Statistics
| Branch: | Revision:

root / hw / mips_malta.c @ 2507c12a

History | View | Annotate | Download (32.1 kB)

1
/*
2
 * QEMU Malta board support
3
 *
4
 * Copyright (c) 2006 Aurelien Jarno
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24

    
25
#include "hw.h"
26
#include "pc.h"
27
#include "fdc.h"
28
#include "net.h"
29
#include "boards.h"
30
#include "smbus.h"
31
#include "block.h"
32
#include "flash.h"
33
#include "mips.h"
34
#include "mips_cpudevs.h"
35
#include "pci.h"
36
#include "usb-uhci.h"
37
#include "vmware_vga.h"
38
#include "qemu-char.h"
39
#include "sysemu.h"
40
#include "audio/audio.h"
41
#include "boards.h"
42
#include "qemu-log.h"
43
#include "mips-bios.h"
44
#include "ide.h"
45
#include "loader.h"
46
#include "elf.h"
47
#include "mc146818rtc.h"
48
#include "blockdev.h"
49

    
50
//#define DEBUG_BOARD_INIT
51

    
52
#define ENVP_ADDR                0x80002000l
53
#define ENVP_NB_ENTRIES                 16
54
#define ENVP_ENTRY_SIZE                 256
55

    
56
#define MAX_IDE_BUS 2
57

    
58
typedef struct {
59
    uint32_t leds;
60
    uint32_t brk;
61
    uint32_t gpout;
62
    uint32_t i2cin;
63
    uint32_t i2coe;
64
    uint32_t i2cout;
65
    uint32_t i2csel;
66
    CharDriverState *display;
67
    char display_text[9];
68
    SerialState *uart;
69
} MaltaFPGAState;
70

    
71
static PITState *pit;
72

    
73
static struct _loaderparams {
74
    int ram_size;
75
    const char *kernel_filename;
76
    const char *kernel_cmdline;
77
    const char *initrd_filename;
78
} loaderparams;
79

    
80
/* Malta FPGA */
81
static void malta_fpga_update_display(void *opaque)
82
{
83
    char leds_text[9];
84
    int i;
85
    MaltaFPGAState *s = opaque;
86

    
87
    for (i = 7 ; i >= 0 ; i--) {
88
        if (s->leds & (1 << i))
89
            leds_text[i] = '#';
90
        else
91
            leds_text[i] = ' ';
92
    }
93
    leds_text[8] = '\0';
94

    
95
    qemu_chr_printf(s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n", leds_text);
96
    qemu_chr_printf(s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|", s->display_text);
97
}
98

    
99
/*
100
 * EEPROM 24C01 / 24C02 emulation.
101
 *
102
 * Emulation for serial EEPROMs:
103
 * 24C01 - 1024 bit (128 x 8)
104
 * 24C02 - 2048 bit (256 x 8)
105
 *
106
 * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
107
 */
108

    
109
//~ #define DEBUG
110

    
111
#if defined(DEBUG)
112
#  define logout(fmt, ...) fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
113
#else
114
#  define logout(fmt, ...) ((void)0)
115
#endif
116

    
117
struct _eeprom24c0x_t {
118
  uint8_t tick;
119
  uint8_t address;
120
  uint8_t command;
121
  uint8_t ack;
122
  uint8_t scl;
123
  uint8_t sda;
124
  uint8_t data;
125
  //~ uint16_t size;
126
  uint8_t contents[256];
127
};
128

    
129
typedef struct _eeprom24c0x_t eeprom24c0x_t;
130

    
131
static eeprom24c0x_t eeprom = {
132
    .contents = {
133
        /* 00000000: */ 0x80,0x08,0x04,0x0D,0x0A,0x01,0x40,0x00,
134
        /* 00000008: */ 0x01,0x75,0x54,0x00,0x82,0x08,0x00,0x01,
135
        /* 00000010: */ 0x8F,0x04,0x02,0x01,0x01,0x00,0x0E,0x00,
136
        /* 00000018: */ 0x00,0x00,0x00,0x14,0x0F,0x14,0x2D,0x40,
137
        /* 00000020: */ 0x15,0x08,0x15,0x08,0x00,0x00,0x00,0x00,
138
        /* 00000028: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
139
        /* 00000030: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
140
        /* 00000038: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x12,0xD0,
141
        /* 00000040: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
142
        /* 00000048: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
143
        /* 00000050: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
144
        /* 00000058: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
145
        /* 00000060: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
146
        /* 00000068: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
147
        /* 00000070: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
148
        /* 00000078: */ 0x00,0x00,0x00,0x00,0x00,0x00,0x64,0xF4,
149
    },
150
};
151

    
152
static uint8_t eeprom24c0x_read(void)
153
{
154
    logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
155
        eeprom.tick, eeprom.scl, eeprom.sda, eeprom.data);
156
    return eeprom.sda;
157
}
158

