Statistics
| Branch: | Revision:

root / target-i386 / kvm.c @ 2bd3e04c

History | View | Annotate | Download (49.4 kB)

1
/*
2
 * QEMU KVM support
3
 *
4
 * Copyright (C) 2006-2008 Qumranet Technologies
5
 * Copyright IBM, Corp. 2008
6
 *
7
 * Authors:
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11
 * See the COPYING file in the top-level directory.
12
 *
13
 */
14

    
15
#include <sys/types.h>
16
#include <sys/ioctl.h>
17
#include <sys/mman.h>
18
#include <sys/utsname.h>
19

    
20
#include <linux/kvm.h>
21

    
22
#include "qemu-common.h"
23
#include "sysemu.h"
24
#include "kvm.h"
25
#include "cpu.h"
26
#include "gdbstub.h"
27
#include "host-utils.h"
28
#include "hw/pc.h"
29
#include "hw/apic.h"
30
#include "ioport.h"
31
#include "kvm_x86.h"
32

    
33
#ifdef CONFIG_KVM_PARA
34
#include <linux/kvm_para.h>
35
#endif
36
//
37
//#define DEBUG_KVM
38

    
39
#ifdef DEBUG_KVM
40
#define DPRINTF(fmt, ...) \
41
    do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42
#else
43
#define DPRINTF(fmt, ...) \
44
    do { } while (0)
45
#endif
46

    
47
#define MSR_KVM_WALL_CLOCK  0x11
48
#define MSR_KVM_SYSTEM_TIME 0x12
49

    
50
#ifndef BUS_MCEERR_AR
51
#define BUS_MCEERR_AR 4
52
#endif
53
#ifndef BUS_MCEERR_AO
54
#define BUS_MCEERR_AO 5
55
#endif
56

    
57
static int lm_capable_kernel;
58

    
59
#ifdef KVM_CAP_EXT_CPUID
60

    
61
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62
{
63
    struct kvm_cpuid2 *cpuid;
64
    int r, size;
65

    
66
    size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67
    cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68
    cpuid->nent = max;
69
    r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70
    if (r == 0 && cpuid->nent >= max) {
71
        r = -E2BIG;
72
    }
73
    if (r < 0) {
74
        if (r == -E2BIG) {
75
            qemu_free(cpuid);
76
            return NULL;
77
        } else {
78
            fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79
                    strerror(-r));
80
            exit(1);
81
        }
82
    }
83
    return cpuid;
84
}
85

    
86
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87
                                      uint32_t index, int reg)
88
{
89
    struct kvm_cpuid2 *cpuid;
90
    int i, max;
91
    uint32_t ret = 0;
92
    uint32_t cpuid_1_edx;
93

    
94
    if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95
        return -1U;
96
    }
97

    
98
    max = 1;
99
    while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100
        max *= 2;
101
    }
102

    
103
    for (i = 0; i < cpuid->nent; ++i) {
104
        if (cpuid->entries[i].function == function &&
105
            cpuid->entries[i].index == index) {
106
            switch (reg) {
107
            case R_EAX:
108
                ret = cpuid->entries[i].eax;
109
                break;
110
            case R_EBX:
111
                ret = cpuid->entries[i].ebx;
112
                break;
113
            case R_ECX:
114
                ret = cpuid->entries[i].ecx;
115
                break;
116
            case R_EDX:
117
                ret = cpuid->entries[i].edx;
118
                switch (function) {
119
                case 1:
120
                    /* KVM before 2.6.30 misreports the following features */
121
                    ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122
                    break;
123
                case 0x80000001:
124
                    /* On Intel, kvm returns cpuid according to the Intel spec,
125
                     * so add missing bits according to the AMD spec:
126
                     */
127
                    cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128
                    ret |= cpuid_1_edx & 0x183f7ff;
129
                    break;
130
                }
131
                break;
132
            }
133
        }
134
    }
135

