Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 25d2e361

History | View | Annotate | Download (48.8 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
static int lm_capable_kernel;
58

    
59
#ifdef KVM_CAP_EXT_CPUID
60

    
61
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62
{
63
    struct kvm_cpuid2 *cpuid;
64
    int r, size;
65

    
66
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68
    cpuid->nent = max;
69
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70
    if (r == 0 && cpuid->nent >= max) {
71
        r = -E2BIG;
72
    }
73
    if (r < 0) {
74
        if (r == -E2BIG) {
75
            qemu_free(cpuid);
76
            return NULL;
77
        } else {
78
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79
                    strerror(-r));
80
            exit(1);
81
        }
82
    }
83
    return cpuid;
84
}
85

    
86
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87
                                      uint32_t index, int reg)
88
{
89
    struct kvm_cpuid2 *cpuid;
90
    int i, max;
91
    uint32_t ret = 0;
92
    uint32_t cpuid_1_edx;
93

    
94
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95
        return -1U;
96
    }
97

    
98
    max = 1;
99
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100
        max *= 2;
101
    }
102

    
103
    for (i = 0; i < cpuid->nent; ++i) {
104
        if (cpuid->entries[i].function == function &&
105
            cpuid->entries[i].index == index) {
106
            switch (reg) {
107
            case R_EAX:
108
                ret = cpuid->entries[i].eax;
109
                break;
110
            case R_EBX:
111
                ret = cpuid->entries[i].ebx;
112
                break;
113
            case R_ECX:
114
                ret = cpuid->entries[i].ecx;
115
                break;
116
            case R_EDX:
117
                ret = cpuid->entries[i].edx;
118
                switch (function) {
119
                case 1:
120
                    /* KVM before 2.6.30 misreports the following features */
121
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122
                    break;
123
                case 0x80000001:
124
                    /* On Intel, kvm returns cpuid according to the Intel spec,
125
                     * so add missing bits according to the AMD spec:
126
                     */
127
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128
                    ret |= cpuid_1_edx & 0x183f7ff;
129
                    break;
130
                }
131
                break;
132
            }
133
        }
134
    }
135

    
136
    qemu_free(cpuid);
137

    
138
    return ret;
139
}
140

    
141
#else
142

    
143
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144
                                      uint32_t index, int reg)
145
{
146
    return -1U;
147
}
148

    
149
#endif
150

    
151
#ifdef CONFIG_KVM_PARA
152
struct kvm_para_features {
153
        int cap;
154
        int feature;
155
} para_features[] = {
156
#ifdef KVM_CAP_CLOCKSOURCE
157
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158
#endif
159
#ifdef KVM_CAP_NOP_IO_DELAY
160
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161
#endif
162
#ifdef KVM_CAP_PV_MMU
163
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164
#endif
165
        { -1, -1 }
166
};
167

    
168
static int get_para_features(CPUState *env)
169
{
170
        int i, features = 0;
171

    
172
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
173
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
174
                        features |= (1 << para_features[i].feature);
175
        }
176

    
177
        return features;
178
}
179
#endif
180

    
181
#ifdef KVM_CAP_MCE
182
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
183
                                     int *max_banks)
184
{
185
    int r;
186

    
187
    r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
188
    if (r > 0) {
189
        *max_banks = r;
190
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
191
    }
192
    return -ENOSYS;
193
}
194

    
195
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
196
{
197
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
198
}
199

    
200
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
201
{
202
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
203
}
204

    
205
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
206
{
207
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
208
    int r;
209

    
210
    kmsrs->nmsrs = n;
211
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
212
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
213
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
214
    free(kmsrs);
215
    return r;
216
}
217

    
218
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
219
static int kvm_mce_in_exception(CPUState *env)
220
{
221
    struct kvm_msr_entry msr_mcg_status = {
222
        .index = MSR_MCG_STATUS,
223
    };
224
    int r;
225

    
226
    r = kvm_get_msr(env, &msr_mcg_status, 1);
227
    if (r == -1 || r == 0) {
228
        return -1;
229
    }
230
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
231
}
232

    
233
struct kvm_x86_mce_data
234
{
235
    CPUState *env;
236
    struct kvm_x86_mce *mce;
237
    int abort_on_error;
238
};
239

    
240
static void kvm_do_inject_x86_mce(void *_data)
241
{
242
    struct kvm_x86_mce_data *data = _data;
243
    int r;
244

    
245
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
246
    if ((data->env->mcg_cap & MCG_SER_P) &&
247
        !(data->mce->status & MCI_STATUS_AR)) {
248
        r = kvm_mce_in_exception(data->env);
249
        if (r == -1) {
250
            fprintf(stderr, "Failed to get MCE status\n");
251
        } else if (r) {
252
            return;
253
        }
254
    }
255

    
256
    r = kvm_set_mce(data->env, data->mce);
257
    if (r < 0) {
258
        perror("kvm_set_mce FAILED");
259
        if (data->abort_on_error) {
260
            abort();
261
        }
262
    }
263
}
264
#endif
265

    
266
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
267
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
268
                        int abort_on_error)
269
{
270
#ifdef KVM_CAP_MCE
271
    struct kvm_x86_mce mce = {
272
        .bank = bank,
273
        .status = status,
274
        .mcg_status = mcg_status,
275
        .addr = addr,
276
        .misc = misc,
277
    };
278
    struct kvm_x86_mce_data data = {
279
            .env = cenv,
280
            .mce = &mce,
281
    };
282

    
283
    if (!cenv->mcg_cap) {
284
        fprintf(stderr, "MCE support is not enabled!\n");
285
        return;
286
    }
287

    
288
    run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
289
#else
290
    if (abort_on_error)
291
        abort();
292
#endif
293
}
294

    
295
int kvm_arch_init_vcpu(CPUState *env)
296
{
297
    struct {
298
        struct kvm_cpuid2 cpuid;
299
        struct kvm_cpuid_entry2 entries[100];
300
    } __attribute__((packed)) cpuid_data;
301
    uint32_t limit, i, j, cpuid_i;
302
    uint32_t unused;
303
    struct kvm_cpuid_entry2 *c;
304
#ifdef KVM_CPUID_SIGNATURE
305
    uint32_t signature[3];
306
#endif
307

    
308
    env->mp_state = KVM_MP_STATE_RUNNABLE;
309

    
310
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
311

    
312
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
313
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
314
    env->cpuid_ext_features |= i;
315

