Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 296acb64

History | View | Annotate | Download (38.4 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18

    
19
#include <linux/kvm.h>
20

    
21
#include "qemu-common.h"
22
#include "sysemu.h"
23
#include "kvm.h"
24
#include "cpu.h"
25
#include "gdbstub.h"
26
#include "host-utils.h"
27
#include "hw/pc.h"
28
#include "hw/apic.h"
29
#include "ioport.h"
30

    
31
#ifdef CONFIG_KVM_PARA
32
#include <linux/kvm_para.h>
33
#endif
34
//
35
//#define DEBUG_KVM
36

    
37
#ifdef DEBUG_KVM
38
#define DPRINTF(fmt, ...) \
39
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40
#else
41
#define DPRINTF(fmt, ...) \
42
    do { } while (0)
43
#endif
44

    
45
#define MSR_KVM_WALL_CLOCK  0x11
46
#define MSR_KVM_SYSTEM_TIME 0x12
47

    
48
#ifdef KVM_CAP_EXT_CPUID
49

    
50
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
51
{
52
    struct kvm_cpuid2 *cpuid;
53
    int r, size;
54

    
55
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
56
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
57
    cpuid->nent = max;
58
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
59
    if (r == 0 && cpuid->nent >= max) {
60
        r = -E2BIG;
61
    }
62
    if (r < 0) {
63
        if (r == -E2BIG) {
64
            qemu_free(cpuid);
65
            return NULL;
66
        } else {
67
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
68
                    strerror(-r));
69
            exit(1);
70
        }
71
    }
72
    return cpuid;
73
}
74

    
75
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
76
                                      uint32_t index, int reg)
77
{
78
    struct kvm_cpuid2 *cpuid;
79
    int i, max;
80
    uint32_t ret = 0;
81
    uint32_t cpuid_1_edx;
82

    
83
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
84
        return -1U;
85
    }
86

    
87
    max = 1;
88
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
89
        max *= 2;
90
    }
91

    
92
    for (i = 0; i < cpuid->nent; ++i) {
93
        if (cpuid->entries[i].function == function &&
94
            cpuid->entries[i].index == index) {
95
            switch (reg) {
96
            case R_EAX:
97
                ret = cpuid->entries[i].eax;
98
                break;
99
            case R_EBX:
100
                ret = cpuid->entries[i].ebx;
101
                break;
102
            case R_ECX:
103
                ret = cpuid->entries[i].ecx;
104
                break;
105
            case R_EDX:
106
                ret = cpuid->entries[i].edx;
107
                switch (function) {
108
                case 1:
109
                    /* KVM before 2.6.30 misreports the following features */
110
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
111
                    break;
112
                case 0x80000001:
113
                    /* On Intel, kvm returns cpuid according to the Intel spec,
114
                     * so add missing bits according to the AMD spec:
115
                     */
116
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
117
                    ret |= cpuid_1_edx & 0x183f7ff;
118
                    break;
119
                }
120
                break;
121
            }
122
        }
123
    }
124

    
125
    qemu_free(cpuid);
126

    
127
    return ret;
128
}
129

    
130
#else
131

    
132
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
133
                                      uint32_t index, int reg)
134
{
135
    return -1U;
136
}
137

    
138
#endif
139

    
140
#ifdef CONFIG_KVM_PARA
141
struct kvm_para_features {
142
        int cap;
143
        int feature;
144
} para_features[] = {
145
#ifdef KVM_CAP_CLOCKSOURCE
146
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
147
#endif
148
#ifdef KVM_CAP_NOP_IO_DELAY
149
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
150
#endif
151
#ifdef KVM_CAP_PV_MMU
152
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
153
#endif
154
        { -1, -1 }
155
};
156

    
157
static int get_para_features(CPUState *env)
158
{
159
        int i, features = 0;
160

    
161
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
162
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
163
                        features |= (1 << para_features[i].feature);
164
        }
165

    
166
        return features;
167
}
168
#endif
169

    
170
int kvm_arch_init_vcpu(CPUState *env)
171
{
172
    struct {
173
        struct kvm_cpuid2 cpuid;
174
        struct kvm_cpuid_entry2 entries[100];
175
    } __attribute__((packed)) cpuid_data;
176
    uint32_t limit, i, j, cpuid_i;
177
    uint32_t unused;
178
    struct kvm_cpuid_entry2 *c;
179
#ifdef KVM_CPUID_SIGNATURE
180
    uint32_t signature[3];
181
#endif
182

    
183
    env->mp_state = KVM_MP_STATE_RUNNABLE;
184

    
185
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
186

    
187
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
188
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
189
    env->cpuid_ext_features |= i;
190

    
191
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
192
                                                             0, R_EDX);
193
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
194
                                                             0, R_ECX);
195
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
196
                                                             0, R_EDX);
197

    
198

    
199
    cpuid_i = 0;
200

    
201
#ifdef CONFIG_KVM_PARA
202
    /* Paravirtualization CPUIDs */
203
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
204
    c = &cpuid_data.entries[cpuid_i++];
205
    memset(c, 0, sizeof(*c));
206
    c->function = KVM_CPUID_SIGNATURE;
207
    c->eax = 0;
208
    c->ebx = signature[0];
209
    c->ecx = signature[1];
210
    c->edx = signature[2];
211