    
159
static void eeprom24c0x_write(int scl, int sda)
160
{
161
    if (eeprom.scl && scl && (eeprom.sda != sda)) {
162
        logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
163
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda, sda ? "stop" : "start");
164
        if (!sda) {
165
            eeprom.tick = 1;
166
            eeprom.command = 0;
167
        }
168
    } else if (eeprom.tick == 0 && !eeprom.ack) {
169
        /* Waiting for start. */
170
        logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
171
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
172
    } else if (!eeprom.scl && scl) {
173
        logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
174
                eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
175
        if (eeprom.ack) {
176
            logout("\ti2c ack bit = 0\n");
177
            sda = 0;
178
            eeprom.ack = 0;
179
        } else if (eeprom.sda == sda) {
180
            uint8_t bit = (sda != 0);
181
            logout("\ti2c bit = %d\n", bit);
182
            if (eeprom.tick < 9) {
183
                eeprom.command <<= 1;
184
                eeprom.command += bit;
185
                eeprom.tick++;
186
                if (eeprom.tick == 9) {
187
                    logout("\tcommand 0x%04x, %s\n", eeprom.command, bit ? "read" : "write");
188
                    eeprom.ack = 1;
189
                }
190
            } else if (eeprom.tick < 17) {
191
                if (eeprom.command & 1) {
192
                    sda = ((eeprom.data & 0x80) != 0);
193
                }
194
                eeprom.address <<= 1;
195
                eeprom.address += bit;
196
                eeprom.tick++;
197
                eeprom.data <<= 1;
198
                if (eeprom.tick == 17) {
199
                    eeprom.data = eeprom.contents[eeprom.address];
200
                    logout("\taddress 0x%04x, data 0x%02x\n", eeprom.address, eeprom.data);
201
                    eeprom.ack = 1;
202
                    eeprom.tick = 0;
203
                }
204
            } else if (eeprom.tick >= 17) {
205
                sda = 0;
206
            }
207
        } else {
208
            logout("\tsda changed with raising scl\n");
209
        }
210
    } else {
211
        logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom.tick, eeprom.scl, scl, eeprom.sda, sda);
212
    }
213
    eeprom.scl = scl;
214
    eeprom.sda = sda;
215
}
216

    
217
static uint32_t malta_fpga_readl(void *opaque, target_phys_addr_t addr)
218
{
219
    MaltaFPGAState *s = opaque;
220
    uint32_t val = 0;
221
    uint32_t saddr;
222

    
223
    saddr = (addr & 0xfffff);
224

    
225
    switch (saddr) {
226

    
227
    /* SWITCH Register */
228
    case 0x00200:
229
        val = 0x00000000;                /* All switches closed */
230
        break;
231

    
232
    /* STATUS Register */
233
    case 0x00208:
234
#ifdef TARGET_WORDS_BIGENDIAN
235
        val = 0x00000012;
236
#else
237
        val = 0x00000010;
238
#endif
239
        break;
240

    
241
    /* JMPRS Register */
242
    case 0x00210:
243
        val = 0x00;
244
        break;
245

    
246
    /* LEDBAR Register */
247
    case 0x00408:
248
        val = s->leds;
249
        break;
250

    
251
    /* BRKRES Register */
252
    case 0x00508:
253
        val = s->brk;
254
        break;
255

    
256
    /* UART Registers are handled directly by the serial device */
257

    
258
    /* GPOUT Register */
259
    case 0x00a00:
260
        val = s->gpout;
261
        break;
262

    
263
    /* XXX: implement a real I2C controller */
264

    
265
    /* GPINP Register */
266
    case 0x00a08:
267
        /* IN = OUT until a real I2C control is implemented */
268
        if (s->i2csel)
269
            val = s->i2cout;
270
        else
271
            val = 0x00;
272
        break;
273

    
274
    /* I2CINP Register */
275
    case 0x00b00:
276
        val = ((s->i2cin & ~1) | eeprom24c0x_read());
277
        break;
278

    
279
    /* I2COE Register */
280
    case 0x00b08:
281
        val = s->i2coe;
282
        break;
283

    
284
    /* I2COUT Register */
285
    case 0x00b10:
286
        val = s->i2cout;
287
        break;
288

    
289
    /* I2CSEL Register */
290
    case 0x00b18:
291
        val = s->i2csel;
292
        break;
293

    
294
    default:
295
#if 0
296
        printf ("malta_fpga_read: Bad register offset 0x" TARGET_FMT_lx "\n",
297
                addr);
298
#endif
299
        break;
300
    }
301
    return val;
302
}
303

    
304
static void malta_fpga_writel(void *opaque, target_phys_addr_t addr,
305
                              uint32_t val)
306
{
307
    MaltaFPGAState *s = opaque;
308
    uint32_t saddr;
309

    
310
    saddr = (addr & 0xfffff);
311

    
312
    switch (saddr) {
313

    
314
    /* SWITCH Register */
315
    case 0x00200:
316
        break;
317

    
318
    /* JMPRS Register */
319
    case 0x00210:
320
        break;
321

    
322
    /* LEDBAR Register */
323
    /* XXX: implement a 8-LED array */
324
    case 0x00408:
325
        s->leds = val & 0xff;
326
        break;
327