    
316
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
317
                                                             0, R_EDX);
318
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
319
                                                             0, R_ECX);
320
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
321
                                                             0, R_EDX);
322

    
323

    
324
    cpuid_i = 0;
325

    
326
#ifdef CONFIG_KVM_PARA
327
    /* Paravirtualization CPUIDs */
328
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
329
    c = &cpuid_data.entries[cpuid_i++];
330
    memset(c, 0, sizeof(*c));
331
    c->function = KVM_CPUID_SIGNATURE;
332
    c->eax = 0;
333
    c->ebx = signature[0];
334
    c->ecx = signature[1];
335
    c->edx = signature[2];
336

    
337
    c = &cpuid_data.entries[cpuid_i++];
338
    memset(c, 0, sizeof(*c));
339
    c->function = KVM_CPUID_FEATURES;
340
    c->eax = env->cpuid_kvm_features & get_para_features(env);
341
#endif
342

    
343
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
344

    
345
    for (i = 0; i <= limit; i++) {
346
        c = &cpuid_data.entries[cpuid_i++];
347

    
348
        switch (i) {
349
        case 2: {
350
            /* Keep reading function 2 till all the input is received */
351
            int times;
352

    
353
            c->function = i;
354
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
355
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
356
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
357
            times = c->eax & 0xff;
358

    
359
            for (j = 1; j < times; ++j) {
360
                c = &cpuid_data.entries[cpuid_i++];
361
                c->function = i;
362
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
363
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
364
            }
365
            break;
366
        }
367
        case 4:
368
        case 0xb:
369
        case 0xd:
370
            for (j = 0; ; j++) {
371
                c->function = i;
372
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
373
                c->index = j;
374
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
375

    
376
                if (i == 4 && c->eax == 0)
377
                    break;
378
                if (i == 0xb && !(c->ecx & 0xff00))
379
                    break;
380
                if (i == 0xd && c->eax == 0)
381
                    break;
382

    
383
                c = &cpuid_data.entries[cpuid_i++];
384
            }
385
            break;
386
        default:
387
            c->function = i;
388
            c->flags = 0;
389
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
390
            break;
391
        }
392
    }
393
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
394

    
395
    for (i = 0x80000000; i <= limit; i++) {
396
        c = &cpuid_data.entries[cpuid_i++];
397

    
398
        c->function = i;
399
        c->flags = 0;
400
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
401
    }
402

    
403
    cpuid_data.cpuid.nent = cpuid_i;
404

    
405
#ifdef KVM_CAP_MCE
406
    if (((env->cpuid_version >> 8)&0xF) >= 6
407
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
408
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
409
        uint64_t mcg_cap;
410
        int banks;
411

    
412
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
413
            perror("kvm_get_mce_cap_supported FAILED");
414
        else {
415
            if (banks > MCE_BANKS_DEF)
416
                banks = MCE_BANKS_DEF;
417
            mcg_cap &= MCE_CAP_DEF;
418
            mcg_cap |= banks;
419
            if (kvm_setup_mce(env, &mcg_cap))
420
                perror("kvm_setup_mce FAILED");
421
            else
422
                env->mcg_cap = mcg_cap;
423
        }
424
    }
425
#endif
426

    
427
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
428
}
429

    
430
void kvm_arch_reset_vcpu(CPUState *env)
431
{
432
    env->exception_injected = -1;
433
    env->interrupt_injected = -1;
434
    env->nmi_injected = 0;
435
    env->nmi_pending = 0;
436
    if (kvm_irqchip_in_kernel()) {
437
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
438
                                          KVM_MP_STATE_UNINITIALIZED;
439
    } else {
440
        env->mp_state = KVM_MP_STATE_RUNNABLE;
441
    }
442
}
443

    
444
int has_msr_star;
445
int has_msr_hsave_pa;
446

    
447
static void kvm_supported_msrs(CPUState *env)
448
{
449
    static int kvm_supported_msrs;
450
    int ret;
451

    
452
    /* first time */
453
    if (kvm_supported_msrs == 0) {
454
        struct kvm_msr_list msr_list, *kvm_msr_list;
455

    
456
        kvm_supported_msrs = -1;
457

    
458
        /* Obtain MSR list from KVM.  These are the MSRs that we must
459
         * save/restore */
460
        msr_list.nmsrs = 0;
461
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
462
        if (ret < 0 && ret != -E2BIG) {
463
            return;
464
        }
465
        /* Old kernel modules had a bug and could write beyond the provided
466
           memory. Allocate at least a safe amount of 1K. */
467
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
468
                                              msr_list.nmsrs *
469
                                              sizeof(msr_list.indices[0])));
470

    
471
        kvm_msr_list->nmsrs = msr_list.nmsrs;
472
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
473
        if (ret >= 0) {
474
            int i;
475

    
476
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
477
                if (kvm_msr_list->indices[i] == MSR_STAR) {
478
                    has_msr_star = 1;
479
                    continue;
480
                }
481
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
482
                    has_msr_hsave_pa = 1;
483
                    continue;
484
                }
485
            }
486
        }
487

    
488
        free(kvm_msr_list);
489
    }
490

    
491
    return;
492
}
493

    
494
static int kvm_has_msr_hsave_pa(CPUState *env)
495
{
496
    kvm_supported_msrs(env);
497
    return has_msr_hsave_pa;
498
}
499

    
500
static int kvm_has_msr_star(CPUState *env)
501
{
502
    kvm_supported_msrs(env);
503
    return has_msr_star;
504
}
505

    
506
static int kvm_init_identity_map_page(KVMState *s)
507
{
508
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
509
    int ret;
510
    uint64_t addr = 0xfffbc000;
511

    
512
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
513
        return 0;
514
    }
515

    
516
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
517
    if (ret < 0) {
518
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
519
        return ret;
520
    }
521
#endif
522
    return 0;
523
}
524

    
525
int kvm_arch_init(KVMState *s, int smp_cpus)
526
{
527
    int ret;
528

    
529
    struct utsname utsname;
530

    
531
    uname(&utsname);
532
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
533

    
534
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
535
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
536
     * must be part of guest physical memory, we need to allocate it.  Older
537
     * versions of KVM just assumed that it would be at the end of physical
538
     * memory but that doesn't work with more than 4GB of memory.  We simply
539
     * refuse to work with those older versions of KVM. */
540
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
541
    if (ret <= 0) {
542
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
543
        return ret;
544
    }
545

