Statistics
| Branch: | Revision:

root / hw / onenand.c @ 2ac71179

History | View | Annotate | Download (19.3 kB)

1
/*
2
 * OneNAND flash memories emulation.
3
 *
4
 * Copyright (C) 2008 Nokia Corporation
5
 * Written by Andrzej Zaborowski <andrew@openedhand.com>
6
 *
7
 * This program is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU General Public License as
9
 * published by the Free Software Foundation; either version 2 or
10
 * (at your option) version 3 of the License.
11
 *
12
 * This program is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15
 * GNU General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU General Public License along
18
 * with this program; if not, write to the Free Software Foundation, Inc.,
19
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
20
 */
21

    
22
#include "qemu-common.h"
23
#include "flash.h"
24
#include "irq.h"
25
#include "sysemu.h"
26
#include "block.h"
27

    
28
/* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */
29
#define PAGE_SHIFT        11
30

    
31
/* Fixed */
32
#define BLOCK_SHIFT        (PAGE_SHIFT + 6)
33

    
34
struct onenand_s {
35
    uint32_t id;
36
    int shift;
37
    target_phys_addr_t base;
38
    qemu_irq intr;
39
    qemu_irq rdy;
40
    BlockDriverState *bdrv;
41
    BlockDriverState *bdrv_cur;
42
    uint8_t *image;
43
    uint8_t *otp;
44
    uint8_t *current;
45
    ram_addr_t ram;
46
    uint8_t *boot[2];
47
    uint8_t *data[2][2];
48
    int iomemtype;
49
    int cycle;
50
    int otpmode;
51

    
52
    uint16_t addr[8];
53
    uint16_t unladdr[8];
54
    int bufaddr;
55
    int count;
56
    uint16_t command;
57
    uint16_t config[2];
58
    uint16_t status;
59
    uint16_t intstatus;
60
    uint16_t wpstatus;
61

    
62
    struct ecc_state_s ecc;
63

    
64
    int density_mask;
65
    int secs;
66
    int secs_cur;
67
    int blocks;
68
    uint8_t *blockwp;
69
};
70

    
71
enum {
72
    ONEN_BUF_BLOCK = 0,
73
    ONEN_BUF_BLOCK2 = 1,
74
    ONEN_BUF_DEST_BLOCK = 2,
75
    ONEN_BUF_DEST_PAGE = 3,
76
    ONEN_BUF_PAGE = 7,
77
};
78

    
79
enum {
80
    ONEN_ERR_CMD = 1 << 10,
81
    ONEN_ERR_ERASE = 1 << 11,
82
    ONEN_ERR_PROG = 1 << 12,
83
    ONEN_ERR_LOAD = 1 << 13,
84
};
85

    
86
enum {
87
    ONEN_INT_RESET = 1 << 4,
88
    ONEN_INT_ERASE = 1 << 5,
89
    ONEN_INT_PROG = 1 << 6,
90
    ONEN_INT_LOAD = 1 << 7,
91
    ONEN_INT = 1 << 15,
92
};
93

    
94
enum {
95
    ONEN_LOCK_LOCKTIGHTEN = 1 << 0,
96
    ONEN_LOCK_LOCKED = 1 << 1,
97
    ONEN_LOCK_UNLOCKED = 1 << 2,
98
};
99

    
100
void onenand_base_update(void *opaque, target_phys_addr_t new)
101
{
102
    struct onenand_s *s = (struct onenand_s *) opaque;
103

    
104
    s->base = new;
105

    
106
    /* XXX: We should use IO_MEM_ROMD but we broke it earlier...
107
     * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to
108
     * write boot commands.  Also take note of the BWPS bit.  */
109
    cpu_register_physical_memory(s->base + (0x0000 << s->shift),
110
                    0x0200 << s->shift, s->iomemtype);
111
    cpu_register_physical_memory(s->base + (0x0200 << s->shift),
112
                    0xbe00 << s->shift,
113
                    (s->ram +(0x0200 << s->shift)) | IO_MEM_RAM);
114
    if (s->iomemtype)
115
        cpu_register_physical_memory_offset(s->base + (0xc000 << s->shift),
116
                    0x4000 << s->shift, s->iomemtype, (0xc000 << s->shift));
117
}
118

