Statistics
| Branch: | Revision:

root / hw / pxa2xx_dma.c @ 2ac71179

History | View | Annotate | Download (15.8 kB)

1
/*
2
 * Intel XScale PXA255/270 DMA controller.
3
 *
4
 * Copyright (c) 2006 Openedhand Ltd.
5
 * Copyright (c) 2006 Thorsten Zitterell
6
 * Written by Andrzej Zaborowski <balrog@zabor.org>
7
 *
8
 * This code is licenced under the GPL.
9
 */
10

    
11
#include "hw.h"
12
#include "pxa.h"
13

    
14
struct pxa2xx_dma_channel_s {
15
    target_phys_addr_t descr;
16
    target_phys_addr_t src;
17
    target_phys_addr_t dest;
18
    uint32_t cmd;
19
    uint32_t state;
20
    int request;
21
};
22

    
23
/* Allow the DMA to be used as a PIC.  */
24
typedef void (*pxa2xx_dma_handler_t)(void *opaque, int irq, int level);
25

    
26
struct pxa2xx_dma_state_s {
27
    pxa2xx_dma_handler_t handler;
28
    qemu_irq irq;
29

    
30
    uint32_t stopintr;
31
    uint32_t eorintr;
32
    uint32_t rasintr;
33
    uint32_t startintr;
34
    uint32_t endintr;
35

    
36
    uint32_t align;
37
    uint32_t pio;
38

    
39
    int channels;
40
    struct pxa2xx_dma_channel_s *chan;
41

    
42
    uint8_t *req;
43

    
44
    /* Flag to avoid recursive DMA invocations.  */
45
    int running;
46
};
47

    
48
#define PXA255_DMA_NUM_CHANNELS        16
49
#define PXA27X_DMA_NUM_CHANNELS        32
50

    
51
#define PXA2XX_DMA_NUM_REQUESTS        75
52

    
53
#define DCSR0        0x0000        /* DMA Control / Status register for Channel 0 */
54
#define DCSR31        0x007c        /* DMA Control / Status register for Channel 31 */
55
#define DALGN        0x00a0        /* DMA Alignment register */
56
#define DPCSR        0x00a4        /* DMA Programmed I/O Control Status register */
57
#define DRQSR0        0x00e0        /* DMA DREQ<0> Status register */
58
#define DRQSR1        0x00e4        /* DMA DREQ<1> Status register */
59
#define DRQSR2        0x00e8        /* DMA DREQ<2> Status register */
60
#define DINT        0x00f0        /* DMA Interrupt register */
61
#define DRCMR0        0x0100        /* Request to Channel Map register 0 */
62
#define DRCMR63        0x01fc        /* Request to Channel Map register 63 */
63
#define D_CH0        0x0200        /* Channel 0 Descriptor start */
64
#define DRCMR64        0x1100        /* Request to Channel Map register 64 */
65
#define DRCMR74        0x1128        /* Request to Channel Map register 74 */
66

    
67
/* Per-channel register */
68
#define DDADR        0x00
69
#define DSADR        0x01
70
#define DTADR        0x02
71
#define DCMD        0x03
72