    
212
    c = &cpuid_data.entries[cpuid_i++];
213
    memset(c, 0, sizeof(*c));
214
    c->function = KVM_CPUID_FEATURES;
215
    c->eax = env->cpuid_kvm_features & get_para_features(env);
216
#endif
217

    
218
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
219

    
220
    for (i = 0; i <= limit; i++) {
221
        c = &cpuid_data.entries[cpuid_i++];
222

    
223
        switch (i) {
224
        case 2: {
225
            /* Keep reading function 2 till all the input is received */
226
            int times;
227

    
228
            c->function = i;
229
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
230
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
231
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
232
            times = c->eax & 0xff;
233

    
234
            for (j = 1; j < times; ++j) {
235
                c = &cpuid_data.entries[cpuid_i++];
236
                c->function = i;
237
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
238
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
239
            }
240
            break;
241
        }
242
        case 4:
243
        case 0xb:
244
        case 0xd:
245
            for (j = 0; ; j++) {
246
                c->function = i;
247
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
248
                c->index = j;
249
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
250

    
251
                if (i == 4 && c->eax == 0)
252
                    break;
253
                if (i == 0xb && !(c->ecx & 0xff00))
254
                    break;
255
                if (i == 0xd && c->eax == 0)
256
                    break;
257

    
258
                c = &cpuid_data.entries[cpuid_i++];
259
            }
260
            break;
261
        default:
262
            c->function = i;
263
            c->flags = 0;
264
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
265
            break;
266
        }
267
    }
268
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
269

    
270
    for (i = 0x80000000; i <= limit; i++) {
271
        c = &cpuid_data.entries[cpuid_i++];
272

    
273
        c->function = i;
274
        c->flags = 0;
275
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
276
    }
277

    
278
    cpuid_data.cpuid.nent = cpuid_i;
279

    
280
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
281
}
282

    
283
void kvm_arch_reset_vcpu(CPUState *env)
284
{
285
    env->exception_injected = -1;
286
    env->interrupt_injected = -1;
287
    env->nmi_injected = 0;
288
    env->nmi_pending = 0;
289
    if (kvm_irqchip_in_kernel()) {
290
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
291
                                          KVM_MP_STATE_UNINITIALIZED;
292
    } else {
293
        env->mp_state = KVM_MP_STATE_RUNNABLE;
294
    }
295
}
296

    
297
static int kvm_has_msr_star(CPUState *env)
298
{
299
    static int has_msr_star;
300
    int ret;
301

    
302
    /* first time */
303
    if (has_msr_star == 0) {        
304
        struct kvm_msr_list msr_list, *kvm_msr_list;
305

    
306
        has_msr_star = -1;
307

    
308
        /* Obtain MSR list from KVM.  These are the MSRs that we must
309
         * save/restore */
310
        msr_list.nmsrs = 0;
311
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
312
        if (ret < 0 && ret != -E2BIG) {
313
            return 0;
314
        }
315
        /* Old kernel modules had a bug and could write beyond the provided
316
           memory. Allocate at least a safe amount of 1K. */
317
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
318
                                              msr_list.nmsrs *
319
                                              sizeof(msr_list.indices[0])));
320

    
321
        kvm_msr_list->nmsrs = msr_list.nmsrs;
322
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
323
        if (ret >= 0) {
324
            int i;
325

    
326
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
327
                if (kvm_msr_list->indices[i] == MSR_STAR) {
328
                    has_msr_star = 1;
329
                    break;
330
                }
331
            }
332
        }
333

    
334
        free(kvm_msr_list);
335
    }
336

    
337
    if (has_msr_star == 1)
338
        return 1;
339
    return 0;
340
}
341

    
342
static int kvm_init_identity_map_page(KVMState *s)
343
{
344
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
345
    int ret;
346
    uint64_t addr = 0xfffbc000;
347

    
348
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
349
        return 0;
350
    }
351

    
352
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
353
    if (ret < 0) {
354
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
355
        return ret;
356
    }
357
#endif
358
    return 0;
359
}
360

    
361
int kvm_arch_init(KVMState *s, int smp_cpus)
362
{
363
    int ret;
364

    
365
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
366
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
367
     * must be part of guest physical memory, we need to allocate it.  Older
368
     * versions of KVM just assumed that it would be at the end of physical
369
     * memory but that doesn't work with more than 4GB of memory.  We simply
370
     * refuse to work with those older versions of KVM. */
371
    ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
372
    if (ret <= 0) {
373
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
374
        return ret;
375
    }
376

    
377
    /* this address is 3 pages before the bios, and the bios should present
378
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
379
     * this?
380
     */
381
    /*
382
     * Tell fw_cfg to notify the BIOS to reserve the range.
383
     */
384
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
385
        perror("e820_add_entry() table is full");
386
        exit(1);
387
    }
388
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
389
    if (ret < 0) {
390
        return ret;
391
    }
392