    
546
    /* this address is 3 pages before the bios, and the bios should present
547
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
548
     * this?
549
     */
550
    /*
551
     * Tell fw_cfg to notify the BIOS to reserve the range.
552
     */
553
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
554
        perror("e820_add_entry() table is full");
555
        exit(1);
556
    }
557
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
558
    if (ret < 0) {
559
        return ret;
560
    }
561

    
562
    return kvm_init_identity_map_page(s);
563
}
564
                    
565
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
566
{
567
    lhs->selector = rhs->selector;
568
    lhs->base = rhs->base;
569
    lhs->limit = rhs->limit;
570
    lhs->type = 3;
571
    lhs->present = 1;
572
    lhs->dpl = 3;
573
    lhs->db = 0;
574
    lhs->s = 1;
575
    lhs->l = 0;
576
    lhs->g = 0;
577
    lhs->avl = 0;
578
    lhs->unusable = 0;
579
}
580

    
581
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
582
{
583
    unsigned flags = rhs->flags;
584
    lhs->selector = rhs->selector;
585
    lhs->base = rhs->base;
586
    lhs->limit = rhs->limit;
587
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
588
    lhs->present = (flags & DESC_P_MASK) != 0;
589
    lhs->dpl = rhs->selector & 3;
590
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
591
    lhs->s = (flags & DESC_S_MASK) != 0;
592
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
593
    lhs->g = (flags & DESC_G_MASK) != 0;
594
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
595
    lhs->unusable = 0;
596
}
597

    
598
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
599
{
600
    lhs->selector = rhs->selector;
601
    lhs->base = rhs->base;
602
    lhs->limit = rhs->limit;
603
    lhs->flags =
604
        (rhs->type << DESC_TYPE_SHIFT)
605
        | (rhs->present * DESC_P_MASK)
606
        | (rhs->dpl << DESC_DPL_SHIFT)
607
        | (rhs->db << DESC_B_SHIFT)
608
        | (rhs->s * DESC_S_MASK)
609
        | (rhs->l << DESC_L_SHIFT)
610
        | (rhs->g * DESC_G_MASK)
611
        | (rhs->avl * DESC_AVL_MASK);
612
}
613

    
614
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
615
{
616
    if (set)
617
        *kvm_reg = *qemu_reg;
618
    else
619
        *qemu_reg = *kvm_reg;
620
}
621

    
622
static int kvm_getput_regs(CPUState *env, int set)
623
{
624
    struct kvm_regs regs;
625
    int ret = 0;
626

    
627
    if (!set) {
628
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
629
        if (ret < 0)
630
            return ret;
631
    }
632

    
633
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
634
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
635
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
636
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
637
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
638
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
639
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
640
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
641
#ifdef TARGET_X86_64
642
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
643
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
644
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
645
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
646
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
647
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
648
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
649
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
650
#endif
651

    
652
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
653
    kvm_getput_reg(&regs.rip, &env->eip, set);
654

    
655
    if (set)
656
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
657

    
658
    return ret;
659
}
660

    
661
static int kvm_put_fpu(CPUState *env)
662
{
663
    struct kvm_fpu fpu;
664
    int i;
665

    
666
    memset(&fpu, 0, sizeof fpu);
667
    fpu.fsw = env->fpus & ~(7 << 11);
668
    fpu.fsw |= (env->fpstt & 7) << 11;
669
    fpu.fcw = env->fpuc;
670
    for (i = 0; i < 8; ++i)
671
        fpu.ftwx |= (!env->fptags[i]) << i;
672
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
673
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
674
    fpu.mxcsr = env->mxcsr;
675

    
676
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
677
}
678

    
679
#ifdef KVM_CAP_XSAVE
680
#define XSAVE_CWD_RIP     2
681
#define XSAVE_CWD_RDP     4
682
#define XSAVE_MXCSR       6
683
#define XSAVE_ST_SPACE    8
684
#define XSAVE_XMM_SPACE   40
685
#define XSAVE_XSTATE_BV   128
686
#define XSAVE_YMMH_SPACE  144
687
#endif
688

    
689
static int kvm_put_xsave(CPUState *env)
690
{
691
#ifdef KVM_CAP_XSAVE
692
    int i, r;
693
    struct kvm_xsave* xsave;
694
    uint16_t cwd, swd, twd, fop;
695

    
696
    if (!kvm_has_xsave())
697
        return kvm_put_fpu(env);
698

    
699
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
700
    memset(xsave, 0, sizeof(struct kvm_xsave));
701
    cwd = swd = twd = fop = 0;
702
    swd = env->fpus & ~(7 << 11);
703
    swd |= (env->fpstt & 7) << 11;
704
    cwd = env->fpuc;
705
    for (i = 0; i < 8; ++i)
706
        twd |= (!env->fptags[i]) << i;
707
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
708
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
709
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
710
            sizeof env->fpregs);
711
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
712
            sizeof env->xmm_regs);
713
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
714
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
715
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
716
            sizeof env->ymmh_regs);
717
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
718
    qemu_free(xsave);
719
    return r;
720
#else
721
    return kvm_put_fpu(env);
722
#endif
723
}
724

    
725
static int kvm_put_xcrs(CPUState *env)
726
{
727
#ifdef KVM_CAP_XCRS
728
    struct kvm_xcrs xcrs;
729

    
730
    if (!kvm_has_xcrs())
731
        return 0;
732

    
733
    xcrs.nr_xcrs = 1;
734
    xcrs.flags = 0;
735
    xcrs.xcrs[0].xcr = 0;
736
    xcrs.xcrs[0].value = env->xcr0;
737
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
738
#else
739
    return 0;
740
#endif
741
}
742

    
743
static int kvm_put_sregs(CPUState *env)
744
{
745
    struct kvm_sregs sregs;
746

    
747
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
748
    if (env->interrupt_injected >= 0) {
749
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
750
                (uint64_t)1 << (env->interrupt_injected % 64);
751
    }
752

    
753
    if ((env->eflags & VM_MASK)) {
754
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
755
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
756
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
757
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
758
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
759
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
760
    } else {
761
            set_seg(&sregs.cs, &env->segs[R_CS]);
762
            set_seg(&sregs.ds, &env->segs[R_DS]);
763
            set_seg(&sregs.es, &env->segs[R_ES]);
764
            set_seg(&sregs.fs, &env->segs[R_FS]);
765
            set_seg(&sregs.gs, &env->segs[R_GS]);
766
            set_seg(&sregs.ss, &env->segs[R_SS]);
767