    
328
    /* ASCIIWORD Register */
329
    case 0x00410:
330
        snprintf(s->display_text, 9, "%08X", val);
331
        malta_fpga_update_display(s);
332
        break;
333

    
334
    /* ASCIIPOS0 to ASCIIPOS7 Registers */
335
    case 0x00418:
336
    case 0x00420:
337
    case 0x00428:
338
    case 0x00430:
339
    case 0x00438:
340
    case 0x00440:
341
    case 0x00448:
342
    case 0x00450:
343
        s->display_text[(saddr - 0x00418) >> 3] = (char) val;
344
        malta_fpga_update_display(s);
345
        break;
346

    
347
    /* SOFTRES Register */
348
    case 0x00500:
349
        if (val == 0x42)
350
            qemu_system_reset_request ();
351
        break;
352

    
353
    /* BRKRES Register */
354
    case 0x00508:
355
        s->brk = val & 0xff;
356
        break;
357

    
358
    /* UART Registers are handled directly by the serial device */
359

    
360
    /* GPOUT Register */
361
    case 0x00a00:
362
        s->gpout = val & 0xff;
363
        break;
364

    
365
    /* I2COE Register */
366
    case 0x00b08:
367
        s->i2coe = val & 0x03;
368
        break;
369

    
370
    /* I2COUT Register */
371
    case 0x00b10:
372
        eeprom24c0x_write(val & 0x02, val & 0x01);
373
        s->i2cout = val;
374
        break;
375

    
376
    /* I2CSEL Register */
377
    case 0x00b18:
378
        s->i2csel = val & 0x01;
379
        break;
380

    
381
    default:
382
#if 0
383
        printf ("malta_fpga_write: Bad register offset 0x" TARGET_FMT_lx "\n",
384
                addr);
385
#endif
386
        break;
387
    }
388
}
389

    
390
static CPUReadMemoryFunc * const malta_fpga_read[] = {
391
   malta_fpga_readl,
392
   malta_fpga_readl,
393
   malta_fpga_readl
394
};
395

    
396
static CPUWriteMemoryFunc * const malta_fpga_write[] = {
397
   malta_fpga_writel,
398
   malta_fpga_writel,
399
   malta_fpga_writel
400
};
401

    
402
static void malta_fpga_reset(void *opaque)
403
{
404
    MaltaFPGAState *s = opaque;
405

    
406
    s->leds   = 0x00;
407
    s->brk    = 0x0a;
408
    s->gpout  = 0x00;
409
    s->i2cin  = 0x3;
410
    s->i2coe  = 0x0;
411
    s->i2cout = 0x3;
412
    s->i2csel = 0x1;
413

    
414
    s->display_text[8] = '\0';
415
    snprintf(s->display_text, 9, "        ");
416
}
417

    
418
static void malta_fpga_led_init(CharDriverState *chr)
419
{
420
    qemu_chr_printf(chr, "\e[HMalta LEDBAR\r\n");
421
    qemu_chr_printf(chr, "+--------+\r\n");
422
    qemu_chr_printf(chr, "+        +\r\n");
423
    qemu_chr_printf(chr, "+--------+\r\n");
424
    qemu_chr_printf(chr, "\n");
425
    qemu_chr_printf(chr, "Malta ASCII\r\n");
426
    qemu_chr_printf(chr, "+--------+\r\n");
427
    qemu_chr_printf(chr, "+        +\r\n");
428
    qemu_chr_printf(chr, "+--------+\r\n");
429
}
430

    
431
static MaltaFPGAState *malta_fpga_init(target_phys_addr_t base, qemu_irq uart_irq, CharDriverState *uart_chr)
432
{
433
    MaltaFPGAState *s;
434
    int malta;
435

    
436
    s = (MaltaFPGAState *)qemu_mallocz(sizeof(MaltaFPGAState));
437

    
438
    malta = cpu_register_io_memory(malta_fpga_read,
439
                                   malta_fpga_write, s,
440
                                   DEVICE_NATIVE_ENDIAN);
441

    
442
    cpu_register_physical_memory(base, 0x900, malta);
443
    /* 0xa00 is less than a page, so will still get the right offsets.  */
444
    cpu_register_physical_memory(base + 0xa00, 0x100000 - 0xa00, malta);
445

    
446
    s->display = qemu_chr_open("fpga", "vc:320x200", malta_fpga_led_init);
447

    
448
#ifdef TARGET_WORDS_BIGENDIAN
449
    s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 1);
450
#else
451
    s->uart = serial_mm_init(base + 0x900, 3, uart_irq, 230400, uart_chr, 1, 0);
452
#endif
453

    
454
    malta_fpga_reset(s);
455
    qemu_register_reset(malta_fpga_reset, s);
456

    
457
    return s;
458
}
459

    
460
/* Audio support */
461
static void audio_init (PCIBus *pci_bus)
462
{
463
    struct soundhw *c;
464
    int audio_enabled = 0;
465