    
393
    return kvm_init_identity_map_page(s);
394
}
395
                    
396
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
397
{
398
    lhs->selector = rhs->selector;
399
    lhs->base = rhs->base;
400
    lhs->limit = rhs->limit;
401
    lhs->type = 3;
402
    lhs->present = 1;
403
    lhs->dpl = 3;
404
    lhs->db = 0;
405
    lhs->s = 1;
406
    lhs->l = 0;
407
    lhs->g = 0;
408
    lhs->avl = 0;
409
    lhs->unusable = 0;
410
}
411

    
412
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
413
{
414
    unsigned flags = rhs->flags;
415
    lhs->selector = rhs->selector;
416
    lhs->base = rhs->base;
417
    lhs->limit = rhs->limit;
418
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
419
    lhs->present = (flags & DESC_P_MASK) != 0;
420
    lhs->dpl = rhs->selector & 3;
421
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
422
    lhs->s = (flags & DESC_S_MASK) != 0;
423
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
424
    lhs->g = (flags & DESC_G_MASK) != 0;
425
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
426
    lhs->unusable = 0;
427
}
428

    
429
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
430
{
431
    lhs->selector = rhs->selector;
432
    lhs->base = rhs->base;
433
    lhs->limit = rhs->limit;
434
    lhs->flags =
435
        (rhs->type << DESC_TYPE_SHIFT)
436
        | (rhs->present * DESC_P_MASK)
437
        | (rhs->dpl << DESC_DPL_SHIFT)
438
        | (rhs->db << DESC_B_SHIFT)
439
        | (rhs->s * DESC_S_MASK)
440
        | (rhs->l << DESC_L_SHIFT)
441
        | (rhs->g * DESC_G_MASK)
442
        | (rhs->avl * DESC_AVL_MASK);
443
}
444

    
445
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
446
{
447
    if (set)
448
        *kvm_reg = *qemu_reg;
449
    else
450
        *qemu_reg = *kvm_reg;
451
}
452

    
453
static int kvm_getput_regs(CPUState *env, int set)
454
{
455
    struct kvm_regs regs;
456
    int ret = 0;
457

    
458
    if (!set) {
459
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
460
        if (ret < 0)
461
            return ret;
462
    }
463

    
464
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
465
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
466
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
467
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
468
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
469
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
470
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
471
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
472
#ifdef TARGET_X86_64
473
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
474
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
475
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
476
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
477
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
478
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
479
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
480
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
481
#endif
482

    
483
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
484
    kvm_getput_reg(&regs.rip, &env->eip, set);
485

    
486
    if (set)
487
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
488

    
489
    return ret;
490
}
491

    
492
static int kvm_put_fpu(CPUState *env)
493
{
494
    struct kvm_fpu fpu;
495
    int i;
496

    
497
    memset(&fpu, 0, sizeof fpu);
498
    fpu.fsw = env->fpus & ~(7 << 11);
499
    fpu.fsw |= (env->fpstt & 7) << 11;
500
    fpu.fcw = env->fpuc;
501
    for (i = 0; i < 8; ++i)
502
        fpu.ftwx |= (!env->fptags[i]) << i;
503
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
504
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
505
    fpu.mxcsr = env->mxcsr;
506

    
507
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
508
}
509

    
510
#ifdef KVM_CAP_XSAVE
511
#define XSAVE_CWD_RIP     2
512
#define XSAVE_CWD_RDP     4
513
#define XSAVE_MXCSR       6
514
#define XSAVE_ST_SPACE    8
515
#define XSAVE_XMM_SPACE   40
516
#define XSAVE_XSTATE_BV   128
517
#define XSAVE_YMMH_SPACE  144
518
#endif
519

    
520
static int kvm_put_xsave(CPUState *env)
521
{
522
#ifdef KVM_CAP_XSAVE
523
    int i;
524
    struct kvm_xsave* xsave;
525
    uint16_t cwd, swd, twd, fop;
526

    
527
    if (!kvm_has_xsave())
528
        return kvm_put_fpu(env);
529

    
530
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
531
    memset(xsave, 0, sizeof(struct kvm_xsave));
532
    cwd = swd = twd = fop = 0;
533
    swd = env->fpus & ~(7 << 11);
534
    swd |= (env->fpstt & 7) << 11;
535
    cwd = env->fpuc;
536
    for (i = 0; i < 8; ++i)
537
        twd |= (!env->fptags[i]) << i;
538
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
539
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
540
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
541
            sizeof env->fpregs);
542
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
543
            sizeof env->xmm_regs);
544
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
545
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
546
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
547
            sizeof env->ymmh_regs);
548
    return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
549
#else
550
    return kvm_put_fpu(env);
551
#endif
552
}
553

    
554
static int kvm_put_xcrs(CPUState *env)
555
{
556
#ifdef KVM_CAP_XCRS
557
    struct kvm_xcrs xcrs;
558

    
559
    if (!kvm_has_xcrs())
560
        return 0;
561

    
562
    xcrs.nr_xcrs = 1;
563
    xcrs.flags = 0;
564
    xcrs.xcrs[0].xcr = 0;
565
    xcrs.xcrs[0].value = env->xcr0;
566
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
567
#else
568
    return 0;
569
#endif
570
}
571

    
572
static int kvm_put_sregs(CPUState *env)
573
{
574
    struct kvm_sregs sregs;
575

