Statistics
| Branch: | Revision:

root / vl.c @ 27503323

History | View | Annotate | Download (87.7 kB)

1
/*
2
 * QEMU PC System Emulator
3
 * 
4
 * Copyright (c) 2003 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include <stdlib.h>
25
#include <stdio.h>
26
#include <stdarg.h>
27
#include <string.h>
28
#include <getopt.h>
29
#include <inttypes.h>
30
#include <unistd.h>
31
#include <sys/mman.h>
32
#include <fcntl.h>
33
#include <signal.h>
34
#include <time.h>
35
#include <sys/time.h>
36
#include <malloc.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <errno.h>
40
#include <sys/wait.h>
41

    
42
#include <sys/ioctl.h>
43
#include <sys/socket.h>
44
#include <linux/if.h>
45
#include <linux/if_tun.h>
46

    
47
#include "cpu.h"
48
#include "disas.h"
49
#include "thunk.h"
50

    
51
#include "vl.h"
52

    
53
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
54
#define BIOS_FILENAME "bios.bin"
55
#define VGABIOS_FILENAME "vgabios.bin"
56

    
57
//#define DEBUG_UNUSED_IOPORT
58

    
59
//#define DEBUG_IRQ_LATENCY
60

    
61
/* output Bochs bios info messages */
62
//#define DEBUG_BIOS
63

    
64
/* debug PIC */
65
//#define DEBUG_PIC
66

    
67
/* debug NE2000 card */
68
//#define DEBUG_NE2000
69

    
70
/* debug PC keyboard */
71
//#define DEBUG_KBD
72

    
73
/* debug PC keyboard : only mouse */
74
//#define DEBUG_MOUSE
75

    
76
#define PHYS_RAM_BASE     0xac000000
77
#define PHYS_RAM_MAX_SIZE (256 * 1024 * 1024)
78

    
79
#define KERNEL_LOAD_ADDR   0x00100000
80
#define INITRD_LOAD_ADDR   0x00400000
81
#define KERNEL_PARAMS_ADDR 0x00090000
82

    
83
#define GUI_REFRESH_INTERVAL 30 
84

    
85
/* from plex86 (BSD license) */
86
struct  __attribute__ ((packed)) linux_params {
87
  // For 0x00..0x3f, see 'struct screen_info' in linux/include/linux/tty.h.
88
  // I just padded out the VESA parts, rather than define them.
89

    
90
  /* 0x000 */ uint8_t   orig_x;
91
  /* 0x001 */ uint8_t   orig_y;
92
  /* 0x002 */ uint16_t  ext_mem_k;
93
  /* 0x004 */ uint16_t  orig_video_page;
94
  /* 0x006 */ uint8_t   orig_video_mode;
95
  /* 0x007 */ uint8_t   orig_video_cols;
96
  /* 0x008 */ uint16_t  unused1;
97
  /* 0x00a */ uint16_t  orig_video_ega_bx;
98
  /* 0x00c */ uint16_t  unused2;
99
  /* 0x00e */ uint8_t   orig_video_lines;
100
  /* 0x00f */ uint8_t   orig_video_isVGA;
101
  /* 0x010 */ uint16_t  orig_video_points;
102
  /* 0x012 */ uint8_t   pad0[0x20 - 0x12]; // VESA info.
103
  /* 0x020 */ uint16_t  cl_magic;  // Commandline magic number (0xA33F)
104
  /* 0x022 */ uint16_t  cl_offset; // Commandline offset.  Address of commandline
105
                                 // is calculated as 0x90000 + cl_offset, bu
106
                                 // only if cl_magic == 0xA33F.
107
  /* 0x024 */ uint8_t   pad1[0x40 - 0x24]; // VESA info.
108

    
109
  /* 0x040 */ uint8_t   apm_bios_info[20]; // struct apm_bios_info
110
  /* 0x054 */ uint8_t   pad2[0x80 - 0x54];
111

    
112
  // Following 2 from 'struct drive_info_struct' in drivers/block/cciss.h.
113
  // Might be truncated?
114
  /* 0x080 */ uint8_t   hd0_info[16]; // hd0-disk-parameter from intvector 0x41
115
  /* 0x090 */ uint8_t   hd1_info[16]; // hd1-disk-parameter from intvector 0x46
116

    
117
  // System description table truncated to 16 bytes
118
  // From 'struct sys_desc_table_struct' in linux/arch/i386/kernel/setup.c.
119
  /* 0x0a0 */ uint16_t  sys_description_len;
120
  /* 0x0a2 */ uint8_t   sys_description_table[14];
121
                        // [0] machine id
122
                        // [1] machine submodel id
123
                        // [2] BIOS revision
124
                        // [3] bit1: MCA bus
125

    
126
  /* 0x0b0 */ uint8_t   pad3[0x1e0 - 0xb0];
127
  /* 0x1e0 */ uint32_t  alt_mem_k;
128
  /* 0x1e4 */ uint8_t   pad4[4];
129
  /* 0x1e8 */ uint8_t   e820map_entries;
130
  /* 0x1e9 */ uint8_t   eddbuf_entries; // EDD_NR
131
  /* 0x1ea */ uint8_t   pad5[0x1f1 - 0x1ea];
132
  /* 0x1f1 */ uint8_t   setup_sects; // size of setup.S, number of sectors
133
  /* 0x1f2 */ uint16_t  mount_root_rdonly; // MOUNT_ROOT_RDONLY (if !=0)
134
  /* 0x1f4 */ uint16_t  sys_size; // size of compressed kernel-part in the
135
                                // (b)zImage-file (in 16 byte units, rounded up)
136
  /* 0x1f6 */ uint16_t  swap_dev; // (unused AFAIK)
137
  /* 0x1f8 */ uint16_t  ramdisk_flags;
138
  /* 0x1fa */ uint16_t  vga_mode; // (old one)
139
  /* 0x1fc */ uint16_t  orig_root_dev; // (high=Major, low=minor)
140
  /* 0x1fe */ uint8_t   pad6[1];
141
  /* 0x1ff */ uint8_t   aux_device_info;
142
  /* 0x200 */ uint16_t  jump_setup; // Jump to start of setup code,
143
                                  // aka "reserved" field.
144
  /* 0x202 */ uint8_t   setup_signature[4]; // Signature for SETUP-header, ="HdrS"
145
  /* 0x206 */ uint16_t  header_format_version; // Version number of header format;
146
  /* 0x208 */ uint8_t   setup_S_temp0[8]; // Used by setup.S for communication with
147
                                        // boot loaders, look there.
148
  /* 0x210 */ uint8_t   loader_type;
149
                        // 0 for old one.
150
                        // else 0xTV:
151
                        //   T=0: LILO
152
                        //   T=1: Loadlin
153
                        //   T=2: bootsect-loader
154
                        //   T=3: SYSLINUX
155
                        //   T=4: ETHERBOOT
156
                        //   V=version
157
  /* 0x211 */ uint8_t   loadflags;
158
                        // bit0 = 1: kernel is loaded high (bzImage)
159
                        // bit7 = 1: Heap and pointer (see below) set by boot
160
                        //   loader.
161
  /* 0x212 */ uint16_t  setup_S_temp1;
162
  /* 0x214 */ uint32_t  kernel_start;
163
  /* 0x218 */ uint32_t  initrd_start;
164
  /* 0x21c */ uint32_t  initrd_size;
165
  /* 0x220 */ uint8_t   setup_S_temp2[4];
166
  /* 0x224 */ uint16_t  setup_S_heap_end_pointer;
167
  /* 0x226 */ uint8_t   pad7[0x2d0 - 0x226];
168

    
169
  /* 0x2d0 : Int 15, ax=e820 memory map. */
170
  // (linux/include/asm-i386/e820.h, 'struct e820entry')
171
#define E820MAX  32
172
#define E820_RAM  1
173
#define E820_RESERVED 2
174
#define E820_ACPI 3 /* usable as RAM once ACPI tables have been read */
175
#define E820_NVS  4
176
  struct {
177
    uint64_t addr;
178
    uint64_t size;
179
    uint32_t type;
180
    } e820map[E820MAX];
181

    
182
  /* 0x550 */ uint8_t   pad8[0x600 - 0x550];
183

    
184
  // BIOS Enhanced Disk Drive Services.
185
  // (From linux/include/asm-i386/edd.h, 'struct edd_info')
186
  // Each 'struct edd_info is 78 bytes, times a max of 6 structs in array.
187
  /* 0x600 */ uint8_t   eddbuf[0x7d4 - 0x600];
188

    
189
  /* 0x7d4 */ uint8_t   pad9[0x800 - 0x7d4];
190
  /* 0x800 */ uint8_t   commandline[0x800];
191

    
192
  /* 0x1000 */
193
  uint64_t gdt_table[256];
194
  uint64_t idt_table[48];
195
};
196

    
197
#define KERNEL_CS     0x10
198
#define KERNEL_DS     0x18
199

    
200
#define MAX_IOPORTS 4096
201

    
202
static const char *bios_dir = CONFIG_QEMU_SHAREDIR;
203
char phys_ram_file[1024];
204
CPUX86State *global_env;
205
CPUX86State *cpu_single_env;
206
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
207
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
208
BlockDriverState *bs_table[MAX_DISKS];
209
int vga_ram_size;
210
static DisplayState display_state;
211
int nographic;
212
int term_inited;
213
int64_t ticks_per_sec;
214
int boot_device = 'c';
215

    
216
/***********************************************************/
217
/* x86 io ports */
218

    
219
uint32_t default_ioport_readb(CPUX86State *env, uint32_t address)
220
{
221
#ifdef DEBUG_UNUSED_IOPORT
222
    fprintf(stderr, "inb: port=0x%04x\n", address);
223
#endif
224
    return 0xff;
225
}
226

    
227
void default_ioport_writeb(CPUX86State *env, uint32_t address, uint32_t data)
228
{
229
#ifdef DEBUG_UNUSED_IOPORT
230
    fprintf(stderr, "outb: port=0x%04x data=0x%02x\n", address, data);
231
#endif
232
}
233

    
234
/* default is to make two byte accesses */
235
uint32_t default_ioport_readw(CPUX86State *env, uint32_t address)
236
{
237
    uint32_t data;
238
    data = ioport_read_table[0][address & (MAX_IOPORTS - 1)](env, address);
239
    data |= ioport_read_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1) << 8;
240
    return data;
241
}
242

    
243
void default_ioport_writew(CPUX86State *env, uint32_t address, uint32_t data)
244
{
245
    ioport_write_table[0][address & (MAX_IOPORTS - 1)](env, address, data & 0xff);
246
    ioport_write_table[0][(address + 1) & (MAX_IOPORTS - 1)](env, address + 1, (data >> 8) & 0xff);
247
}
248

    
249
uint32_t default_ioport_readl(CPUX86State *env, uint32_t address)
250
{
251
#ifdef DEBUG_UNUSED_IOPORT
252
    fprintf(stderr, "inl: port=0x%04x\n", address);
253
#endif
254
    return 0xffffffff;
255
}
256

    
257
void default_ioport_writel(CPUX86State *env, uint32_t address, uint32_t data)
258
{
259
#ifdef DEBUG_UNUSED_IOPORT
260
    fprintf(stderr, "outl: port=0x%04x data=0x%02x\n", address, data);
261
#endif
262
}
263

    
264
void init_ioports(void)
265
{
266
    int i;
267

    
268
    for(i = 0; i < MAX_IOPORTS; i++) {
269
        ioport_read_table[0][i] = default_ioport_readb;
270
        ioport_write_table[0][i] = default_ioport_writeb;
271
        ioport_read_table[1][i] = default_ioport_readw;
272
        ioport_write_table[1][i] = default_ioport_writew;
273
        ioport_read_table[2][i] = default_ioport_readl;
274
        ioport_write_table[2][i] = default_ioport_writel;
275
    }
276
}
277

    
278
/* size is the word size in byte */
279
int register_ioport_read(int start, int length, IOPortReadFunc *func, int size)
280
{
281
    int i, bsize;
282

    
283
    if (size == 1)
284
        bsize = 0;
285
    else if (size == 2)
286
        bsize = 1;
287
    else if (size == 4)
288
        bsize = 2;
289
    else
290
        return -1;
291
    for(i = start; i < start + length; i += size)
292
        ioport_read_table[bsize][i] = func;
293
    return 0;
294
}
295

    
296
/* size is the word size in byte */
297
int register_ioport_write(int start, int length, IOPortWriteFunc *func, int size)
298
{
299
    int i, bsize;
300

    
301
    if (size == 1)
302
        bsize = 0;
303
    else if (size == 2)
304
        bsize = 1;
305
    else if (size == 4)
306
        bsize = 2;
307
    else
308
        return -1;
309
    for(i = start; i < start + length; i += size)
310
        ioport_write_table[bsize][i] = func;
311
    return 0;
312
}
313

    
314
void pstrcpy(char *buf, int buf_size, const char *str)
315
{
316
    int c;
317
    char *q = buf;
318

    
319
    if (buf_size <= 0)
320
        return;
321

    
322
    for(;;) {
323
        c = *str++;
324
        if (c == 0 || q >= buf + buf_size - 1)
325
            break;
326
        *q++ = c;
327
    }
328
    *q = '\0';
329
}
330

    
331
/* strcat and truncate. */
332
char *pstrcat(char *buf, int buf_size, const char *s)
333
{
334
    int len;
335
    len = strlen(buf);
336
    if (len < buf_size) 
337
        pstrcpy(buf + len, buf_size - len, s);
338
    return buf;
339
}
340

    
341
int load_kernel(const char *filename, uint8_t *addr)
342
{
343
    int fd, size, setup_sects;
344
    uint8_t bootsect[512];
345

    
346
    fd = open(filename, O_RDONLY);
347
    if (fd < 0)
348
        return -1;
349
    if (read(fd, bootsect, 512) != 512)
350
        goto fail;
351
    setup_sects = bootsect[0x1F1];
352
    if (!setup_sects)
353
        setup_sects = 4;
354
    /* skip 16 bit setup code */
355
    lseek(fd, (setup_sects + 1) * 512, SEEK_SET);
356
    size = read(fd, addr, 16 * 1024 * 1024);
357
    if (size < 0)
358
        goto fail;
359
    close(fd);
360
    return size;
361
 fail:
362
    close(fd);
363
    return -1;
364
}
365

    
366
/* return the size or -1 if error */
367
int load_image(const char *filename, uint8_t *addr)
368
{
369
    int fd, size;
370
    fd = open(filename, O_RDONLY);
371
    if (fd < 0)
372
        return -1;
373
    size = lseek(fd, 0, SEEK_END);
374
    lseek(fd, 0, SEEK_SET);
375
    if (read(fd, addr, size) != size) {
376
        close(fd);
377
        return -1;
378
    }
379
    close(fd);
380
    return size;
381
}
382

    
383
void cpu_x86_outb(CPUX86State *env, int addr, int val)
384
{
385
    ioport_write_table[0][addr & (MAX_IOPORTS - 1)](env, addr, val);
386
}
387

    
388
void cpu_x86_outw(CPUX86State *env, int addr, int val)
389
{
390
    ioport_write_table[1][addr & (MAX_IOPORTS - 1)](env, addr, val);
391
}
392

    
393
void cpu_x86_outl(CPUX86State *env, int addr, int val)
394
{
395
    ioport_write_table[2][addr & (MAX_IOPORTS - 1)](env, addr, val);
396
}
397