    
136
    qemu_free(cpuid);
137

    
138
    return ret;
139
}
140

    
141
#else
142

    
143
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144
                                      uint32_t index, int reg)
145
{
146
    return -1U;
147
}
148

    
149
#endif
150

    
151
#ifdef CONFIG_KVM_PARA
152
struct kvm_para_features {
153
        int cap;
154
        int feature;
155
} para_features[] = {
156
#ifdef KVM_CAP_CLOCKSOURCE
157
        { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158
#endif
159
#ifdef KVM_CAP_NOP_IO_DELAY
160
        { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161
#endif
162
#ifdef KVM_CAP_PV_MMU
163
        { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164
#endif
165
#ifdef KVM_CAP_ASYNC_PF
166
        { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167
#endif
168
        { -1, -1 }
169
};
170

    
171
static int get_para_features(CPUState *env)
172
{
173
        int i, features = 0;
174

    
175
        for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176
                if (kvm_check_extension(env->kvm_state, para_features[i].cap))
177
                        features |= (1 << para_features[i].feature);
178
        }
179

    
180
        return features;
181
}
182
#endif
183

    
184
#ifdef KVM_CAP_MCE
185
static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186
                                     int *max_banks)
187
{
188
    int r;
189

    
190
    r = kvm_check_extension(s, KVM_CAP_MCE);
191
    if (r > 0) {
192
        *max_banks = r;
193
        return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194
    }
195
    return -ENOSYS;
196
}
197

    
198
static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199
{
200
    return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
201
}
202

    
203
static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204
{
205
    return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
206
}
207

    
208
static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209
{
210
    struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211
    int r;
212

    
213
    kmsrs->nmsrs = n;
214
    memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215
    r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216
    memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217
    free(kmsrs);
218
    return r;
219
}
220

    
221
/* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222
static int kvm_mce_in_exception(CPUState *env)
223
{
224
    struct kvm_msr_entry msr_mcg_status = {
225
        .index = MSR_MCG_STATUS,
226
    };
227
    int r;
228

    
229
    r = kvm_get_msr(env, &msr_mcg_status, 1);
230
    if (r == -1 || r == 0) {
231
        return -1;
232
    }
233
    return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
234
}
235

    
236
struct kvm_x86_mce_data
237
{
238
    CPUState *env;
239
    struct kvm_x86_mce *mce;
240
    int abort_on_error;
241
};
242

    
243
static void kvm_do_inject_x86_mce(void *_data)
244
{
245
    struct kvm_x86_mce_data *data = _data;
246
    int r;
247

    
248
    /* If there is an MCE exception being processed, ignore this SRAO MCE */
249
    if ((data->env->mcg_cap & MCG_SER_P) &&
250
        !(data->mce->status & MCI_STATUS_AR)) {
251
        r = kvm_mce_in_exception(data->env);
252
        if (r == -1) {
253
            fprintf(stderr, "Failed to get MCE status\n");
254
        } else if (r) {
255
            return;
256
        }
257
    }
258

    
259
    r = kvm_set_mce(data->env, data->mce);
260
    if (r < 0) {
261
        perror("kvm_set_mce FAILED");
262
        if (data->abort_on_error) {
263
            abort();
264
        }
265
    }
266
}
267

    
268
static void kvm_mce_broadcast_rest(CPUState *env);
269
#endif
270

    
271
void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
272
                        uint64_t mcg_status, uint64_t addr, uint64_t misc,
273
                        int flag)
274
{
275
#ifdef KVM_CAP_MCE
276
    struct kvm_x86_mce mce = {
277
        .bank = bank,
278
        .status = status,
279
        .mcg_status = mcg_status,
280
        .addr = addr,
281
        .misc = misc,
282
    };
283
    struct kvm_x86_mce_data data = {
284
            .env = cenv,
285
            .mce = &mce,
286
    };
287

    
288
    if (!cenv->mcg_cap) {
289
        fprintf(stderr, "MCE support is not enabled!\n");
290
        return;
291
    }
292