    
576
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
577
    if (env->interrupt_injected >= 0) {
578
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
579
                (uint64_t)1 << (env->interrupt_injected % 64);
580
    }
581

    
582
    if ((env->eflags & VM_MASK)) {
583
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
584
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
585
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
586
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
587
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
588
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
589
    } else {
590
            set_seg(&sregs.cs, &env->segs[R_CS]);
591
            set_seg(&sregs.ds, &env->segs[R_DS]);
592
            set_seg(&sregs.es, &env->segs[R_ES]);
593
            set_seg(&sregs.fs, &env->segs[R_FS]);
594
            set_seg(&sregs.gs, &env->segs[R_GS]);
595
            set_seg(&sregs.ss, &env->segs[R_SS]);
596

    
597
            if (env->cr[0] & CR0_PE_MASK) {
598
                /* force ss cpl to cs cpl */
599
                sregs.ss.selector = (sregs.ss.selector & ~3) |
600
                        (sregs.cs.selector & 3);
601
                sregs.ss.dpl = sregs.ss.selector & 3;
602
            }
603
    }
604

    
605
    set_seg(&sregs.tr, &env->tr);
606
    set_seg(&sregs.ldt, &env->ldt);
607

    
608
    sregs.idt.limit = env->idt.limit;
609
    sregs.idt.base = env->idt.base;
610
    sregs.gdt.limit = env->gdt.limit;
611
    sregs.gdt.base = env->gdt.base;
612

    
613
    sregs.cr0 = env->cr[0];
614
    sregs.cr2 = env->cr[2];
615
    sregs.cr3 = env->cr[3];
616
    sregs.cr4 = env->cr[4];
617

    
618
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
619
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
620

    
621
    sregs.efer = env->efer;
622

    
623
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
624
}
625

    
626
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
627
                              uint32_t index, uint64_t value)
628
{
629
    entry->index = index;
630
    entry->data = value;
631
}
632

    
633
static int kvm_put_msrs(CPUState *env, int level)
634
{
635
    struct {
636
        struct kvm_msrs info;
637
        struct kvm_msr_entry entries[100];
638
    } msr_data;
639
    struct kvm_msr_entry *msrs = msr_data.entries;
640
    int n = 0;
641

    
642
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
643
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
644
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
645
    if (kvm_has_msr_star(env))
646
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
647
#ifdef TARGET_X86_64
648
    /* FIXME if lm capable */
649
    kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
650
    kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
651
    kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
652
    kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
653
#endif
654
    if (level == KVM_PUT_FULL_STATE) {
655
        kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
656
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
657
                          env->system_time_msr);
658
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
659
    }
660

    
661
    msr_data.info.nmsrs = n;
662

    
663
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
664

    
665
}
666

    
667

    
668
static int kvm_get_fpu(CPUState *env)
669
{
670
    struct kvm_fpu fpu;
671
    int i, ret;
672

    
673
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
674
    if (ret < 0)
675
        return ret;
676

    
677
    env->fpstt = (fpu.fsw >> 11) & 7;
678
    env->fpus = fpu.fsw;
679
    env->fpuc = fpu.fcw;
680
    for (i = 0; i < 8; ++i)
681
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
682
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
683
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
684
    env->mxcsr = fpu.mxcsr;
685

    
686
    return 0;
687
}
688

    
689
static int kvm_get_xsave(CPUState *env)
690
{
691
#ifdef KVM_CAP_XSAVE
692
    struct kvm_xsave* xsave;
693
    int ret, i;
694
    uint16_t cwd, swd, twd, fop;
695

    
696
    if (!kvm_has_xsave())
697
        return kvm_get_fpu(env);
698

    
699
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
700
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
701
    if (ret < 0)
702
        return ret;
703

    
704
    cwd = (uint16_t)xsave->region[0];
705
    swd = (uint16_t)(xsave->region[0] >> 16);
706
    twd = (uint16_t)xsave->region[1];
707
    fop = (uint16_t)(xsave->region[1] >> 16);
708
    env->fpstt = (swd >> 11) & 7;
709
    env->fpus = swd;
710
    env->fpuc = cwd;
711
    for (i = 0; i < 8; ++i)
712
        env->fptags[i] = !((twd >> i) & 1);
713
    env->mxcsr = xsave->region[XSAVE_MXCSR];
714
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
715
            sizeof env->fpregs);
716
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
717
            sizeof env->xmm_regs);
718
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
719
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
720
            sizeof env->ymmh_regs);
721
    return 0;
722
#else
723
    return kvm_get_fpu(env);
724
#endif
725
}
726

    
727
static int kvm_get_xcrs(CPUState *env)
728
{
729
#ifdef KVM_CAP_XCRS
730
    int i, ret;
731
    struct kvm_xcrs xcrs;
732

    
733
    if (!kvm_has_xcrs())
734
        return 0;
735

    
736
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
737
    if (ret < 0)
738
        return ret;
739

    
740
    for (i = 0; i < xcrs.nr_xcrs; i++)
741
        /* Only support xcr0 now */
742
        if (xcrs.xcrs[0].xcr == 0) {
743
            env->xcr0 = xcrs.xcrs[0].value;
744
            break;
745
        }
746
    return 0;
747
#else
748
    return 0;
749
#endif
750
}
751