    
73
/* Bit-field masks */
74
#define DRCMR_CHLNUM                0x1f
75
#define DRCMR_MAPVLD                (1 << 7)
76
#define DDADR_STOP                (1 << 0)
77
#define DDADR_BREN                (1 << 1)
78
#define DCMD_LEN                0x1fff
79
#define DCMD_WIDTH(x)                (1 << ((((x) >> 14) & 3) - 1))
80
#define DCMD_SIZE(x)                (4 << (((x) >> 16) & 3))
81
#define DCMD_FLYBYT                (1 << 19)
82
#define DCMD_FLYBYS                (1 << 20)
83
#define DCMD_ENDIRQEN                (1 << 21)
84
#define DCMD_STARTIRQEN                (1 << 22)
85
#define DCMD_CMPEN                (1 << 25)
86
#define DCMD_FLOWTRG                (1 << 28)
87
#define DCMD_FLOWSRC                (1 << 29)
88
#define DCMD_INCTRGADDR                (1 << 30)
89
#define DCMD_INCSRCADDR                (1 << 31)
90
#define DCSR_BUSERRINTR                (1 << 0)
91
#define DCSR_STARTINTR                (1 << 1)
92
#define DCSR_ENDINTR                (1 << 2)
93
#define DCSR_STOPINTR                (1 << 3)
94
#define DCSR_RASINTR                (1 << 4)
95
#define DCSR_REQPEND                (1 << 8)
96
#define DCSR_EORINT                (1 << 9)
97
#define DCSR_CMPST                (1 << 10)
98
#define DCSR_MASKRUN                (1 << 22)
99
#define DCSR_RASIRQEN                (1 << 23)
100
#define DCSR_CLRCMPST                (1 << 24)
101
#define DCSR_SETCMPST                (1 << 25)
102
#define DCSR_EORSTOPEN                (1 << 26)
103
#define DCSR_EORJMPEN                (1 << 27)
104
#define DCSR_EORIRQEN                (1 << 28)
105
#define DCSR_STOPIRQEN                (1 << 29)
106
#define DCSR_NODESCFETCH        (1 << 30)
107
#define DCSR_RUN                (1 << 31)
108

    
109
static inline void pxa2xx_dma_update(struct pxa2xx_dma_state_s *s, int ch)
110
{
111
    if (ch >= 0) {
112
        if ((s->chan[ch].state & DCSR_STOPIRQEN) &&
113
                (s->chan[ch].state & DCSR_STOPINTR))
114
            s->stopintr |= 1 << ch;
115
        else
116
            s->stopintr &= ~(1 << ch);
117

    
118
        if ((s->chan[ch].state & DCSR_EORIRQEN) &&
119
                (s->chan[ch].state & DCSR_EORINT))
120
            s->eorintr |= 1 << ch;
121
        else
122
            s->eorintr &= ~(1 << ch);
123

    
124
        if ((s->chan[ch].state & DCSR_RASIRQEN) &&
125
                (s->chan[ch].state & DCSR_RASINTR))
126
            s->rasintr |= 1 << ch;
127
        else
128
            s->rasintr &= ~(1 << ch);
129

    
130
        if (s->chan[ch].state & DCSR_STARTINTR)
131
            s->startintr |= 1 << ch;
132
        else
133
            s->startintr &= ~(1 << ch);
134

    
135
        if (s->chan[ch].state & DCSR_ENDINTR)
136
            s->endintr |= 1 << ch;
137
        else
138
            s->endintr &= ~(1 << ch);
139
    }
140

    
141
    if (s->stopintr | s->eorintr | s->rasintr | s->startintr | s->endintr)
142
        qemu_irq_raise(s->irq);
143
    else
144
        qemu_irq_lower(s->irq);
145
}
146

    
147
static inline void pxa2xx_dma_descriptor_fetch(
148
                struct pxa2xx_dma_state_s *s, int ch)
149
{
150
    uint32_t desc[4];
151
    target_phys_addr_t daddr = s->chan[ch].descr & ~0xf;
152
    if ((s->chan[ch].descr & DDADR_BREN) && (s->chan[ch].state & DCSR_CMPST))
153
        daddr += 32;
154

    
155
    cpu_physical_memory_read(daddr, (uint8_t *) desc, 16);
156
    s->chan[ch].descr = desc[DDADR];
157
    s->chan[ch].src = desc[DSADR];
158
    s->chan[ch].dest = desc[DTADR];
159
    s->chan[ch].cmd = desc[DCMD];
160

    
161
    if (s->chan[ch].cmd & DCMD_FLOWSRC)
162
        s->chan[ch].src &= ~3;
163
    if (s->chan[ch].cmd & DCMD_FLOWTRG)
164
        s->chan[ch].dest &= ~3;
165