    
398
int cpu_x86_inb(CPUX86State *env, int addr)
399
{
400
    return ioport_read_table[0][addr & (MAX_IOPORTS - 1)](env, addr);
401
}
402

    
403
int cpu_x86_inw(CPUX86State *env, int addr)
404
{
405
    return ioport_read_table[1][addr & (MAX_IOPORTS - 1)](env, addr);
406
}
407

    
408
int cpu_x86_inl(CPUX86State *env, int addr)
409
{
410
    return ioport_read_table[2][addr & (MAX_IOPORTS - 1)](env, addr);
411
}
412

    
413
/***********************************************************/
414
void ioport80_write(CPUX86State *env, uint32_t addr, uint32_t data)
415
{
416
}
417

    
418
void hw_error(const char *fmt, ...)
419
{
420
    va_list ap;
421

    
422
    va_start(ap, fmt);
423
    fprintf(stderr, "qemu: hardware error: ");
424
    vfprintf(stderr, fmt, ap);
425
    fprintf(stderr, "\n");
426
#ifdef TARGET_I386
427
    cpu_x86_dump_state(global_env, stderr, X86_DUMP_FPU | X86_DUMP_CCOP);
428
#endif
429
    va_end(ap);
430
    abort();
431
}
432

    
433
/***********************************************************/
434
/* cmos emulation */
435

    
436
#define RTC_SECONDS             0
437
#define RTC_SECONDS_ALARM       1
438
#define RTC_MINUTES             2
439
#define RTC_MINUTES_ALARM       3
440
#define RTC_HOURS               4
441
#define RTC_HOURS_ALARM         5
442
#define RTC_ALARM_DONT_CARE    0xC0
443

    
444
#define RTC_DAY_OF_WEEK         6
445
#define RTC_DAY_OF_MONTH        7
446
#define RTC_MONTH               8
447
#define RTC_YEAR                9
448

    
449
#define RTC_REG_A               10
450
#define RTC_REG_B               11
451
#define RTC_REG_C               12
452
#define RTC_REG_D               13
453

    
454
/* PC cmos mappings */
455
#define REG_EQUIPMENT_BYTE          0x14
456

    
457
uint8_t cmos_data[128];
458
uint8_t cmos_index;
459

    
460
void cmos_ioport_write(CPUX86State *env, uint32_t addr, uint32_t data)
461
{
462
    if (addr == 0x70) {
463
        cmos_index = data & 0x7f;
464
    }
465
}
466

    
467
uint32_t cmos_ioport_read(CPUX86State *env, uint32_t addr)
468
{
469
    int ret;
470

    
471
    if (addr == 0x70) {
472
        return 0xff;
473
    } else {
474
        /* toggle update-in-progress bit for Linux (same hack as
475
           plex86) */
476
        ret = cmos_data[cmos_index];
477
        if (cmos_index == RTC_REG_A)
478
            cmos_data[RTC_REG_A] ^= 0x80; 
479
        else if (cmos_index == RTC_REG_C)
480
            cmos_data[RTC_REG_C] = 0x00; 
481
        return ret;
482
    }
483
}
484

    
485

    
486
static inline int to_bcd(int a)
487
{
488
    return ((a / 10) << 4) | (a % 10);
489
}
490

    
491
void cmos_init(void)
492
{
493
    struct tm *tm;
494
    time_t ti;
495
    int val;
496

    
497
    ti = time(NULL);
498
    tm = gmtime(&ti);
499
    cmos_data[RTC_SECONDS] = to_bcd(tm->tm_sec);
500
    cmos_data[RTC_MINUTES] = to_bcd(tm->tm_min);
501
    cmos_data[RTC_HOURS] = to_bcd(tm->tm_hour);
502
    cmos_data[RTC_DAY_OF_WEEK] = to_bcd(tm->tm_wday);
503
    cmos_data[RTC_DAY_OF_MONTH] = to_bcd(tm->tm_mday);
504
    cmos_data[RTC_MONTH] = to_bcd(tm->tm_mon + 1);
505
    cmos_data[RTC_YEAR] = to_bcd(tm->tm_year % 100);
506

    
507
    cmos_data[RTC_REG_A] = 0x26;
508
    cmos_data[RTC_REG_B] = 0x02;
509
    cmos_data[RTC_REG_C] = 0x00;
510
    cmos_data[RTC_REG_D] = 0x80;
511

    
512
    /* various important CMOS locations needed by PC/Bochs bios */
513

    
514
    cmos_data[REG_EQUIPMENT_BYTE] = 0x02; /* FPU is there */
515
    cmos_data[REG_EQUIPMENT_BYTE] |= 0x04; /* PS/2 mouse installed */
516

    
517
    /* memory size */
518
    val = (phys_ram_size / 1024) - 1024;
519
    if (val > 65535)
520
        val = 65535;
521
    cmos_data[0x17] = val;
522
    cmos_data[0x18] = val >> 8;
523
    cmos_data[0x30] = val;
524
    cmos_data[0x31] = val >> 8;
525

    
526
    val = (phys_ram_size / 65536) - ((16 * 1024 * 1024) / 65536);
527
    if (val > 65535)
528
        val = 65535;
529
    cmos_data[0x34] = val;
530
    cmos_data[0x35] = val >> 8;
531
    
532
    switch(boot_device) {
533
    case 'a':
534
        cmos_data[0x3d] = 0x01; /* floppy boot */
535
        break;
536
    default:
537
    case 'c':
538
        cmos_data[0x3d] = 0x02; /* hard drive boot */
539
        break;
540
    case 'd':
541
        cmos_data[0x3d] = 0x03; /* CD-ROM boot */
542
        break;
543
    }
544

    
545
    register_ioport_write(0x70, 2, cmos_ioport_write, 1);
546
    register_ioport_read(0x70, 2, cmos_ioport_read, 1);
547
}
548

    
549
/***********************************************************/
550
/* 8259 pic emulation */
551

    
552
typedef struct PicState {
553
    uint8_t last_irr; /* edge detection */
554
    uint8_t irr; /* interrupt request register */
555
    uint8_t imr; /* interrupt mask register */
556
    uint8_t isr; /* interrupt service register */
557
    uint8_t priority_add; /* used to compute irq priority */
558
    uint8_t irq_base;
559
    uint8_t read_reg_select;
560
    uint8_t special_mask;
561
    uint8_t init_state;
562
    uint8_t auto_eoi;
563
    uint8_t rotate_on_autoeoi;
564
    uint8_t init4; /* true if 4 byte init */
565
} PicState;
566

    
567
/* 0 is master pic, 1 is slave pic */
568
PicState pics[2];
569
int pic_irq_requested;
570

    
571
/* set irq level. If an edge is detected, then the IRR is set to 1 */
572
static inline void pic_set_irq1(PicState *s, int irq, int level)
573
{
574
    int mask;
575
    mask = 1 << irq;
576
    if (level) {
577
        if ((s->last_irr & mask) == 0)
578
            s->irr |= mask;
579
        s->last_irr |= mask;
580
    } else {
581
        s->last_irr &= ~mask;
582
    }
583
}
584

    
585
static inline int get_priority(PicState *s, int mask)
586
{
587
    int priority;
588
    if (mask == 0)
589
        return -1;
590
    priority = 7;
591
    while ((mask & (1 << ((priority + s->priority_add) & 7))) == 0)
592
        priority--;
593
    return priority;
594
}
595

    
596
/* return the pic wanted interrupt. return -1 if none */
597
static int pic_get_irq(PicState *s)
598
{
599
    int mask, cur_priority, priority;
600

    
601
    mask = s->irr & ~s->imr;
602
    priority = get_priority(s, mask);
603
    if (priority < 0)
604
        return -1;
605
    /* compute current priority */
606
    cur_priority = get_priority(s, s->isr);
607
    if (priority > cur_priority) {
608
        /* higher priority found: an irq should be generated */
609
        return priority;
610
    } else {
611
        return -1;
612
    }
613
}
614

    
615
/* raise irq to CPU if necessary. must be called every time the active
616
   irq may change */
617
static void pic_update_irq(void)
618
{
619
    int irq2, irq;
620

    
621
    /* first look at slave pic */
622
    irq2 = pic_get_irq(&pics[1]);
623
    if (irq2 >= 0) {
624
        /* if irq request by slave pic, signal master PIC */
625
        pic_set_irq1(&pics[0], 2, 1);
626
        pic_set_irq1(&pics[0], 2, 0);
627
    }
628
    /* look at requested irq */
629
    irq = pic_get_irq(&pics[0]);
630
    if (irq >= 0) {
631
        if (irq == 2) {
632
            /* from slave pic */
633
            pic_irq_requested = 8 + irq2;
634
        } else {
635
            /* from master pic */
636
            pic_irq_requested = irq;
637
        }
638
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_HARD);
639
    }
640
}
641

    
642
#ifdef DEBUG_IRQ_LATENCY
643
int64_t irq_time[16];
644
int64_t cpu_get_ticks(void);
645
#endif
646
#if defined(DEBUG_PIC)
647
int irq_level[16];
648
#endif
649

    
650
void pic_set_irq(int irq, int level)
651
{
652
#if defined(DEBUG_PIC)
653
    if (level != irq_level[irq]) {
654
        printf("pic_set_irq: irq=%d level=%d\n", irq, level);
655
        irq_level[irq] = level;
656
    }
657
#endif
658
#ifdef DEBUG_IRQ_LATENCY
659
    if (level) {
660
        irq_time[irq] = cpu_get_ticks();
661
    }
662
#endif
663
    pic_set_irq1(&pics[irq >> 3], irq & 7, level);
664
    pic_update_irq();
665
}
666

    
667
int cpu_x86_get_pic_interrupt(CPUX86State *env)
668
{
669
    int irq, irq2, intno;
670

    
671
    /* signal the pic that the irq was acked by the CPU */
672
    irq = pic_irq_requested;
673
#ifdef DEBUG_IRQ_LATENCY
674
    printf("IRQ%d latency=%0.3fus\n", 
675
           irq, 
676
           (double)(cpu_get_ticks() - irq_time[irq]) * 1000000.0 / ticks_per_sec);
677
#endif
678
#ifdef DEBUG_PIC
679
    printf("pic_interrupt: irq=%d\n", irq);
680
#endif
681

    
682
    if (irq >= 8) {
683
        irq2 = irq & 7;
684
        pics[1].isr |= (1 << irq2);
685
        pics[1].irr &= ~(1 << irq2);
686
        irq = 2;
687
        intno = pics[1].irq_base + irq2;
688
    } else {
689
        intno = pics[0].irq_base + irq;
690
    }
691
    pics[0].isr |= (1 << irq);
692
    pics[0].irr &= ~(1 << irq);
693
    return intno;
694
}
695

    
696
void pic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
697
{
698
    PicState *s;
699
    int priority;
700

    
701
#ifdef DEBUG_PIC
702
    printf("pic_write: addr=0x%02x val=0x%02x\n", addr, val);
703
#endif
704
    s = &pics[addr >> 7];
705
    addr &= 1;
706
    if (addr == 0) {
707
        if (val & 0x10) {
708
            /* init */
709
            memset(s, 0, sizeof(PicState));
710
            s->init_state = 1;
711
            s->init4 = val & 1;
712
            if (val & 0x02)
713
                hw_error("single mode not supported");
714
            if (val & 0x08)
715
                hw_error("level sensitive irq not supported");
716
        } else if (val & 0x08) {
717
            if (val & 0x02)
718
                s->read_reg_select = val & 1;
719
            if (val & 0x40)
720
                s->special_mask = (val >> 5) & 1;
721
        } else {
722
            switch(val) {
723
            case 0x00:
724
            case 0x80:
725
                s->rotate_on_autoeoi = val >> 7;
726
                break;
727
            case 0x20: /* end of interrupt */
728
            case 0xa0:
729
                priority = get_priority(s, s->isr);
730
                if (priority >= 0) {
731
                    s->isr &= ~(1 << ((priority + s->priority_add) & 7));
732
                }
733
                if (val == 0xa0)
734
                    s->priority_add = (s->priority_add + 1) & 7;
735
                pic_update_irq();
736
                break;
737
            case 0x60 ... 0x67:
738
                priority = val & 7;
739
                s->isr &= ~(1 << priority);
740
                pic_update_irq();
741
                break;
742
            case 0xc0 ... 0xc7:
743
                s->priority_add = (val + 1) & 7;
744
                pic_update_irq();
745
                break;
746
            case 0xe0 ... 0xe7:
747
                priority = val & 7;
748
                s->isr &= ~(1 << priority);
749
                s->priority_add = (priority + 1) & 7;
750
                pic_update_irq();
751
                break;
752
            }
753
        }
754
    } else {
755
        switch(s->init_state) {
756
        case 0:
757
            /* normal mode */
758
            s->imr = val;
759
            pic_update_irq();
760
            break;
761
        case 1:
762
            s->irq_base = val & 0xf8;
763
            s->init_state = 2;
764
            break;
765
        case 2:
766
            if (s->init4) {
767
                s->init_state = 3;
768
            } else {
769
                s->init_state = 0;
770
            }
771
            break;
772
        case 3:
773
            s->auto_eoi = (val >> 1) & 1;
774
            s->init_state = 0;
775
            break;
776
        }
777
    }
778
}
779

    
780
uint32_t pic_ioport_read(CPUX86State *env, uint32_t addr1)
781
{
782
    PicState *s;
783
    unsigned int addr;
784
    int ret;
785

    
786
    addr = addr1;
787
    s = &pics[addr >> 7];
788
    addr &= 1;
789
    if (addr == 0) {
790
        if (s->read_reg_select)
791
            ret = s->isr;
792
        else
793
            ret = s->irr;
794
    } else {
795
        ret = s->imr;
796
    }
797
#ifdef DEBUG_PIC
798
    printf("pic_read: addr=0x%02x val=0x%02x\n", addr1, ret);
799
#endif
800
    return ret;
801
}
802

    
803
void pic_init(void)
804
{
805
    register_ioport_write(0x20, 2, pic_ioport_write, 1);
806
    register_ioport_read(0x20, 2, pic_ioport_read, 1);
807
    register_ioport_write(0xa0, 2, pic_ioport_write, 1);
808
    register_ioport_read(0xa0, 2, pic_ioport_read, 1);
809
}
810

    
811
/***********************************************************/
812
/* 8253 PIT emulation */
813

    
814
#define PIT_FREQ 1193182
815

    
816
#define RW_STATE_LSB 0
817
#define RW_STATE_MSB 1
818
#define RW_STATE_WORD0 2
819
#define RW_STATE_WORD1 3
820
#define RW_STATE_LATCHED_WORD0 4
821
#define RW_STATE_LATCHED_WORD1 5
822

    
823
typedef struct PITChannelState {
824
    int count; /* can be 65536 */
825
    uint16_t latched_count;
826
    uint8_t rw_state;
827
    uint8_t mode;
828
    uint8_t bcd; /* not supported */
829
    uint8_t gate; /* timer start */
830
    int64_t count_load_time;
831
    int64_t count_last_edge_check_time;
832
} PITChannelState;
833

    
834
PITChannelState pit_channels[3];
835
int speaker_data_on;
836
int dummy_refresh_clock;
837
int pit_min_timer_count = 0;
838

    
839

    
840
#if defined(__powerpc__)
841

    
842
static inline uint32_t get_tbl(void) 
843
{
844
    uint32_t tbl;
845
    asm volatile("mftb %0" : "=r" (tbl));
846
    return tbl;
847
}
848