    
119
void onenand_base_unmap(void *opaque)
120
{
121
    struct onenand_s *s = (struct onenand_s *) opaque;
122

    
123
    cpu_register_physical_memory(s->base,
124
                    0x10000 << s->shift, IO_MEM_UNASSIGNED);
125
}
126

    
127
static void onenand_intr_update(struct onenand_s *s)
128
{
129
    qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1);
130
}
131

    
132
/* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */
133
static void onenand_reset(struct onenand_s *s, int cold)
134
{
135
    memset(&s->addr, 0, sizeof(s->addr));
136
    s->command = 0;
137
    s->count = 1;
138
    s->bufaddr = 0;
139
    s->config[0] = 0x40c0;
140
    s->config[1] = 0x0000;
141
    onenand_intr_update(s);
142
    qemu_irq_raise(s->rdy);
143
    s->status = 0x0000;
144
    s->intstatus = cold ? 0x8080 : 0x8010;
145
    s->unladdr[0] = 0;
146
    s->unladdr[1] = 0;
147
    s->wpstatus = 0x0002;
148
    s->cycle = 0;
149
    s->otpmode = 0;
150
    s->bdrv_cur = s->bdrv;
151
    s->current = s->image;
152
    s->secs_cur = s->secs;
153

    
154
    if (cold) {
155
        /* Lock the whole flash */
156
        memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks);
157

    
158
        if (s->bdrv && bdrv_read(s->bdrv, 0, s->boot[0], 8) < 0)
159
            hw_error("%s: Loading the BootRAM failed.\n", __FUNCTION__);
160
    }
161
}
162

    
163
static inline int onenand_load_main(struct onenand_s *s, int sec, int secn,
164
                void *dest)
165
{
166
    if (s->bdrv_cur)
167
        return bdrv_read(s->bdrv_cur, sec, dest, secn) < 0;
168
    else if (sec + secn > s->secs_cur)
169
        return 1;
170

    
171
    memcpy(dest, s->current + (sec << 9), secn << 9);
172

    
173
    return 0;
174
}
175

    
176
static inline int onenand_prog_main(struct onenand_s *s, int sec, int secn,
177
                void *src)
178
{
179
    if (s->bdrv_cur)
180
        return bdrv_write(s->bdrv_cur, sec, src, secn) < 0;
181
    else if (sec + secn > s->secs_cur)
182
        return 1;
183

    
184
    memcpy(s->current + (sec << 9), src, secn << 9);
185

    
186
    return 0;
187
}
188

    
189
static inline int onenand_load_spare(struct onenand_s *s, int sec, int secn,
190
                void *dest)
191
{
192
    uint8_t buf[512];
193

    
194
    if (s->bdrv_cur) {
195
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
196
            return 1;
197
        memcpy(dest, buf + ((sec & 31) << 4), secn << 4);
198
    } else if (sec + secn > s->secs_cur)
199
        return 1;
200
    else
201
        memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4);
202
 
203
    return 0;
204
}
205

    
206
static inline int onenand_prog_spare(struct onenand_s *s, int sec, int secn,
207
                void *src)
208
{
209
    uint8_t buf[512];
210

    
211
    if (s->bdrv_cur) {
212
        if (bdrv_read(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0)
213
            return 1;
214
        memcpy(buf + ((sec & 31) << 4), src, secn << 4);
215
        return bdrv_write(s->bdrv_cur, s->secs_cur + (sec >> 5), buf, 1) < 0;
216
    } else if (sec + secn > s->secs_cur)
217
        return 1;
218