    
752
static int kvm_get_sregs(CPUState *env)
753
{
754
    struct kvm_sregs sregs;
755
    uint32_t hflags;
756
    int bit, i, ret;
757

    
758
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
759
    if (ret < 0)
760
        return ret;
761

    
762
    /* There can only be one pending IRQ set in the bitmap at a time, so try
763
       to find it and save its number instead (-1 for none). */
764
    env->interrupt_injected = -1;
765
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
766
        if (sregs.interrupt_bitmap[i]) {
767
            bit = ctz64(sregs.interrupt_bitmap[i]);
768
            env->interrupt_injected = i * 64 + bit;
769
            break;
770
        }
771
    }
772

    
773
    get_seg(&env->segs[R_CS], &sregs.cs);
774
    get_seg(&env->segs[R_DS], &sregs.ds);
775
    get_seg(&env->segs[R_ES], &sregs.es);
776
    get_seg(&env->segs[R_FS], &sregs.fs);
777
    get_seg(&env->segs[R_GS], &sregs.gs);
778
    get_seg(&env->segs[R_SS], &sregs.ss);
779

    
780
    get_seg(&env->tr, &sregs.tr);
781
    get_seg(&env->ldt, &sregs.ldt);
782

    
783
    env->idt.limit = sregs.idt.limit;
784
    env->idt.base = sregs.idt.base;
785
    env->gdt.limit = sregs.gdt.limit;
786
    env->gdt.base = sregs.gdt.base;
787

    
788
    env->cr[0] = sregs.cr0;
789
    env->cr[2] = sregs.cr2;
790
    env->cr[3] = sregs.cr3;
791
    env->cr[4] = sregs.cr4;
792

    
793
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
794

    
795
    env->efer = sregs.efer;
796
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
797

    
798
#define HFLAG_COPY_MASK ~( \
799
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
800
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
801
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
802
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
803

    
804

    
805

    
806
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
807
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
808
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
809
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
810
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
811
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
812
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
813

    
814
    if (env->efer & MSR_EFER_LMA) {
815
        hflags |= HF_LMA_MASK;
816
    }
817

    
818
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
819
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
820
    } else {
821
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
822
                (DESC_B_SHIFT - HF_CS32_SHIFT);
823
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
824
                (DESC_B_SHIFT - HF_SS32_SHIFT);
825
        if (!(env->cr[0] & CR0_PE_MASK) ||
826
                   (env->eflags & VM_MASK) ||
827
                   !(hflags & HF_CS32_MASK)) {
828
                hflags |= HF_ADDSEG_MASK;
829
            } else {
830
                hflags |= ((env->segs[R_DS].base |
831
                                env->segs[R_ES].base |
832
                                env->segs[R_SS].base) != 0) <<
833
                    HF_ADDSEG_SHIFT;
834
            }
835
    }
836
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
837

    
838
    return 0;
839
}
840

    
841
static int kvm_get_msrs(CPUState *env)
842
{
843
    struct {
844
        struct kvm_msrs info;
845
        struct kvm_msr_entry entries[100];
846
    } msr_data;
847
    struct kvm_msr_entry *msrs = msr_data.entries;
848
    int ret, i, n;
849

    
850
    n = 0;
851
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
852
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
853
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
854
    if (kvm_has_msr_star(env))
855
        msrs[n++].index = MSR_STAR;
856
    msrs[n++].index = MSR_IA32_TSC;
857
#ifdef TARGET_X86_64
858
    /* FIXME lm_capable_kernel */
859
    msrs[n++].index = MSR_CSTAR;
860
    msrs[n++].index = MSR_KERNELGSBASE;
861
    msrs[n++].index = MSR_FMASK;
862
    msrs[n++].index = MSR_LSTAR;
863
#endif
864
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
865
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
866

    
867
    msr_data.info.nmsrs = n;
868
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
869
    if (ret < 0)
870
        return ret;
871

    
872
    for (i = 0; i < ret; i++) {
873
        switch (msrs[i].index) {
874
        case MSR_IA32_SYSENTER_CS:
875
            env->sysenter_cs = msrs[i].data;
876
            break;
877
        case MSR_IA32_SYSENTER_ESP:
878
            env->sysenter_esp = msrs[i].data;
879
            break;
880
        case MSR_IA32_SYSENTER_EIP:
881
            env->sysenter_eip = msrs[i].data;
882
            break;
883
        case MSR_STAR:
884
            env->star = msrs[i].data;
885
            break;
886
#ifdef TARGET_X86_64
887
        case MSR_CSTAR:
888
            env->cstar = msrs[i].data;
889
            break;
890
        case MSR_KERNELGSBASE:
891
            env->kernelgsbase = msrs[i].data;
892
            break;
893
        case MSR_FMASK:
894
            env->fmask = msrs[i].data;
895
            break;
896
        case MSR_LSTAR:
897
            env->lstar = msrs[i].data;
898
            break;
899
#endif
900
        case MSR_IA32_TSC:
901
            env->tsc = msrs[i].data;
902
            break;
903
        case MSR_KVM_SYSTEM_TIME:
904
            env->system_time_msr = msrs[i].data;
905
            break;
906
        case MSR_KVM_WALL_CLOCK:
907
            env->wall_clock_msr = msrs[i].data;
908
            break;
909
        }
910
    }
911