    
768
            if (env->cr[0] & CR0_PE_MASK) {
769
                /* force ss cpl to cs cpl */
770
                sregs.ss.selector = (sregs.ss.selector & ~3) |
771
                        (sregs.cs.selector & 3);
772
                sregs.ss.dpl = sregs.ss.selector & 3;
773
            }
774
    }
775

    
776
    set_seg(&sregs.tr, &env->tr);
777
    set_seg(&sregs.ldt, &env->ldt);
778

    
779
    sregs.idt.limit = env->idt.limit;
780
    sregs.idt.base = env->idt.base;
781
    sregs.gdt.limit = env->gdt.limit;
782
    sregs.gdt.base = env->gdt.base;
783

    
784
    sregs.cr0 = env->cr[0];
785
    sregs.cr2 = env->cr[2];
786
    sregs.cr3 = env->cr[3];
787
    sregs.cr4 = env->cr[4];
788

    
789
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
790
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
791

    
792
    sregs.efer = env->efer;
793

    
794
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
795
}
796

    
797
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
798
                              uint32_t index, uint64_t value)
799
{
800
    entry->index = index;
801
    entry->data = value;
802
}
803

    
804
static int kvm_put_msrs(CPUState *env, int level)
805
{
806
    struct {
807
        struct kvm_msrs info;
808
        struct kvm_msr_entry entries[100];
809
    } msr_data;
810
    struct kvm_msr_entry *msrs = msr_data.entries;
811
    int n = 0;
812

    
813
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
814
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
815
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
816
    if (kvm_has_msr_star(env))
817
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
818
    if (kvm_has_msr_hsave_pa(env))
819
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
820
#ifdef TARGET_X86_64
821
    if (lm_capable_kernel) {
822
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
823
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
824
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
825
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
826
    }
827
#endif
828
    if (level == KVM_PUT_FULL_STATE) {
829
        /*
830
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
831
         * writeback. Until this is fixed, we only write the offset to SMP
832
         * guests after migration, desynchronizing the VCPUs, but avoiding
833
         * huge jump-backs that would occur without any writeback at all.
834
         */
835
        if (smp_cpus == 1 || env->tsc != 0) {
836
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
837
        }
838
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
839
                          env->system_time_msr);
840
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
841
    }
842
#ifdef KVM_CAP_MCE
843
    if (env->mcg_cap) {
844
        int i;
845
        if (level == KVM_PUT_RESET_STATE)
846
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
847
        else if (level == KVM_PUT_FULL_STATE) {
848
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
849
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
850
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
851
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
852
        }
853
    }
854
#endif
855

    
856
    msr_data.info.nmsrs = n;
857

    
858
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
859

    
860
}
861

    
862

    
863
static int kvm_get_fpu(CPUState *env)
864
{
865
    struct kvm_fpu fpu;
866
    int i, ret;
867

    
868
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
869
    if (ret < 0)
870
        return ret;
871

    
872
    env->fpstt = (fpu.fsw >> 11) & 7;
873
    env->fpus = fpu.fsw;
874
    env->fpuc = fpu.fcw;
875
    for (i = 0; i < 8; ++i)
876
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
877
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
878
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
879
    env->mxcsr = fpu.mxcsr;
880

    
881
    return 0;
882
}
883

    
884
static int kvm_get_xsave(CPUState *env)
885
{
886
#ifdef KVM_CAP_XSAVE
887
    struct kvm_xsave* xsave;
888
    int ret, i;
889
    uint16_t cwd, swd, twd, fop;
890

    
891
    if (!kvm_has_xsave())
892
        return kvm_get_fpu(env);
893

    
894
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
895
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
896
    if (ret < 0) {
897
        qemu_free(xsave);
898
        return ret;
899
    }
900

    
901
    cwd = (uint16_t)xsave->region[0];
902
    swd = (uint16_t)(xsave->region[0] >> 16);
903
    twd = (uint16_t)xsave->region[1];
904
    fop = (uint16_t)(xsave->region[1] >> 16);
905
    env->fpstt = (swd >> 11) & 7;
906
    env->fpus = swd;
907
    env->fpuc = cwd;
908
    for (i = 0; i < 8; ++i)
909
        env->fptags[i] = !((twd >> i) & 1);
910
    env->mxcsr = xsave->region[XSAVE_MXCSR];
911
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
912
            sizeof env->fpregs);
913
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
914
            sizeof env->xmm_regs);
915
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
916
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
917
            sizeof env->ymmh_regs);
918
    qemu_free(xsave);
919
    return 0;
920
#else
921
    return kvm_get_fpu(env);
922
#endif
923
}
924

    
925
static int kvm_get_xcrs(CPUState *env)
926
{
927
#ifdef KVM_CAP_XCRS
928
    int i, ret;
929
    struct kvm_xcrs xcrs;
930

    
931
    if (!kvm_has_xcrs())
932
        return 0;
933

    
934
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
935
    if (ret < 0)
936
        return ret;
937

    
938
    for (i = 0; i < xcrs.nr_xcrs; i++)
939
        /* Only support xcr0 now */
940
        if (xcrs.xcrs[0].xcr == 0) {
941
            env->xcr0 = xcrs.xcrs[0].value;
942
            break;
943
        }
944
    return 0;
945
#else
946
    return 0;
947
#endif
948
}
949

    
950
static int kvm_get_sregs(CPUState *env)
951
{
952
    struct kvm_sregs sregs;
953
    uint32_t hflags;
954
    int bit, i, ret;
955

    
956
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
957
    if (ret < 0)
958
        return ret;
959

    
960
    /* There can only be one pending IRQ set in the bitmap at a time, so try
961
       to find it and save its number instead (-1 for none). */
962
    env->interrupt_injected = -1;
963
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
964
        if (sregs.interrupt_bitmap[i]) {
965
            bit = ctz64(sregs.interrupt_bitmap[i]);
966
            env->interrupt_injected = i * 64 + bit;
967
            break;
968
        }
969
    }
970