    
293
    if (flag & MCE_BROADCAST) {
294
        kvm_mce_broadcast_rest(cenv);
295
    }
296

    
297
    run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
298
#else
299
    if (flag & ABORT_ON_ERROR) {
300
        abort();
301
    }
302
#endif
303
}
304

    
305
int kvm_arch_init_vcpu(CPUState *env)
306
{
307
    struct {
308
        struct kvm_cpuid2 cpuid;
309
        struct kvm_cpuid_entry2 entries[100];
310
    } __attribute__((packed)) cpuid_data;
311
    uint32_t limit, i, j, cpuid_i;
312
    uint32_t unused;
313
    struct kvm_cpuid_entry2 *c;
314
#ifdef KVM_CPUID_SIGNATURE
315
    uint32_t signature[3];
316
#endif
317

    
318
    env->mp_state = KVM_MP_STATE_RUNNABLE;
319

    
320
    env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
321

    
322
    i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
323
    env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
324
    env->cpuid_ext_features |= i;
325

    
326
    env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
327
                                                             0, R_EDX);
328
    env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
329
                                                             0, R_ECX);
330
    env->cpuid_svm_features  &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
331
                                                             0, R_EDX);
332

    
333

    
334
    cpuid_i = 0;
335

    
336
#ifdef CONFIG_KVM_PARA
337
    /* Paravirtualization CPUIDs */
338
    memcpy(signature, "KVMKVMKVM\0\0\0", 12);
339
    c = &cpuid_data.entries[cpuid_i++];
340
    memset(c, 0, sizeof(*c));
341
    c->function = KVM_CPUID_SIGNATURE;
342
    c->eax = 0;
343
    c->ebx = signature[0];
344
    c->ecx = signature[1];
345
    c->edx = signature[2];
346

    
347
    c = &cpuid_data.entries[cpuid_i++];
348
    memset(c, 0, sizeof(*c));
349
    c->function = KVM_CPUID_FEATURES;
350
    c->eax = env->cpuid_kvm_features & get_para_features(env);
351
#endif
352

    
353
    cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
354

    
355
    for (i = 0; i <= limit; i++) {
356
        c = &cpuid_data.entries[cpuid_i++];
357

    
358
        switch (i) {
359
        case 2: {
360
            /* Keep reading function 2 till all the input is received */
361
            int times;
362

    
363
            c->function = i;
364
            c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
365
                       KVM_CPUID_FLAG_STATE_READ_NEXT;
366
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
367
            times = c->eax & 0xff;
368

    
369
            for (j = 1; j < times; ++j) {
370
                c = &cpuid_data.entries[cpuid_i++];
371
                c->function = i;
372
                c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
373
                cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
374
            }
375
            break;
376
        }
377
        case 4:
378
        case 0xb:
379
        case 0xd:
380
            for (j = 0; ; j++) {
381
                c->function = i;
382
                c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
383
                c->index = j;
384
                cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
385

    
386
                if (i == 4 && c->eax == 0)
387
                    break;
388
                if (i == 0xb && !(c->ecx & 0xff00))
389
                    break;
390
                if (i == 0xd && c->eax == 0)
391
                    break;
392

    
393
                c = &cpuid_data.entries[cpuid_i++];
394
            }
395
            break;
396
        default:
397
            c->function = i;
398
            c->flags = 0;
399
            cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
400
            break;
401
        }
402
    }
403
    cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
404

    
405
    for (i = 0x80000000; i <= limit; i++) {
406
        c = &cpuid_data.entries[cpuid_i++];
407

    
408
        c->function = i;
409
        c->flags = 0;
410
        cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
411
    }
412

    
413
    cpuid_data.cpuid.nent = cpuid_i;
414

    
415
#ifdef KVM_CAP_MCE
416
    if (((env->cpuid_version >> 8)&0xF) >= 6
417
        && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
418
        && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
419
        uint64_t mcg_cap;
420
        int banks;
421