    
912
    return 0;
913
}
914

    
915
static int kvm_put_mp_state(CPUState *env)
916
{
917
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
918

    
919
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
920
}
921

    
922
static int kvm_get_mp_state(CPUState *env)
923
{
924
    struct kvm_mp_state mp_state;
925
    int ret;
926

    
927
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
928
    if (ret < 0) {
929
        return ret;
930
    }
931
    env->mp_state = mp_state.mp_state;
932
    return 0;
933
}
934

    
935
static int kvm_put_vcpu_events(CPUState *env, int level)
936
{
937
#ifdef KVM_CAP_VCPU_EVENTS
938
    struct kvm_vcpu_events events;
939

    
940
    if (!kvm_has_vcpu_events()) {
941
        return 0;
942
    }
943

    
944
    events.exception.injected = (env->exception_injected >= 0);
945
    events.exception.nr = env->exception_injected;
946
    events.exception.has_error_code = env->has_error_code;
947
    events.exception.error_code = env->error_code;
948

    
949
    events.interrupt.injected = (env->interrupt_injected >= 0);
950
    events.interrupt.nr = env->interrupt_injected;
951
    events.interrupt.soft = env->soft_interrupt;
952

    
953
    events.nmi.injected = env->nmi_injected;
954
    events.nmi.pending = env->nmi_pending;
955
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
956

    
957
    events.sipi_vector = env->sipi_vector;
958

    
959
    events.flags = 0;
960
    if (level >= KVM_PUT_RESET_STATE) {
961
        events.flags |=
962
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
963
    }
964

    
965
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
966
#else
967
    return 0;
968
#endif
969
}
970

    
971
static int kvm_get_vcpu_events(CPUState *env)
972
{
973
#ifdef KVM_CAP_VCPU_EVENTS
974
    struct kvm_vcpu_events events;
975
    int ret;
976

    
977
    if (!kvm_has_vcpu_events()) {
978
        return 0;
979
    }
980

    
981
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
982
    if (ret < 0) {
983
       return ret;
984
    }
985
    env->exception_injected =
986
       events.exception.injected ? events.exception.nr : -1;
987
    env->has_error_code = events.exception.has_error_code;
988
    env->error_code = events.exception.error_code;
989

    
990
    env->interrupt_injected =
991
        events.interrupt.injected ? events.interrupt.nr : -1;
992
    env->soft_interrupt = events.interrupt.soft;
993

    
994
    env->nmi_injected = events.nmi.injected;
995
    env->nmi_pending = events.nmi.pending;
996
    if (events.nmi.masked) {
997
        env->hflags2 |= HF2_NMI_MASK;
998
    } else {
999
        env->hflags2 &= ~HF2_NMI_MASK;
1000
    }
1001

    
1002
    env->sipi_vector = events.sipi_vector;
1003
#endif
1004

    
1005
    return 0;
1006
}
1007

    
1008
static int kvm_guest_debug_workarounds(CPUState *env)
1009
{
1010
    int ret = 0;
1011
#ifdef KVM_CAP_SET_GUEST_DEBUG
1012
    unsigned long reinject_trap = 0;
1013

    
1014
    if (!kvm_has_vcpu_events()) {
1015
        if (env->exception_injected == 1) {
1016
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1017
        } else if (env->exception_injected == 3) {
1018
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1019
        }
1020
        env->exception_injected = -1;
1021
    }
1022

    
1023
    /*
1024
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1025
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1026
     * by updating the debug state once again if single-stepping is on.
1027
     * Another reason to call kvm_update_guest_debug here is a pending debug
1028
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1029
     * reinject them via SET_GUEST_DEBUG.
1030
     */
1031
    if (reinject_trap ||
1032
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1033
        ret = kvm_update_guest_debug(env, reinject_trap);
1034
    }
1035
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1036
    return ret;
1037
}
1038

    
1039
static int kvm_put_debugregs(CPUState *env)
1040
{
1041
#ifdef KVM_CAP_DEBUGREGS
1042
    struct kvm_debugregs dbgregs;
1043
    int i;
1044

    
1045
    if (!kvm_has_debugregs()) {
1046
        return 0;
1047
    }
1048

    
1049
    for (i = 0; i < 4; i++) {
1050
        dbgregs.db[i] = env->dr[i];
1051
    }
1052
    dbgregs.dr6 = env->dr[6];
1053
    dbgregs.dr7 = env->dr[7];
1054
    dbgregs.flags = 0;
1055

    
1056
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1057
#else
1058
    return 0;
1059
#endif
1060
}
1061

    
1062
static int kvm_get_debugregs(CPUState *env)
1063
{
1064
#ifdef KVM_CAP_DEBUGREGS
1065
    struct kvm_debugregs dbgregs;
1066
    int i, ret;
1067