    
466
    for (c = soundhw; !audio_enabled && c->name; ++c) {
467
        audio_enabled = c->enabled;
468
    }
469

    
470
    if (audio_enabled) {
471
        for (c = soundhw; c->name; ++c) {
472
            if (c->enabled) {
473
                c->init.init_pci(pci_bus);
474
            }
475
        }
476
    }
477
}
478

    
479
/* Network support */
480
static void network_init(void)
481
{
482
    int i;
483

    
484
    for(i = 0; i < nb_nics; i++) {
485
        NICInfo *nd = &nd_table[i];
486
        const char *default_devaddr = NULL;
487

    
488
        if (i == 0 && (!nd->model || strcmp(nd->model, "pcnet") == 0))
489
            /* The malta board has a PCNet card using PCI SLOT 11 */
490
            default_devaddr = "0b";
491

    
492
        pci_nic_init_nofail(nd, "pcnet", default_devaddr);
493
    }
494
}
495

    
496
/* ROM and pseudo bootloader
497

498
   The following code implements a very very simple bootloader. It first
499
   loads the registers a0 to a3 to the values expected by the OS, and
500
   then jump at the kernel address.
501

502
   The bootloader should pass the locations of the kernel arguments and
503
   environment variables tables. Those tables contain the 32-bit address
504
   of NULL terminated strings. The environment variables table should be
505
   terminated by a NULL address.
506

507
   For a simpler implementation, the number of kernel arguments is fixed
508
   to two (the name of the kernel and the command line), and the two
509
   tables are actually the same one.
510

511
   The registers a0 to a3 should contain the following values:
512
     a0 - number of kernel arguments
513
     a1 - 32-bit address of the kernel arguments table
514
     a2 - 32-bit address of the environment variables table
515
     a3 - RAM size in bytes
516
*/
517

    
518
static void write_bootloader (CPUState *env, uint8_t *base,
519
                              int64_t kernel_entry)
520
{
521
    uint32_t *p;
522

    
523
    /* Small bootloader */
524
    p = (uint32_t *)base;
525
    stl_raw(p++, 0x0bf00160);                                      /* j 0x1fc00580 */
526
    stl_raw(p++, 0x00000000);                                      /* nop */
527

    
528
    /* YAMON service vector */
529
    stl_raw(base + 0x500, 0xbfc00580);      /* start: */
530
    stl_raw(base + 0x504, 0xbfc0083c);      /* print_count: */
531
    stl_raw(base + 0x520, 0xbfc00580);      /* start: */
532
    stl_raw(base + 0x52c, 0xbfc00800);      /* flush_cache: */
533
    stl_raw(base + 0x534, 0xbfc00808);      /* print: */
534
    stl_raw(base + 0x538, 0xbfc00800);      /* reg_cpu_isr: */
535
    stl_raw(base + 0x53c, 0xbfc00800);      /* unred_cpu_isr: */
536
    stl_raw(base + 0x540, 0xbfc00800);      /* reg_ic_isr: */
537
    stl_raw(base + 0x544, 0xbfc00800);      /* unred_ic_isr: */
538
    stl_raw(base + 0x548, 0xbfc00800);      /* reg_esr: */
539
    stl_raw(base + 0x54c, 0xbfc00800);      /* unreg_esr: */
540
    stl_raw(base + 0x550, 0xbfc00800);      /* getchar: */
541
    stl_raw(base + 0x554, 0xbfc00800);      /* syscon_read: */
542

    
543

    
544
    /* Second part of the bootloader */
545
    p = (uint32_t *) (base + 0x580);
546
    stl_raw(p++, 0x24040002);                                      /* addiu a0, zero, 2 */
547
    stl_raw(p++, 0x3c1d0000 | (((ENVP_ADDR - 64) >> 16) & 0xffff)); /* lui sp, high(ENVP_ADDR) */
548
    stl_raw(p++, 0x37bd0000 | ((ENVP_ADDR - 64) & 0xffff));        /* ori sp, sp, low(ENVP_ADDR) */
549
    stl_raw(p++, 0x3c050000 | ((ENVP_ADDR >> 16) & 0xffff));       /* lui a1, high(ENVP_ADDR) */
550
    stl_raw(p++, 0x34a50000 | (ENVP_ADDR & 0xffff));               /* ori a1, a1, low(ENVP_ADDR) */
551
    stl_raw(p++, 0x3c060000 | (((ENVP_ADDR + 8) >> 16) & 0xffff)); /* lui a2, high(ENVP_ADDR + 8) */
552
    stl_raw(p++, 0x34c60000 | ((ENVP_ADDR + 8) & 0xffff));         /* ori a2, a2, low(ENVP_ADDR + 8) */
553
    stl_raw(p++, 0x3c070000 | (loaderparams.ram_size >> 16));     /* lui a3, high(ram_size) */
554
    stl_raw(p++, 0x34e70000 | (loaderparams.ram_size & 0xffff));  /* ori a3, a3, low(ram_size) */
555