    
219
    memcpy(s->current + (s->secs_cur << 9) + (sec << 4), src, secn << 4);
220
 
221
    return 0;
222
}
223

    
224
static inline int onenand_erase(struct onenand_s *s, int sec, int num)
225
{
226
    /* TODO: optimise */
227
    uint8_t buf[512];
228

    
229
    memset(buf, 0xff, sizeof(buf));
230
    for (; num > 0; num --, sec ++) {
231
        if (onenand_prog_main(s, sec, 1, buf))
232
            return 1;
233
        if (onenand_prog_spare(s, sec, 1, buf))
234
            return 1;
235
    }
236

    
237
    return 0;
238
}
239

    
240
static void onenand_command(struct onenand_s *s, int cmd)
241
{
242
    int b;
243
    int sec;
244
    void *buf;
245
#define SETADDR(block, page)                        \
246
    sec = (s->addr[page] & 3) +                        \
247
            ((((s->addr[page] >> 2) & 0x3f) +        \
248
              (((s->addr[block] & 0xfff) |        \
249
                (s->addr[block] >> 15 ?                \
250
                 s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9));
251
#define SETBUF_M()                                \
252
    buf = (s->bufaddr & 8) ?                        \
253
            s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0];        \
254
    buf += (s->bufaddr & 3) << 9;
255
#define SETBUF_S()                                \
256
    buf = (s->bufaddr & 8) ?                        \
257
            s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1];        \
258
    buf += (s->bufaddr & 3) << 4;
259

    
260
    switch (cmd) {
261
    case 0x00:        /* Load single/multiple sector data unit into buffer */
262
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
263

    
264
        SETBUF_M()
265
        if (onenand_load_main(s, sec, s->count, buf))
266
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
267

    
268
#if 0
269
        SETBUF_S()
270
        if (onenand_load_spare(s, sec, s->count, buf))
271
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
272
#endif
273

    
274
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
275
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
276
         * then we need two split the read/write into two chunks.
277
         */
278
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
279
        break;
280
    case 0x13:        /* Load single/multiple spare sector into buffer */
281
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
282

    
283
        SETBUF_S()
284
        if (onenand_load_spare(s, sec, s->count, buf))
285
            s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD;
286

    
287
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
288
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
289
         * then we need two split the read/write into two chunks.
290
         */
291
        s->intstatus |= ONEN_INT | ONEN_INT_LOAD;
292
        break;
293
    case 0x80:        /* Program single/multiple sector data unit from buffer */
294
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
295

    
296
        SETBUF_M()
297
        if (onenand_prog_main(s, sec, s->count, buf))
298
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
299

    
300
#if 0
301
        SETBUF_S()
302
        if (onenand_prog_spare(s, sec, s->count, buf))
303
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
304
#endif
305

    
306
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
307
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
308
         * then we need two split the read/write into two chunks.
309
         */
310
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
311
        break;
312
    case 0x1a:        /* Program single/multiple spare area sector from buffer */
313
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
314

    
315
        SETBUF_S()
316
        if (onenand_prog_spare(s, sec, s->count, buf))
317
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
318

    
319
        /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages)
320
         * or    if (s->bufaddr & 1) + s->count was > 2 (1k-pages)
321
         * then we need two split the read/write into two chunks.
322
         */
323
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
324
        break;
325
    case 0x1b:        /* Copy-back program */
326
        SETBUF_S()
327

    
328
        SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
329
        if (onenand_load_main(s, sec, s->count, buf))
330
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
331

    
332
        SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE)
333
        if (onenand_prog_main(s, sec, s->count, buf))
334
            s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG;
335

    
336
        /* TODO: spare areas */
337

    
338
        s->intstatus |= ONEN_INT | ONEN_INT_PROG;
339
        break;
340

    
341
    case 0x23:        /* Unlock NAND array block(s) */
342
        s->intstatus |= ONEN_INT;
343