    
849
static inline uint32_t get_tbu(void) 
850
{
851
        uint32_t tbl;
852
        asm volatile("mftbu %0" : "=r" (tbl));
853
        return tbl;
854
}
855

    
856
int64_t cpu_get_real_ticks(void)
857
{
858
    uint32_t l, h, h1;
859
    /* NOTE: we test if wrapping has occurred */
860
    do {
861
        h = get_tbu();
862
        l = get_tbl();
863
        h1 = get_tbu();
864
    } while (h != h1);
865
    return ((int64_t)h << 32) | l;
866
}
867

    
868
#elif defined(__i386__)
869

    
870
int64_t cpu_get_real_ticks(void)
871
{
872
    int64_t val;
873
    asm("rdtsc" : "=A" (val));
874
    return val;
875
}
876

    
877
#else
878
#error unsupported CPU
879
#endif
880

    
881
static int64_t cpu_ticks_offset;
882
static int64_t cpu_ticks_last;
883

    
884
int64_t cpu_get_ticks(void)
885
{
886
    return cpu_get_real_ticks() + cpu_ticks_offset;
887
}
888

    
889
/* enable cpu_get_ticks() */
890
void cpu_enable_ticks(void)
891
{
892
    cpu_ticks_offset = cpu_ticks_last - cpu_get_real_ticks();
893
}
894

    
895
/* disable cpu_get_ticks() : the clock is stopped. You must not call
896
   cpu_get_ticks() after that.  */
897
void cpu_disable_ticks(void)
898
{
899
    cpu_ticks_last = cpu_get_ticks();
900
}
901

    
902
int64_t get_clock(void)
903
{
904
    struct timeval tv;
905
    gettimeofday(&tv, NULL);
906
    return tv.tv_sec * 1000000LL + tv.tv_usec;
907
}
908

    
909
void cpu_calibrate_ticks(void)
910
{
911
    int64_t usec, ticks;
912

    
913
    usec = get_clock();
914
    ticks = cpu_get_ticks();
915
    usleep(50 * 1000);
916
    usec = get_clock() - usec;
917
    ticks = cpu_get_ticks() - ticks;
918
    ticks_per_sec = (ticks * 1000000LL + (usec >> 1)) / usec;
919
}
920

    
921
/* compute with 96 bit intermediate result: (a*b)/c */
922
static uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
923
{
924
    union {
925
        uint64_t ll;
926
        struct {
927
#ifdef WORDS_BIGENDIAN
928
            uint32_t high, low;
929
#else
930
            uint32_t low, high;
931
#endif            
932
        } l;
933
    } u, res;
934
    uint64_t rl, rh;
935

    
936
    u.ll = a;
937
    rl = (uint64_t)u.l.low * (uint64_t)b;
938
    rh = (uint64_t)u.l.high * (uint64_t)b;
939
    rh += (rl >> 32);
940
    res.l.high = rh / c;
941
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
942
    return res.ll;
943
}
944

    
945
static int pit_get_count(PITChannelState *s)
946
{
947
    uint64_t d;
948
    int counter;
949

    
950
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
951
    switch(s->mode) {
952
    case 0:
953
    case 1:
954
    case 4:
955
    case 5:
956
        counter = (s->count - d) & 0xffff;
957
        break;
958
    default:
959
        counter = s->count - (d % s->count);
960
        break;
961
    }
962
    return counter;
963
}
964

    
965
/* get pit output bit */
966
static int pit_get_out(PITChannelState *s)
967
{
968
    uint64_t d;
969
    int out;
970

    
971
    d = muldiv64(cpu_get_ticks() - s->count_load_time, PIT_FREQ, ticks_per_sec);
972
    switch(s->mode) {
973
    default:
974
    case 0:
975
        out = (d >= s->count);
976
        break;
977
    case 1:
978
        out = (d < s->count);
979
        break;
980
    case 2:
981
        if ((d % s->count) == 0 && d != 0)
982
            out = 1;
983
        else
984
            out = 0;
985
        break;
986
    case 3:
987
        out = (d % s->count) < (s->count >> 1);
988
        break;
989
    case 4:
990
    case 5:
991
        out = (d == s->count);
992
        break;
993
    }
994
    return out;
995
}
996

    
997
/* get the number of 0 to 1 transitions we had since we call this
998
   function */
999
/* XXX: maybe better to use ticks precision to avoid getting edges
1000
   twice if checks are done at very small intervals */
1001
static int pit_get_out_edges(PITChannelState *s)
1002
{
1003
    uint64_t d1, d2;
1004
    int64_t ticks;
1005
    int ret, v;
1006

    
1007
    ticks = cpu_get_ticks();
1008
    d1 = muldiv64(s->count_last_edge_check_time - s->count_load_time, 
1009
                 PIT_FREQ, ticks_per_sec);
1010
    d2 = muldiv64(ticks - s->count_load_time, 
1011
                  PIT_FREQ, ticks_per_sec);
1012
    s->count_last_edge_check_time = ticks;
1013
    switch(s->mode) {
1014
    default:
1015
    case 0:
1016
        if (d1 < s->count && d2 >= s->count)
1017
            ret = 1;
1018
        else
1019
            ret = 0;
1020
        break;
1021
    case 1:
1022
        ret = 0;
1023
        break;
1024
    case 2:
1025
        d1 /= s->count;
1026
        d2 /= s->count;
1027
        ret = d2 - d1;
1028
        break;
1029
    case 3:
1030
        v = s->count - (s->count >> 1);
1031
        d1 = (d1 + v) / s->count;
1032
        d2 = (d2 + v) / s->count;
1033
        ret = d2 - d1;
1034
        break;
1035
    case 4:
1036
    case 5:
1037
        if (d1 < s->count && d2 >= s->count)
1038
            ret = 1;
1039
        else
1040
            ret = 0;
1041
        break;
1042
    }
1043
    return ret;
1044
}
1045

    
1046
static inline void pit_load_count(PITChannelState *s, int val)
1047
{
1048
    if (val == 0)
1049
        val = 0x10000;
1050
    s->count_load_time = cpu_get_ticks();
1051
    s->count_last_edge_check_time = s->count_load_time;
1052
    s->count = val;
1053
    if (s == &pit_channels[0] && val <= pit_min_timer_count) {
1054
        fprintf(stderr, 
1055
                "\nWARNING: qemu: on your system, accurate timer emulation is impossible if its frequency is more than %d Hz. If using a 2.5.xx Linux kernel, you must patch asm/param.h to change HZ from 1000 to 100.\n\n", 
1056
                PIT_FREQ / pit_min_timer_count);
1057
    }
1058
}
1059

    
1060
void pit_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1061
{
1062
    int channel, access;
1063
    PITChannelState *s;
1064

    
1065
    addr &= 3;
1066
    if (addr == 3) {
1067
        channel = val >> 6;
1068
        if (channel == 3)
1069
            return;
1070
        s = &pit_channels[channel];
1071
        access = (val >> 4) & 3;
1072
        switch(access) {
1073
        case 0:
1074
            s->latched_count = pit_get_count(s);
1075
            s->rw_state = RW_STATE_LATCHED_WORD0;
1076
            break;
1077
        default:
1078
            s->mode = (val >> 1) & 7;
1079
            s->bcd = val & 1;
1080
            s->rw_state = access - 1 +  RW_STATE_LSB;
1081
            break;
1082
        }
1083
    } else {
1084
        s = &pit_channels[addr];
1085
        switch(s->rw_state) {
1086
        case RW_STATE_LSB:
1087
            pit_load_count(s, val);
1088
            break;
1089
        case RW_STATE_MSB:
1090
            pit_load_count(s, val << 8);
1091
            break;
1092
        case RW_STATE_WORD0:
1093
        case RW_STATE_WORD1:
1094
            if (s->rw_state & 1) {
1095
                pit_load_count(s, (s->latched_count & 0xff) | (val << 8));
1096
            } else {
1097
                s->latched_count = val;
1098
            }
1099
            s->rw_state ^= 1;
1100
            break;
1101
        }
1102
    }
1103
}
1104

    
1105
uint32_t pit_ioport_read(CPUX86State *env, uint32_t addr)
1106
{
1107
    int ret, count;
1108
    PITChannelState *s;
1109
    
1110
    addr &= 3;
1111
    s = &pit_channels[addr];
1112
    switch(s->rw_state) {
1113
    case RW_STATE_LSB:
1114
    case RW_STATE_MSB:
1115
    case RW_STATE_WORD0:
1116
    case RW_STATE_WORD1:
1117
        count = pit_get_count(s);
1118
        if (s->rw_state & 1)
1119
            ret = (count >> 8) & 0xff;
1120
        else
1121
            ret = count & 0xff;
1122
        if (s->rw_state & 2)
1123
            s->rw_state ^= 1;
1124
        break;
1125
    default:
1126
    case RW_STATE_LATCHED_WORD0:
1127
    case RW_STATE_LATCHED_WORD1:
1128
        if (s->rw_state & 1)
1129
            ret = s->latched_count >> 8;
1130
        else
1131
            ret = s->latched_count & 0xff;
1132
        s->rw_state ^= 1;
1133
        break;
1134
    }
1135
    return ret;
1136
}
1137

    
1138
void speaker_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1139
{
1140
    speaker_data_on = (val >> 1) & 1;
1141
    pit_channels[2].gate = val & 1;
1142
}
1143

    
1144
uint32_t speaker_ioport_read(CPUX86State *env, uint32_t addr)
1145
{
1146
    int out;
1147
    out = pit_get_out(&pit_channels[2]);
1148
    dummy_refresh_clock ^= 1;
1149
    return (speaker_data_on << 1) | pit_channels[2].gate | (out << 5) |
1150
      (dummy_refresh_clock << 4);
1151
}
1152

    
1153
void pit_init(void)
1154
{
1155
    PITChannelState *s;
1156
    int i;
1157

    
1158
    cpu_calibrate_ticks();
1159

    
1160
    for(i = 0;i < 3; i++) {
1161
        s = &pit_channels[i];
1162
        s->mode = 3;
1163
        s->gate = (i != 2);
1164
        pit_load_count(s, 0);
1165
    }
1166

    
1167
    register_ioport_write(0x40, 4, pit_ioport_write, 1);
1168
    register_ioport_read(0x40, 3, pit_ioport_read, 1);
1169

    
1170
    register_ioport_read(0x61, 1, speaker_ioport_read, 1);
1171
    register_ioport_write(0x61, 1, speaker_ioport_write, 1);
1172
}
1173

    
1174
/***********************************************************/
1175
/* serial port emulation */
1176

    
1177
#define UART_IRQ        4
1178

    
1179
#define UART_LCR_DLAB        0x80        /* Divisor latch access bit */
1180

    
1181
#define UART_IER_MSI        0x08        /* Enable Modem status interrupt */
1182
#define UART_IER_RLSI        0x04        /* Enable receiver line status interrupt */
1183
#define UART_IER_THRI        0x02        /* Enable Transmitter holding register int. */
1184
#define UART_IER_RDI        0x01        /* Enable receiver data interrupt */
1185

    
1186
#define UART_IIR_NO_INT        0x01        /* No interrupts pending */
1187
#define UART_IIR_ID        0x06        /* Mask for the interrupt ID */
1188

    
1189
#define UART_IIR_MSI        0x00        /* Modem status interrupt */
1190
#define UART_IIR_THRI        0x02        /* Transmitter holding register empty */
1191
#define UART_IIR_RDI        0x04        /* Receiver data interrupt */
1192
#define UART_IIR_RLSI        0x06        /* Receiver line status interrupt */
1193

    
1194
#define UART_LSR_TEMT        0x40        /* Transmitter empty */
1195
#define UART_LSR_THRE        0x20        /* Transmit-hold-register empty */
1196
#define UART_LSR_BI        0x10        /* Break interrupt indicator */
1197
#define UART_LSR_FE        0x08        /* Frame error indicator */
1198
#define UART_LSR_PE        0x04        /* Parity error indicator */
1199
#define UART_LSR_OE        0x02        /* Overrun error indicator */
1200
#define UART_LSR_DR        0x01        /* Receiver data ready */
1201

    
1202
typedef struct SerialState {
1203
    uint8_t divider;
1204
    uint8_t rbr; /* receive register */
1205
    uint8_t ier;
1206
    uint8_t iir; /* read only */
1207
    uint8_t lcr;
1208
    uint8_t mcr;
1209
    uint8_t lsr; /* read only */
1210
    uint8_t msr;
1211
    uint8_t scr;
1212
} SerialState;
1213

    
1214
SerialState serial_ports[1];
1215

    
1216
void serial_update_irq(void)
1217
{
1218
    SerialState *s = &serial_ports[0];
1219

    
1220
    if ((s->lsr & UART_LSR_DR) && (s->ier & UART_IER_RDI)) {
1221
        s->iir = UART_IIR_RDI;
1222
    } else if ((s->lsr & UART_LSR_THRE) && (s->ier & UART_IER_THRI)) {
1223
        s->iir = UART_IIR_THRI;
1224
    } else {
1225
        s->iir = UART_IIR_NO_INT;
1226
    }
1227
    if (s->iir != UART_IIR_NO_INT) {
1228
        pic_set_irq(UART_IRQ, 1);
1229
    } else {
1230
        pic_set_irq(UART_IRQ, 0);
1231
    }
1232
}
1233

    
1234
void serial_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1235
{
1236
    SerialState *s = &serial_ports[0];
1237
    unsigned char ch;
1238
    int ret;
1239
    
1240
    addr &= 7;
1241
    switch(addr) {
1242
    default:
1243
    case 0:
1244
        if (s->lcr & UART_LCR_DLAB) {
1245
            s->divider = (s->divider & 0xff00) | val;
1246
        } else {
1247
            s->lsr &= ~UART_LSR_THRE;
1248
            serial_update_irq();
1249

    
1250
            ch = val;
1251
            do {
1252
                ret = write(1, &ch, 1);
1253
            } while (ret != 1);
1254
            s->lsr |= UART_LSR_THRE;
1255
            s->lsr |= UART_LSR_TEMT;
1256
            serial_update_irq();
1257
        }
1258
        break;
1259
    case 1:
1260
        if (s->lcr & UART_LCR_DLAB) {
1261
            s->divider = (s->divider & 0x00ff) | (val << 8);
1262
        } else {
1263
            s->ier = val;
1264
            serial_update_irq();
1265
        }
1266
        break;
1267
    case 2:
1268
        break;
1269
    case 3:
1270
        s->lcr = val;
1271
        break;
1272
    case 4:
1273
        s->mcr = val;
1274
        break;
1275
    case 5:
1276
        break;
1277
    case 6:
1278
        s->msr = val;
1279
        break;
1280
    case 7:
1281
        s->scr = val;
1282
        break;
1283
    }
1284
}
1285

    
1286
uint32_t serial_ioport_read(CPUX86State *env, uint32_t addr)
1287
{
1288
    SerialState *s = &serial_ports[0];
1289
    uint32_t ret;
1290