    
971
    get_seg(&env->segs[R_CS], &sregs.cs);
972
    get_seg(&env->segs[R_DS], &sregs.ds);
973
    get_seg(&env->segs[R_ES], &sregs.es);
974
    get_seg(&env->segs[R_FS], &sregs.fs);
975
    get_seg(&env->segs[R_GS], &sregs.gs);
976
    get_seg(&env->segs[R_SS], &sregs.ss);
977

    
978
    get_seg(&env->tr, &sregs.tr);
979
    get_seg(&env->ldt, &sregs.ldt);
980

    
981
    env->idt.limit = sregs.idt.limit;
982
    env->idt.base = sregs.idt.base;
983
    env->gdt.limit = sregs.gdt.limit;
984
    env->gdt.base = sregs.gdt.base;
985

    
986
    env->cr[0] = sregs.cr0;
987
    env->cr[2] = sregs.cr2;
988
    env->cr[3] = sregs.cr3;
989
    env->cr[4] = sregs.cr4;
990

    
991
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
992

    
993
    env->efer = sregs.efer;
994
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
995

    
996
#define HFLAG_COPY_MASK ~( \
997
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
998
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
999
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1000
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1001

    
1002

    
1003

    
1004
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1005
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1006
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1007
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1008
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1009
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1010
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1011

    
1012
    if (env->efer & MSR_EFER_LMA) {
1013
        hflags |= HF_LMA_MASK;
1014
    }
1015

    
1016
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1017
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1018
    } else {
1019
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1020
                (DESC_B_SHIFT - HF_CS32_SHIFT);
1021
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1022
                (DESC_B_SHIFT - HF_SS32_SHIFT);
1023
        if (!(env->cr[0] & CR0_PE_MASK) ||
1024
                   (env->eflags & VM_MASK) ||
1025
                   !(hflags & HF_CS32_MASK)) {
1026
                hflags |= HF_ADDSEG_MASK;
1027
            } else {
1028
                hflags |= ((env->segs[R_DS].base |
1029
                                env->segs[R_ES].base |
1030
                                env->segs[R_SS].base) != 0) <<
1031
                    HF_ADDSEG_SHIFT;
1032
            }
1033
    }
1034
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1035

    
1036
    return 0;
1037
}
1038

    
1039
static int kvm_get_msrs(CPUState *env)
1040
{
1041
    struct {
1042
        struct kvm_msrs info;
1043
        struct kvm_msr_entry entries[100];
1044
    } msr_data;
1045
    struct kvm_msr_entry *msrs = msr_data.entries;
1046
    int ret, i, n;
1047

    
1048
    n = 0;
1049
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1050
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1051
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1052
    if (kvm_has_msr_star(env))
1053
        msrs[n++].index = MSR_STAR;
1054
    if (kvm_has_msr_hsave_pa(env))
1055
        msrs[n++].index = MSR_VM_HSAVE_PA;
1056
    msrs[n++].index = MSR_IA32_TSC;
1057
#ifdef TARGET_X86_64
1058
    if (lm_capable_kernel) {
1059
        msrs[n++].index = MSR_CSTAR;
1060
        msrs[n++].index = MSR_KERNELGSBASE;
1061
        msrs[n++].index = MSR_FMASK;
1062
        msrs[n++].index = MSR_LSTAR;
1063
    }
1064
#endif
1065
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1066
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1067

    
1068
#ifdef KVM_CAP_MCE
1069
    if (env->mcg_cap) {
1070
        msrs[n++].index = MSR_MCG_STATUS;
1071
        msrs[n++].index = MSR_MCG_CTL;
1072
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1073
            msrs[n++].index = MSR_MC0_CTL + i;
1074
    }
1075
#endif
1076

    
1077
    msr_data.info.nmsrs = n;
1078
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1079
    if (ret < 0)
1080
        return ret;
1081

    
1082
    for (i = 0; i < ret; i++) {
1083
        switch (msrs[i].index) {
1084
        case MSR_IA32_SYSENTER_CS:
1085
            env->sysenter_cs = msrs[i].data;
1086
            break;
1087
        case MSR_IA32_SYSENTER_ESP:
1088
            env->sysenter_esp = msrs[i].data;
1089
            break;
1090
        case MSR_IA32_SYSENTER_EIP:
1091
            env->sysenter_eip = msrs[i].data;
1092
            break;
1093
        case MSR_STAR:
1094
            env->star = msrs[i].data;
1095
            break;
1096
#ifdef TARGET_X86_64
1097
        case MSR_CSTAR:
1098
            env->cstar = msrs[i].data;
1099
            break;
1100
        case MSR_KERNELGSBASE:
1101
            env->kernelgsbase = msrs[i].data;
1102
            break;
1103
        case MSR_FMASK:
1104
            env->fmask = msrs[i].data;
1105
            break;
1106
        case MSR_LSTAR:
1107
            env->lstar = msrs[i].data;
1108
            break;
1109
#endif
1110
        case MSR_IA32_TSC:
1111
            env->tsc = msrs[i].data;
1112
            break;
1113
        case MSR_VM_HSAVE_PA:
1114
            env->vm_hsave = msrs[i].data;
1115
            break;
1116
        case MSR_KVM_SYSTEM_TIME:
1117
            env->system_time_msr = msrs[i].data;
1118
            break;
1119
        case MSR_KVM_WALL_CLOCK:
1120
            env->wall_clock_msr = msrs[i].data;
1121
            break;
1122
#ifdef KVM_CAP_MCE
1123
        case MSR_MCG_STATUS:
1124
            env->mcg_status = msrs[i].data;
1125
            break;
1126
        case MSR_MCG_CTL:
1127
            env->mcg_ctl = msrs[i].data;
1128
            break;
1129
#endif
1130
        default:
1131
#ifdef KVM_CAP_MCE
1132
            if (msrs[i].index >= MSR_MC0_CTL &&
1133
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1134
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1135
            }
1136
#endif
1137
            break;
1138
        }
1139
    }
1140

    
1141
    return 0;
1142
}
1143

    
1144
static int kvm_put_mp_state(CPUState *env)
1145
{
1146
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1147

    
1148
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1149
}
1150

    
1151
static int kvm_get_mp_state(CPUState *env)
1152
{
1153
    struct kvm_mp_state mp_state;
1154
    int ret;
1155

    
1156
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1157
    if (ret < 0) {
1158
        return ret;
1159
    }
1160
    env->mp_state = mp_state.mp_state;
1161
    return 0;
1162
}
1163

