0x1a: /* CTEST2 */
1669
        s->ctest2 = val & LSI_CTEST2_PCICIE;
1670
        break;
1671
    case 0x1b: /* CTEST3 */
1672
        s->ctest3 = val & 0x0f;
1673
        break;
1674
    CASE_SET_REG32(temp, 0x1c)
1675
    case 0x21: /* CTEST4 */
1676
        if (val & 7) {
1677
           BADF("Unimplemented CTEST4-FBL 0x%x\n", val);
1678
        }
1679
        s->ctest4 = val;
1680
        break;
1681
    case 0x22: /* CTEST5 */
1682
        if (val & (LSI_CTEST5_ADCK | LSI_CTEST5_BBCK)) {
1683
            BADF("CTEST5 DMA increment not implemented\n");
1684
        }
1685
        s->ctest5 = val;
1686
        break;
1687
    CASE_SET_REG24(dbc, 0x24)
1688
    CASE_SET_REG32(dnad, 0x28)
1689
    case 0x2c: /* DSP[0:7] */
1690
        s->dsp &= 0xffffff00;
1691
        s->dsp |= val;
1692
        break;
1693
    case 0x2d: /* DSP[8:15] */
1694
        s->dsp &= 0xffff00ff;
1695
        s->dsp |= val << 8;
1696
        break;
1697
    case 0x2e: /* DSP[16:23] */
1698
        s->dsp &= 0xff00ffff;
1699
        s->dsp |= val << 16;
1700
        break;
1701
    case 0x2f: /* DSP[24:31] */
1702
        s->dsp &= 0x00ffffff;
1703
        s->dsp |= val << 24;
1704
        if ((s->dmode & LSI_DMODE_MAN) == 0
1705
            && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1706
            lsi_execute_script(s);
1707
        break;
1708
    CASE_SET_REG32(dsps, 0x30)
1709
    CASE_SET_REG32(scratch[0], 0x34)
1710
    case 0x38: /* DMODE */
1711
        if (val & (LSI_DMODE_SIOM | LSI_DMODE_DIOM)) {
1712
            BADF("IO mappings not implemented\n");
1713
        }
1714
        s->dmode = val;
1715
        break;
1716
    case 0x39: /* DIEN */
1717
        s->dien = val;
1718
        lsi_update_irq(s);
1719
        break;
1720
    case 0x3a: /* SBR */
1721
        s->sbr = val;
1722
        break;
1723
    case 0x3b: /* DCNTL */
1724
        s->dcntl = val & ~(LSI_DCNTL_PFF | LSI_DCNTL_STD);
1725
        if ((val & LSI_DCNTL_STD) && (s->istat1 & LSI_ISTAT1_SRUN) == 0)
1726
            lsi_execute_script(s);
1727
        break;
1728
    case 0x40: /* SIEN0 */
1729
        s->sien0 = val;
1730
        lsi_update_irq(s);
1731
        break;
1732
    case 0x41: /* SIEN1 */
1733
        s->sien1 = val;
1734
        lsi_update_irq(s);
1735
        break;
1736
    case 0x47: /* GPCNTL0 */
1737
        break;
1738
    case 0x48: /* STIME0 */
1739
        s->stime0 = val;
1740
        break;
1741
    case 0x49: /* STIME1 */
1742
        if (val & 0xf) {
1743
            DPRINTF("General purpose timer not implemented\n");
1744
            /* ??? Raising the interrupt immediately seems to be sufficient
1745
               to keep the FreeBSD driver happy.  */
1746
            lsi_script_scsi_interrupt(s, 0, LSI_SIST1_GEN);
1747
        }
1748
        break;
1749
    case 0x4a: /* RESPID0 */
1750
        s->respid0 = val;
1751
        break;
1752
    case 0x4b: /* RESPID1 */
1753
        s->respid1 = val;
1754
        break;
1755
    case 0x4d: /* STEST1 */
1756
        s->stest1 = val;
1757
        break;
1758
    case 0x4e: /* STEST2 */
1759
        if (val & 1) {
1760
            BADF("Low level mode not implemented\n");
1761
        }
1762
        s->stest2 = val;
1763
        break;
1764
    case 0x4f: /* STEST3 */
1765
        if (val & 0x41) {
1766
            BADF("SCSI FIFO test mode not implemented\n");
1767
        }
1768
        s->stest3 = val;
1769
        break;
1770
    case 0x56: /* CCNTL0 */
1771
        s->ccntl0 = val;
1772
        break;
1773
    case 0x57: /* CCNTL1 */
1774
        s->ccntl1 = val;
1775
        break;
1776
    CASE_SET_REG32(mmrs, 0xa0)
1777
    CASE_SET_REG32(mmws, 0xa4)
1778
    CASE_SET_REG32(sfs, 0xa8)
1779
    CASE_SET_REG32(drs, 0xac)
1780
    CASE_SET_REG32(sbms, 0xb0)
1781
    CASE_SET_REG32(dbms, 0xb4)
1782
    CASE_SET_REG32(dnad64, 0xb8)
1783
    CASE_SET_REG32(pmjad1, 0xc0)
1784
    CASE_SET_REG32(pmjad2, 0xc4)
1785
    CASE_SET_REG32(rbc, 0xc8)
1786
    CASE_SET_REG32(ua, 0xcc)
1787
    CASE_SET_REG32(ia, 0xd4)
1788
    CASE_SET_REG32(sbc, 0xd8)
1789
    CASE_SET_REG32(csbc, 0xdc)
1790
    default:
1791
        if (offset >= 0x5c && offset < 0xa0) {
1792
            int n;
1793
            int shift;
1794
            n = (offset - 0x58) >> 2;
1795
            shift = (offset & 3) * 8;
1796
            s->scratch[n] &= ~(0xff << shift);
1797
            s->scratch[n] |= (val & 0xff) << shift;
1798
        } else {
1799
            BADF("Unhandled writeb 0x%x = 0x%x\n", offset, val);
1800
        }
1801
    }
1802
#undef CASE_SET_REG24
1803
#undef CASE_SET_REG32
1804
}
1805