    
1291
    addr &= 7;
1292
    switch(addr) {
1293
    default:
1294
    case 0:
1295
        if (s->lcr & UART_LCR_DLAB) {
1296
            ret = s->divider & 0xff; 
1297
        } else {
1298
            ret = s->rbr;
1299
            s->lsr &= ~(UART_LSR_DR | UART_LSR_BI);
1300
            serial_update_irq();
1301
        }
1302
        break;
1303
    case 1:
1304
        if (s->lcr & UART_LCR_DLAB) {
1305
            ret = (s->divider >> 8) & 0xff;
1306
        } else {
1307
            ret = s->ier;
1308
        }
1309
        break;
1310
    case 2:
1311
        ret = s->iir;
1312
        break;
1313
    case 3:
1314
        ret = s->lcr;
1315
        break;
1316
    case 4:
1317
        ret = s->mcr;
1318
        break;
1319
    case 5:
1320
        ret = s->lsr;
1321
        break;
1322
    case 6:
1323
        ret = s->msr;
1324
        break;
1325
    case 7:
1326
        ret = s->scr;
1327
        break;
1328
    }
1329
    return ret;
1330
}
1331

    
1332
#define TERM_ESCAPE 0x01 /* ctrl-a is used for escape */
1333
static int term_got_escape;
1334

    
1335
void term_print_help(void)
1336
{
1337
    printf("\n"
1338
           "C-a h    print this help\n"
1339
           "C-a x    exit emulatior\n"
1340
           "C-a s    save disk data back to file (if -snapshot)\n"
1341
           "C-a b    send break (magic sysrq)\n"
1342
           "C-a C-a  send C-a\n"
1343
           );
1344
}
1345

    
1346
/* called when a char is received */
1347
void serial_received_byte(SerialState *s, int ch)
1348
{
1349
    if (term_got_escape) {
1350
        term_got_escape = 0;
1351
        switch(ch) {
1352
        case 'h':
1353
            term_print_help();
1354
            break;
1355
        case 'x':
1356
            exit(0);
1357
            break;
1358
        case 's': 
1359
            {
1360
                int i;
1361
                for (i = 0; i < MAX_DISKS; i++) {
1362
                    if (bs_table[i])
1363
                        bdrv_commit(bs_table[i]);
1364
                }
1365
            }
1366
            break;
1367
        case 'b':
1368
            /* send break */
1369
            s->rbr = 0;
1370
            s->lsr |= UART_LSR_BI | UART_LSR_DR;
1371
            serial_update_irq();
1372
            break;
1373
        case TERM_ESCAPE:
1374
            goto send_char;
1375
        }
1376
    } else if (ch == TERM_ESCAPE) {
1377
        term_got_escape = 1;
1378
    } else {
1379
    send_char:
1380
        s->rbr = ch;
1381
        s->lsr |= UART_LSR_DR;
1382
        serial_update_irq();
1383
    }
1384
}
1385

    
1386
void serial_init(void)
1387
{
1388
    SerialState *s = &serial_ports[0];
1389

    
1390
    s->lsr = UART_LSR_TEMT | UART_LSR_THRE;
1391

    
1392
    register_ioport_write(0x3f8, 8, serial_ioport_write, 1);
1393
    register_ioport_read(0x3f8, 8, serial_ioport_read, 1);
1394
}
1395

    
1396
/***********************************************************/
1397
/* ne2000 emulation */
1398

    
1399
#define NE2000_IOPORT   0x300
1400
#define NE2000_IRQ      9
1401

    
1402
#define MAX_ETH_FRAME_SIZE 1514
1403

    
1404
#define E8390_CMD        0x00  /* The command register (for all pages) */
1405
/* Page 0 register offsets. */
1406
#define EN0_CLDALO        0x01        /* Low byte of current local dma addr  RD */
1407
#define EN0_STARTPG        0x01        /* Starting page of ring bfr WR */
1408
#define EN0_CLDAHI        0x02        /* High byte of current local dma addr  RD */
1409
#define EN0_STOPPG        0x02        /* Ending page +1 of ring bfr WR */
1410
#define EN0_BOUNDARY        0x03        /* Boundary page of ring bfr RD WR */
1411
#define EN0_TSR                0x04        /* Transmit status reg RD */
1412
#define EN0_TPSR        0x04        /* Transmit starting page WR */
1413
#define EN0_NCR                0x05        /* Number of collision reg RD */
1414
#define EN0_TCNTLO        0x05        /* Low  byte of tx byte count WR */
1415
#define EN0_FIFO        0x06        /* FIFO RD */
1416
#define EN0_TCNTHI        0x06        /* High byte of tx byte count WR */
1417
#define EN0_ISR                0x07        /* Interrupt status reg RD WR */
1418
#define EN0_CRDALO        0x08        /* low byte of current remote dma address RD */
1419
#define EN0_RSARLO        0x08        /* Remote start address reg 0 */
1420
#define EN0_CRDAHI        0x09        /* high byte, current remote dma address RD */
1421
#define EN0_RSARHI        0x09        /* Remote start address reg 1 */
1422
#define EN0_RCNTLO        0x0a        /* Remote byte count reg WR */
1423
#define EN0_RCNTHI        0x0b        /* Remote byte count reg WR */
1424
#define EN0_RSR                0x0c        /* rx status reg RD */
1425
#define EN0_RXCR        0x0c        /* RX configuration reg WR */
1426
#define EN0_TXCR        0x0d        /* TX configuration reg WR */
1427
#define EN0_COUNTER0        0x0d        /* Rcv alignment error counter RD */
1428
#define EN0_DCFG        0x0e        /* Data configuration reg WR */
1429
#define EN0_COUNTER1        0x0e        /* Rcv CRC error counter RD */
1430
#define EN0_IMR                0x0f        /* Interrupt mask reg WR */
1431
#define EN0_COUNTER2        0x0f        /* Rcv missed frame error counter RD */
1432

    
1433
#define EN1_PHYS        0x11
1434
#define EN1_CURPAG      0x17
1435
#define EN1_MULT        0x18
1436

    
1437
/*  Register accessed at EN_CMD, the 8390 base addr.  */
1438
#define E8390_STOP        0x01        /* Stop and reset the chip */
1439
#define E8390_START        0x02        /* Start the chip, clear reset */
1440
#define E8390_TRANS        0x04        /* Transmit a frame */
1441
#define E8390_RREAD        0x08        /* Remote read */
1442
#define E8390_RWRITE        0x10        /* Remote write  */
1443
#define E8390_NODMA        0x20        /* Remote DMA */
1444
#define E8390_PAGE0        0x00        /* Select page chip registers */
1445
#define E8390_PAGE1        0x40        /* using the two high-order bits */
1446
#define E8390_PAGE2        0x80        /* Page 3 is invalid. */
1447

    
1448
/* Bits in EN0_ISR - Interrupt status register */
1449
#define ENISR_RX        0x01        /* Receiver, no error */
1450
#define ENISR_TX        0x02        /* Transmitter, no error */
1451
#define ENISR_RX_ERR        0x04        /* Receiver, with error */
1452
#define ENISR_TX_ERR        0x08        /* Transmitter, with error */
1453
#define ENISR_OVER        0x10        /* Receiver overwrote the ring */
1454
#define ENISR_COUNTERS        0x20        /* Counters need emptying */
1455
#define ENISR_RDC        0x40        /* remote dma complete */
1456
#define ENISR_RESET        0x80        /* Reset completed */
1457
#define ENISR_ALL        0x3f        /* Interrupts we will enable */
1458

    
1459
/* Bits in received packet status byte and EN0_RSR*/
1460
#define ENRSR_RXOK        0x01        /* Received a good packet */
1461
#define ENRSR_CRC        0x02        /* CRC error */
1462
#define ENRSR_FAE        0x04        /* frame alignment error */
1463
#define ENRSR_FO        0x08        /* FIFO overrun */
1464
#define ENRSR_MPA        0x10        /* missed pkt */
1465
#define ENRSR_PHY        0x20        /* physical/multicast address */
1466
#define ENRSR_DIS        0x40        /* receiver disable. set in monitor mode */
1467
#define ENRSR_DEF        0x80        /* deferring */
1468

    
1469
/* Transmitted packet status, EN0_TSR. */
1470
#define ENTSR_PTX 0x01        /* Packet transmitted without error */
1471
#define ENTSR_ND  0x02        /* The transmit wasn't deferred. */
1472
#define ENTSR_COL 0x04        /* The transmit collided at least once. */
1473
#define ENTSR_ABT 0x08  /* The transmit collided 16 times, and was deferred. */
1474
#define ENTSR_CRS 0x10        /* The carrier sense was lost. */
1475
#define ENTSR_FU  0x20  /* A "FIFO underrun" occurred during transmit. */
1476
#define ENTSR_CDH 0x40        /* The collision detect "heartbeat" signal was lost. */
1477
#define ENTSR_OWC 0x80  /* There was an out-of-window collision. */
1478

    
1479
#define NE2000_MEM_SIZE 32768
1480

    
1481
typedef struct NE2000State {
1482
    uint8_t cmd;
1483
    uint32_t start;
1484
    uint32_t stop;
1485
    uint8_t boundary;
1486
    uint8_t tsr;
1487
    uint8_t tpsr;
1488
    uint16_t tcnt;
1489
    uint16_t rcnt;
1490
    uint32_t rsar;
1491
    uint8_t isr;
1492
    uint8_t dcfg;
1493
    uint8_t imr;
1494
    uint8_t phys[6]; /* mac address */
1495
    uint8_t curpag;
1496
    uint8_t mult[8]; /* multicast mask array */
1497
    uint8_t mem[NE2000_MEM_SIZE];
1498
} NE2000State;
1499

    
1500
NE2000State ne2000_state;
1501
int net_fd = -1;
1502
char network_script[1024];
1503

    
1504
void ne2000_reset(void)
1505
{
1506
    NE2000State *s = &ne2000_state;
1507
    int i;
1508

    
1509
    s->isr = ENISR_RESET;
1510
    s->mem[0] = 0x52;
1511
    s->mem[1] = 0x54;
1512
    s->mem[2] = 0x00;
1513
    s->mem[3] = 0x12;
1514
    s->mem[4] = 0x34;
1515
    s->mem[5] = 0x56;
1516
    s->mem[14] = 0x57;
1517
    s->mem[15] = 0x57;
1518

    
1519
    /* duplicate prom data */
1520
    for(i = 15;i >= 0; i--) {
1521
        s->mem[2 * i] = s->mem[i];
1522
        s->mem[2 * i + 1] = s->mem[i];
1523
    }
1524
}
1525

    
1526
void ne2000_update_irq(NE2000State *s)
1527
{
1528
    int isr;
1529
    isr = s->isr & s->imr;
1530
    if (isr)
1531
        pic_set_irq(NE2000_IRQ, 1);
1532
    else
1533
        pic_set_irq(NE2000_IRQ, 0);
1534
}
1535

    
1536
int net_init(void)
1537
{
1538
    struct ifreq ifr;
1539
    int fd, ret, pid, status;
1540
    
1541
    fd = open("/dev/net/tun", O_RDWR);
1542
    if (fd < 0) {
1543
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
1544
        return -1;
1545
    }
1546
    memset(&ifr, 0, sizeof(ifr));
1547
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1548
    pstrcpy(ifr.ifr_name, IFNAMSIZ, "tun%d");
1549
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
1550
    if (ret != 0) {
1551
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
1552
        close(fd);
1553
        return -1;
1554
    }
1555
    printf("Connected to host network interface: %s\n", ifr.ifr_name);
1556
    fcntl(fd, F_SETFL, O_NONBLOCK);
1557
    net_fd = fd;
1558

    
1559
    /* try to launch network init script */
1560
    pid = fork();
1561
    if (pid >= 0) {
1562
        if (pid == 0) {
1563
            execl(network_script, network_script, ifr.ifr_name, NULL);
1564
            exit(1);
1565
        }
1566
        while (waitpid(pid, &status, 0) != pid);
1567
        if (!WIFEXITED(status) ||
1568
            WEXITSTATUS(status) != 0) {
1569
            fprintf(stderr, "%s: could not launch network script for '%s'\n",
1570
                    network_script, ifr.ifr_name);
1571
        }
1572
    }
1573
    return 0;
1574
}
1575

    
1576
void net_send_packet(NE2000State *s, const uint8_t *buf, int size)
1577
{
1578
#ifdef DEBUG_NE2000
1579
    printf("NE2000: sending packet size=%d\n", size);
1580
#endif
1581
    write(net_fd, buf, size);
1582
}
1583

    
1584
/* return true if the NE2000 can receive more data */
1585
int ne2000_can_receive(NE2000State *s)
1586
{
1587
    int avail, index, boundary;
1588
    
1589
    if (s->cmd & E8390_STOP)
1590
        return 0;
1591
    index = s->curpag << 8;
1592
    boundary = s->boundary << 8;
1593
    if (index < boundary)
1594
        avail = boundary - index;
1595
    else
1596
        avail = (s->stop - s->start) - (index - boundary);
1597
    if (avail < (MAX_ETH_FRAME_SIZE + 4))
1598
        return 0;
1599
    return 1;
1600
}
1601

    
1602
void ne2000_receive(NE2000State *s, uint8_t *buf, int size)
1603
{
1604
    uint8_t *p;
1605
    int total_len, next, avail, len, index;
1606

    
1607
#if defined(DEBUG_NE2000)
1608
    printf("NE2000: received len=%d\n", size);
1609
#endif
1610

    
1611
    index = s->curpag << 8;
1612
    /* 4 bytes for header */
1613
    total_len = size + 4;
1614
    /* address for next packet (4 bytes for CRC) */
1615
    next = index + ((total_len + 4 + 255) & ~0xff);
1616
    if (next >= s->stop)
1617
        next -= (s->stop - s->start);
1618
    /* prepare packet header */
1619
    p = s->mem + index;
1620
    p[0] = ENRSR_RXOK; /* receive status */
1621
    p[1] = next >> 8;
1622
    p[2] = total_len;
1623
    p[3] = total_len >> 8;
1624
    index += 4;
1625

    
1626
    /* write packet data */
1627
    while (size > 0) {
1628
        avail = s->stop - index;
1629
        len = size;
1630
        if (len > avail)
1631
            len = avail;
1632
        memcpy(s->mem + index, buf, len);
1633
        buf += len;
1634
        index += len;
1635
        if (index == s->stop)
1636
            index = s->start;
1637
        size -= len;
1638
    }
1639
    s->curpag = next >> 8;
1640
    
1641
    /* now we can signal we have receive something */
1642
    s->isr |= ENISR_RX;
1643
    ne2000_update_irq(s);
1644
}
1645

    
1646
void ne2000_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1647
{
1648
    NE2000State *s = &ne2000_state;
1649
    int offset, page;
1650