    
1164
static int kvm_put_vcpu_events(CPUState *env, int level)
1165
{
1166
#ifdef KVM_CAP_VCPU_EVENTS
1167
    struct kvm_vcpu_events events;
1168

    
1169
    if (!kvm_has_vcpu_events()) {
1170
        return 0;
1171
    }
1172

    
1173
    events.exception.injected = (env->exception_injected >= 0);
1174
    events.exception.nr = env->exception_injected;
1175
    events.exception.has_error_code = env->has_error_code;
1176
    events.exception.error_code = env->error_code;
1177

    
1178
    events.interrupt.injected = (env->interrupt_injected >= 0);
1179
    events.interrupt.nr = env->interrupt_injected;
1180
    events.interrupt.soft = env->soft_interrupt;
1181

    
1182
    events.nmi.injected = env->nmi_injected;
1183
    events.nmi.pending = env->nmi_pending;
1184
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1185

    
1186
    events.sipi_vector = env->sipi_vector;
1187

    
1188
    events.flags = 0;
1189
    if (level >= KVM_PUT_RESET_STATE) {
1190
        events.flags |=
1191
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1192
    }
1193

    
1194
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1195
#else
1196
    return 0;
1197
#endif
1198
}
1199

    
1200
static int kvm_get_vcpu_events(CPUState *env)
1201
{
1202
#ifdef KVM_CAP_VCPU_EVENTS
1203
    struct kvm_vcpu_events events;
1204
    int ret;
1205

    
1206
    if (!kvm_has_vcpu_events()) {
1207
        return 0;
1208
    }
1209

    
1210
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1211
    if (ret < 0) {
1212
       return ret;
1213
    }
1214
    env->exception_injected =
1215
       events.exception.injected ? events.exception.nr : -1;
1216
    env->has_error_code = events.exception.has_error_code;
1217
    env->error_code = events.exception.error_code;
1218

    
1219
    env->interrupt_injected =
1220
        events.interrupt.injected ? events.interrupt.nr : -1;
1221
    env->soft_interrupt = events.interrupt.soft;
1222

    
1223
    env->nmi_injected = events.nmi.injected;
1224
    env->nmi_pending = events.nmi.pending;
1225
    if (events.nmi.masked) {
1226
        env->hflags2 |= HF2_NMI_MASK;
1227
    } else {
1228
        env->hflags2 &= ~HF2_NMI_MASK;
1229
    }
1230

    
1231
    env->sipi_vector = events.sipi_vector;
1232
#endif
1233

    
1234
    return 0;
1235
}
1236

    
1237
static int kvm_guest_debug_workarounds(CPUState *env)
1238
{
1239
    int ret = 0;
1240
#ifdef KVM_CAP_SET_GUEST_DEBUG
1241
    unsigned long reinject_trap = 0;
1242

    
1243
    if (!kvm_has_vcpu_events()) {
1244
        if (env->exception_injected == 1) {
1245
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1246
        } else if (env->exception_injected == 3) {
1247
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1248
        }
1249
        env->exception_injected = -1;
1250
    }
1251

    
1252
    /*
1253
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1254
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1255
     * by updating the debug state once again if single-stepping is on.
1256
     * Another reason to call kvm_update_guest_debug here is a pending debug
1257
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1258
     * reinject them via SET_GUEST_DEBUG.
1259
     */
1260
    if (reinject_trap ||
1261
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1262
        ret = kvm_update_guest_debug(env, reinject_trap);
1263
    }
1264
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1265
    return ret;
1266
}
1267

    
1268
static int kvm_put_debugregs(CPUState *env)
1269
{
1270
#ifdef KVM_CAP_DEBUGREGS
1271
    struct kvm_debugregs dbgregs;
1272
    int i;
1273

    
1274
    if (!kvm_has_debugregs()) {
1275
        return 0;
1276
    }
1277

    
1278
    for (i = 0; i < 4; i++) {
1279
        dbgregs.db[i] = env->dr[i];
1280
    }
1281
    dbgregs.dr6 = env->dr[6];
1282
    dbgregs.dr7 = env->dr[7];
1283
    dbgregs.flags = 0;
1284

    
1285
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1286
#else
1287
    return 0;
1288
#endif
1289
}
1290

    
1291
static int kvm_get_debugregs(CPUState *env)
1292
{
1293
#ifdef KVM_CAP_DEBUGREGS
1294
    struct kvm_debugregs dbgregs;
1295
    int i, ret;
1296

    
1297
    if (!kvm_has_debugregs()) {
1298
        return 0;
1299
    }
1300

    
1301
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1302
    if (ret < 0) {
1303
       return ret;
1304
    }
1305
    for (i = 0; i < 4; i++) {
1306
        env->dr[i] = dbgregs.db[i];
1307
    }
1308
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1309
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1310
#endif
1311

    
1312
    return 0;
1313
}
1314

    
1315
int kvm_arch_put_registers(CPUState *env, int level)
1316
{
1317
    int ret;
1318

    
1319
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1320

    
1321
    ret = kvm_getput_regs(env, 1);
1322
    if (ret < 0)
1323
        return ret;
1324

    
1325
    ret = kvm_put_xsave(env);
1326
    if (ret < 0)
1327
        return ret;
1328

    
1329
    ret = kvm_put_xcrs(env);
1330
    if (ret < 0)
1331
        return ret;
1332

    
1333
    ret = kvm_put_sregs(env);
1334
    if (ret < 0)
1335
        return ret;
1336

    
1337
    ret = kvm_put_msrs(env, level);
1338
    if (ret < 0)
1339
        return ret;
1340

    
1341
    if (level >= KVM_PUT_RESET_STATE) {
1342
        ret = kvm_put_mp_state(env);
1343
        if (ret < 0)
1344
            return ret;
1345
    }
1346

    
1347
    ret = kvm_put_vcpu_events(env, level);
1348
    if (ret < 0)
1349
        return ret;
1350

    
1351
    /* must be last */
1352
    ret = kvm_guest_debug_workarounds(env);
1353
    if (ret < 0)
1354
        return ret;
1355

    
1356
    ret = kvm_put_debugregs(env);
1357
    if (ret < 0)
1358
        return ret;
1359

    
1360
    return 0;
1361
}
1362

    
1363
int kvm_arch_get_registers(CPUState *env)
1364
{
1365
    int ret;
1366

    
1367
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1368

    
1369
    ret = kvm_getput_regs(env, 0);
1370
    if (ret < 0)
1371
        return ret;
1372