    
1806
static void lsi_mmio_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1807
{
1808
    LSIState *s = opaque;
1809

    
1810
    lsi_reg_writeb(s, addr & 0xff, val);
1811
}
1812

    
1813
static void lsi_mmio_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1814
{
1815
    LSIState *s = opaque;
1816

    
1817
    addr &= 0xff;
1818
    lsi_reg_writeb(s, addr, val & 0xff);
1819
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1820
}
1821

    
1822
static void lsi_mmio_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1823
{
1824
    LSIState *s = opaque;
1825

    
1826
    addr &= 0xff;
1827
    lsi_reg_writeb(s, addr, val & 0xff);
1828
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1829
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
1830
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
1831
}
1832

    
1833
static uint32_t lsi_mmio_readb(void *opaque, target_phys_addr_t addr)
1834
{
1835
    LSIState *s = opaque;
1836

    
1837
    return lsi_reg_readb(s, addr & 0xff);
1838
}
1839

    
1840
static uint32_t lsi_mmio_readw(void *opaque, target_phys_addr_t addr)
1841
{
1842
    LSIState *s = opaque;
1843
    uint32_t val;
1844

    
1845
    addr &= 0xff;
1846
    val = lsi_reg_readb(s, addr);
1847
    val |= lsi_reg_readb(s, addr + 1) << 8;
1848
    return val;
1849
}
1850

    
1851
static uint32_t lsi_mmio_readl(void *opaque, target_phys_addr_t addr)
1852
{
1853
    LSIState *s = opaque;
1854
    uint32_t val;
1855
    addr &= 0xff;
1856
    val = lsi_reg_readb(s, addr);
1857
    val |= lsi_reg_readb(s, addr + 1) << 8;
1858
    val |= lsi_reg_readb(s, addr + 2) << 16;
1859
    val |= lsi_reg_readb(s, addr + 3) << 24;
1860
    return val;
1861
}
1862

    
1863
static CPUReadMemoryFunc * const lsi_mmio_readfn[3] = {
1864
    lsi_mmio_readb,
1865
    lsi_mmio_readw,
1866
    lsi_mmio_readl,
1867
};
1868