    
422
        if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
423
            perror("kvm_get_mce_cap_supported FAILED");
424
        else {
425
            if (banks > MCE_BANKS_DEF)
426
                banks = MCE_BANKS_DEF;
427
            mcg_cap &= MCE_CAP_DEF;
428
            mcg_cap |= banks;
429
            if (kvm_setup_mce(env, &mcg_cap))
430
                perror("kvm_setup_mce FAILED");
431
            else
432
                env->mcg_cap = mcg_cap;
433
        }
434
    }
435
#endif
436

    
437
    return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
438
}
439

    
440
void kvm_arch_reset_vcpu(CPUState *env)
441
{
442
    env->exception_injected = -1;
443
    env->interrupt_injected = -1;
444
    env->nmi_injected = 0;
445
    env->nmi_pending = 0;
446
    if (kvm_irqchip_in_kernel()) {
447
        env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
448
                                          KVM_MP_STATE_UNINITIALIZED;
449
    } else {
450
        env->mp_state = KVM_MP_STATE_RUNNABLE;
451
    }
452
}
453

    
454
int has_msr_star;
455
int has_msr_hsave_pa;
456

    
457
static void kvm_supported_msrs(CPUState *env)
458
{
459
    static int kvm_supported_msrs;
460
    int ret;
461

    
462
    /* first time */
463
    if (kvm_supported_msrs == 0) {
464
        struct kvm_msr_list msr_list, *kvm_msr_list;
465

    
466
        kvm_supported_msrs = -1;
467

    
468
        /* Obtain MSR list from KVM.  These are the MSRs that we must
469
         * save/restore */
470
        msr_list.nmsrs = 0;
471
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
472
        if (ret < 0 && ret != -E2BIG) {
473
            return;
474
        }
475
        /* Old kernel modules had a bug and could write beyond the provided
476
           memory. Allocate at least a safe amount of 1K. */
477
        kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
478
                                              msr_list.nmsrs *
479
                                              sizeof(msr_list.indices[0])));
480

    
481
        kvm_msr_list->nmsrs = msr_list.nmsrs;
482
        ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
483
        if (ret >= 0) {
484
            int i;
485

    
486
            for (i = 0; i < kvm_msr_list->nmsrs; i++) {
487
                if (kvm_msr_list->indices[i] == MSR_STAR) {
488
                    has_msr_star = 1;
489
                    continue;
490
                }
491
                if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
492
                    has_msr_hsave_pa = 1;
493
                    continue;
494
                }
495
            }
496
        }
497

    
498
        free(kvm_msr_list);
499
    }
500

    
501
    return;
502
}
503

    
504
static int kvm_has_msr_hsave_pa(CPUState *env)
505
{
506
    kvm_supported_msrs(env);
507
    return has_msr_hsave_pa;
508
}
509

    
510
static int kvm_has_msr_star(CPUState *env)
511
{
512
    kvm_supported_msrs(env);
513
    return has_msr_star;
514
}
515

    
516
static int kvm_init_identity_map_page(KVMState *s)
517
{
518
#ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
519
    int ret;
520
    uint64_t addr = 0xfffbc000;
521

    
522
    if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
523
        return 0;
524
    }
525

    
526
    ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
527
    if (ret < 0) {
528
        fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
529
        return ret;
530
    }
531
#endif
532
    return 0;
533
}
534

    
535
int kvm_arch_init(KVMState *s, int smp_cpus)
536
{
537
    int ret;
538

    
539
    struct utsname utsname;
540

    
541
    uname(&utsname);
542
    lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
543

    
544
    /* create vm86 tss.  KVM uses vm86 mode to emulate 16-bit code
545
     * directly.  In order to use vm86 mode, a TSS is needed.  Since this
546
     * must be part of guest physical memory, we need to allocate it.  Older
547
     * versions of KVM just assumed that it would be at the end of physical
548
     * memory but that doesn't work with more than 4GB of memory.  We simply
549
     * refuse to work with those older versions of KVM. */
550
    ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
551
    if (ret <= 0) {
552
        fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
553
        return ret;
554
    }
555

