Statistics
| Branch: | Revision:

root / hw / pl181.c @ 2ac71179

History | View | Annotate | Download (13.4 kB)

1
/*
2
 * Arm PrimeCell PL181 MultiMedia Card Interface
3
 *
4
 * Copyright (c) 2007 CodeSourcery.
5
 * Written by Paul Brook
6
 *
7
 * This code is licenced under the GPL.
8
 */
9

    
10
#include "hw.h"
11
#include "primecell.h"
12
#include "sd.h"
13

    
14
//#define DEBUG_PL181 1
15

    
16
#ifdef DEBUG_PL181
17
#define DPRINTF(fmt, args...) \
18
do { printf("pl181: " fmt , ##args); } while (0)
19
#else
20
#define DPRINTF(fmt, args...) do {} while(0)
21
#endif
22

    
23
#define PL181_FIFO_LEN 16
24

    
25
typedef struct {
26
    SDState *card;
27
    uint32_t clock;
28
    uint32_t power;
29
    uint32_t cmdarg;
30
    uint32_t cmd;
31
    uint32_t datatimer;
32
    uint32_t datalength;
33
    uint32_t respcmd;
34
    uint32_t response[4];
35
    uint32_t datactrl;
36
    uint32_t datacnt;
37
    uint32_t status;
38
    uint32_t mask[2];
39
    int fifo_pos;
40
    int fifo_len;
41
    /* The linux 2.6.21 driver is buggy, and misbehaves if new data arrives
42
       while it is reading the FIFO.  We hack around this be defering
43
       subsequent transfers until after the driver polls the status word.
44
       http://www.arm.linux.org.uk/developer/patches/viewpatch.php?id=4446/1
45
     */
46
    int linux_hack;
47
    uint32_t fifo[PL181_FIFO_LEN];
48
    qemu_irq irq[2];
49
} pl181_state;
50

    
51
#define PL181_CMD_INDEX     0x3f
52
#define PL181_CMD_RESPONSE  (1 << 6)
53
#define PL181_CMD_LONGRESP  (1 << 7)
54
#define PL181_CMD_INTERRUPT (1 << 8)
55
#define PL181_CMD_PENDING   (1 << 9)
56
#define PL181_CMD_ENABLE    (1 << 10)
57

    
58
#define PL181_DATA_ENABLE             (1 << 0)
59
#define PL181_DATA_DIRECTION          (1 << 1)
60
#define PL181_DATA_MODE               (1 << 2)
61
#define PL181_DATA_DMAENABLE          (1 << 3)
62

    
63
#define PL181_STATUS_CMDCRCFAIL       (1 << 0)
64
#define PL181_STATUS_DATACRCFAIL      (1 << 1)
65
#define PL181_STATUS_CMDTIMEOUT       (1 << 2)
66
#define PL181_STATUS_DATATIMEOUT      (1 << 3)
67
#define PL181_STATUS_TXUNDERRUN       (1 << 4)
68
#define PL181_STATUS_RXOVERRUN        (1 << 5)
69
#define PL181_STATUS_CMDRESPEND       (1 << 6)
70
#define PL181_STATUS_CMDSENT          (1 << 7)
71
#define PL181_STATUS_DATAEND          (1 << 8)
72
#define PL181_STATUS_DATABLOCKEND     (1 << 10)
73
#define PL181_STATUS_CMDACTIVE        (1 << 11)
74
#define PL181_STATUS_TXACTIVE         (1 << 12)
75
#define PL181_STATUS_RXACTIVE         (1 << 13)
76
#define PL181_STATUS_TXFIFOHALFEMPTY  (1 << 14)
77
#define PL181_STATUS_RXFIFOHALFFULL   (1 << 15)
78
#define PL181_STATUS_TXFIFOFULL       (1 << 16)
79
#define PL181_STATUS_RXFIFOFULL       (1 << 17)
80
#define PL181_STATUS_TXFIFOEMPTY      (1 << 18)
81
#define PL181_STATUS_RXFIFOEMPTY      (1 << 19)
82
#define PL181_STATUS_TXDATAAVLBL      (1 << 20)
83
#define PL181_STATUS_RXDATAAVLBL      (1 << 21)
84

    
85
#define PL181_STATUS_TX_FIFO (PL181_STATUS_TXACTIVE \
86
                             |PL181_STATUS_TXFIFOHALFEMPTY \
87
                             |PL181_STATUS_TXFIFOFULL \
88
                             |PL181_STATUS_TXFIFOEMPTY \
89
                             |PL181_STATUS_TXDATAAVLBL)
90
#define PL181_STATUS_RX_FIFO (PL181_STATUS_RXACTIVE \
91
                             |PL181_STATUS_RXFIFOHALFFULL \
92
                             |PL181_STATUS_RXFIFOFULL \
93
                             |PL181_STATUS_RXFIFOEMPTY \
94
                             |PL181_STATUS_RXDATAAVLBL)
95