    
1869
static CPUWriteMemoryFunc * const lsi_mmio_writefn[3] = {
1870
    lsi_mmio_writeb,
1871
    lsi_mmio_writew,
1872
    lsi_mmio_writel,
1873
};
1874

    
1875
static void lsi_ram_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
1876
{
1877
    LSIState *s = opaque;
1878
    uint32_t newval;
1879
    int shift;
1880

    
1881
    addr &= 0x1fff;
1882
    newval = s->script_ram[addr >> 2];
1883
    shift = (addr & 3) * 8;
1884
    newval &= ~(0xff << shift);
1885
    newval |= val << shift;
1886
    s->script_ram[addr >> 2] = newval;
1887
}
1888

    
1889
static void lsi_ram_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
1890
{
1891
    LSIState *s = opaque;
1892
    uint32_t newval;
1893

    
1894
    addr &= 0x1fff;
1895
    newval = s->script_ram[addr >> 2];
1896
    if (addr & 2) {
1897
        newval = (newval & 0xffff) | (val << 16);
1898
    } else {
1899
        newval = (newval & 0xffff0000) | val;
1900
    }
1901
    s->script_ram[addr >> 2] = newval;
1902
}
1903

    
1904

    
1905
static void lsi_ram_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
1906
{
1907
    LSIState *s = opaque;
1908

    
1909
    addr &= 0x1fff;
1910
    s->script_ram[addr >> 2] = val;
1911
}
1912

    
1913
static uint32_t lsi_ram_readb(void *opaque, target_phys_addr_t addr)
1914
{
1915
    LSIState *s = opaque;
1916
    uint32_t val;
1917

    
1918
    addr &= 0x1fff;
1919
    val = s->script_ram[addr >> 2];
1920
    val >>= (addr & 3) * 8;
1921
    return val & 0xff;
1922
}
1923

    
1924
static uint32_t lsi_ram_readw(void *opaque, target_phys_addr_t addr)
1925
{
1926
    LSIState *s = opaque;
1927
    uint32_t val;
1928

    
1929
    addr &= 0x1fff;
1930
    val = s->script_ram[addr >> 2];
1931
    if (addr & 2)
1932
        val >>= 16;
1933
    return le16_to_cpu(val);
1934
}
1935

    
1936
static uint32_t lsi_ram_readl(void *opaque, target_phys_addr_t addr)
1937
{
1938
    LSIState *s = opaque;
1939

    
1940
    addr &= 0x1fff;
1941
    return le32_to_cpu(s->script_ram[addr >> 2]);
1942
}
1943

    
1944
static CPUReadMemoryFunc * const lsi_ram_readfn[3] = {
1945
    lsi_ram_readb,
1946
    lsi_ram_readw,
1947
    lsi_ram_readl,
1948
};
1949

    
1950
static CPUWriteMemoryFunc * const lsi_ram_writefn[3] = {
1951
    lsi_ram_writeb,
1952
    lsi_ram_writew,
1953
    lsi_ram_writel,
1954
};
1955

    
1956
static uint32_t lsi_io_readb(void *opaque, uint32_t addr)
1957
{
1958
    LSIState *s = opaque;
1959
    return lsi_reg_readb(s, addr & 0xff);
1960
}
1961

    
1962
static uint32_t lsi_io_readw(void *opaque, uint32_t addr)
1963
{
1964
    LSIState *s = opaque;
1965
    uint32_t val;
1966
    addr &= 0xff;
1967
    val = lsi_reg_readb(s, addr);
1968
    val |= lsi_reg_readb(s, addr + 1) << 8;
1969
    return val;
1970
}
1971

    
1972
static uint32_t lsi_io_readl(void *opaque, uint32_t addr)
1973
{
1974
    LSIState *s = opaque;
1975
    uint32_t val;
1976
    addr &= 0xff;
1977
    val = lsi_reg_readb(s, addr);
1978
    val |= lsi_reg_readb(s, addr + 1) << 8;
1979
    val |= lsi_reg_readb(s, addr + 2) << 16;
1980
    val |= lsi_reg_readb(s, addr + 3) << 24;
1981
    return val;
1982
}
1983