    
556
    /* this address is 3 pages before the bios, and the bios should present
557
     * as unavaible memory.  FIXME, need to ensure the e820 map deals with
558
     * this?
559
     */
560
    /*
561
     * Tell fw_cfg to notify the BIOS to reserve the range.
562
     */
563
    if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
564
        perror("e820_add_entry() table is full");
565
        exit(1);
566
    }
567
    ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
568
    if (ret < 0) {
569
        return ret;
570
    }
571

    
572
    return kvm_init_identity_map_page(s);
573
}
574
                    
575
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
576
{
577
    lhs->selector = rhs->selector;
578
    lhs->base = rhs->base;
579
    lhs->limit = rhs->limit;
580
    lhs->type = 3;
581
    lhs->present = 1;
582
    lhs->dpl = 3;
583
    lhs->db = 0;
584
    lhs->s = 1;
585
    lhs->l = 0;
586
    lhs->g = 0;
587
    lhs->avl = 0;
588
    lhs->unusable = 0;
589
}
590

    
591
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
592
{
593
    unsigned flags = rhs->flags;
594
    lhs->selector = rhs->selector;
595
    lhs->base = rhs->base;
596
    lhs->limit = rhs->limit;
597
    lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
598
    lhs->present = (flags & DESC_P_MASK) != 0;
599
    lhs->dpl = rhs->selector & 3;
600
    lhs->db = (flags >> DESC_B_SHIFT) & 1;
601
    lhs->s = (flags & DESC_S_MASK) != 0;
602
    lhs->l = (flags >> DESC_L_SHIFT) & 1;
603
    lhs->g = (flags & DESC_G_MASK) != 0;
604
    lhs->avl = (flags & DESC_AVL_MASK) != 0;
605
    lhs->unusable = 0;
606
}
607

    
608
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
609
{
610
    lhs->selector = rhs->selector;
611
    lhs->base = rhs->base;
612
    lhs->limit = rhs->limit;
613
    lhs->flags =
614
        (rhs->type << DESC_TYPE_SHIFT)
615
        | (rhs->present * DESC_P_MASK)
616
        | (rhs->dpl << DESC_DPL_SHIFT)
617
        | (rhs->db << DESC_B_SHIFT)
618
        | (rhs->s * DESC_S_MASK)
619
        | (rhs->l << DESC_L_SHIFT)
620
        | (rhs->g * DESC_G_MASK)
621
        | (rhs->avl * DESC_AVL_MASK);
622
}
623

    
624
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
625
{
626
    if (set)
627
        *kvm_reg = *qemu_reg;
628
    else
629
        *qemu_reg = *kvm_reg;
630
}
631

    
632
static int kvm_getput_regs(CPUState *env, int set)
633
{
634
    struct kvm_regs regs;
635
    int ret = 0;
636

    
637
    if (!set) {
638
        ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
639
        if (ret < 0)
640
            return ret;
641
    }
642

    
643
    kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
644
    kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
645
    kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
646
    kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
647
    kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
648
    kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
649
    kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
650
    kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
651
#ifdef TARGET_X86_64
652
    kvm_getput_reg(&regs.r8, &env->regs[8], set);
653
    kvm_getput_reg(&regs.r9, &env->regs[9], set);
654
    kvm_getput_reg(&regs.r10, &env->regs[10], set);
655
    kvm_getput_reg(&regs.r11, &env->regs[11], set);
656
    kvm_getput_reg(&regs.r12, &env->regs[12], set);
657
    kvm_getput_reg(&regs.r13, &env->regs[13], set);
658
    kvm_getput_reg(&regs.r14, &env->regs[14], set);
659
    kvm_getput_reg(&regs.r15, &env->regs[15], set);
660
#endif
661

    
662
    kvm_getput_reg(&regs.rflags, &env->eflags, set);
663
    kvm_getput_reg(&regs.rip, &env->eip, set);
664

    
665
    if (set)
666
        ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
667