    
344
        /* XXX the previous (?) area should be locked automatically */
345
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
346
            if (b >= s->blocks) {
347
                s->status |= ONEN_ERR_CMD;
348
                break;
349
            }
350
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
351
                break;
352

    
353
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
354
        }
355
        break;
356
    case 0x27:        /* Unlock All NAND array blocks */
357
        s->intstatus |= ONEN_INT;
358

    
359
        for (b = 0; b < s->blocks; b ++) {
360
            if (b >= s->blocks) {
361
                s->status |= ONEN_ERR_CMD;
362
                break;
363
            }
364
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
365
                break;
366

    
367
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED;
368
        }
369
        break;
370

    
371
    case 0x2a:        /* Lock NAND array block(s) */
372
        s->intstatus |= ONEN_INT;
373

    
374
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
375
            if (b >= s->blocks) {
376
                s->status |= ONEN_ERR_CMD;
377
                break;
378
            }
379
            if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN)
380
                break;
381

    
382
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED;
383
        }
384
        break;
385
    case 0x2c:        /* Lock-tight NAND array block(s) */
386
        s->intstatus |= ONEN_INT;
387

    
388
        for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) {
389
            if (b >= s->blocks) {
390
                s->status |= ONEN_ERR_CMD;
391
                break;
392
            }
393
            if (s->blockwp[b] == ONEN_LOCK_UNLOCKED)
394
                continue;
395

    
396
            s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN;
397
        }
398
        break;
399

    
400
    case 0x71:        /* Erase-Verify-Read */
401
        s->intstatus |= ONEN_INT;
402
        break;
403
    case 0x95:        /* Multi-block erase */
404
        qemu_irq_pulse(s->intr);
405
        /* Fall through.  */
406
    case 0x94:        /* Block erase */
407
        sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) |
408
                        (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0))
409
                << (BLOCK_SHIFT - 9);
410
        if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9)))
411
            s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE;
412

    
413
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
414
        break;
415
    case 0xb0:        /* Erase suspend */
416
        break;
417
    case 0x30:        /* Erase resume */
418
        s->intstatus |= ONEN_INT | ONEN_INT_ERASE;
419
        break;
420

    
421
    case 0xf0:        /* Reset NAND Flash core */
422
        onenand_reset(s, 0);
423
        break;
424
    case 0xf3:        /* Reset OneNAND */
425
        onenand_reset(s, 0);
426
        break;
427

    
428
    case 0x65:        /* OTP Access */
429
        s->intstatus |= ONEN_INT;
430
        s->bdrv_cur = 0;
431
        s->current = s->otp;
432
        s->secs_cur = 1 << (BLOCK_SHIFT - 9);
433
        s->addr[ONEN_BUF_BLOCK] = 0;
434
        s->otpmode = 1;
435
        break;
436

    
437
    default:
438
        s->status |= ONEN_ERR_CMD;
439
        s->intstatus |= ONEN_INT;
440
        fprintf(stderr, "%s: unknown OneNAND command %x\n",
441
                        __FUNCTION__, cmd);
442
    }
443

    
444
    onenand_intr_update(s);
445
}
446

    
447
static uint32_t onenand_read(void *opaque, target_phys_addr_t addr)
448
{
449
    struct onenand_s *s = (struct onenand_s *) opaque;
450
    int offset = addr >> s->shift;
451

    
452
    switch (offset) {
453
    case 0x0000 ... 0xc000:
454
        return lduw_le_p(s->boot[0] + addr);
455

    
456
    case 0xf000:        /* Manufacturer ID */
457
        return (s->id >> 16) & 0xff;
458
    case 0xf001:        /* Device ID */
459
        return (s->id >>  8) & 0xff;
460
    /* TODO: get the following values from a real chip!  */
461
    case 0xf002:        /* Version ID */
462
        return (s->id >>  0) & 0xff;
463
    case 0xf003:        /* Data Buffer size */
464
        return 1 << PAGE_SHIFT;
465
    case 0xf004:        /* Boot Buffer size */
466
        return 0x200;
467
    case 0xf005:        /* Amount of buffers */
468
        return 1 | (2 << 8);
469
    case 0xf006:        /* Technology */
470
        return 0;
471