    
1651
    addr &= 0xf;
1652
#ifdef DEBUG_NE2000
1653
    printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
1654
#endif
1655
    if (addr == E8390_CMD) {
1656
        /* control register */
1657
        s->cmd = val;
1658
        if (val & E8390_START) {
1659
            /* test specific case: zero length transfert */
1660
            if ((val & (E8390_RREAD | E8390_RWRITE)) &&
1661
                s->rcnt == 0) {
1662
                s->isr |= ENISR_RDC;
1663
                ne2000_update_irq(s);
1664
            }
1665
            if (val & E8390_TRANS) {
1666
                net_send_packet(s, s->mem + (s->tpsr << 8), s->tcnt);
1667
                /* signal end of transfert */
1668
                s->tsr = ENTSR_PTX;
1669
                s->isr |= ENISR_TX;
1670
                ne2000_update_irq(s);
1671
            }
1672
        }
1673
    } else {
1674
        page = s->cmd >> 6;
1675
        offset = addr | (page << 4);
1676
        switch(offset) {
1677
        case EN0_STARTPG:
1678
            s->start = val << 8;
1679
            break;
1680
        case EN0_STOPPG:
1681
            s->stop = val << 8;
1682
            break;
1683
        case EN0_BOUNDARY:
1684
            s->boundary = val;
1685
            break;
1686
        case EN0_IMR:
1687
            s->imr = val;
1688
            ne2000_update_irq(s);
1689
            break;
1690
        case EN0_TPSR:
1691
            s->tpsr = val;
1692
            break;
1693
        case EN0_TCNTLO:
1694
            s->tcnt = (s->tcnt & 0xff00) | val;
1695
            break;
1696
        case EN0_TCNTHI:
1697
            s->tcnt = (s->tcnt & 0x00ff) | (val << 8);
1698
            break;
1699
        case EN0_RSARLO:
1700
            s->rsar = (s->rsar & 0xff00) | val;
1701
            break;
1702
        case EN0_RSARHI:
1703
            s->rsar = (s->rsar & 0x00ff) | (val << 8);
1704
            break;
1705
        case EN0_RCNTLO:
1706
            s->rcnt = (s->rcnt & 0xff00) | val;
1707
            break;
1708
        case EN0_RCNTHI:
1709
            s->rcnt = (s->rcnt & 0x00ff) | (val << 8);
1710
            break;
1711
        case EN0_DCFG:
1712
            s->dcfg = val;
1713
            break;
1714
        case EN0_ISR:
1715
            s->isr &= ~val;
1716
            ne2000_update_irq(s);
1717
            break;
1718
        case EN1_PHYS ... EN1_PHYS + 5:
1719
            s->phys[offset - EN1_PHYS] = val;
1720
            break;
1721
        case EN1_CURPAG:
1722
            s->curpag = val;
1723
            break;
1724
        case EN1_MULT ... EN1_MULT + 7:
1725
            s->mult[offset - EN1_MULT] = val;
1726
            break;
1727
        }
1728
    }
1729
}
1730

    
1731
uint32_t ne2000_ioport_read(CPUX86State *env, uint32_t addr)
1732
{
1733
    NE2000State *s = &ne2000_state;
1734
    int offset, page, ret;
1735

    
1736
    addr &= 0xf;
1737
    if (addr == E8390_CMD) {
1738
        ret = s->cmd;
1739
    } else {
1740
        page = s->cmd >> 6;
1741
        offset = addr | (page << 4);
1742
        switch(offset) {
1743
        case EN0_TSR:
1744
            ret = s->tsr;
1745
            break;
1746
        case EN0_BOUNDARY:
1747
            ret = s->boundary;
1748
            break;
1749
        case EN0_ISR:
1750
            ret = s->isr;
1751
            break;
1752
        case EN1_PHYS ... EN1_PHYS + 5:
1753
            ret = s->phys[offset - EN1_PHYS];
1754
            break;
1755
        case EN1_CURPAG:
1756
            ret = s->curpag;
1757
            break;
1758
        case EN1_MULT ... EN1_MULT + 7:
1759
            ret = s->mult[offset - EN1_MULT];
1760
            break;
1761
        default:
1762
            ret = 0x00;
1763
            break;
1764
        }
1765
    }
1766
#ifdef DEBUG_NE2000
1767
    printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
1768
#endif
1769
    return ret;
1770
}
1771

    
1772
void ne2000_asic_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1773
{
1774
    NE2000State *s = &ne2000_state;
1775
    uint8_t *p;
1776

    
1777
#ifdef DEBUG_NE2000
1778
    printf("NE2000: asic write val=0x%04x\n", val);
1779
#endif
1780
    p = s->mem + s->rsar;
1781
    if (s->dcfg & 0x01) {
1782
        /* 16 bit access */
1783
        p[0] = val;
1784
        p[1] = val >> 8;
1785
        s->rsar += 2;
1786
        s->rcnt -= 2;
1787
    } else {
1788
        /* 8 bit access */
1789
        p[0] = val;
1790
        s->rsar++;
1791
        s->rcnt--;
1792
    }
1793
    /* wrap */
1794
    if (s->rsar == s->stop)
1795
        s->rsar = s->start;
1796
    if (s->rcnt == 0) {
1797
        /* signal end of transfert */
1798
        s->isr |= ENISR_RDC;
1799
        ne2000_update_irq(s);
1800
    }
1801
}
1802

    
1803
uint32_t ne2000_asic_ioport_read(CPUX86State *env, uint32_t addr)
1804
{
1805
    NE2000State *s = &ne2000_state;
1806
    uint8_t *p;
1807
    int ret;
1808

    
1809
    p = s->mem + s->rsar;
1810
    if (s->dcfg & 0x01) {
1811
        /* 16 bit access */
1812
        ret = p[0] | (p[1] << 8);
1813
        s->rsar += 2;
1814
        s->rcnt -= 2;
1815
    } else {
1816
        /* 8 bit access */
1817
        ret = p[0];
1818
        s->rsar++;
1819
        s->rcnt--;
1820
    }
1821
    /* wrap */
1822
    if (s->rsar == s->stop)
1823
        s->rsar = s->start;
1824
    if (s->rcnt == 0) {
1825
        /* signal end of transfert */
1826
        s->isr |= ENISR_RDC;
1827
        ne2000_update_irq(s);
1828
    }
1829
#ifdef DEBUG_NE2000
1830
    printf("NE2000: asic read val=0x%04x\n", ret);
1831
#endif
1832
    return ret;
1833
}
1834

    
1835
void ne2000_reset_ioport_write(CPUX86State *env, uint32_t addr, uint32_t val)
1836
{
1837
    /* nothing to do (end of reset pulse) */
1838
}
1839

    
1840
uint32_t ne2000_reset_ioport_read(CPUX86State *env, uint32_t addr)
1841
{
1842
    ne2000_reset();
1843
    return 0;
1844
}
1845

    
1846
void ne2000_init(void)
1847
{
1848
    register_ioport_write(NE2000_IOPORT, 16, ne2000_ioport_write, 1);
1849
    register_ioport_read(NE2000_IOPORT, 16, ne2000_ioport_read, 1);
1850

    
1851
    register_ioport_write(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_write, 1);
1852
    register_ioport_read(NE2000_IOPORT + 0x10, 1, ne2000_asic_ioport_read, 1);
1853
    register_ioport_write(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_write, 2);
1854
    register_ioport_read(NE2000_IOPORT + 0x10, 2, ne2000_asic_ioport_read, 2);
1855

    
1856
    register_ioport_write(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_write, 1);
1857
    register_ioport_read(NE2000_IOPORT + 0x1f, 1, ne2000_reset_ioport_read, 1);
1858
    ne2000_reset();
1859
}
1860

    
1861
/***********************************************************/
1862
/* keyboard emulation */
1863

    
1864
/*        Keyboard Controller Commands */
1865
#define KBD_CCMD_READ_MODE        0x20        /* Read mode bits */
1866
#define KBD_CCMD_WRITE_MODE        0x60        /* Write mode bits */
1867
#define KBD_CCMD_GET_VERSION        0xA1        /* Get controller version */
1868
#define KBD_CCMD_MOUSE_DISABLE        0xA7        /* Disable mouse interface */
1869
#define KBD_CCMD_MOUSE_ENABLE        0xA8        /* Enable mouse interface */
1870
#define KBD_CCMD_TEST_MOUSE        0xA9        /* Mouse interface test */
1871
#define KBD_CCMD_SELF_TEST        0xAA        /* Controller self test */
1872
#define KBD_CCMD_KBD_TEST        0xAB        /* Keyboard interface test */
1873
#define KBD_CCMD_KBD_DISABLE        0xAD        /* Keyboard interface disable */
1874
#define KBD_CCMD_KBD_ENABLE        0xAE        /* Keyboard interface enable */
1875
#define KBD_CCMD_READ_INPORT    0xC0    /* read input port */
1876
#define KBD_CCMD_READ_OUTPORT        0xD0    /* read output port */
1877
#define KBD_CCMD_WRITE_OUTPORT        0xD1    /* write output port */
1878
#define KBD_CCMD_WRITE_OBUF        0xD2
1879
#define KBD_CCMD_WRITE_AUX_OBUF        0xD3    /* Write to output buffer as if
1880
                                           initiated by the auxiliary device */
1881
#define KBD_CCMD_WRITE_MOUSE        0xD4        /* Write the following byte to the mouse */
1882
#define KBD_CCMD_DISABLE_A20    0xDD    /* HP vectra only ? */
1883
#define KBD_CCMD_ENABLE_A20     0xDF    /* HP vectra only ? */
1884
#define KBD_CCMD_RESET                0xFE
1885

    
1886
/* Keyboard Commands */
1887
#define KBD_CMD_SET_LEDS        0xED        /* Set keyboard leds */
1888
#define KBD_CMD_ECHO             0xEE
1889
#define KBD_CMD_SET_RATE        0xF3        /* Set typematic rate */
1890
#define KBD_CMD_ENABLE                0xF4        /* Enable scanning */
1891
#define KBD_CMD_RESET_DISABLE        0xF5        /* reset and disable scanning */
1892
#define KBD_CMD_RESET_ENABLE           0xF6    /* reset and enable scanning */
1893
#define KBD_CMD_RESET                0xFF        /* Reset */
1894

    
1895
/* Keyboard Replies */
1896
#define KBD_REPLY_POR                0xAA        /* Power on reset */
1897
#define KBD_REPLY_ACK                0xFA        /* Command ACK */
1898
#define KBD_REPLY_RESEND        0xFE        /* Command NACK, send the cmd again */
1899

    
1900
/* Status Register Bits */
1901
#define KBD_STAT_OBF                 0x01        /* Keyboard output buffer full */
1902
#define KBD_STAT_IBF                 0x02        /* Keyboard input buffer full */
1903
#define KBD_STAT_SELFTEST        0x04        /* Self test successful */
1904
#define KBD_STAT_CMD                0x08        /* Last write was a command write (0=data) */
1905
#define KBD_STAT_UNLOCKED        0x10        /* Zero if keyboard locked */
1906
#define KBD_STAT_MOUSE_OBF        0x20        /* Mouse output buffer full */
1907
#define KBD_STAT_GTO                 0x40        /* General receive/xmit timeout */
1908
#define KBD_STAT_PERR                 0x80        /* Parity error */
1909

    
1910
/* Controller Mode Register Bits */
1911
#define KBD_MODE_KBD_INT        0x01        /* Keyboard data generate IRQ1 */
1912
#define KBD_MODE_MOUSE_INT        0x02        /* Mouse data generate IRQ12 */
1913
#define KBD_MODE_SYS                 0x04        /* The system flag (?) */
1914
#define KBD_MODE_NO_KEYLOCK        0x08        /* The keylock doesn't affect the keyboard if set */
1915
#define KBD_MODE_DISABLE_KBD        0x10        /* Disable keyboard interface */
1916
#define KBD_MODE_DISABLE_MOUSE        0x20        /* Disable mouse interface */
1917
#define KBD_MODE_KCC                 0x40        /* Scan code conversion to PC format */
1918
#define KBD_MODE_RFU                0x80
1919

    
1920
/* Mouse Commands */
1921
#define AUX_SET_SCALE11                0xE6        /* Set 1:1 scaling */
1922
#define AUX_SET_SCALE21                0xE7        /* Set 2:1 scaling */
1923
#define AUX_SET_RES                0xE8        /* Set resolution */
1924
#define AUX_GET_SCALE                0xE9        /* Get scaling factor */
1925
#define AUX_SET_STREAM                0xEA        /* Set stream mode */
1926
#define AUX_POLL                0xEB        /* Poll */
1927
#define AUX_RESET_WRAP                0xEC        /* Reset wrap mode */
1928
#define AUX_SET_WRAP                0xEE        /* Set wrap mode */
1929
#define AUX_SET_REMOTE                0xF0        /* Set remote mode */
1930
#define AUX_GET_TYPE                0xF2        /* Get type */
1931
#define AUX_SET_SAMPLE                0xF3        /* Set sample rate */
1932
#define AUX_ENABLE_DEV                0xF4        /* Enable aux device */
1933
#define AUX_DISABLE_DEV                0xF5        /* Disable aux device */
1934
#define AUX_SET_DEFAULT                0xF6
1935
#define AUX_RESET                0xFF        /* Reset aux device */
1936
#define AUX_ACK                        0xFA        /* Command byte ACK. */
1937

    
1938
#define MOUSE_STATUS_REMOTE     0x40
1939
#define MOUSE_STATUS_ENABLED    0x20
1940
#define MOUSE_STATUS_SCALE21    0x10
1941

    
1942
#define KBD_QUEUE_SIZE 256
1943

    
1944
typedef struct {
1945
    uint8_t data[KBD_QUEUE_SIZE];
1946
    int rptr, wptr, count;
1947
} KBDQueue;
1948

    
1949
typedef struct KBDState {
1950
    KBDQueue queues[2];
1951
    uint8_t write_cmd; /* if non zero, write data to port 60 is expected */
1952
    uint8_t status;
1953
    uint8_t mode;
1954
    /* keyboard state */
1955
    int kbd_write_cmd;
1956
    int scan_enabled;
1957
    /* mouse state */
1958
    int mouse_write_cmd;
1959
    uint8_t mouse_status;
1960
    uint8_t mouse_resolution;
1961
    uint8_t mouse_sample_rate;
1962
    uint8_t mouse_wrap;
1963
    uint8_t mouse_type; /* 0 = PS2, 3 = IMPS/2, 4 = IMEX */
1964
    uint8_t mouse_detect_state;
1965
    int mouse_dx; /* current values, needed for 'poll' mode */
1966
    int mouse_dy;
1967
    int mouse_dz;
1968
    uint8_t mouse_buttons;
1969
} KBDState;
1970

    
1971
KBDState kbd_state;
1972
int reset_requested;
1973

    
1974
/* update irq and KBD_STAT_[MOUSE_]OBF */
1975
static void kbd_update_irq(KBDState *s)
1976
{
1977
    int irq12_level, irq1_level;
1978

    
1979
    irq1_level = 0;    
1980
    irq12_level = 0;    
1981
    s->status &= ~(KBD_STAT_OBF | KBD_STAT_MOUSE_OBF);
1982
    if (s->queues[0].count != 0 ||
1983
        s->queues[1].count != 0) {
1984
        s->status |= KBD_STAT_OBF;
1985
        if (s->queues[1].count != 0) {
1986
            s->status |= KBD_STAT_MOUSE_OBF;
1987
            if (s->mode & KBD_MODE_MOUSE_INT)
1988
                irq12_level = 1;
1989
        } else {
1990
            if (s->mode & KBD_MODE_KBD_INT)
1991
                irq1_level = 1;
1992
        }
1993
    }
1994
    pic_set_irq(1, irq1_level);
1995
    pic_set_irq(12, irq12_level);
1996
}
1997

    
1998
static void kbd_queue(KBDState *s, int b, int aux)
1999
{
2000
    KBDQueue *q = &kbd_state.queues[aux];
2001

    
2002
#if defined(DEBUG_MOUSE) || defined(DEBUG_KBD)
2003
    if (aux)
2004
        printf("mouse event: 0x%02x\n", b);
2005
#ifdef DEBUG_KBD
2006
    else
2007
        printf("kbd event: 0x%02x\n", b);
2008
#endif
2009
#endif
2010
    if (q->count >= KBD_QUEUE_SIZE)
2011
        return;
2012
    q->data[q->wptr] = b;
2013
    if (++q->wptr == KBD_QUEUE_SIZE)
2014
        q->wptr = 0;
2015
    q->count++;
2016
    kbd_update_irq(s);
2017
}
2018