    
668
    return ret;
669
}
670

    
671
static int kvm_put_fpu(CPUState *env)
672
{
673
    struct kvm_fpu fpu;
674
    int i;
675

    
676
    memset(&fpu, 0, sizeof fpu);
677
    fpu.fsw = env->fpus & ~(7 << 11);
678
    fpu.fsw |= (env->fpstt & 7) << 11;
679
    fpu.fcw = env->fpuc;
680
    for (i = 0; i < 8; ++i)
681
        fpu.ftwx |= (!env->fptags[i]) << i;
682
    memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
683
    memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
684
    fpu.mxcsr = env->mxcsr;
685

    
686
    return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
687
}
688

    
689
#ifdef KVM_CAP_XSAVE
690
#define XSAVE_CWD_RIP     2
691
#define XSAVE_CWD_RDP     4
692
#define XSAVE_MXCSR       6
693
#define XSAVE_ST_SPACE    8
694
#define XSAVE_XMM_SPACE   40
695
#define XSAVE_XSTATE_BV   128
696
#define XSAVE_YMMH_SPACE  144
697
#endif
698

    
699
static int kvm_put_xsave(CPUState *env)
700
{
701
#ifdef KVM_CAP_XSAVE
702
    int i, r;
703
    struct kvm_xsave* xsave;
704
    uint16_t cwd, swd, twd, fop;
705

    
706
    if (!kvm_has_xsave())
707
        return kvm_put_fpu(env);
708

    
709
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
710
    memset(xsave, 0, sizeof(struct kvm_xsave));
711
    cwd = swd = twd = fop = 0;
712
    swd = env->fpus & ~(7 << 11);
713
    swd |= (env->fpstt & 7) << 11;
714
    cwd = env->fpuc;
715
    for (i = 0; i < 8; ++i)
716
        twd |= (!env->fptags[i]) << i;
717
    xsave->region[0] = (uint32_t)(swd << 16) + cwd;
718
    xsave->region[1] = (uint32_t)(fop << 16) + twd;
719
    memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
720
            sizeof env->fpregs);
721
    memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
722
            sizeof env->xmm_regs);
723
    xsave->region[XSAVE_MXCSR] = env->mxcsr;
724
    *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
725
    memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
726
            sizeof env->ymmh_regs);
727
    r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
728
    qemu_free(xsave);
729
    return r;
730
#else
731
    return kvm_put_fpu(env);
732
#endif
733
}
734

    
735
static int kvm_put_xcrs(CPUState *env)
736
{
737
#ifdef KVM_CAP_XCRS
738
    struct kvm_xcrs xcrs;
739

    
740
    if (!kvm_has_xcrs())
741
        return 0;
742

    
743
    xcrs.nr_xcrs = 1;
744
    xcrs.flags = 0;
745
    xcrs.xcrs[0].xcr = 0;
746
    xcrs.xcrs[0].value = env->xcr0;
747
    return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
748
#else
749
    return 0;
750
#endif
751
}
752

    
753
static int kvm_put_sregs(CPUState *env)
754
{
755
    struct kvm_sregs sregs;
756

    
757
    memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
758
    if (env->interrupt_injected >= 0) {
759
        sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
760
                (uint64_t)1 << (env->interrupt_injected % 64);
761
    }
762

    
763
    if ((env->eflags & VM_MASK)) {
764
            set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
765
            set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
766
            set_v8086_seg(&sregs.es, &env->segs[R_ES]);
767
            set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
768
            set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
769
            set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
770
    } else {
771
            set_seg(&sregs.cs, &env->segs[R_CS]);
772
            set_seg(&sregs.ds, &env->segs[R_DS]);
773
            set_seg(&sregs.es, &env->segs[R_ES]);
774
            set_seg(&sregs.fs, &env->segs[R_FS]);
775
            set_seg(&sregs.gs, &env->segs[R_GS]);
776
            set_seg(&sregs.ss, &env->segs[R_SS]);
777