    
472
    case 0xf100 ... 0xf107:        /* Start addresses */
473
        return s->addr[offset - 0xf100];
474

    
475
    case 0xf200:        /* Start buffer */
476
        return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10)));
477

    
478
    case 0xf220:        /* Command */
479
        return s->command;
480
    case 0xf221:        /* System Configuration 1 */
481
        return s->config[0] & 0xffe0;
482
    case 0xf222:        /* System Configuration 2 */
483
        return s->config[1];
484

    
485
    case 0xf240:        /* Controller Status */
486
        return s->status;
487
    case 0xf241:        /* Interrupt */
488
        return s->intstatus;
489
    case 0xf24c:        /* Unlock Start Block Address */
490
        return s->unladdr[0];
491
    case 0xf24d:        /* Unlock End Block Address */
492
        return s->unladdr[1];
493
    case 0xf24e:        /* Write Protection Status */
494
        return s->wpstatus;
495

    
496
    case 0xff00:        /* ECC Status */
497
        return 0x00;
498
    case 0xff01:        /* ECC Result of main area data */
499
    case 0xff02:        /* ECC Result of spare area data */
500
    case 0xff03:        /* ECC Result of main area data */
501
    case 0xff04:        /* ECC Result of spare area data */
502
        hw_error("%s: imeplement ECC\n", __FUNCTION__);
503
        return 0x0000;
504
    }
505

    
506
    fprintf(stderr, "%s: unknown OneNAND register %x\n",
507
                    __FUNCTION__, offset);
508
    return 0;
509
}
510

    
511
static void onenand_write(void *opaque, target_phys_addr_t addr,
512
                uint32_t value)
513
{
514
    struct onenand_s *s = (struct onenand_s *) opaque;
515
    int offset = addr >> s->shift;
516
    int sec;
517

    
518
    switch (offset) {
519
    case 0x0000 ... 0x01ff:
520
    case 0x8000 ... 0x800f:
521
        if (s->cycle) {
522
            s->cycle = 0;
523

    
524
            if (value == 0x0000) {
525
                SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE)
526
                onenand_load_main(s, sec,
527
                                1 << (PAGE_SHIFT - 9), s->data[0][0]);
528
                s->addr[ONEN_BUF_PAGE] += 4;
529
                s->addr[ONEN_BUF_PAGE] &= 0xff;
530
            }
531
            break;
532
        }
533

    
534
        switch (value) {
535
        case 0x00f0:        /* Reset OneNAND */
536
            onenand_reset(s, 0);
537
            break;
538

    
539
        case 0x00e0:        /* Load Data into Buffer */
540
            s->cycle = 1;
541
            break;
542

    
543
        case 0x0090:        /* Read Identification Data */
544
            memset(s->boot[0], 0, 3 << s->shift);
545
            s->boot[0][0 << s->shift] = (s->id >> 16) & 0xff;
546
            s->boot[0][1 << s->shift] = (s->id >>  8) & 0xff;
547
            s->boot[0][2 << s->shift] = s->wpstatus & 0xff;
548
            break;
549

    
550
        default:
551
            fprintf(stderr, "%s: unknown OneNAND boot command %x\n",
552
                            __FUNCTION__, value);
553
        }
554
        break;
555

    
556
    case 0xf100 ... 0xf107:        /* Start addresses */
557
        s->addr[offset - 0xf100] = value;
558
        break;
559

    
560
    case 0xf200:        /* Start buffer */
561
        s->bufaddr = (value >> 8) & 0xf;
562
        if (PAGE_SHIFT == 11)
563
            s->count = (value & 3) ?: 4;
564
        else if (PAGE_SHIFT == 10)
565
            s->count = (value & 1) ?: 2;
566
        break;
567