    
1984
static void lsi_io_writeb(void *opaque, uint32_t addr, uint32_t val)
1985
{
1986
    LSIState *s = opaque;
1987
    lsi_reg_writeb(s, addr & 0xff, val);
1988
}
1989

    
1990
static void lsi_io_writew(void *opaque, uint32_t addr, uint32_t val)
1991
{
1992
    LSIState *s = opaque;
1993
    addr &= 0xff;
1994
    lsi_reg_writeb(s, addr, val & 0xff);
1995
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
1996
}
1997

    
1998
static void lsi_io_writel(void *opaque, uint32_t addr, uint32_t val)
1999
{
2000
    LSIState *s = opaque;
2001
    addr &= 0xff;
2002
    lsi_reg_writeb(s, addr, val & 0xff);
2003
    lsi_reg_writeb(s, addr + 1, (val >> 8) & 0xff);
2004
    lsi_reg_writeb(s, addr + 2, (val >> 16) & 0xff);
2005
    lsi_reg_writeb(s, addr + 3, (val >> 24) & 0xff);
2006
}
2007

    
2008
static void lsi_io_mapfunc(PCIDevice *pci_dev, int region_num,
2009
                           pcibus_t addr, pcibus_t size, int type)
2010
{
2011
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2012

    
2013
    DPRINTF("Mapping IO at %08"FMT_PCIBUS"\n", addr);
2014

    
2015
    register_ioport_write(addr, 256, 1, lsi_io_writeb, s);
2016
    register_ioport_read(addr, 256, 1, lsi_io_readb, s);
2017
    register_ioport_write(addr, 256, 2, lsi_io_writew, s);
2018
    register_ioport_read(addr, 256, 2, lsi_io_readw, s);
2019
    register_ioport_write(addr, 256, 4, lsi_io_writel, s);
2020
    register_ioport_read(addr, 256, 4, lsi_io_readl, s);
2021
}
2022

    
2023
static void lsi_ram_mapfunc(PCIDevice *pci_dev, int region_num,
2024
                            pcibus_t addr, pcibus_t size, int type)
2025
{
2026
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2027

    
2028
    DPRINTF("Mapping ram at %08"FMT_PCIBUS"\n", addr);
2029
    s->script_ram_base = addr;
2030
    cpu_register_physical_memory(addr + 0, 0x2000, s->ram_io_addr);
2031
}
2032

    
2033
static void lsi_mmio_mapfunc(PCIDevice *pci_dev, int region_num,
2034
                             pcibus_t addr, pcibus_t size, int type)
2035
{
2036
    LSIState *s = DO_UPCAST(LSIState, dev, pci_dev);
2037

    
2038
    DPRINTF("Mapping registers at %08"FMT_PCIBUS"\n", addr);
2039
    cpu_register_physical_memory(addr + 0, 0x400, s->mmio_io_addr);
2040
}
2041

    
2042
static void lsi_scsi_reset(DeviceState *dev)
2043
{
2044
    LSIState *s = DO_UPCAST(LSIState, dev.qdev, dev);
2045

    
2046
    lsi_soft_reset(s);
2047
}
2048

    
2049
static void lsi_pre_save(void *opaque)
2050
{
2051
    LSIState *s = opaque;
2052

    
2053
    if (s->current) {
2054
        assert(s->current->dma_buf == NULL);
2055
        assert(s->current->dma_len == 0);
2056
    }
2057
    assert(QTAILQ_EMPTY(&s->queue));
2058
}
2059

    
2060
static const VMStateDescription vmstate_lsi_scsi = {
2061
    .name = "lsiscsi",
2062
    .version_id = 0,
2063
    .minimum_version_id = 0,
2064
    .minimum_version_id_old = 0,
2065
    .pre_save = lsi_pre_save,
2066
    .fields      = (VMStateField []) {
2067
        VMSTATE_PCI_DEVICE(dev, LSIState),
2068