    
96
static const unsigned char pl181_id[] =
97
{ 0x81, 0x11, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1 };
98

    
99
static void pl181_update(pl181_state *s)
100
{
101
    int i;
102
    for (i = 0; i < 2; i++) {
103
        qemu_set_irq(s->irq[i], (s->status & s->mask[i]) != 0);
104
    }
105
}
106

    
107
static void pl181_fifo_push(pl181_state *s, uint32_t value)
108
{
109
    int n;
110

    
111
    if (s->fifo_len == PL181_FIFO_LEN) {
112
        fprintf(stderr, "pl181: FIFO overflow\n");
113
        return;
114
    }
115
    n = (s->fifo_pos + s->fifo_len) & (PL181_FIFO_LEN - 1);
116
    s->fifo_len++;
117
    s->fifo[n] = value;
118
    DPRINTF("FIFO push %08x\n", (int)value);
119
}
120

    
121
static uint32_t pl181_fifo_pop(pl181_state *s)
122
{
123
    uint32_t value;
124

    
125
    if (s->fifo_len == 0) {
126
        fprintf(stderr, "pl181: FIFO underflow\n");
127
        return 0;
128
    }
129
    value = s->fifo[s->fifo_pos];
130
    s->fifo_len--;
131
    s->fifo_pos = (s->fifo_pos + 1) & (PL181_FIFO_LEN - 1);
132
    DPRINTF("FIFO pop %08x\n", (int)value);
133
    return value;
134
}
135

    
136
static void pl181_send_command(pl181_state *s)
137
{
138
    struct sd_request_s request;
139
    uint8_t response[16];
140
    int rlen;
141

    
142
    request.cmd = s->cmd & PL181_CMD_INDEX;
143
    request.arg = s->cmdarg;
144
    DPRINTF("Command %d %08x\n", request.cmd, request.arg);
145
    rlen = sd_do_command(s->card, &request, response);
146
    if (rlen < 0)
147
        goto error;
148
    if (s->cmd & PL181_CMD_RESPONSE) {
149
#define RWORD(n) ((response[n] << 24) | (response[n + 1] << 16) \
150
                  | (response[n + 2] << 8) | response[n + 3])
151
        if (rlen == 0 || (rlen == 4 && (s->cmd & PL181_CMD_LONGRESP)))
152
            goto error;
153
        if (rlen != 4 && rlen != 16)
154
            goto error;
155
        s->response[0] = RWORD(0);
156
        if (rlen == 4) {
157
            s->response[1] = s->response[2] = s->response[3] = 0;
158
        } else {
159
            s->response[1] = RWORD(4);
160
            s->response[2] = RWORD(8);
161
            s->response[3] = RWORD(12) & ~1;
162
        }
163
        DPRINTF("Response received\n");
164
        s->status |= PL181_STATUS_CMDRESPEND;
165
#undef RWORD
166
    } else {
167
        DPRINTF("Command sent\n");
168
        s->status |= PL181_STATUS_CMDSENT;
169
    }
170
    return;
171

    
172
error:
173
    DPRINTF("Timeout\n");
174
    s->status |= PL181_STATUS_CMDTIMEOUT;
175
}
176

    
177
/* Transfer data between the card and the FIFO.  This is complicated by
178
   the FIFO holding 32-bit words and the card taking data in single byte
179
   chunks.  FIFO bytes are transferred in little-endian order.  */
180

    
181
static void pl181_fifo_run(pl181_state *s)
182
{
183
    uint32_t bits;
184
    uint32_t value;
185
    int n;
186
    int limit;
187
    int is_read;
188