    
568
    case 0xf220:        /* Command */
569
        if (s->intstatus & (1 << 15))
570
            break;
571
        s->command = value;
572
        onenand_command(s, s->command);
573
        break;
574
    case 0xf221:        /* System Configuration 1 */
575
        s->config[0] = value;
576
        onenand_intr_update(s);
577
        qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1);
578
        break;
579
    case 0xf222:        /* System Configuration 2 */
580
        s->config[1] = value;
581
        break;
582

    
583
    case 0xf241:        /* Interrupt */
584
        s->intstatus &= value;
585
        if ((1 << 15) & ~s->intstatus)
586
            s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE |
587
                            ONEN_ERR_PROG | ONEN_ERR_LOAD);
588
        onenand_intr_update(s);
589
        break;
590
    case 0xf24c:        /* Unlock Start Block Address */
591
        s->unladdr[0] = value & (s->blocks - 1);
592
        /* For some reason we have to set the end address to by default
593
         * be same as start because the software forgets to write anything
594
         * in there.  */
595
        s->unladdr[1] = value & (s->blocks - 1);
596
        break;
597
    case 0xf24d:        /* Unlock End Block Address */
598
        s->unladdr[1] = value & (s->blocks - 1);
599
        break;
600

    
601
    default:
602
        fprintf(stderr, "%s: unknown OneNAND register %x\n",
603
                        __FUNCTION__, offset);
604
    }
605
}
606

    
607
static CPUReadMemoryFunc *onenand_readfn[] = {
608
    onenand_read,        /* TODO */
609
    onenand_read,
610
    onenand_read,
611
};
612

    
613
static CPUWriteMemoryFunc *onenand_writefn[] = {
614
    onenand_write,        /* TODO */
615
    onenand_write,
616
    onenand_write,
617
};
618

    
619
void *onenand_init(uint32_t id, int regshift, qemu_irq irq)
620
{
621
    struct onenand_s *s = (struct onenand_s *) qemu_mallocz(sizeof(*s));
622
    int bdrv_index = drive_get_index(IF_MTD, 0, 0);
623
    uint32_t size = 1 << (24 + ((id >> 12) & 7));
624
    void *ram;
625

    
626
    s->shift = regshift;
627
    s->intr = irq;
628
    s->rdy = 0;
629
    s->id = id;
630
    s->blocks = size >> BLOCK_SHIFT;
631
    s->secs = size >> 9;
632
    s->blockwp = qemu_malloc(s->blocks);
633
    s->density_mask = (id & (1 << 11)) ? (1 << (6 + ((id >> 12) & 7))) : 0;
634
    s->iomemtype = cpu_register_io_memory(0, onenand_readfn,
635
                    onenand_writefn, s);
636
    if (bdrv_index == -1)
637
        s->image = memset(qemu_malloc(size + (size >> 5)),
638
                        0xff, size + (size >> 5));
639
    else
640
        s->bdrv = drives_table[bdrv_index].bdrv;
641
    s->otp = memset(qemu_malloc((64 + 2) << PAGE_SHIFT),
642
                    0xff, (64 + 2) << PAGE_SHIFT);
643
    s->ram = qemu_ram_alloc(0xc000 << s->shift);
644
    ram = qemu_get_ram_ptr(s->ram);
645
    s->boot[0] = ram + (0x0000 << s->shift);
646
    s->boot[1] = ram + (0x8000 << s->shift);
647
    s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift);
648
    s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift);
649
    s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift);
650
    s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift);
651

    
652
    onenand_reset(s, 1);
653

    
654
    return s;
655
}
656

    
657
void *onenand_raw_otp(void *opaque)
658
{
659
    struct onenand_s *s = (struct onenand_s *) opaque;
660

    
661
    return s->otp;
662
}