    
166
    if (s->chan[ch].cmd & (DCMD_CMPEN | DCMD_FLYBYS | DCMD_FLYBYT))
167
        printf("%s: unsupported mode in channel %i\n", __FUNCTION__, ch);
168

    
169
    if (s->chan[ch].cmd & DCMD_STARTIRQEN)
170
        s->chan[ch].state |= DCSR_STARTINTR;
171
}
172

    
173
static void pxa2xx_dma_run(struct pxa2xx_dma_state_s *s)
174
{
175
    int c, srcinc, destinc;
176
    uint32_t n, size;
177
    uint32_t width;
178
    uint32_t length;
179
    uint8_t buffer[32];
180
    struct pxa2xx_dma_channel_s *ch;
181

    
182
    if (s->running ++)
183
        return;
184

    
185
    while (s->running) {
186
        s->running = 1;
187
        for (c = 0; c < s->channels; c ++) {
188
            ch = &s->chan[c];
189

    
190
            while ((ch->state & DCSR_RUN) && !(ch->state & DCSR_STOPINTR)) {
191
                /* Test for pending requests */
192
                if ((ch->cmd & (DCMD_FLOWSRC | DCMD_FLOWTRG)) && !ch->request)
193
                    break;
194

    
195
                length = ch->cmd & DCMD_LEN;
196
                size = DCMD_SIZE(ch->cmd);
197
                width = DCMD_WIDTH(ch->cmd);
198

    
199
                srcinc = (ch->cmd & DCMD_INCSRCADDR) ? width : 0;
200
                destinc = (ch->cmd & DCMD_INCTRGADDR) ? width : 0;
201

    
202
                while (length) {
203
                    size = MIN(length, size);
204

    
205
                    for (n = 0; n < size; n += width) {
206
                        cpu_physical_memory_read(ch->src, buffer + n, width);
207
                        ch->src += srcinc;
208
                    }
209

    
210
                    for (n = 0; n < size; n += width) {
211
                        cpu_physical_memory_write(ch->dest, buffer + n, width);
212
                        ch->dest += destinc;
213
                    }
214

    
215
                    length -= size;
216

    
217
                    if ((ch->cmd & (DCMD_FLOWSRC | DCMD_FLOWTRG)) &&
218
                            !ch->request) {
219
                        ch->state |= DCSR_EORINT;
220
                        if (ch->state & DCSR_EORSTOPEN)
221
                            ch->state |= DCSR_STOPINTR;
222
                        if ((ch->state & DCSR_EORJMPEN) &&
223
                                        !(ch->state & DCSR_NODESCFETCH))
224
                            pxa2xx_dma_descriptor_fetch(s, c);
225
                        break;
226
                    }
227
                }
228

    
229
                ch->cmd = (ch->cmd & ~DCMD_LEN) | length;
230

    
231
                /* Is the transfer complete now? */
232
                if (!length) {
233
                    if (ch->cmd & DCMD_ENDIRQEN)
234
                        ch->state |= DCSR_ENDINTR;
235

    
236
                    if ((ch->state & DCSR_NODESCFETCH) ||
237
                                (ch->descr & DDADR_STOP) ||
238
                                (ch->state & DCSR_EORSTOPEN)) {
239
                        ch->state |= DCSR_STOPINTR;
240
                        ch->state &= ~DCSR_RUN;
241

    
242
                        break;
243
                    }
244

    
245
                    ch->state |= DCSR_STOPINTR;
246
                    break;
247
                }
248
            }
249
        }
250

    
251
        s->running --;
252
    }
253
}
254

    
255
static uint32_t pxa2xx_dma_read(void *opaque, target_phys_addr_t offset)
256
{
257
    struct pxa2xx_dma_state_s *s = (struct pxa2xx_dma_state_s *) opaque;
258
    unsigned int channel;
259

    
260
    switch (offset) {
261
    case DRCMR64 ... DRCMR74:
262
        offset -= DRCMR64 - DRCMR0 - (64 << 2);
263
        /* Fall through */
264
    case DRCMR0 ... DRCMR63:
265
        channel = (offset - DRCMR0) >> 2;
266
        return s->req[channel];
267