    
189
    is_read = (s->datactrl & PL181_DATA_DIRECTION) != 0;
190
    if (s->datacnt != 0 && (!is_read || sd_data_ready(s->card))
191
            && !s->linux_hack) {
192
        limit = is_read ? PL181_FIFO_LEN : 0;
193
        n = 0;
194
        value = 0;
195
        while (s->datacnt && s->fifo_len != limit) {
196
            if (is_read) {
197
                value |= (uint32_t)sd_read_data(s->card) << (n * 8);
198
                n++;
199
                if (n == 4) {
200
                    pl181_fifo_push(s, value);
201
                    value = 0;
202
                    n = 0;
203
                }
204
            } else {
205
                if (n == 0) {
206
                    value = pl181_fifo_pop(s);
207
                    n = 4;
208
                }
209
                sd_write_data(s->card, value & 0xff);
210
                value >>= 8;
211
                n--;
212
            }
213
            s->datacnt--;
214
        }
215
        if (n && is_read) {
216
            pl181_fifo_push(s, value);
217
        }
218
    }
219
    s->status &= ~(PL181_STATUS_RX_FIFO | PL181_STATUS_TX_FIFO);
220
    if (s->datacnt == 0) {
221
        s->status |= PL181_STATUS_DATAEND;
222
        /* HACK: */
223
        s->status |= PL181_STATUS_DATABLOCKEND;
224
        DPRINTF("Transfer Complete\n");
225
    }
226
    if (s->datacnt == 0 && s->fifo_len == 0) {
227
        s->datactrl &= ~PL181_DATA_ENABLE;
228
        DPRINTF("Data engine idle\n");
229
    } else {
230
        /* Update FIFO bits.  */
231
        bits = PL181_STATUS_TXACTIVE | PL181_STATUS_RXACTIVE;
232
        if (s->fifo_len == 0) {
233
            bits |= PL181_STATUS_TXFIFOEMPTY;
234
            bits |= PL181_STATUS_RXFIFOEMPTY;
235
        } else {
236
            bits |= PL181_STATUS_TXDATAAVLBL;
237
            bits |= PL181_STATUS_RXDATAAVLBL;
238
        }
239
        if (s->fifo_len == 16) {
240
            bits |= PL181_STATUS_TXFIFOFULL;
241
            bits |= PL181_STATUS_RXFIFOFULL;
242
        }
243
        if (s->fifo_len <= 8) {
244
            bits |= PL181_STATUS_TXFIFOHALFEMPTY;
245
        }
246
        if (s->fifo_len >= 8) {
247
            bits |= PL181_STATUS_RXFIFOHALFFULL;
248
        }
249
        if (s->datactrl & PL181_DATA_DIRECTION) {
250
            bits &= PL181_STATUS_RX_FIFO;
251
        } else {
252
            bits &= PL181_STATUS_TX_FIFO;
253
        }
254
        s->status |= bits;
255
    }
256
}
257

    
258
static uint32_t pl181_read(void *opaque, target_phys_addr_t offset)
259
{
260
    pl181_state *s = (pl181_state *)opaque;
261
    uint32_t tmp;
262

    
263
    if (offset >= 0xfe0 && offset < 0x1000) {
264
        return pl181_id[(offset - 0xfe0) >> 2];
265
    }
266
    switch (offset) {
267
    case 0x00: /* Power */
268
        return s->power;
269
    case 0x04: /* Clock */
270
        return s->clock;
271
    case 0x08: /* Argument */
272
        return s->cmdarg;
273
    case 0x0c: /* Command */
274
        return s->cmd;
275
    case 0x10: /* RespCmd */
276
        return s->respcmd;
277
    case 0x14: /* Response0 */
278
        return s->response[0];
279
    case 0x18: /* Response1 */
280
        return s->response[1];
281
    case 0x1c: /* Response2 */
282
        return s->response[2];
283
    case 0x20: /* Response3 */
284
        return s->response[3];
285
    case 0x24: /* DataTimer */
286
        return s->datatimer;
287
    case 0x28: /* DataLength */
288
        return s->datalength;
289
    case 0x2c: /* DataCtrl */
290
        return s->datactrl;
291
    case 0x30: /* DataCnt */
292
        return s->datacnt;
293
    case 0x34: /* Status */
294
        tmp = s->status;
295
        if (s->linux_hack) {
296
            s->linux_hack = 0;
297
            pl181_fifo_run(s);
298
            pl181_update(s);
299
        }
300
        return tmp;
301
    case 0x3c: /* Mask0 */
302
        return s->mask[0];
303
    case 0x40: /* Mask1 */
304
        return s->mask[1];
305
    case 0x48: /* FifoCnt */
306
        /* The documentation is somewhat vague about exactly what FifoCnt
307
           does.  On real hardware it appears to be when decrememnted
308
           when a word is transfered between the FIFO and the serial
309
           data engine.  DataCnt is decremented after each byte is
310
           transfered between the serial engine and the card.
311
           We don't emulate this level of detail, so both can be the same.  */
312
        tmp = (s->datacnt + 3) >> 2;
313
        if (s->linux_hack) {
314
            s->linux_hack = 0;
315
            pl181_fifo_run(s);
316
            pl181_update(s);
317
        }
318
        return tmp;
319
    case 0x80: case 0x84: case 0x88: case 0x8c: /* FifoData */
320
    case 0x90: case 0x94: case 0x98: case 0x9c:
321
    case 0xa0: case 0xa4: case 0xa8: case 0xac:
322
    case 0xb0: case 0xb4: case 0xb8: case 0xbc:
323
        if (s->fifo_len == 0) {
324
            fprintf(stderr, "pl181: Unexpected FIFO read\n");
325
            return 0;
326
        } else {
327
            uint32_t value;
328
            value = pl181_fifo_pop(s);
329
            s->linux_hack = 1;
330
            pl181_fifo_run(s);
331
            pl181_update(s);
332
            return value;
333
        }
334
    default:
335
        hw_error("pl181_read: Bad offset %x\n", (int)offset);
336
        return 0;
337
    }
338
}
339