    
556
    /* Load BAR registers as done by YAMON */
557
    stl_raw(p++, 0x3c09b400);                                      /* lui t1, 0xb400 */
558

    
559
#ifdef TARGET_WORDS_BIGENDIAN
560
    stl_raw(p++, 0x3c08df00);                                      /* lui t0, 0xdf00 */
561
#else
562
    stl_raw(p++, 0x340800df);                                      /* ori t0, r0, 0x00df */
563
#endif
564
    stl_raw(p++, 0xad280068);                                      /* sw t0, 0x0068(t1) */
565

    
566
    stl_raw(p++, 0x3c09bbe0);                                      /* lui t1, 0xbbe0 */
567

    
568
#ifdef TARGET_WORDS_BIGENDIAN
569
    stl_raw(p++, 0x3c08c000);                                      /* lui t0, 0xc000 */
570
#else
571
    stl_raw(p++, 0x340800c0);                                      /* ori t0, r0, 0x00c0 */
572
#endif
573
    stl_raw(p++, 0xad280048);                                      /* sw t0, 0x0048(t1) */
574
#ifdef TARGET_WORDS_BIGENDIAN
575
    stl_raw(p++, 0x3c084000);                                      /* lui t0, 0x4000 */
576
#else
577
    stl_raw(p++, 0x34080040);                                      /* ori t0, r0, 0x0040 */
578
#endif
579
    stl_raw(p++, 0xad280050);                                      /* sw t0, 0x0050(t1) */
580

    
581
#ifdef TARGET_WORDS_BIGENDIAN
582
    stl_raw(p++, 0x3c088000);                                      /* lui t0, 0x8000 */
583
#else
584
    stl_raw(p++, 0x34080080);                                      /* ori t0, r0, 0x0080 */
585
#endif
586
    stl_raw(p++, 0xad280058);                                      /* sw t0, 0x0058(t1) */
587
#ifdef TARGET_WORDS_BIGENDIAN
588
    stl_raw(p++, 0x3c083f00);                                      /* lui t0, 0x3f00 */
589
#else
590
    stl_raw(p++, 0x3408003f);                                      /* ori t0, r0, 0x003f */
591
#endif
592
    stl_raw(p++, 0xad280060);                                      /* sw t0, 0x0060(t1) */
593

    
594
#ifdef TARGET_WORDS_BIGENDIAN
595
    stl_raw(p++, 0x3c08c100);                                      /* lui t0, 0xc100 */
596
#else
597
    stl_raw(p++, 0x340800c1);                                      /* ori t0, r0, 0x00c1 */
598
#endif
599
    stl_raw(p++, 0xad280080);                                      /* sw t0, 0x0080(t1) */
600
#ifdef TARGET_WORDS_BIGENDIAN
601
    stl_raw(p++, 0x3c085e00);                                      /* lui t0, 0x5e00 */
602
#else
603
    stl_raw(p++, 0x3408005e);                                      /* ori t0, r0, 0x005e */
604
#endif
605
    stl_raw(p++, 0xad280088);                                      /* sw t0, 0x0088(t1) */
606

    
607
    /* Jump to kernel code */
608
    stl_raw(p++, 0x3c1f0000 | ((kernel_entry >> 16) & 0xffff));    /* lui ra, high(kernel_entry) */
609
    stl_raw(p++, 0x37ff0000 | (kernel_entry & 0xffff));            /* ori ra, ra, low(kernel_entry) */
610
    stl_raw(p++, 0x03e00008);                                      /* jr ra */
611
    stl_raw(p++, 0x00000000);                                      /* nop */
612

    
613
    /* YAMON subroutines */
614
    p = (uint32_t *) (base + 0x800);
615
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
616
    stl_raw(p++, 0x24020000);                                     /* li v0,0 */
617
   /* 808 YAMON print */
618
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
619
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
620
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
621
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
622
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
623
    stl_raw(p++, 0x10800005);                                     /* beqz a0,834 */
624
    stl_raw(p++, 0x00000000);                                     /* nop */
625
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
626
    stl_raw(p++, 0x00000000);                                     /* nop */
627
    stl_raw(p++, 0x08000205);                                     /* j 814 */
628
    stl_raw(p++, 0x00000000);                                     /* nop */
629
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
630
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
631
    /* 0x83c YAMON print_count */
632
    stl_raw(p++, 0x03e06821);                                     /* move t5,ra */
633
    stl_raw(p++, 0x00805821);                                     /* move t3,a0 */
634
    stl_raw(p++, 0x00a05021);                                     /* move t2,a1 */
635
    stl_raw(p++, 0x00c06021);                                     /* move t4,a2 */
636
    stl_raw(p++, 0x91440000);                                     /* lbu a0,0(t2) */
637
    stl_raw(p++, 0x0ff0021c);                                     /* jal 870 */
638
    stl_raw(p++, 0x00000000);                                     /* nop */
639
    stl_raw(p++, 0x254a0001);                                     /* addiu t2,t2,1 */
640
    stl_raw(p++, 0x258cffff);                                     /* addiu t4,t4,-1 */
641
    stl_raw(p++, 0x1580fffa);                                     /* bnez t4,84c */
642
    stl_raw(p++, 0x00000000);                                     /* nop */
643
    stl_raw(p++, 0x01a00008);                                     /* jr t5 */
644
    stl_raw(p++, 0x01602021);                                     /* move a0,t3 */
645
    /* 0x870 */
646
    stl_raw(p++, 0x3c08b800);                                     /* lui t0,0xb400 */
647
    stl_raw(p++, 0x350803f8);                                     /* ori t0,t0,0x3f8 */
648
    stl_raw(p++, 0x91090005);                                     /* lbu t1,5(t0) */
649
    stl_raw(p++, 0x00000000);                                     /* nop */
650
    stl_raw(p++, 0x31290040);                                     /* andi t1,t1,0x40 */
651
    stl_raw(p++, 0x1120fffc);                                     /* beqz t1,878 <outch+0x8> */
652
    stl_raw(p++, 0x00000000);                                     /* nop */
653
    stl_raw(p++, 0x03e00008);                                     /* jr ra */
654
    stl_raw(p++, 0xa1040000);                                     /* sb a0,0(t0) */
655