    
268
    case DRQSR0:
269
    case DRQSR1:
270
    case DRQSR2:
271
        return 0;
272

    
273
    case DCSR0 ... DCSR31:
274
        channel = offset >> 2;
275
        if (s->chan[channel].request)
276
            return s->chan[channel].state | DCSR_REQPEND;
277
        return s->chan[channel].state;
278

    
279
    case DINT:
280
        return s->stopintr | s->eorintr | s->rasintr |
281
                s->startintr | s->endintr;
282

    
283
    case DALGN:
284
        return s->align;
285

    
286
    case DPCSR:
287
        return s->pio;
288
    }
289

    
290
    if (offset >= D_CH0 && offset < D_CH0 + (s->channels << 4)) {
291
        channel = (offset - D_CH0) >> 4;
292
        switch ((offset & 0x0f) >> 2) {
293
        case DDADR:
294
            return s->chan[channel].descr;
295
        case DSADR:
296
            return s->chan[channel].src;
297
        case DTADR:
298
            return s->chan[channel].dest;
299
        case DCMD:
300
            return s->chan[channel].cmd;
301
        }
302
    }
303

    
304
    hw_error("%s: Bad offset 0x" TARGET_FMT_plx "\n", __FUNCTION__, offset);
305
    return 7;
306
}
307

    
308
static void pxa2xx_dma_write(void *opaque,
309
                 target_phys_addr_t offset, uint32_t value)
310
{
311
    struct pxa2xx_dma_state_s *s = (struct pxa2xx_dma_state_s *) opaque;
312
    unsigned int channel;
313

    
314
    switch (offset) {
315
    case DRCMR64 ... DRCMR74:
316
        offset -= DRCMR64 - DRCMR0 - (64 << 2);
317
        /* Fall through */
318
    case DRCMR0 ... DRCMR63:
319
        channel = (offset - DRCMR0) >> 2;
320

    
321
        if (value & DRCMR_MAPVLD)
322
            if ((value & DRCMR_CHLNUM) > s->channels)
323
                hw_error("%s: Bad DMA channel %i\n",
324
                         __FUNCTION__, value & DRCMR_CHLNUM);
325

    
326
        s->req[channel] = value;
327
        break;
328

    
329
    case DRQSR0:
330
    case DRQSR1:
331
    case DRQSR2:
332
        /* Nothing to do */
333
        break;
334

    
335
    case DCSR0 ... DCSR31:
336
        channel = offset >> 2;
337
        s->chan[channel].state &= 0x0000071f & ~(value &
338
                        (DCSR_EORINT | DCSR_ENDINTR |
339
                         DCSR_STARTINTR | DCSR_BUSERRINTR));
340
        s->chan[channel].state |= value & 0xfc800000;
341

    
342
        if (s->chan[channel].state & DCSR_STOPIRQEN)
343
            s->chan[channel].state &= ~DCSR_STOPINTR;
344

    
345
        if (value & DCSR_NODESCFETCH) {
346
            /* No-descriptor-fetch mode */
347
            if (value & DCSR_RUN) {
348
                s->chan[channel].state &= ~DCSR_STOPINTR;
349
                pxa2xx_dma_run(s);
350
            }
351
        } else {
352
            /* Descriptor-fetch mode */
353
            if (value & DCSR_RUN) {
354
                s->chan[channel].state &= ~DCSR_STOPINTR;
355
                pxa2xx_dma_descriptor_fetch(s, channel);
356
                pxa2xx_dma_run(s);
357
            }
358
        }
359

    
360
        /* Shouldn't matter as our DMA is synchronous.  */
361
        if (!(value & (DCSR_RUN | DCSR_MASKRUN)))
362
            s->chan[channel].state |= DCSR_STOPINTR;
363