    
2019
void kbd_put_keycode(int keycode)
2020
{
2021
    KBDState *s = &kbd_state;
2022
    kbd_queue(s, keycode, 0);
2023
}
2024

    
2025
uint32_t kbd_read_status(CPUX86State *env, uint32_t addr)
2026
{
2027
    KBDState *s = &kbd_state;
2028
    int val;
2029
    val = s->status;
2030
#if defined(DEBUG_KBD) && 0
2031
    printf("kbd: read status=0x%02x\n", val);
2032
#endif
2033
    return val;
2034
}
2035

    
2036
void kbd_write_command(CPUX86State *env, uint32_t addr, uint32_t val)
2037
{
2038
    KBDState *s = &kbd_state;
2039

    
2040
#ifdef DEBUG_KBD
2041
    printf("kbd: write cmd=0x%02x\n", val);
2042
#endif
2043
    switch(val) {
2044
    case KBD_CCMD_READ_MODE:
2045
        kbd_queue(s, s->mode, 0);
2046
        break;
2047
    case KBD_CCMD_WRITE_MODE:
2048
    case KBD_CCMD_WRITE_OBUF:
2049
    case KBD_CCMD_WRITE_AUX_OBUF:
2050
    case KBD_CCMD_WRITE_MOUSE:
2051
    case KBD_CCMD_WRITE_OUTPORT:
2052
        s->write_cmd = val;
2053
        break;
2054
    case KBD_CCMD_MOUSE_DISABLE:
2055
        s->mode |= KBD_MODE_DISABLE_MOUSE;
2056
        break;
2057
    case KBD_CCMD_MOUSE_ENABLE:
2058
        s->mode &= ~KBD_MODE_DISABLE_MOUSE;
2059
        break;
2060
    case KBD_CCMD_TEST_MOUSE:
2061
        kbd_queue(s, 0x00, 0);
2062
        break;
2063
    case KBD_CCMD_SELF_TEST:
2064
        s->status |= KBD_STAT_SELFTEST;
2065
        kbd_queue(s, 0x55, 0);
2066
        break;
2067
    case KBD_CCMD_KBD_TEST:
2068
        kbd_queue(s, 0x00, 0);
2069
        break;
2070
    case KBD_CCMD_KBD_DISABLE:
2071
        s->mode |= KBD_MODE_DISABLE_KBD;
2072
        break;
2073
    case KBD_CCMD_KBD_ENABLE:
2074
        s->mode &= ~KBD_MODE_DISABLE_KBD;
2075
        break;
2076
    case KBD_CCMD_READ_INPORT:
2077
        kbd_queue(s, 0x00, 0);
2078
        break;
2079
    case KBD_CCMD_READ_OUTPORT:
2080
        /* XXX: check that */
2081
        val = 0x01 | (a20_enabled << 1);
2082
        if (s->status & KBD_STAT_OBF)
2083
            val |= 0x10;
2084
        if (s->status & KBD_STAT_MOUSE_OBF)
2085
            val |= 0x20;
2086
        kbd_queue(s, val, 0);
2087
        break;
2088
    case KBD_CCMD_ENABLE_A20:
2089
        cpu_x86_set_a20(env, 1);
2090
        break;
2091
    case KBD_CCMD_DISABLE_A20:
2092
        cpu_x86_set_a20(env, 0);
2093
        break;
2094
    case KBD_CCMD_RESET:
2095
        reset_requested = 1;
2096
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2097
        break;
2098
    case 0xff:
2099
        /* ignore that - I don't know what is its use */
2100
        break;
2101
    default:
2102
        fprintf(stderr, "qemu: unsupported keyboard cmd=0x%02x\n", val);
2103
        break;
2104
    }
2105
}
2106

    
2107
uint32_t kbd_read_data(CPUX86State *env, uint32_t addr)
2108
{
2109
    KBDState *s = &kbd_state;
2110
    KBDQueue *q;
2111
    int val;
2112
    
2113
    q = &s->queues[0]; /* first check KBD data */
2114
    if (q->count == 0)
2115
        q = &s->queues[1]; /* then check AUX data */
2116
    if (q->count == 0) {
2117
        /* XXX: return something else ? */
2118
        val = 0;
2119
    } else {
2120
        val = q->data[q->rptr];
2121
        if (++q->rptr == KBD_QUEUE_SIZE)
2122
            q->rptr = 0;
2123
        q->count--;
2124
        /* reading deasserts IRQ */
2125
        if (q == &s->queues[0])
2126
            pic_set_irq(1, 0);
2127
        else
2128
            pic_set_irq(12, 0);
2129
    }
2130
    /* reassert IRQs if data left */
2131
    kbd_update_irq(s);
2132
#ifdef DEBUG_KBD
2133
    printf("kbd: read data=0x%02x\n", val);
2134
#endif
2135
    return val;
2136
}
2137

    
2138
static void kbd_reset_keyboard(KBDState *s)
2139
{
2140
    s->scan_enabled = 1;
2141
}
2142

    
2143
static void kbd_write_keyboard(KBDState *s, int val)
2144
{
2145
    switch(s->kbd_write_cmd) {
2146
    default:
2147
    case -1:
2148
        switch(val) {
2149
        case 0x00:
2150
            kbd_queue(s, KBD_REPLY_ACK, 0);
2151
            break;
2152
        case 0x05:
2153
            kbd_queue(s, KBD_REPLY_RESEND, 0);
2154
            break;
2155
        case KBD_CMD_ECHO:
2156
            kbd_queue(s, KBD_CMD_ECHO, 0);
2157
            break;
2158
        case KBD_CMD_ENABLE:
2159
            s->scan_enabled = 1;
2160
            kbd_queue(s, KBD_REPLY_ACK, 0);
2161
            break;
2162
        case KBD_CMD_SET_LEDS:
2163
        case KBD_CMD_SET_RATE:
2164
            s->kbd_write_cmd = val;
2165
            kbd_queue(s, KBD_REPLY_ACK, 0);
2166
            break;
2167
        case KBD_CMD_RESET_DISABLE:
2168
            kbd_reset_keyboard(s);
2169
            s->scan_enabled = 0;
2170
            kbd_queue(s, KBD_REPLY_ACK, 0);
2171
            break;
2172
        case KBD_CMD_RESET_ENABLE:
2173
            kbd_reset_keyboard(s);
2174
            s->scan_enabled = 1;
2175
            kbd_queue(s, KBD_REPLY_ACK, 0);
2176
            break;
2177
        case KBD_CMD_RESET:
2178
            kbd_reset_keyboard(s);
2179
            kbd_queue(s, KBD_REPLY_ACK, 0);
2180
            kbd_queue(s, KBD_REPLY_POR, 0);
2181
            break;
2182
        default:
2183
            kbd_queue(s, KBD_REPLY_ACK, 0);
2184
            break;
2185
        }
2186
        break;
2187
    case KBD_CMD_SET_LEDS:
2188
        kbd_queue(s, KBD_REPLY_ACK, 0);
2189
        s->kbd_write_cmd = -1;
2190
        break;
2191
    case KBD_CMD_SET_RATE:
2192
        kbd_queue(s, KBD_REPLY_ACK, 0);
2193
        s->kbd_write_cmd = -1;
2194
        break;
2195
    }
2196
}
2197

    
2198
static void kbd_mouse_send_packet(KBDState *s)
2199
{
2200
    unsigned int b;
2201
    int dx1, dy1, dz1;
2202

    
2203
    dx1 = s->mouse_dx;
2204
    dy1 = s->mouse_dy;
2205
    dz1 = s->mouse_dz;
2206
    /* XXX: increase range to 8 bits ? */
2207
    if (dx1 > 127)
2208
        dx1 = 127;
2209
    else if (dx1 < -127)
2210
        dx1 = -127;
2211
    if (dy1 > 127)
2212
        dy1 = 127;
2213
    else if (dy1 < -127)
2214
        dy1 = -127;
2215
    b = 0x08 | ((dx1 < 0) << 4) | ((dy1 < 0) << 5) | (s->mouse_buttons & 0x07);
2216
    kbd_queue(s, b, 1);
2217
    kbd_queue(s, dx1 & 0xff, 1);
2218
    kbd_queue(s, dy1 & 0xff, 1);
2219
    /* extra byte for IMPS/2 or IMEX */
2220
    switch(s->mouse_type) {
2221
    default:
2222
        break;
2223
    case 3:
2224
        if (dz1 > 127)
2225
            dz1 = 127;
2226
        else if (dz1 < -127)
2227
                dz1 = -127;
2228
        kbd_queue(s, dz1 & 0xff, 1);
2229
        break;
2230
    case 4:
2231
        if (dz1 > 7)
2232
            dz1 = 7;
2233
        else if (dz1 < -7)
2234
            dz1 = -7;
2235
        b = (dz1 & 0x0f) | ((s->mouse_buttons & 0x18) << 1);
2236
        kbd_queue(s, b, 1);
2237
        break;
2238
    }
2239

    
2240
    /* update deltas */
2241
    s->mouse_dx -= dx1;
2242
    s->mouse_dy -= dy1;
2243
    s->mouse_dz -= dz1;
2244
}
2245

    
2246
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
2247
{
2248
    KBDState *s = &kbd_state;
2249

    
2250
    /* check if deltas are recorded when disabled */
2251
    if (!(s->mouse_status & MOUSE_STATUS_ENABLED))
2252
        return;
2253

    
2254
    s->mouse_dx += dx;
2255
    s->mouse_dy -= dy;
2256
    s->mouse_dz += dz;
2257
    s->mouse_buttons = buttons_state;
2258
    
2259
    if (!(s->mouse_status & MOUSE_STATUS_REMOTE) &&
2260
        (s->queues[1].count < (KBD_QUEUE_SIZE - 16))) {
2261
        for(;;) {
2262
            /* if not remote, send event. Multiple events are sent if
2263
               too big deltas */
2264
            kbd_mouse_send_packet(s);
2265
            if (s->mouse_dx == 0 && s->mouse_dy == 0 && s->mouse_dz == 0)
2266
                break;
2267
        }
2268
    }
2269
}
2270

    
2271
static void kbd_write_mouse(KBDState *s, int val)
2272
{
2273
#ifdef DEBUG_MOUSE
2274
    printf("kbd: write mouse 0x%02x\n", val);
2275
#endif
2276
    switch(s->mouse_write_cmd) {
2277
    default:
2278
    case -1:
2279
        /* mouse command */
2280
        if (s->mouse_wrap) {
2281
            if (val == AUX_RESET_WRAP) {
2282
                s->mouse_wrap = 0;
2283
                kbd_queue(s, AUX_ACK, 1);
2284
                return;
2285
            } else if (val != AUX_RESET) {
2286
                kbd_queue(s, val, 1);
2287
                return;
2288
            }
2289
        }
2290
        switch(val) {
2291
        case AUX_SET_SCALE11:
2292
            s->mouse_status &= ~MOUSE_STATUS_SCALE21;
2293
            kbd_queue(s, AUX_ACK, 1);
2294
            break;
2295
        case AUX_SET_SCALE21:
2296
            s->mouse_status |= MOUSE_STATUS_SCALE21;
2297
            kbd_queue(s, AUX_ACK, 1);
2298
            break;
2299
        case AUX_SET_STREAM:
2300
            s->mouse_status &= ~MOUSE_STATUS_REMOTE;
2301
            kbd_queue(s, AUX_ACK, 1);
2302
            break;
2303
        case AUX_SET_WRAP:
2304
            s->mouse_wrap = 1;
2305
            kbd_queue(s, AUX_ACK, 1);
2306
            break;
2307
        case AUX_SET_REMOTE:
2308
            s->mouse_status |= MOUSE_STATUS_REMOTE;
2309
            kbd_queue(s, AUX_ACK, 1);
2310
            break;
2311
        case AUX_GET_TYPE:
2312
            kbd_queue(s, AUX_ACK, 1);
2313
            kbd_queue(s, s->mouse_type, 1);
2314
            break;
2315
        case AUX_SET_RES:
2316
        case AUX_SET_SAMPLE:
2317
            s->mouse_write_cmd = val;
2318
            kbd_queue(s, AUX_ACK, 1);
2319
            break;
2320
        case AUX_GET_SCALE:
2321
            kbd_queue(s, AUX_ACK, 1);
2322
            kbd_queue(s, s->mouse_status, 1);
2323
            kbd_queue(s, s->mouse_resolution, 1);
2324
            kbd_queue(s, s->mouse_sample_rate, 1);
2325
            break;
2326
        case AUX_POLL:
2327
            kbd_queue(s, AUX_ACK, 1);
2328
            kbd_mouse_send_packet(s);
2329
            break;
2330
        case AUX_ENABLE_DEV:
2331
            s->mouse_status |= MOUSE_STATUS_ENABLED;
2332
            kbd_queue(s, AUX_ACK, 1);
2333
            break;
2334
        case AUX_DISABLE_DEV:
2335
            s->mouse_status &= ~MOUSE_STATUS_ENABLED;
2336
            kbd_queue(s, AUX_ACK, 1);
2337
            break;
2338
        case AUX_SET_DEFAULT:
2339
            s->mouse_sample_rate = 100;
2340
            s->mouse_resolution = 2;
2341
            s->mouse_status = 0;
2342
            kbd_queue(s, AUX_ACK, 1);
2343
            break;
2344
        case AUX_RESET:
2345
            s->mouse_sample_rate = 100;
2346
            s->mouse_resolution = 2;
2347
            s->mouse_status = 0;
2348
            kbd_queue(s, AUX_ACK, 1);
2349
            kbd_queue(s, 0xaa, 1);
2350
            kbd_queue(s, s->mouse_type, 1);
2351
            break;
2352
        default:
2353
            break;
2354
        }
2355
        break;
2356
    case AUX_SET_SAMPLE:
2357
        s->mouse_sample_rate = val;
2358
#if 0
2359
        /* detect IMPS/2 or IMEX */
2360
        switch(s->mouse_detect_state) {
2361
        default:
2362
        case 0:
2363
            if (val == 200)
2364
                s->mouse_detect_state = 1;
2365
            break;
2366
        case 1:
2367
            if (val == 100)
2368
                s->mouse_detect_state = 2;
2369
            else if (val == 200)
2370
                s->mouse_detect_state = 3;
2371
            else
2372
                s->mouse_detect_state = 0;
2373
            break;
2374
        case 2:
2375
            if (val == 80) 
2376
                s->mouse_type = 3; /* IMPS/2 */
2377
            s->mouse_detect_state = 0;
2378
            break;
2379
        case 3:
2380
            if (val == 80) 
2381
                s->mouse_type = 4; /* IMEX */
2382
            s->mouse_detect_state = 0;
2383
            break;
2384
        }
2385
#endif
2386
        kbd_queue(s, AUX_ACK, 1);
2387
        s->mouse_write_cmd = -1;
2388
        break;
2389
    case AUX_SET_RES:
2390
        s->mouse_resolution = val;
2391
        kbd_queue(s, AUX_ACK, 1);
2392
        s->mouse_write_cmd = -1;
2393
        break;
2394
    }
2395
}
2396

    
2397
void kbd_write_data(CPUX86State *env, uint32_t addr, uint32_t val)
2398
{
2399
    KBDState *s = &kbd_state;
2400

    
2401
#ifdef DEBUG_KBD
2402
    printf("kbd: write data=0x%02x\n", val);
2403
#endif
2404