    
656
}
657

    
658
static void GCC_FMT_ATTR(3, 4) prom_set(uint32_t* prom_buf, int index,
659
                                        const char *string, ...)
660
{
661
    va_list ap;
662
    int32_t table_addr;
663

    
664
    if (index >= ENVP_NB_ENTRIES)
665
        return;
666

    
667
    if (string == NULL) {
668
        prom_buf[index] = 0;
669
        return;
670
    }
671

    
672
    table_addr = sizeof(int32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
673
    prom_buf[index] = tswap32(ENVP_ADDR + table_addr);
674

    
675
    va_start(ap, string);
676
    vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
677
    va_end(ap);
678
}
679

    
680
/* Kernel */
681
static int64_t load_kernel (void)
682
{
683
    int64_t kernel_entry, kernel_high;
684
    long initrd_size;
685
    ram_addr_t initrd_offset;
686
    int big_endian;
687
    uint32_t *prom_buf;
688
    long prom_size;
689
    int prom_index = 0;
690

    
691
#ifdef TARGET_WORDS_BIGENDIAN
692
    big_endian = 1;
693
#else
694
    big_endian = 0;
695
#endif
696

    
697
    if (load_elf(loaderparams.kernel_filename, cpu_mips_kseg0_to_phys, NULL,
698
                 (uint64_t *)&kernel_entry, NULL, (uint64_t *)&kernel_high,
699
                 big_endian, ELF_MACHINE, 1) < 0) {
700
        fprintf(stderr, "qemu: could not load kernel '%s'\n",
701
                loaderparams.kernel_filename);
702
        exit(1);
703
    }
704

    
705
    /* load initrd */
706
    initrd_size = 0;
707
    initrd_offset = 0;
708
    if (loaderparams.initrd_filename) {
709
        initrd_size = get_image_size (loaderparams.initrd_filename);
710
        if (initrd_size > 0) {
711
            initrd_offset = (kernel_high + ~TARGET_PAGE_MASK) & TARGET_PAGE_MASK;
712
            if (initrd_offset + initrd_size > ram_size) {
713
                fprintf(stderr,
714
                        "qemu: memory too small for initial ram disk '%s'\n",
715
                        loaderparams.initrd_filename);
716
                exit(1);
717
            }
718
            initrd_size = load_image_targphys(loaderparams.initrd_filename,
719
                                              initrd_offset,
720
                                              ram_size - initrd_offset);
721
        }
722
        if (initrd_size == (target_ulong) -1) {
723
            fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
724
                    loaderparams.initrd_filename);
725
            exit(1);
726
        }
727
    }
728

    
729
    /* Setup prom parameters. */
730
    prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
731
    prom_buf = qemu_malloc(prom_size);
732

    
733
    prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
734
    if (initrd_size > 0) {
735
        prom_set(prom_buf, prom_index++, "rd_start=0x%" PRIx64 " rd_size=%li %s",
736
                 cpu_mips_phys_to_kseg0(NULL, initrd_offset), initrd_size,
737
                 loaderparams.kernel_cmdline);
738
    } else {
739
        prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
740
    }
741

    
742
    prom_set(prom_buf, prom_index++, "memsize");
743
    prom_set(prom_buf, prom_index++, "%i", loaderparams.ram_size);
744
    prom_set(prom_buf, prom_index++, "modetty0");
745
    prom_set(prom_buf, prom_index++, "38400n8r");
746
    prom_set(prom_buf, prom_index++, NULL);
747

    
748
    rom_add_blob_fixed("prom", prom_buf, prom_size,
749
                       cpu_mips_kseg0_to_phys(NULL, ENVP_ADDR));
750

    
751
    return kernel_entry;
752
}
753

    
754
static void main_cpu_reset(void *opaque)
755
{
756
    CPUState *env = opaque;
757
    cpu_reset(env);
758