    
340
static void pl181_write(void *opaque, target_phys_addr_t offset,
341
                          uint32_t value)
342
{
343
    pl181_state *s = (pl181_state *)opaque;
344

    
345
    switch (offset) {
346
    case 0x00: /* Power */
347
        s->power = value & 0xff;
348
        break;
349
    case 0x04: /* Clock */
350
        s->clock = value & 0xff;
351
        break;
352
    case 0x08: /* Argument */
353
        s->cmdarg = value;
354
        break;
355
    case 0x0c: /* Command */
356
        s->cmd = value;
357
        if (s->cmd & PL181_CMD_ENABLE) {
358
            if (s->cmd & PL181_CMD_INTERRUPT) {
359
                fprintf(stderr, "pl181: Interrupt mode not implemented\n");
360
                abort();
361
            } if (s->cmd & PL181_CMD_PENDING) {
362
                fprintf(stderr, "pl181: Pending commands not implemented\n");
363
                abort();
364
            } else {
365
                pl181_send_command(s);
366
                pl181_fifo_run(s);
367
            }
368
            /* The command has completed one way or the other.  */
369
            s->cmd &= ~PL181_CMD_ENABLE;
370
        }
371
        break;
372
    case 0x24: /* DataTimer */
373
        s->datatimer = value;
374
        break;
375
    case 0x28: /* DataLength */
376
        s->datalength = value & 0xffff;
377
        break;
378
    case 0x2c: /* DataCtrl */
379
        s->datactrl = value & 0xff;
380
        if (value & PL181_DATA_ENABLE) {
381
            s->datacnt = s->datalength;
382
            pl181_fifo_run(s);
383
        }
384
        break;
385
    case 0x38: /* Clear */
386
        s->status &= ~(value & 0x7ff);
387
        break;
388
    case 0x3c: /* Mask0 */
389
        s->mask[0] = value;
390
        break;
391
    case 0x40: /* Mask1 */
392
        s->mask[1] = value;
393
        break;
394
    case 0x80: case 0x84: case 0x88: case 0x8c: /* FifoData */
395
    case 0x90: case 0x94: case 0x98: case 0x9c:
396
    case 0xa0: case 0xa4: case 0xa8: case 0xac:
397
    case 0xb0: case 0xb4: case 0xb8: case 0xbc:
398
        if (s->datacnt == 0) {
399
            fprintf(stderr, "pl181: Unexpected FIFO write\n");
400
        } else {
401
            pl181_fifo_push(s, value);
402
            pl181_fifo_run(s);
403
        }
404
        break;
405
    default:
406
        hw_error("pl181_write: Bad offset %x\n", (int)offset);
407
    }
408
    pl181_update(s);
409
}
410

    
411
static CPUReadMemoryFunc *pl181_readfn[] = {
412
   pl181_read,
413
   pl181_read,
414
   pl181_read
415
};
416

    
417
static CPUWriteMemoryFunc *pl181_writefn[] = {
418
   pl181_write,
419
   pl181_write,
420
   pl181_write
421
};
422

    
423
static void pl181_reset(void *opaque)
424
{
425
    pl181_state *s = (pl181_state *)opaque;
426

    
427
    s->power = 0;
428
    s->cmdarg = 0;
429
    s->cmd = 0;
430
    s->datatimer = 0;
431
    s->datalength = 0;
432
    s->respcmd = 0;
433
    s->response[0] = 0;
434
    s->response[1] = 0;
435
    s->response[2] = 0;
436
    s->response[3] = 0;
437
    s->datatimer = 0;
438
    s->datalength = 0;
439
    s->datactrl = 0;
440
    s->datacnt = 0;
441
    s->status = 0;
442
    s->linux_hack = 0;
443
    s->mask[0] = 0;
444
    s->mask[1] = 0;
445
}
446

    
447
void pl181_init(uint32_t base, BlockDriverState *bd,
448
                qemu_irq irq0, qemu_irq irq1)
449
{
450
    int iomemtype;
451
    pl181_state *s;
452

    
453
    s = (pl181_state *)qemu_mallocz(sizeof(pl181_state));
454
    iomemtype = cpu_register_io_memory(0, pl181_readfn,
455
                                       pl181_writefn, s);
456
    cpu_register_physical_memory(base, 0x00001000, iomemtype);
457
    s->card = sd_init(bd, 0);
458
    s->irq[0] = irq0;
459
    s->irq[1] = irq1;
460
    qemu_register_reset(pl181_reset, s);
461
    pl181_reset(s);
462
    /* ??? Save/restore.  */
463
}