    
2405
    switch(s->write_cmd) {
2406
    case 0:
2407
        kbd_write_keyboard(s, val);
2408
        break;
2409
    case KBD_CCMD_WRITE_MODE:
2410
        s->mode = val;
2411
        kbd_update_irq(s);
2412
        break;
2413
    case KBD_CCMD_WRITE_OBUF:
2414
        kbd_queue(s, val, 0);
2415
        break;
2416
    case KBD_CCMD_WRITE_AUX_OBUF:
2417
        kbd_queue(s, val, 1);
2418
        break;
2419
    case KBD_CCMD_WRITE_OUTPORT:
2420
        cpu_x86_set_a20(env, (val >> 1) & 1);
2421
        if (!(val & 1)) {
2422
            reset_requested = 1;
2423
            cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2424
        }
2425
        break;
2426
    case KBD_CCMD_WRITE_MOUSE:
2427
        kbd_write_mouse(s, val);
2428
        break;
2429
    default:
2430
        break;
2431
    }
2432
    s->write_cmd = 0;
2433
}
2434

    
2435
void kbd_reset(KBDState *s)
2436
{
2437
    KBDQueue *q;
2438
    int i;
2439

    
2440
    s->kbd_write_cmd = -1;
2441
    s->mouse_write_cmd = -1;
2442
    s->mode = KBD_MODE_KBD_INT | KBD_MODE_MOUSE_INT;
2443
    s->status = KBD_STAT_CMD | KBD_STAT_UNLOCKED;
2444
    for(i = 0; i < 2; i++) {
2445
        q = &s->queues[i];
2446
        q->rptr = 0;
2447
        q->wptr = 0;
2448
        q->count = 0;
2449
    }
2450
}
2451

    
2452
void kbd_init(void)
2453
{
2454
    kbd_reset(&kbd_state);
2455
    register_ioport_read(0x60, 1, kbd_read_data, 1);
2456
    register_ioport_write(0x60, 1, kbd_write_data, 1);
2457
    register_ioport_read(0x64, 1, kbd_read_status, 1);
2458
    register_ioport_write(0x64, 1, kbd_write_command, 1);
2459
}
2460

    
2461
/***********************************************************/
2462
/* Bochs BIOS debug ports */
2463

    
2464
void bochs_bios_write(CPUX86State *env, uint32_t addr, uint32_t val)
2465
{
2466
    switch(addr) {
2467
        /* Bochs BIOS messages */
2468
    case 0x400:
2469
    case 0x401:
2470
        fprintf(stderr, "BIOS panic at rombios.c, line %d\n", val);
2471
        exit(1);
2472
    case 0x402:
2473
    case 0x403:
2474
#ifdef DEBUG_BIOS
2475
        fprintf(stderr, "%c", val);
2476
#endif
2477
        break;
2478

    
2479
        /* LGPL'ed VGA BIOS messages */
2480
    case 0x501:
2481
    case 0x502:
2482
        fprintf(stderr, "VGA BIOS panic, line %d\n", val);
2483
        exit(1);
2484
    case 0x500:
2485
    case 0x503:
2486
#ifdef DEBUG_BIOS
2487
        fprintf(stderr, "%c", val);
2488
#endif
2489
        break;
2490
    }
2491
}
2492

    
2493
void bochs_bios_init(void)
2494
{
2495
    register_ioport_write(0x400, 1, bochs_bios_write, 2);
2496
    register_ioport_write(0x401, 1, bochs_bios_write, 2);
2497
    register_ioport_write(0x402, 1, bochs_bios_write, 1);
2498
    register_ioport_write(0x403, 1, bochs_bios_write, 1);
2499

    
2500
    register_ioport_write(0x501, 1, bochs_bios_write, 2);
2501
    register_ioport_write(0x502, 1, bochs_bios_write, 2);
2502
    register_ioport_write(0x500, 1, bochs_bios_write, 1);
2503
    register_ioport_write(0x503, 1, bochs_bios_write, 1);
2504
}
2505

    
2506
/***********************************************************/
2507
/* dumb display */
2508

    
2509
/* init terminal so that we can grab keys */
2510
static struct termios oldtty;
2511

    
2512
static void term_exit(void)
2513
{
2514
    tcsetattr (0, TCSANOW, &oldtty);
2515
}
2516

    
2517
static void term_init(void)
2518
{
2519
    struct termios tty;
2520

    
2521
    tcgetattr (0, &tty);
2522
    oldtty = tty;
2523

    
2524
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2525
                          |INLCR|IGNCR|ICRNL|IXON);
2526
    tty.c_oflag |= OPOST;
2527
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2528
    /* if graphical mode, we allow Ctrl-C handling */
2529
    if (nographic)
2530
        tty.c_lflag &= ~ISIG;
2531
    tty.c_cflag &= ~(CSIZE|PARENB);
2532
    tty.c_cflag |= CS8;
2533
    tty.c_cc[VMIN] = 1;
2534
    tty.c_cc[VTIME] = 0;
2535
    
2536
    tcsetattr (0, TCSANOW, &tty);
2537

    
2538
    atexit(term_exit);
2539

    
2540
    fcntl(0, F_SETFL, O_NONBLOCK);
2541
}
2542

    
2543
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
2544
{
2545
}
2546

    
2547
static void dumb_resize(DisplayState *ds, int w, int h)
2548
{
2549
}
2550

    
2551
static void dumb_refresh(DisplayState *ds)
2552
{
2553
    vga_update_display();
2554
}
2555

    
2556
void dumb_display_init(DisplayState *ds)
2557
{
2558
    ds->data = NULL;
2559
    ds->linesize = 0;
2560
    ds->depth = 0;
2561
    ds->dpy_update = dumb_update;
2562
    ds->dpy_resize = dumb_resize;
2563
    ds->dpy_refresh = dumb_refresh;
2564
}
2565

    
2566
#if !defined(CONFIG_SOFTMMU)
2567
/***********************************************************/
2568
/* cpu signal handler */
2569
static void host_segv_handler(int host_signum, siginfo_t *info, 
2570
                              void *puc)
2571
{
2572
    if (cpu_signal_handler(host_signum, info, puc))
2573
        return;
2574
    term_exit();
2575
    abort();
2576
}
2577
#endif
2578

    
2579
static int timer_irq_pending;
2580
static int timer_irq_count;
2581

    
2582
static int timer_ms;
2583
static int gui_refresh_pending, gui_refresh_count;
2584

    
2585
static void host_alarm_handler(int host_signum, siginfo_t *info, 
2586
                               void *puc)
2587
{
2588
    /* NOTE: since usually the OS asks a 100 Hz clock, there can be
2589
       some drift between cpu_get_ticks() and the interrupt time. So
2590
       we queue some interrupts to avoid missing some */
2591
    timer_irq_count += pit_get_out_edges(&pit_channels[0]);
2592
    if (timer_irq_count) {
2593
        if (timer_irq_count > 2)
2594
            timer_irq_count = 2;
2595
        timer_irq_count--;
2596
        timer_irq_pending = 1;
2597
    }
2598
    gui_refresh_count += timer_ms;
2599
    if (gui_refresh_count >= GUI_REFRESH_INTERVAL) {
2600
        gui_refresh_count = 0;
2601
        gui_refresh_pending = 1;
2602
    }
2603

    
2604
    /* XXX: seems dangerous to run that here. */
2605
    DMA_run();
2606
    SB16_run();
2607

    
2608
    if (gui_refresh_pending || timer_irq_pending) {
2609
        /* just exit from the cpu to have a chance to handle timers */
2610
        cpu_x86_interrupt(global_env, CPU_INTERRUPT_EXIT);
2611
    }
2612
}
2613

    
2614
#ifdef CONFIG_SOFTMMU
2615
void *get_mmap_addr(unsigned long size)
2616
{
2617
    return NULL;
2618
}
2619
#else
2620
unsigned long mmap_addr = PHYS_RAM_BASE;
2621

    
2622
void *get_mmap_addr(unsigned long size)
2623
{
2624
    unsigned long addr;
2625
    addr = mmap_addr;
2626
    mmap_addr += ((size + 4095) & ~4095) + 4096;
2627
    return (void *)addr;
2628
}
2629
#endif
2630

    
2631
/* main execution loop */
2632

    
2633
CPUState *cpu_gdbstub_get_env(void *opaque)
2634
{
2635
    return global_env;
2636
}
2637

    
2638
int main_loop(void *opaque)
2639
{
2640
    struct pollfd ufds[3], *pf, *serial_ufd, *net_ufd, *gdb_ufd;
2641
    int ret, n, timeout, serial_ok;
2642
    uint8_t ch;
2643
    CPUState *env = global_env;
2644

    
2645
    if (!term_inited) {
2646
        /* initialize terminal only there so that the user has a
2647
           chance to stop QEMU with Ctrl-C before the gdb connection
2648
           is launched */
2649
        term_inited = 1;
2650
        term_init();
2651
    }
2652

    
2653
    serial_ok = 1;
2654
    cpu_enable_ticks();
2655
    for(;;) {
2656
        ret = cpu_x86_exec(env);
2657
        if (reset_requested) {
2658
            ret = EXCP_INTERRUPT; 
2659
            break;
2660
        }
2661
        if (ret == EXCP_DEBUG) {
2662
            ret = EXCP_DEBUG;
2663
            break;
2664
        }
2665
        /* if hlt instruction, we wait until the next IRQ */
2666
        if (ret == EXCP_HLT) 
2667
            timeout = 10;
2668
        else
2669
            timeout = 0;
2670
        /* poll any events */
2671
        serial_ufd = NULL;
2672
        pf = ufds;
2673
        if (serial_ok && !(serial_ports[0].lsr & UART_LSR_DR)) {
2674
            serial_ufd = pf;
2675
            pf->fd = 0;
2676
            pf->events = POLLIN;
2677
            pf++;
2678
        }
2679
        net_ufd = NULL;
2680
        if (net_fd > 0 && ne2000_can_receive(&ne2000_state)) {
2681
            net_ufd = pf;
2682
            pf->fd = net_fd;
2683
            pf->events = POLLIN;
2684
            pf++;
2685
        }
2686
        gdb_ufd = NULL;
2687
        if (gdbstub_fd > 0) {
2688
            gdb_ufd = pf;
2689
            pf->fd = gdbstub_fd;
2690
            pf->events = POLLIN;
2691
            pf++;
2692
        }
2693

    
2694
        ret = poll(ufds, pf - ufds, timeout);
2695
        if (ret > 0) {
2696
            if (serial_ufd && (serial_ufd->revents & POLLIN)) {
2697
                n = read(0, &ch, 1);
2698
                if (n == 1) {
2699
                    serial_received_byte(&serial_ports[0], ch);
2700
                } else {
2701
                    /* Closed, stop polling. */
2702
                    serial_ok = 0;
2703
                }
2704
            }
2705
            if (net_ufd && (net_ufd->revents & POLLIN)) {
2706
                uint8_t buf[MAX_ETH_FRAME_SIZE];
2707

    
2708
                n = read(net_fd, buf, MAX_ETH_FRAME_SIZE);
2709
                if (n > 0) {
2710
                    if (n < 60) {
2711
                        memset(buf + n, 0, 60 - n);
2712
                        n = 60;
2713
                    }
2714
                    ne2000_receive(&ne2000_state, buf, n);
2715
                }
2716
            }
2717
            if (gdb_ufd && (gdb_ufd->revents & POLLIN)) {
2718
                uint8_t buf[1];
2719
                /* stop emulation if requested by gdb */
2720
                n = read(gdbstub_fd, buf, 1);
2721
                if (n == 1) {
2722
                    ret = EXCP_INTERRUPT; 
2723
                    break;
2724
                }
2725
            }
2726
        }
2727

    
2728
        /* timer IRQ */
2729
        if (timer_irq_pending) {
2730
            pic_set_irq(0, 1);
2731
            pic_set_irq(0, 0);
2732
            timer_irq_pending = 0;
2733
        }
2734

    
2735
        /* VGA */
2736
        if (gui_refresh_pending) {
2737
            display_state.dpy_refresh(&display_state);
2738
            gui_refresh_pending = 0;
2739
        }
2740
    }
2741
    cpu_disable_ticks();
2742
    return ret;
2743
}
2744

    
2745
void help(void)
2746
{
2747
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003 Fabrice Bellard\n"
2748
           "usage: %s [options] [disk_image]\n"
2749
           "\n"
2750
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
2751
           "\n"
2752
           "Standard options:\n"
2753
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
2754
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
2755
           "-cdrom file     use 'file' as IDE cdrom 2 image\n"
2756
           "-boot [c|d]     boot on hard disk (c) or CD-ROM (d)\n"
2757
           "-snapshot       write to temporary files instead of disk image files\n"
2758
           "-m megs         set virtual RAM size to megs MB\n"
2759
           "-n script       set network init script [default=%s]\n"
2760
           "-tun-fd fd      this fd talks to tap/tun, use it.\n"
2761
           "-nographic      disable graphical output\n"
2762
           "\n"
2763
           "Linux boot specific (does not require PC BIOS):\n"
2764
           "-kernel bzImage use 'bzImage' as kernel image\n"
2765
           "-append cmdline use 'cmdline' as kernel command line\n"
2766
           "-initrd file    use 'file' as initial ram disk\n"
2767
           "\n"
2768
           "Debug/Expert options:\n"
2769
           "-s              wait gdb connection to port %d\n"
2770
           "-p port         change gdb connection port\n"
2771
           "-d              output log in /tmp/vl.log\n"
2772
           "-hdachs c,h,s   force hard disk 0 geometry (usually qemu can guess it)\n"
2773
           "-L path         set the directory for the BIOS and VGA BIOS\n"
2774
           "\n"
2775
           "During emulation, use C-a h to get terminal commands:\n",
2776
#ifdef CONFIG_SOFTMMU
2777
           "qemu",
2778
#else
2779
           "qemu-fast",
2780
#endif
2781
           DEFAULT_NETWORK_SCRIPT, 
2782
           DEFAULT_GDBSTUB_PORT);
2783
    term_print_help();
2784
#ifndef CONFIG_SOFTMMU
2785
    printf("\n"
2786
           "NOTE: this version of QEMU is faster but it needs slightly patched OSes to\n"
2787
           "work. Please use the 'qemu' executable to have a more accurate (but slower)\n"
2788
           "PC emulation.\n");
2789
#endif
2790
    exit(1);
2791
}
2792

    
2793
struct option long_options[] = {
2794
    { "initrd", 1, NULL, 0, },
2795
    { "hda", 1, NULL, 0, },
2796
    { "hdb", 1, NULL, 0, },
2797
    { "snapshot", 0, NULL, 0, },
2798
    { "hdachs", 1, NULL, 0, },
2799
    { "nographic", 0, NULL, 0, },
2800
    { "kernel", 1, NULL, 0, },
2801
    { "append", 1, NULL, 0, },
2802
    { "tun-fd", 1, NULL, 0, },
2803
    { "hdc", 1, NULL, 0, },
2804
    { "hdd", 1, NULL, 0, },
2805
    { "cdrom", 1, NULL, 0, },
2806
    { "boot", 1, NULL, 0, },
2807
    { NULL, 0, NULL, 0 },
2808
};
2809

    
2810
#ifdef CONFIG_SDL
2811
/* SDL use the pthreads and they modify sigaction. We don't
2812
   want that. */
2813
#if __GLIBC__ > 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ >= 3)
2814
extern void __libc_sigaction();
2815
#define sigaction(sig, act, oact) __libc_sigaction(sig, act, oact)
2816
#else
2817
extern void __sigaction();
2818
#define sigaction(sig, act, oact) __sigaction(sig, act, oact)
2819
#endif
2820
#endif /* CONFIG_SDL */
2821