    
759
    /* The bootloader does not need to be rewritten as it is located in a
760
       read only location. The kernel location and the arguments table
761
       location does not change. */
762
    if (loaderparams.kernel_filename) {
763
        env->CP0_Status &= ~((1 << CP0St_BEV) | (1 << CP0St_ERL));
764
    }
765
}
766

    
767
static void cpu_request_exit(void *opaque, int irq, int level)
768
{
769
    CPUState *env = cpu_single_env;
770

    
771
    if (env && level) {
772
        cpu_exit(env);
773
    }
774
}
775

    
776
static
777
void mips_malta_init (ram_addr_t ram_size,
778
                      const char *boot_device,
779
                      const char *kernel_filename, const char *kernel_cmdline,
780
                      const char *initrd_filename, const char *cpu_model)
781
{
782
    char *filename;
783
    ram_addr_t ram_offset;
784
    ram_addr_t bios_offset;
785
    target_long bios_size;
786
    int64_t kernel_entry;
787
    PCIBus *pci_bus;
788
    CPUState *env;
789
    qemu_irq *i8259;
790
    qemu_irq *cpu_exit_irq;
791
    int piix4_devfn;
792
    uint8_t *eeprom_buf;
793
    i2c_bus *smbus;
794
    int i;
795
    DriveInfo *dinfo;
796
    DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
797
    DriveInfo *fd[MAX_FD];
798
    int fl_idx = 0;
799
    int fl_sectors = 0;
800
    int be;
801

    
802
    /* Make sure the first 3 serial ports are associated with a device. */
803
    for(i = 0; i < 3; i++) {
804
        if (!serial_hds[i]) {
805
            char label[32];
806
            snprintf(label, sizeof(label), "serial%d", i);
807
            serial_hds[i] = qemu_chr_open(label, "null", NULL);
808
        }
809
    }
810

    
811
    /* init CPUs */
812
    if (cpu_model == NULL) {
813
#ifdef TARGET_MIPS64
814
        cpu_model = "20Kc";
815
#else
816
        cpu_model = "24Kf";
817
#endif
818
    }
819
    env = cpu_init(cpu_model);
820
    if (!env) {
821
        fprintf(stderr, "Unable to find CPU definition\n");
822
        exit(1);
823
    }
824
    qemu_register_reset(main_cpu_reset, env);
825

    
826
    /* allocate RAM */
827
    if (ram_size > (256 << 20)) {
828
        fprintf(stderr,
829
                "qemu: Too much memory for this machine: %d MB, maximum 256 MB\n",
830
                ((unsigned int)ram_size / (1 << 20)));
831
        exit(1);
832
    }
833
    ram_offset = qemu_ram_alloc(NULL, "mips_malta.ram", ram_size);
834
    bios_offset = qemu_ram_alloc(NULL, "mips_malta.bios", BIOS_SIZE);
835

    
836

    
837
    cpu_register_physical_memory(0, ram_size, ram_offset | IO_MEM_RAM);
838

    
839
    /* Map the bios at two physical locations, as on the real board. */
840
    cpu_register_physical_memory(0x1e000000LL,
841
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
842
    cpu_register_physical_memory(0x1fc00000LL,
843
                                 BIOS_SIZE, bios_offset | IO_MEM_ROM);
844

    
845
#ifdef TARGET_WORDS_BIGENDIAN
846
    be = 1;
847
#else
848
    be = 0;
849
#endif
850
    /* FPGA */
851
    malta_fpga_init(0x1f000000LL, env->irq[2], serial_hds[2]);
852

    
853
    /* Load firmware in flash / BIOS unless we boot directly into a kernel. */
854
    if (kernel_filename) {
855
        /* Write a small bootloader to the flash location. */
856
        loaderparams.ram_size = ram_size;
857
        loaderparams.kernel_filename = kernel_filename;
858
        loaderparams.kernel_cmdline = kernel_cmdline;
859
        loaderparams.initrd_filename = initrd_filename;
860
        kernel_entry = load_kernel();
861
        write_bootloader(env, qemu_get_ram_ptr(bios_offset), kernel_entry);
862
    } else {
863
        dinfo = drive_get(IF_PFLASH, 0, fl_idx);
864
        if (dinfo) {
865
            /* Load firmware from flash. */
866
            bios_size = 0x400000;
867
            fl_sectors = bios_size >> 16;
868
#ifdef DEBUG_BOARD_INIT
869
            printf("Register parallel flash %d size " TARGET_FMT_lx " at "
870
                   "offset %08lx addr %08llx '%s' %x\n",
871
                   fl_idx, bios_size, bios_offset, 0x1e000000LL,
872
                   bdrv_get_device_name(dinfo->bdrv), fl_sectors);
873
#endif
874
            pflash_cfi01_register(0x1e000000LL, bios_offset,
875
                                  dinfo->bdrv, 65536, fl_sectors,
876
                                  4, 0x0000, 0x0000, 0x0000, 0x0000, be);
877
            fl_idx++;
878
        } else {
879
            /* Load a BIOS image. */
880
            if (bios_name == NULL)
881
                bios_name = BIOS_FILENAME;
882
            filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
883
            if (filename) {
884
                bios_size = load_image_targphys(filename, 0x1fc00000LL,
885
                                                BIOS_SIZE);
886
                qemu_free(filename);
887
            } else {
888
                bios_size = -1;
889
            }
890
            if ((bios_size < 0 || bios_size > BIOS_SIZE) && !kernel_filename) {
891
                fprintf(stderr,
892
                        "qemu: Could not load MIPS bios '%s', and no -kernel argument was specified\n",
893
                        bios_name);
894
                exit(1);
895
            }
896
        }
897
        /* In little endian mode the 32bit words in the bios are swapped,
898
           a neat trick which allows bi-endian firmware. */
899
#ifndef TARGET_WORDS_BIGENDIAN
900
        {
901
            uint32_t *addr = qemu_get_ram_ptr(bios_offset);;
902
            uint32_t *end = addr + bios_size;
903
            while (addr < end) {
904
                bswap32s(addr);
905
            }
906
        }
907
#endif
908
    }
909