    
364
        if (value & DCSR_CLRCMPST)
365
            s->chan[channel].state &= ~DCSR_CMPST;
366
        if (value & DCSR_SETCMPST)
367
            s->chan[channel].state |= DCSR_CMPST;
368

    
369
        pxa2xx_dma_update(s, channel);
370
        break;
371

    
372
    case DALGN:
373
        s->align = value;
374
        break;
375

    
376
    case DPCSR:
377
        s->pio = value & 0x80000001;
378
        break;
379

    
380
    default:
381
        if (offset >= D_CH0 && offset < D_CH0 + (s->channels << 4)) {
382
            channel = (offset - D_CH0) >> 4;
383
            switch ((offset & 0x0f) >> 2) {
384
            case DDADR:
385
                s->chan[channel].descr = value;
386
                break;
387
            case DSADR:
388
                s->chan[channel].src = value;
389
                break;
390
            case DTADR:
391
                s->chan[channel].dest = value;
392
                break;
393
            case DCMD:
394
                s->chan[channel].cmd = value;
395
                break;
396
            default:
397
                goto fail;
398
            }
399

    
400
            break;
401
        }
402
    fail:
403
        hw_error("%s: Bad offset " TARGET_FMT_plx "\n", __FUNCTION__, offset);
404
    }
405
}
406

    
407
static uint32_t pxa2xx_dma_readbad(void *opaque, target_phys_addr_t offset)
408
{
409
    hw_error("%s: Bad access width\n", __FUNCTION__);
410
    return 5;
411
}
412

    
413
static void pxa2xx_dma_writebad(void *opaque,
414
                 target_phys_addr_t offset, uint32_t value)
415
{
416
    hw_error("%s: Bad access width\n", __FUNCTION__);
417
}
418

    
419
static CPUReadMemoryFunc *pxa2xx_dma_readfn[] = {
420
    pxa2xx_dma_readbad,
421
    pxa2xx_dma_readbad,
422
    pxa2xx_dma_read
423
};
424

    
425
static CPUWriteMemoryFunc *pxa2xx_dma_writefn[] = {
426
    pxa2xx_dma_writebad,
427
    pxa2xx_dma_writebad,
428
    pxa2xx_dma_write
429
};
430

    
431
static void pxa2xx_dma_save(QEMUFile *f, void *opaque)
432
{
433
    struct pxa2xx_dma_state_s *s = (struct pxa2xx_dma_state_s *) opaque;
434
    int i;
435

    
436
    qemu_put_be32(f, s->channels);
437

    
438
    qemu_put_be32s(f, &s->stopintr);
439
    qemu_put_be32s(f, &s->eorintr);
440
    qemu_put_be32s(f, &s->rasintr);
441
    qemu_put_be32s(f, &s->startintr);
442
    qemu_put_be32s(f, &s->endintr);
443
    qemu_put_be32s(f, &s->align);
444
    qemu_put_be32s(f, &s->pio);
445

    
446
    qemu_put_buffer(f, s->req, PXA2XX_DMA_NUM_REQUESTS);
447
    for (i = 0; i < s->channels; i ++) {
448
        qemu_put_betl(f, s->chan[i].descr);
449
        qemu_put_betl(f, s->chan[i].src);
450
        qemu_put_betl(f, s->chan[i].dest);
451
        qemu_put_be32s(f, &s->chan[i].cmd);
452
        qemu_put_be32s(f, &s->chan[i].state);
453
        qemu_put_be32(f, s->chan[i].request);
454
    };
455
}
456

    
457
static int pxa2xx_dma_load(QEMUFile *f, void *opaque, int version_id)
458
{
459
    struct pxa2xx_dma_state_s *s = (struct pxa2xx_dma_state_s *) opaque;
460
    int i;
461

    
462
    if (qemu_get_be32(f) != s->channels)
463
        return -EINVAL;
464

    
465
    qemu_get_be32s(f, &s->stopintr);
466
    qemu_get_be32s(f, &s->eorintr);
467
    qemu_get_be32s(f, &s->rasintr);
468
    qemu_get_be32s(f, &s->startintr);
469
    qemu_get_be32s(f, &s->endintr);
470
    qemu_get_be32s(f, &s->align);
471
    qemu_get_be32s(f, &s->pio);
472