    
2822
int main(int argc, char **argv)
2823
{
2824
    int c, ret, initrd_size, i, use_gdbstub, gdbstub_port, long_index;
2825
    int snapshot, linux_boot, total_ram_size;
2826
    struct linux_params *params;
2827
    struct sigaction act;
2828
    struct itimerval itv;
2829
    CPUX86State *env;
2830
    const char *initrd_filename;
2831
    const char *hd_filename[MAX_DISKS];
2832
    const char *kernel_filename, *kernel_cmdline;
2833
    DisplayState *ds = &display_state;
2834

    
2835
    /* we never want that malloc() uses mmap() */
2836
    mallopt(M_MMAP_THRESHOLD, 4096 * 1024);
2837
    initrd_filename = NULL;
2838
    for(i = 0; i < MAX_DISKS; i++)
2839
        hd_filename[i] = NULL;
2840
    phys_ram_size = 32 * 1024 * 1024;
2841
    vga_ram_size = VGA_RAM_SIZE;
2842
    pstrcpy(network_script, sizeof(network_script), DEFAULT_NETWORK_SCRIPT);
2843
    use_gdbstub = 0;
2844
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
2845
    snapshot = 0;
2846
    nographic = 0;
2847
    kernel_filename = NULL;
2848
    kernel_cmdline = "";
2849
    for(;;) {
2850
        c = getopt_long_only(argc, argv, "hm:dn:sp:L:", long_options, &long_index);
2851
        if (c == -1)
2852
            break;
2853
        switch(c) {
2854
        case 0:
2855
            switch(long_index) {
2856
            case 0:
2857
                initrd_filename = optarg;
2858
                break;
2859
            case 1:
2860
                hd_filename[0] = optarg;
2861
                break;
2862
            case 2:
2863
                hd_filename[1] = optarg;
2864
                break;
2865
            case 3:
2866
                snapshot = 1;
2867
                break;
2868
            case 4:
2869
                {
2870
                    int cyls, heads, secs;
2871
                    const char *p;
2872
                    p = optarg;
2873
                    cyls = strtol(p, (char **)&p, 0);
2874
                    if (*p != ',')
2875
                        goto chs_fail;
2876
                    p++;
2877
                    heads = strtol(p, (char **)&p, 0);
2878
                    if (*p != ',')
2879
                        goto chs_fail;
2880
                    p++;
2881
                    secs = strtol(p, (char **)&p, 0);
2882
                    if (*p != '\0')
2883
                        goto chs_fail;
2884
                    ide_set_geometry(0, cyls, heads, secs);
2885
                chs_fail: ;
2886
                }
2887
                break;
2888
            case 5:
2889
                nographic = 1;
2890
                break;
2891
            case 6:
2892
                kernel_filename = optarg;
2893
                break;
2894
            case 7:
2895
                kernel_cmdline = optarg;
2896
                break;
2897
            case 8:
2898
                net_fd = atoi(optarg);
2899
                break;
2900
            case 9:
2901
                hd_filename[2] = optarg;
2902
                break;
2903
            case 10:
2904
                hd_filename[3] = optarg;
2905
                break;
2906
            case 11:
2907
                hd_filename[2] = optarg;
2908
                ide_set_cdrom(2, 1);
2909
                break;
2910
            case 12:
2911
                boot_device = optarg[0];
2912
                if (boot_device != 'c' && boot_device != 'd') {
2913
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
2914
                    exit(1);
2915
                }
2916
                break;
2917
            }
2918
            break;
2919
        case 'h':
2920
            help();
2921
            break;
2922
        case 'm':
2923
            phys_ram_size = atoi(optarg) * 1024 * 1024;
2924
            if (phys_ram_size <= 0)
2925
                help();
2926
            if (phys_ram_size > PHYS_RAM_MAX_SIZE) {
2927
                fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
2928
                        PHYS_RAM_MAX_SIZE / (1024 * 1024));
2929
                exit(1);
2930
            }
2931
            break;
2932
        case 'd':
2933
            cpu_set_log(CPU_LOG_ALL);
2934
            break;
2935
        case 'n':
2936
            pstrcpy(network_script, sizeof(network_script), optarg);
2937
            break;
2938
        case 's':
2939
            use_gdbstub = 1;
2940
            break;
2941
        case 'p':
2942
            gdbstub_port = atoi(optarg);
2943
            break;
2944
        case 'L':
2945
            bios_dir = optarg;
2946
            break;
2947
        }
2948
    }
2949

    
2950
    if (optind < argc) {
2951
        hd_filename[0] = argv[optind++];
2952
    }
2953

    
2954
    linux_boot = (kernel_filename != NULL);
2955
        
2956
    if (!linux_boot && hd_filename[0] == '\0' && hd_filename[2] == '\0')
2957
        help();
2958

    
2959
    /* init debug */
2960
    setvbuf(stdout, NULL, _IOLBF, 0);
2961

    
2962
    /* init network tun interface */
2963
    if (net_fd < 0)
2964
        net_init();
2965

    
2966
    /* init the memory */
2967
    total_ram_size = phys_ram_size + vga_ram_size;
2968

    
2969
#ifdef CONFIG_SOFTMMU
2970
    phys_ram_base = malloc(total_ram_size);
2971
    if (!phys_ram_base) {
2972
        fprintf(stderr, "Could not allocate physical memory\n");
2973
        exit(1);
2974
    }
2975
#else
2976
    /* as we must map the same page at several addresses, we must use
2977
       a fd */
2978
    {
2979
        const char *tmpdir;
2980

    
2981
        tmpdir = getenv("QEMU_TMPDIR");
2982
        if (!tmpdir)
2983
            tmpdir = "/tmp";
2984
        snprintf(phys_ram_file, sizeof(phys_ram_file), "%s/vlXXXXXX", tmpdir);
2985
        if (mkstemp(phys_ram_file) < 0) {
2986
            fprintf(stderr, "Could not create temporary memory file '%s'\n", 
2987
                    phys_ram_file);
2988
            exit(1);
2989
        }
2990
        phys_ram_fd = open(phys_ram_file, O_CREAT | O_TRUNC | O_RDWR, 0600);
2991
        if (phys_ram_fd < 0) {
2992
            fprintf(stderr, "Could not open temporary memory file '%s'\n", 
2993
                    phys_ram_file);
2994
            exit(1);
2995
        }
2996
        ftruncate(phys_ram_fd, total_ram_size);
2997
        unlink(phys_ram_file);
2998
        phys_ram_base = mmap(get_mmap_addr(total_ram_size), 
2999
                             total_ram_size, 
3000
                             PROT_WRITE | PROT_READ, MAP_SHARED | MAP_FIXED, 
3001
                             phys_ram_fd, 0);
3002
        if (phys_ram_base == MAP_FAILED) {
3003
            fprintf(stderr, "Could not map physical memory\n");
3004
            exit(1);
3005
        }
3006
    }
3007
#endif
3008

    
3009
    /* open the virtual block devices */
3010
    for(i = 0; i < MAX_DISKS; i++) {
3011
        if (hd_filename[i]) {
3012
            bs_table[i] = bdrv_open(hd_filename[i], snapshot);
3013
            if (!bs_table[i]) {
3014
                fprintf(stderr, "qemu: could not open hard disk image '%s\n",
3015
                        hd_filename[i]);
3016
                exit(1);
3017
            }
3018
        }
3019
    }
3020

    
3021
    /* init CPU state */
3022
    env = cpu_init();
3023
    global_env = env;
3024
    cpu_single_env = env;
3025

    
3026
    init_ioports();
3027

    
3028
    /* allocate RAM */
3029
    cpu_register_physical_memory(0, phys_ram_size, 0);
3030

    
3031
    if (linux_boot) {
3032
        /* now we can load the kernel */
3033
        ret = load_kernel(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
3034
        if (ret < 0) {
3035
            fprintf(stderr, "qemu: could not load kernel '%s'\n", 
3036
                    kernel_filename);
3037
            exit(1);
3038
        }
3039
        
3040
        /* load initrd */
3041
        initrd_size = 0;
3042
        if (initrd_filename) {
3043
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
3044
            if (initrd_size < 0) {
3045
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 
3046
                        initrd_filename);
3047
                exit(1);
3048
            }
3049
        }
3050
        
3051
        /* init kernel params */
3052
        params = (void *)(phys_ram_base + KERNEL_PARAMS_ADDR);
3053
        memset(params, 0, sizeof(struct linux_params));
3054
        params->mount_root_rdonly = 0;
3055
        stw_raw(&params->cl_magic, 0xA33F);
3056
        stw_raw(&params->cl_offset, params->commandline - (uint8_t *)params);
3057
        stl_raw(&params->alt_mem_k, (phys_ram_size / 1024) - 1024);
3058
        pstrcat(params->commandline, sizeof(params->commandline), kernel_cmdline);
3059
        params->loader_type = 0x01;
3060
        if (initrd_size > 0) {
3061
            stl_raw(&params->initrd_start, INITRD_LOAD_ADDR);
3062
            stl_raw(&params->initrd_size, initrd_size);
3063
        }
3064
        params->orig_video_lines = 25;
3065
        params->orig_video_cols = 80;
3066

    
3067
        /* setup basic memory access */
3068
        env->cr[0] = 0x00000033;
3069
        cpu_x86_init_mmu(env);
3070
        
3071
        memset(params->idt_table, 0, sizeof(params->idt_table));
3072
        
3073
        stq_raw(&params->gdt_table[2], 0x00cf9a000000ffffLL); /* KERNEL_CS */
3074
        stq_raw(&params->gdt_table[3], 0x00cf92000000ffffLL); /* KERNEL_DS */
3075
        /* for newer kernels (2.6.0) CS/DS are at different addresses */
3076
        stq_raw(&params->gdt_table[12], 0x00cf9a000000ffffLL); /* KERNEL_CS */
3077
        stq_raw(&params->gdt_table[13], 0x00cf92000000ffffLL); /* KERNEL_DS */
3078
        
3079
        env->idt.base = (void *)((uint8_t *)params->idt_table - phys_ram_base);
3080
        env->idt.limit = sizeof(params->idt_table) - 1;
3081
        env->gdt.base = (void *)((uint8_t *)params->gdt_table - phys_ram_base);
3082
        env->gdt.limit = sizeof(params->gdt_table) - 1;
3083
        
3084
        cpu_x86_load_seg_cache(env, R_CS, KERNEL_CS, NULL, 0xffffffff, 0x00cf9a00);
3085
        cpu_x86_load_seg_cache(env, R_DS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3086
        cpu_x86_load_seg_cache(env, R_ES, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3087
        cpu_x86_load_seg_cache(env, R_SS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3088
        cpu_x86_load_seg_cache(env, R_FS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3089
        cpu_x86_load_seg_cache(env, R_GS, KERNEL_DS, NULL, 0xffffffff, 0x00cf9200);
3090
        
3091
        env->eip = KERNEL_LOAD_ADDR;
3092
        env->regs[R_ESI] = KERNEL_PARAMS_ADDR;
3093
        env->eflags = 0x2;
3094

    
3095
    } else {
3096
        char buf[1024];
3097

    
3098
        /* RAW PC boot */
3099

    
3100
        /* BIOS load */
3101
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, BIOS_FILENAME);
3102
        ret = load_image(buf, phys_ram_base + 0x000f0000);
3103
        if (ret != 0x10000) {
3104
            fprintf(stderr, "qemu: could not load PC bios '%s'\n", buf);
3105
            exit(1);
3106
        }
3107

    
3108
        /* VGA BIOS load */
3109
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, VGABIOS_FILENAME);
3110
        ret = load_image(buf, phys_ram_base + 0x000c0000);
3111

    
3112
        /* setup basic memory access */
3113
        env->cr[0] = 0x60000010;
3114
        cpu_x86_init_mmu(env);
3115
        
3116
        env->idt.limit = 0xffff;
3117
        env->gdt.limit = 0xffff;
3118
        env->ldt.limit = 0xffff;
3119

    
3120
        /* not correct (CS base=0xffff0000) */
3121
        cpu_x86_load_seg_cache(env, R_CS, 0xf000, (uint8_t *)0x000f0000, 0xffff, 0); 
3122
        cpu_x86_load_seg_cache(env, R_DS, 0, NULL, 0xffff, 0);
3123
        cpu_x86_load_seg_cache(env, R_ES, 0, NULL, 0xffff, 0);
3124
        cpu_x86_load_seg_cache(env, R_SS, 0, NULL, 0xffff, 0);
3125
        cpu_x86_load_seg_cache(env, R_FS, 0, NULL, 0xffff, 0);
3126
        cpu_x86_load_seg_cache(env, R_GS, 0, NULL, 0xffff, 0);
3127

    
3128
        env->eip = 0xfff0;
3129
        env->regs[R_EDX] = 0x600; /* indicate P6 processor */
3130

    
3131
        env->eflags = 0x2;
3132

    
3133
        bochs_bios_init();
3134
    }
3135

    
3136
    /* terminal init */
3137
    if (nographic) {
3138
        dumb_display_init(ds);
3139
    } else {
3140
#ifdef CONFIG_SDL
3141
        sdl_display_init(ds);
3142
#else
3143
        dumb_display_init(ds);
3144
#endif
3145
    }
3146
    /* init basic PC hardware */
3147
    register_ioport_write(0x80, 1, ioport80_write, 1);
3148

    
3149
    vga_init(ds, phys_ram_base + phys_ram_size, phys_ram_size, 
3150
             vga_ram_size);
3151
    cmos_init();
3152
    pic_init();
3153
    pit_init();
3154
    serial_init();
3155
    ne2000_init();
3156
    ide_init();
3157
    kbd_init();
3158
    AUD_init();
3159
    DMA_init();
3160
    SB16_init();
3161
    
3162
    /* setup cpu signal handlers for MMU / self modifying code handling */
3163
    sigfillset(&act.sa_mask);
3164
    act.sa_flags = SA_SIGINFO;
3165
#if !defined(CONFIG_SOFTMMU)
3166
    act.sa_sigaction = host_segv_handler;
3167
    sigaction(SIGSEGV, &act, NULL);
3168
    sigaction(SIGBUS, &act, NULL);
3169
#endif
3170

    
3171
    act.sa_sigaction = host_alarm_handler;
3172
    sigaction(SIGALRM, &act, NULL);
3173

    
3174
    itv.it_interval.tv_sec = 0;
3175
    itv.it_interval.tv_usec = 1000;
3176
    itv.it_value.tv_sec = 0;
3177
    itv.it_value.tv_usec = 10 * 1000;
3178
    setitimer(ITIMER_REAL, &itv, NULL);
3179
    /* we probe the tick duration of the kernel to inform the user if
3180
       the emulated kernel requested a too high timer frequency */
3181
    getitimer(ITIMER_REAL, &itv);
3182
    timer_ms = itv.it_interval.tv_usec / 1000;
3183
    pit_min_timer_count = ((uint64_t)itv.it_interval.tv_usec * PIT_FREQ) / 
3184
        1000000;
3185

    
3186
    if (use_gdbstub) {
3187
        cpu_gdbstub(NULL, main_loop, gdbstub_port);
3188
    } else {
3189
        main_loop(NULL);
3190
    }
3191
    return 0;
3192
}