    
910
    /* Board ID = 0x420 (Malta Board with CoreLV)
911
       XXX: theoretically 0x1e000010 should map to flash and 0x1fc00010 should
912
       map to the board ID. */
913
    stl_phys(0x1fc00010LL, 0x00000420);
914

    
915
    /* Init internal devices */
916
    cpu_mips_irq_init_cpu(env);
917
    cpu_mips_clock_init(env);
918

    
919
    /* Interrupt controller */
920
    /* The 8259 is attached to the MIPS CPU INT0 pin, ie interrupt 2 */
921
    i8259 = i8259_init(env->irq[2]);
922

    
923
    /* Northbridge */
924
    pci_bus = pci_gt64120_init(i8259);
925

    
926
    /* Southbridge */
927

    
928
    if (drive_get_max_bus(IF_IDE) >= MAX_IDE_BUS) {
929
        fprintf(stderr, "qemu: too many IDE bus\n");
930
        exit(1);
931
    }
932

    
933
    for(i = 0; i < MAX_IDE_BUS * MAX_IDE_DEVS; i++) {
934
        hd[i] = drive_get(IF_IDE, i / MAX_IDE_DEVS, i % MAX_IDE_DEVS);
935
    }
936

    
937
    piix4_devfn = piix4_init(pci_bus, 80);
938
    isa_bus_irqs(i8259);
939
    pci_piix4_ide_init(pci_bus, hd, piix4_devfn + 1);
940
    usb_uhci_piix4_init(pci_bus, piix4_devfn + 2);
941
    smbus = piix4_pm_init(pci_bus, piix4_devfn + 3, 0x1100, isa_reserve_irq(9),
942
                          NULL, NULL, 0);
943
    eeprom_buf = qemu_mallocz(8 * 256); /* XXX: make this persistent */
944
    for (i = 0; i < 8; i++) {
945
        /* TODO: Populate SPD eeprom data.  */
946
        DeviceState *eeprom;
947
        eeprom = qdev_create((BusState *)smbus, "smbus-eeprom");
948
        qdev_prop_set_uint8(eeprom, "address", 0x50 + i);
949
        qdev_prop_set_ptr(eeprom, "data", eeprom_buf + (i * 256));
950
        qdev_init_nofail(eeprom);
951
    }
952
    pit = pit_init(0x40, isa_reserve_irq(0));
953
    cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1);
954
    DMA_init(0, cpu_exit_irq);
955

    
956
    /* Super I/O */
957
    isa_create_simple("i8042");
958

    
959
    rtc_init(2000, NULL);
960
    serial_isa_init(0, serial_hds[0]);
961
    serial_isa_init(1, serial_hds[1]);
962
    if (parallel_hds[0])
963
        parallel_init(0, parallel_hds[0]);
964
    for(i = 0; i < MAX_FD; i++) {
965
        fd[i] = drive_get(IF_FLOPPY, 0, i);
966
    }
967
    fdctrl_init_isa(fd);
968

    
969
    /* Sound card */
970
    audio_init(pci_bus);
971

    
972
    /* Network card */
973
    network_init();
974

    
975
    /* Optional PCI video card */
976
    if (cirrus_vga_enabled) {
977
        pci_cirrus_vga_init(pci_bus);
978
    } else if (vmsvga_enabled) {
979
        pci_vmsvga_init(pci_bus);
980
    } else if (std_vga_enabled) {
981
        pci_vga_init(pci_bus);
982
    }
983
}
984

    
985
static QEMUMachine mips_malta_machine = {
986
    .name = "malta",
987
    .desc = "MIPS Malta Core LV",
988
    .init = mips_malta_init,
989
    .is_default = 1,
990
};
991

    
992
static void mips_malta_machine_init(void)
993
{
994
    qemu_register_machine(&mips_malta_machine);
995
}
996

    
997
machine_init(mips_malta_machine_init);