    
473
    qemu_get_buffer(f, s->req, PXA2XX_DMA_NUM_REQUESTS);
474
    for (i = 0; i < s->channels; i ++) {
475
        s->chan[i].descr = qemu_get_betl(f);
476
        s->chan[i].src = qemu_get_betl(f);
477
        s->chan[i].dest = qemu_get_betl(f);
478
        qemu_get_be32s(f, &s->chan[i].cmd);
479
        qemu_get_be32s(f, &s->chan[i].state);
480
        s->chan[i].request = qemu_get_be32(f);
481
    };
482

    
483
    return 0;
484
}
485

    
486
static struct pxa2xx_dma_state_s *pxa2xx_dma_init(target_phys_addr_t base,
487
                qemu_irq irq, int channels)
488
{
489
    int i, iomemtype;
490
    struct pxa2xx_dma_state_s *s;
491
    s = (struct pxa2xx_dma_state_s *)
492
            qemu_mallocz(sizeof(struct pxa2xx_dma_state_s));
493

    
494
    s->channels = channels;
495
    s->chan = qemu_mallocz(sizeof(struct pxa2xx_dma_channel_s) * s->channels);
496
    s->irq = irq;
497
    s->handler = (pxa2xx_dma_handler_t) pxa2xx_dma_request;
498
    s->req = qemu_mallocz(sizeof(uint8_t) * PXA2XX_DMA_NUM_REQUESTS);
499

    
500
    memset(s->chan, 0, sizeof(struct pxa2xx_dma_channel_s) * s->channels);
501
    for (i = 0; i < s->channels; i ++)
502
        s->chan[i].state = DCSR_STOPINTR;
503

    
504
    memset(s->req, 0, sizeof(uint8_t) * PXA2XX_DMA_NUM_REQUESTS);
505

    
506
    iomemtype = cpu_register_io_memory(0, pxa2xx_dma_readfn,
507
                    pxa2xx_dma_writefn, s);
508
    cpu_register_physical_memory(base, 0x00010000, iomemtype);
509

    
510
    register_savevm("pxa2xx_dma", 0, 0, pxa2xx_dma_save, pxa2xx_dma_load, s);
511

    
512
    return s;
513
}
514

    
515
struct pxa2xx_dma_state_s *pxa27x_dma_init(target_phys_addr_t base,
516
                qemu_irq irq)
517
{
518
    return pxa2xx_dma_init(base, irq, PXA27X_DMA_NUM_CHANNELS);
519
}
520

    
521
struct pxa2xx_dma_state_s *pxa255_dma_init(target_phys_addr_t base,
522
                qemu_irq irq)
523
{
524
    return pxa2xx_dma_init(base, irq, PXA255_DMA_NUM_CHANNELS);
525
}
526

    
527
void pxa2xx_dma_request(struct pxa2xx_dma_state_s *s, int req_num, int on)
528
{
529
    int ch;
530
    if (req_num < 0 || req_num >= PXA2XX_DMA_NUM_REQUESTS)
531
        hw_error("%s: Bad DMA request %i\n", __FUNCTION__, req_num);
532

    
533
    if (!(s->req[req_num] & DRCMR_MAPVLD))
534
        return;
535
    ch = s->req[req_num] & DRCMR_CHLNUM;
536

    
537
    if (!s->chan[ch].request && on)
538
        s->chan[ch].state |= DCSR_RASINTR;
539
    else
540
        s->chan[ch].state &= ~DCSR_RASINTR;
541
    if (s->chan[ch].request && !on)
542
        s->chan[ch].state |= DCSR_EORINT;
543

    
544
    s->chan[ch].request = on;
545
    if (on) {
546
        pxa2xx_dma_run(s);
547
        pxa2xx_dma_update(s, ch);
548
    }
549
}