    
1373
    ret = kvm_get_xsave(env);
1374
    if (ret < 0)
1375
        return ret;
1376

    
1377
    ret = kvm_get_xcrs(env);
1378
    if (ret < 0)
1379
        return ret;
1380

    
1381
    ret = kvm_get_sregs(env);
1382
    if (ret < 0)
1383
        return ret;
1384

    
1385
    ret = kvm_get_msrs(env);
1386
    if (ret < 0)
1387
        return ret;
1388

    
1389
    ret = kvm_get_mp_state(env);
1390
    if (ret < 0)
1391
        return ret;
1392

    
1393
    ret = kvm_get_vcpu_events(env);
1394
    if (ret < 0)
1395
        return ret;
1396

    
1397
    ret = kvm_get_debugregs(env);
1398
    if (ret < 0)
1399
        return ret;
1400

    
1401
    return 0;
1402
}
1403

    
1404
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1405
{
1406
    /* Try to inject an interrupt if the guest can accept it */
1407
    if (run->ready_for_interrupt_injection &&
1408
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1409
        (env->eflags & IF_MASK)) {
1410
        int irq;
1411

    
1412
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1413
        irq = cpu_get_pic_interrupt(env);
1414
        if (irq >= 0) {
1415
            struct kvm_interrupt intr;
1416
            intr.irq = irq;
1417
            /* FIXME: errors */
1418
            DPRINTF("injected interrupt %d\n", irq);
1419
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1420
        }
1421
    }
1422

    
1423
    /* If we have an interrupt but the guest is not ready to receive an
1424
     * interrupt, request an interrupt window exit.  This will
1425
     * cause a return to userspace as soon as the guest is ready to
1426
     * receive interrupts. */
1427
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1428
        run->request_interrupt_window = 1;
1429
    else
1430
        run->request_interrupt_window = 0;
1431

    
1432
    DPRINTF("setting tpr\n");
1433
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1434

    
1435
    return 0;
1436
}
1437

    
1438
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1439
{
1440
    if (run->if_flag)
1441
        env->eflags |= IF_MASK;
1442
    else
1443
        env->eflags &= ~IF_MASK;
1444
    
1445
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1446
    cpu_set_apic_base(env->apic_state, run->apic_base);
1447

    
1448
    return 0;
1449
}
1450

    
1451
int kvm_arch_process_irqchip_events(CPUState *env)
1452
{
1453
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1454
        kvm_cpu_synchronize_state(env);
1455
        do_cpu_init(env);
1456
        env->exception_index = EXCP_HALTED;
1457
    }
1458

    
1459
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1460
        kvm_cpu_synchronize_state(env);
1461
        do_cpu_sipi(env);
1462
    }
1463

    
1464
    return env->halted;
1465
}
1466

    
1467
static int kvm_handle_halt(CPUState *env)
1468
{
1469
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1470
          (env->eflags & IF_MASK)) &&
1471
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1472
        env->halted = 1;
1473
        env->exception_index = EXCP_HLT;
1474
        return 0;
1475
    }
1476

    
1477
    return 1;
1478
}
1479

    
1480
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1481
{
1482
    int ret = 0;
1483

    
1484
    switch (run->exit_reason) {
1485
    case KVM_EXIT_HLT:
1486
        DPRINTF("handle_hlt\n");
1487
        ret = kvm_handle_halt(env);
1488
        break;
1489
    }
1490

    
1491
    return ret;
1492
}
1493

    
1494
#ifdef KVM_CAP_SET_GUEST_DEBUG
1495
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1496
{
1497
    static const uint8_t int3 = 0xcc;
1498

    
1499
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1500
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1501
        return -EINVAL;
1502
    return 0;
1503
}
1504

    
1505
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1506
{
1507
    uint8_t int3;
1508

    
1509
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1510
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1511
        return -EINVAL;
1512
    return 0;
1513
}
1514

    
1515
static struct {
1516
    target_ulong addr;
1517
    int len;
1518
    int type;
1519
} hw_breakpoint[4];
1520

    
1521
static int nb_hw_breakpoint;
1522

    
1523
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1524
{
1525
    int n;
1526

    
1527
    for (n = 0; n < nb_hw_breakpoint; n++)
1528
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1529
            (hw_breakpoint[n].len == len || len == -1))
1530
            return n;
1531
    return -1;
1532
}
1533

    
1534
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1535
                                  target_ulong len, int type)
1536
{
1537
    switch (type) {
1538
    case GDB_BREAKPOINT_HW:
1539
        len = 1;
1540
        break;
1541
    case GDB_WATCHPOINT_WRITE:
1542
    case GDB_WATCHPOINT_ACCESS:
1543
        switch (len) {
1544
        case 1:
1545
            break;
1546
        case 2:
1547
        case 4:
1548
        case 8:
1549
            if (addr & (len - 1))
1550
                return -EINVAL;
1551
            break;
1552
        default:
1553
            return -EINVAL;
1554
        }
1555
        break;
1556
    default:
1557
        return -ENOSYS;
1558
    }
1559

    
1560
    if (nb_hw_breakpoint == 4)
1561
        return -ENOBUFS;
1562

    
1563
    if (find_hw_breakpoint(addr, len, type) >= 0)
1564
        return -EEXIST;
1565

    
1566
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1567
    hw_breakpoint[nb_hw_breakpoint].len = len;
1568
    hw_breakpoint[nb_hw_breakpoint].type = type;
1569
    nb_hw_breakpoint++;
1570

    
1571
    return 0;
1572
}
1573

    
1574
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1575
                                  target_ulong len, int type)
1576
{
1577
    int n;
1578

    
1579
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1580
    if (n < 0)
1581
        return -ENOENT;
1582

    
1583
    nb_hw_breakpoint--;
1584
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1585

    
1586
    return 0;
1587
}
1588

    
1589
void kvm_arch_remove_all_hw_breakpoints(void)
1590
{
1591
    nb_hw_breakpoint = 0;
1592
}
1593

    
1594
static CPUWatchpoint hw_watchpoint;
1595

    
1596
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1597
{
1598
    int handle = 0;
1599
    int n;
1600