    
1068
    if (!kvm_has_debugregs()) {
1069
        return 0;
1070
    }
1071

    
1072
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1073
    if (ret < 0) {
1074
       return ret;
1075
    }
1076
    for (i = 0; i < 4; i++) {
1077
        env->dr[i] = dbgregs.db[i];
1078
    }
1079
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1080
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1081
#endif
1082

    
1083
    return 0;
1084
}
1085

    
1086
int kvm_arch_put_registers(CPUState *env, int level)
1087
{
1088
    int ret;
1089

    
1090
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1091

    
1092
    ret = kvm_getput_regs(env, 1);
1093
    if (ret < 0)
1094
        return ret;
1095

    
1096
    ret = kvm_put_xsave(env);
1097
    if (ret < 0)
1098
        return ret;
1099

    
1100
    ret = kvm_put_xcrs(env);
1101
    if (ret < 0)
1102
        return ret;
1103

    
1104
    ret = kvm_put_sregs(env);
1105
    if (ret < 0)
1106
        return ret;
1107

    
1108
    ret = kvm_put_msrs(env, level);
1109
    if (ret < 0)
1110
        return ret;
1111

    
1112
    if (level >= KVM_PUT_RESET_STATE) {
1113
        ret = kvm_put_mp_state(env);
1114
        if (ret < 0)
1115
            return ret;
1116
    }
1117

    
1118
    ret = kvm_put_vcpu_events(env, level);
1119
    if (ret < 0)
1120
        return ret;
1121

    
1122
    /* must be last */
1123
    ret = kvm_guest_debug_workarounds(env);
1124
    if (ret < 0)
1125
        return ret;
1126

    
1127
    ret = kvm_put_debugregs(env);
1128
    if (ret < 0)
1129
        return ret;
1130

    
1131
    return 0;
1132
}
1133

    
1134
int kvm_arch_get_registers(CPUState *env)
1135
{
1136
    int ret;
1137

    
1138
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1139

    
1140
    ret = kvm_getput_regs(env, 0);
1141
    if (ret < 0)
1142
        return ret;
1143

    
1144
    ret = kvm_get_xsave(env);
1145
    if (ret < 0)
1146
        return ret;
1147

    
1148
    ret = kvm_get_xcrs(env);
1149
    if (ret < 0)
1150
        return ret;
1151

    
1152
    ret = kvm_get_sregs(env);
1153
    if (ret < 0)
1154
        return ret;
1155

    
1156
    ret = kvm_get_msrs(env);
1157
    if (ret < 0)
1158
        return ret;
1159

    
1160
    ret = kvm_get_mp_state(env);
1161
    if (ret < 0)
1162
        return ret;
1163

    
1164
    ret = kvm_get_vcpu_events(env);
1165
    if (ret < 0)
1166
        return ret;
1167

    
1168
    ret = kvm_get_debugregs(env);
1169
    if (ret < 0)
1170
        return ret;
1171

    
1172
    return 0;
1173
}
1174

    
1175
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1176
{
1177
    /* Try to inject an interrupt if the guest can accept it */
1178
    if (run->ready_for_interrupt_injection &&
1179
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1180
        (env->eflags & IF_MASK)) {
1181
        int irq;
1182

    
1183
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1184
        irq = cpu_get_pic_interrupt(env);
1185
        if (irq >= 0) {
1186
            struct kvm_interrupt intr;
1187
            intr.irq = irq;
1188
            /* FIXME: errors */
1189
            DPRINTF("injected interrupt %d\n", irq);
1190
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1191
        }
1192
    }
1193

    
1194
    /* If we have an interrupt but the guest is not ready to receive an
1195
     * interrupt, request an interrupt window exit.  This will
1196
     * cause a return to userspace as soon as the guest is ready to
1197
     * receive interrupts. */
1198
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1199
        run->request_interrupt_window = 1;
1200
    else
1201
        run->request_interrupt_window = 0;
1202

    
1203
    DPRINTF("setting tpr\n");
1204
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1205

    
1206
    return 0;
1207
}
1208

    
1209
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1210
{
1211
    if (run->if_flag)
1212
        env->eflags |= IF_MASK;
1213
    else
1214
        env->eflags &= ~IF_MASK;
1215
    
1216
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1217
    cpu_set_apic_base(env->apic_state, run->apic_base);
1218

    
1219
    return 0;
1220
}
1221

    
1222
int kvm_arch_process_irqchip_events(CPUState *env)
1223
{
1224
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1225
        kvm_cpu_synchronize_state(env);
1226
        do_cpu_init(env);
1227
        env->exception_index = EXCP_HALTED;
1228
    }
1229

    
1230
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1231
        kvm_cpu_synchronize_state(env);
1232
        do_cpu_sipi(env);
1233
    }
1234

    
1235
    return env->halted;
1236
}
1237

    
1238
static int kvm_handle_halt(CPUState *env)
1239
{
1240
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1241
          (env->eflags & IF_MASK)) &&
1242
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1243
        env->halted = 1;
1244
        env->exception_index = EXCP_HLT;
1245
        return 0;
1246
    }
1247

    
1248
    return 1;
1249
}
1250

    
1251
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1252
{
1253
    int ret = 0;
1254