    
2069
        VMSTATE_INT32(carry, LSIState),
2070
        VMSTATE_INT32(sense, LSIState),
2071
        VMSTATE_INT32(msg_action, LSIState),
2072
        VMSTATE_INT32(msg_len, LSIState),
2073
        VMSTATE_BUFFER(msg, LSIState),
2074
        VMSTATE_INT32(waiting, LSIState),
2075

    
2076
        VMSTATE_UINT32(dsa, LSIState),
2077
        VMSTATE_UINT32(temp, LSIState),
2078
        VMSTATE_UINT32(dnad, LSIState),
2079
        VMSTATE_UINT32(dbc, LSIState),
2080
        VMSTATE_UINT8(istat0, LSIState),
2081
        VMSTATE_UINT8(istat1, LSIState),
2082
        VMSTATE_UINT8(dcmd, LSIState),
2083
        VMSTATE_UINT8(dstat, LSIState),
2084
        VMSTATE_UINT8(dien, LSIState),
2085
        VMSTATE_UINT8(sist0, LSIState),
2086
        VMSTATE_UINT8(sist1, LSIState),
2087
        VMSTATE_UINT8(sien0, LSIState),
2088
        VMSTATE_UINT8(sien1, LSIState),
2089
        VMSTATE_UINT8(mbox0, LSIState),
2090
        VMSTATE_UINT8(mbox1, LSIState),
2091
        VMSTATE_UINT8(dfifo, LSIState),
2092
        VMSTATE_UINT8(ctest2, LSIState),
2093
        VMSTATE_UINT8(ctest3, LSIState),
2094
        VMSTATE_UINT8(ctest4, LSIState),
2095
        VMSTATE_UINT8(ctest5, LSIState),
2096
        VMSTATE_UINT8(ccntl0, LSIState),
2097
        VMSTATE_UINT8(ccntl1, LSIState),
2098
        VMSTATE_UINT32(dsp, LSIState),
2099
        VMSTATE_UINT32(dsps, LSIState),
2100
        VMSTATE_UINT8(dmode, LSIState),
2101
        VMSTATE_UINT8(dcntl, LSIState),
2102
        VMSTATE_UINT8(scntl0, LSIState),
2103
        VMSTATE_UINT8(scntl1, LSIState),
2104
        VMSTATE_UINT8(scntl2, LSIState),
2105
        VMSTATE_UINT8(scntl3, LSIState),
2106
        VMSTATE_UINT8(sstat0, LSIState),
2107
        VMSTATE_UINT8(sstat1, LSIState),
2108
        VMSTATE_UINT8(scid, LSIState),
2109
        VMSTATE_UINT8(sxfer, LSIState),
2110
        VMSTATE_UINT8(socl, LSIState),
2111
        VMSTATE_UINT8(sdid, LSIState),
2112
        VMSTATE_UINT8(ssid, LSIState),
2113
        VMSTATE_UINT8(sfbr, LSIState),
2114
        VMSTATE_UINT8(stest1, LSIState),
2115
        VMSTATE_UINT8(stest2, LSIState),
2116
        VMSTATE_UINT8(stest3, LSIState),
2117
        VMSTATE_UINT8(sidl, LSIState),
2118
        VMSTATE_UINT8(stime0, LSIState),
2119
        VMSTATE_UINT8(respid0, LSIState),
2120
        VMSTATE_UINT8(respid1, LSIState),
2121
        VMSTATE_UINT32(mmrs, LSIState),
2122
        VMSTATE_UINT32(mmws, LSIState),
2123
        VMSTATE_UINT32(sfs, LSIState),
2124
        VMSTATE_UINT32(drs, LSIState),
2125
        VMSTATE_UINT32(sbms, LSIState),
2126
        VMSTATE_UINT32(dbms, LSIState),
2127
        VMSTATE_UINT32(dnad64, LSIState),
2128
        VMSTATE_UINT32(pmjad1, LSIState),
2129
        VMSTATE_UINT32(pmjad2, LSIState),
2130
        VMSTATE_UINT32(rbc, LSIState),
2131
        VMSTATE_UINT32(ua, LSIState),
2132
        VMSTATE_UINT32(ia, LSIState),
2133
        VMSTATE_UINT32(sbc, LSIState),
2134
        VMSTATE_UINT32(csbc, LSIState),
2135
        VMSTATE_BUFFER_UNSAFE(scratch, LSIState, 0, 18 * sizeof(uint32_t)),
2136
        VMSTATE_UINT8(sbr, LSIState),
2137