    
1601
    if (arch_info->exception == 1) {
1602
        if (arch_info->dr6 & (1 << 14)) {
1603
            if (cpu_single_env->singlestep_enabled)
1604
                handle = 1;
1605
        } else {
1606
            for (n = 0; n < 4; n++)
1607
                if (arch_info->dr6 & (1 << n))
1608
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1609
                    case 0x0:
1610
                        handle = 1;
1611
                        break;
1612
                    case 0x1:
1613
                        handle = 1;
1614
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1615
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1616
                        hw_watchpoint.flags = BP_MEM_WRITE;
1617
                        break;
1618
                    case 0x3:
1619
                        handle = 1;
1620
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1621
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1622
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1623
                        break;
1624
                    }
1625
        }
1626
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1627
        handle = 1;
1628

    
1629
    if (!handle) {
1630
        cpu_synchronize_state(cpu_single_env);
1631
        assert(cpu_single_env->exception_injected == -1);
1632

    
1633
        cpu_single_env->exception_injected = arch_info->exception;
1634
        cpu_single_env->has_error_code = 0;
1635
    }
1636

    
1637
    return handle;
1638
}
1639

    
1640
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1641
{
1642
    const uint8_t type_code[] = {
1643
        [GDB_BREAKPOINT_HW] = 0x0,
1644
        [GDB_WATCHPOINT_WRITE] = 0x1,
1645
        [GDB_WATCHPOINT_ACCESS] = 0x3
1646
    };
1647
    const uint8_t len_code[] = {
1648
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1649
    };
1650
    int n;
1651

    
1652
    if (kvm_sw_breakpoints_active(env))
1653
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1654

    
1655
    if (nb_hw_breakpoint > 0) {
1656
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1657
        dbg->arch.debugreg[7] = 0x0600;
1658
        for (n = 0; n < nb_hw_breakpoint; n++) {
1659
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1660
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1661
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1662
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1663
        }
1664
    }
1665
    /* Legal xcr0 for loading */
1666
    env->xcr0 = 1;
1667
}
1668
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1669

    
1670
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1671
{
1672
      return !(env->cr[0] & CR0_PE_MASK) ||
1673
              ((env->segs[R_CS].selector  & 3) != 3);
1674
}
1675

    
1676
static void hardware_memory_error(void)
1677
{
1678
    fprintf(stderr, "Hardware memory error!\n");
1679
    exit(1);
1680
}
1681

    
1682
#ifdef KVM_CAP_MCE
1683
static void kvm_mce_broadcast_rest(CPUState *env)
1684
{
1685
    CPUState *cenv;
1686
    int family, model, cpuver = env->cpuid_version;
1687

    
1688
    family = (cpuver >> 8) & 0xf;
1689
    model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1690

    
1691
    /* Broadcast MCA signal for processor version 06H_EH and above */
1692
    if ((family == 6 && model >= 14) || family > 6) {
1693
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1694
            if (cenv == env) {
1695
                continue;
1696
            }
1697
            kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1698
                               MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1699
        }
1700
    }
1701
}
1702
#endif
1703

    
1704
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1705
{
1706
#if defined(KVM_CAP_MCE)
1707
    struct kvm_x86_mce mce = {
1708
            .bank = 9,
1709
    };
1710
    void *vaddr;
1711
    ram_addr_t ram_addr;
1712
    target_phys_addr_t paddr;
1713
    int r;
1714

    
1715
    if ((env->mcg_cap & MCG_SER_P) && addr
1716
        && (code == BUS_MCEERR_AR
1717
            || code == BUS_MCEERR_AO)) {
1718
        if (code == BUS_MCEERR_AR) {
1719
            /* Fake an Intel architectural Data Load SRAR UCR */
1720
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1721
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1722
                | MCI_STATUS_AR | 0x134;
1723
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1724
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1725
        } else {
1726
            /*
1727
             * If there is an MCE excpetion being processed, ignore
1728
             * this SRAO MCE
1729
             */
1730
            r = kvm_mce_in_exception(env);
1731
            if (r == -1) {
1732
                fprintf(stderr, "Failed to get MCE status\n");
1733
            } else if (r) {
1734
                return 0;
1735
            }
1736
            /* Fake an Intel architectural Memory scrubbing UCR */
1737
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1738
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1739
                | 0xc0;
1740
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1741
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1742
        }
1743
        vaddr = (void *)addr;
1744
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1745
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1746
            fprintf(stderr, "Hardware memory error for memory used by "
1747
                    "QEMU itself instead of guest system!\n");
1748
            /* Hope we are lucky for AO MCE */
1749
            if (code == BUS_MCEERR_AO) {
1750
                return 0;
1751
            } else {
1752
                hardware_memory_error();
1753
            }
1754
        }
1755
        mce.addr = paddr;
1756
        r = kvm_set_mce(env, &mce);
1757
        if (r < 0) {
1758
            fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1759
            abort();
1760
        }
1761
        kvm_mce_broadcast_rest(env);
1762
    } else
1763
#endif
1764
    {
1765
        if (code == BUS_MCEERR_AO) {
1766
            return 0;
1767
        } else if (code == BUS_MCEERR_AR) {
1768
            hardware_memory_error();
1769
        } else {
1770
            return 1;
1771
        }
1772
    }
1773
    return 0;
1774
}
1775

    
1776
int kvm_on_sigbus(int code, void *addr)
1777
{
1778
#if defined(KVM_CAP_MCE)
1779
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1780
        uint64_t status;
1781
        void *vaddr;
1782
        ram_addr_t ram_addr;
1783
        target_phys_addr_t paddr;
1784

    
1785
        /* Hope we are lucky for AO MCE */
1786
        vaddr = addr;
1787
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1788
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1789
            fprintf(stderr, "Hardware memory error for memory used by "
1790
                    "QEMU itself instead of guest system!: %p\n", addr);
1791
            return 0;
1792
        }
1793
        status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1794
            | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1795
            | 0xc0;
1796
        kvm_inject_x86_mce(first_cpu, 9, status,
1797
                           MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1798
                           (MCM_ADDR_PHYS << 6) | 0xc, 1);
1799
        kvm_mce_broadcast_rest(first_cpu);
1800
    } else
1801
#endif
1802
    {
1803
        if (code == BUS_MCEERR_AO) {
1804
            return 0;
1805
        } else if (code == BUS_MCEERR_AR) {
1806
            hardware_memory_error();
1807
        } else {
1808
            return 1;
1809
        }
1810
    }
1811
    return 0;
1812
}