    
1255
    switch (run->exit_reason) {
1256
    case KVM_EXIT_HLT:
1257
        DPRINTF("handle_hlt\n");
1258
        ret = kvm_handle_halt(env);
1259
        break;
1260
    }
1261

    
1262
    return ret;
1263
}
1264

    
1265
#ifdef KVM_CAP_SET_GUEST_DEBUG
1266
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1267
{
1268
    static const uint8_t int3 = 0xcc;
1269

    
1270
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1271
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1272
        return -EINVAL;
1273
    return 0;
1274
}
1275

    
1276
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1277
{
1278
    uint8_t int3;
1279

    
1280
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1281
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1282
        return -EINVAL;
1283
    return 0;
1284
}
1285

    
1286
static struct {
1287
    target_ulong addr;
1288
    int len;
1289
    int type;
1290
} hw_breakpoint[4];
1291

    
1292
static int nb_hw_breakpoint;
1293

    
1294
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1295
{
1296
    int n;
1297

    
1298
    for (n = 0; n < nb_hw_breakpoint; n++)
1299
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1300
            (hw_breakpoint[n].len == len || len == -1))
1301
            return n;
1302
    return -1;
1303
}
1304

    
1305
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1306
                                  target_ulong len, int type)
1307
{
1308
    switch (type) {
1309
    case GDB_BREAKPOINT_HW:
1310
        len = 1;
1311
        break;
1312
    case GDB_WATCHPOINT_WRITE:
1313
    case GDB_WATCHPOINT_ACCESS:
1314
        switch (len) {
1315
        case 1:
1316
            break;
1317
        case 2:
1318
        case 4:
1319
        case 8:
1320
            if (addr & (len - 1))
1321
                return -EINVAL;
1322
            break;
1323
        default:
1324
            return -EINVAL;
1325
        }
1326
        break;
1327
    default:
1328
        return -ENOSYS;
1329
    }
1330

    
1331
    if (nb_hw_breakpoint == 4)
1332
        return -ENOBUFS;
1333

    
1334
    if (find_hw_breakpoint(addr, len, type) >= 0)
1335
        return -EEXIST;
1336

    
1337
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1338
    hw_breakpoint[nb_hw_breakpoint].len = len;
1339
    hw_breakpoint[nb_hw_breakpoint].type = type;
1340
    nb_hw_breakpoint++;
1341

    
1342
    return 0;
1343
}
1344

    
1345
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1346
                                  target_ulong len, int type)
1347
{
1348
    int n;
1349

    
1350
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1351
    if (n < 0)
1352
        return -ENOENT;
1353

    
1354
    nb_hw_breakpoint--;
1355
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1356

    
1357
    return 0;
1358
}
1359

    
1360
void kvm_arch_remove_all_hw_breakpoints(void)
1361
{
1362
    nb_hw_breakpoint = 0;
1363
}
1364

    
1365
static CPUWatchpoint hw_watchpoint;
1366

    
1367
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1368
{
1369
    int handle = 0;
1370
    int n;
1371

    
1372
    if (arch_info->exception == 1) {
1373
        if (arch_info->dr6 & (1 << 14)) {
1374
            if (cpu_single_env->singlestep_enabled)
1375
                handle = 1;
1376
        } else {
1377
            for (n = 0; n < 4; n++)
1378
                if (arch_info->dr6 & (1 << n))
1379
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1380
                    case 0x0:
1381
                        handle = 1;
1382
                        break;
1383
                    case 0x1:
1384
                        handle = 1;
1385
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1386
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1387
                        hw_watchpoint.flags = BP_MEM_WRITE;
1388
                        break;
1389
                    case 0x3:
1390
                        handle = 1;
1391
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1392
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1393
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1394
                        break;
1395
                    }
1396
        }
1397
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1398
        handle = 1;
1399

    
1400
    if (!handle) {
1401
        cpu_synchronize_state(cpu_single_env);
1402
        assert(cpu_single_env->exception_injected == -1);
1403

    
1404
        cpu_single_env->exception_injected = arch_info->exception;
1405
        cpu_single_env->has_error_code = 0;
1406
    }
1407

    
1408
    return handle;
1409
}
1410

    
1411
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1412
{
1413
    const uint8_t type_code[] = {
1414
        [GDB_BREAKPOINT_HW] = 0x0,
1415
        [GDB_WATCHPOINT_WRITE] = 0x1,
1416
        [GDB_WATCHPOINT_ACCESS] = 0x3
1417
    };
1418
    const uint8_t len_code[] = {
1419
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1420
    };
1421
    int n;
1422

    
1423
    if (kvm_sw_breakpoints_active(env))
1424
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1425

    
1426
    if (nb_hw_breakpoint > 0) {
1427
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1428
        dbg->arch.debugreg[7] = 0x0600;
1429
        for (n = 0; n < nb_hw_breakpoint; n++) {
1430
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1431
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1432
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1433
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1434
        }
1435
    }
1436
    /* Legal xcr0 for loading */
1437
    env->xcr0 = 1;
1438
}
1439
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1440

    
1441
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1442
{
1443
      return !(env->cr[0] & CR0_PE_MASK) ||
1444
              ((env->segs[R_CS].selector  & 3) != 3);
1445
}
1446