    
2138
        VMSTATE_BUFFER_UNSAFE(script_ram, LSIState, 0, 2048 * sizeof(uint32_t)),
2139
        VMSTATE_END_OF_LIST()
2140
    }
2141
};
2142

    
2143
static int lsi_scsi_uninit(PCIDevice *d)
2144
{
2145
    LSIState *s = DO_UPCAST(LSIState, dev, d);
2146

    
2147
    cpu_unregister_io_memory(s->mmio_io_addr);
2148
    cpu_unregister_io_memory(s->ram_io_addr);
2149

    
2150
    return 0;
2151
}
2152

    
2153
static int lsi_scsi_init(PCIDevice *dev)
2154
{
2155
    LSIState *s = DO_UPCAST(LSIState, dev, dev);
2156
    uint8_t *pci_conf;
2157

    
2158
    pci_conf = s->dev.config;
2159

    
2160
    /* PCI Vendor ID (word) */
2161
    pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_LSI_LOGIC);
2162
    /* PCI device ID (word) */
2163
    pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_LSI_53C895A);
2164
    /* PCI base class code */
2165
    pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_SCSI);
2166
    /* PCI subsystem ID */
2167
    pci_conf[PCI_SUBSYSTEM_ID] = 0x00;
2168
    pci_conf[PCI_SUBSYSTEM_ID + 1] = 0x10;
2169
    /* PCI latency timer = 255 */
2170
    pci_conf[PCI_LATENCY_TIMER] = 0xff;
2171
    /* TODO: RST# value should be 0 */
2172
    /* Interrupt pin 1 */
2173
    pci_conf[PCI_INTERRUPT_PIN] = 0x01;
2174

    
2175
    s->mmio_io_addr = cpu_register_io_memory(lsi_mmio_readfn,
2176
                                             lsi_mmio_writefn, s,
2177
                                             DEVICE_NATIVE_ENDIAN);
2178
    s->ram_io_addr = cpu_register_io_memory(lsi_ram_readfn,
2179
                                            lsi_ram_writefn, s,
2180
                                            DEVICE_NATIVE_ENDIAN);
2181

    
2182
    pci_register_bar(&s->dev, 0, 256,
2183
                           PCI_BASE_ADDRESS_SPACE_IO, lsi_io_mapfunc);
2184
    pci_register_bar(&s->dev, 1, 0x400,
2185
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_mmio_mapfunc);
2186
    pci_register_bar(&s->dev, 2, 0x2000,
2187
                           PCI_BASE_ADDRESS_SPACE_MEMORY, lsi_ram_mapfunc);
2188
    QTAILQ_INIT(&s->queue);
2189

    
2190
    scsi_bus_new(&s->bus, &dev->qdev, 1, LSI_MAX_DEVS, lsi_command_complete);
2191
    if (!dev->qdev.hotplugged) {
2192
        return scsi_bus_legacy_handle_cmdline(&s->bus);
2193
    }
2194
    return 0;
2195
}
2196

    
2197
static PCIDeviceInfo lsi_info = {
2198
    .qdev.name  = "lsi53c895a",
2199
    .qdev.alias = "lsi",
2200
    .qdev.size  = sizeof(LSIState),
2201
    .qdev.reset = lsi_scsi_reset,
2202
    .qdev.vmsd  = &vmstate_lsi_scsi,
2203
    .init       = lsi_scsi_init,
2204
    .exit       = lsi_scsi_uninit,
2205
};
2206

    
2207
static void lsi53c895a_register_devices(void)
2208
{
2209
    pci_qdev_register(&lsi_info);
2210
}
2211

    
2212
device_init(lsi53c895a_register_devices);