    
778
            if (env->cr[0] & CR0_PE_MASK) {
779
                /* force ss cpl to cs cpl */
780
                sregs.ss.selector = (sregs.ss.selector & ~3) |
781
                        (sregs.cs.selector & 3);
782
                sregs.ss.dpl = sregs.ss.selector & 3;
783
            }
784
    }
785

    
786
    set_seg(&sregs.tr, &env->tr);
787
    set_seg(&sregs.ldt, &env->ldt);
788

    
789
    sregs.idt.limit = env->idt.limit;
790
    sregs.idt.base = env->idt.base;
791
    sregs.gdt.limit = env->gdt.limit;
792
    sregs.gdt.base = env->gdt.base;
793

    
794
    sregs.cr0 = env->cr[0];
795
    sregs.cr2 = env->cr[2];
796
    sregs.cr3 = env->cr[3];
797
    sregs.cr4 = env->cr[4];
798

    
799
    sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
800
    sregs.apic_base = cpu_get_apic_base(env->apic_state);
801

    
802
    sregs.efer = env->efer;
803

    
804
    return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
805
}
806

    
807
static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
808
                              uint32_t index, uint64_t value)
809
{
810
    entry->index = index;
811
    entry->data = value;
812
}
813

    
814
static int kvm_put_msrs(CPUState *env, int level)
815
{
816
    struct {
817
        struct kvm_msrs info;
818
        struct kvm_msr_entry entries[100];
819
    } msr_data;
820
    struct kvm_msr_entry *msrs = msr_data.entries;
821
    int n = 0;
822

    
823
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
824
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
825
    kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
826
    if (kvm_has_msr_star(env))
827
        kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
828
    if (kvm_has_msr_hsave_pa(env))
829
        kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
830
#ifdef TARGET_X86_64
831
    if (lm_capable_kernel) {
832
        kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
833
        kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
834
        kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
835
        kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
836
    }
837
#endif
838
    if (level == KVM_PUT_FULL_STATE) {
839
        /*
840
         * KVM is yet unable to synchronize TSC values of multiple VCPUs on
841
         * writeback. Until this is fixed, we only write the offset to SMP
842
         * guests after migration, desynchronizing the VCPUs, but avoiding
843
         * huge jump-backs that would occur without any writeback at all.
844
         */
845
        if (smp_cpus == 1 || env->tsc != 0) {
846
            kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
847
        }
848
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
849
                          env->system_time_msr);
850
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
851
#ifdef KVM_CAP_ASYNC_PF
852
        kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
853
#endif
854
    }
855
#ifdef KVM_CAP_MCE
856
    if (env->mcg_cap) {
857
        int i;
858
        if (level == KVM_PUT_RESET_STATE)
859
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
860
        else if (level == KVM_PUT_FULL_STATE) {
861
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
862
            kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
863
            for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
864
                kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
865
        }
866
    }
867
#endif
868

    
869
    msr_data.info.nmsrs = n;
870

    
871
    return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
872

    
873
}
874

    
875

    
876
static int kvm_get_fpu(CPUState *env)
877
{
878
    struct kvm_fpu fpu;
879
    int i, ret;
880

    
881
    ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
882
    if (ret < 0)
883
        return ret;
884

    
885
    env->fpstt = (fpu.fsw >> 11) & 7;
886
    env->fpus = fpu.fsw;
887
    env->fpuc = fpu.fcw;
888
    for (i = 0; i < 8; ++i)
889
        env->fptags[i] = !((fpu.ftwx >> i) & 1);
890
    memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
891
    memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
892
    env->mxcsr = fpu.mxcsr;
893

    
894
    return 0;
895
}
896

    
897
static int kvm_get_xsave(CPUState *env)
898
{
899
#ifdef KVM_CAP_XSAVE
900
    struct kvm_xsave* xsave;
901
    int ret, i;
902
    uint16_t cwd, swd, twd, fop;
903

    
904
    if (!kvm_has_xsave())
905
        return kvm_get_fpu(env);
906

    
907
    xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
908
    ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
909
    if (ret < 0) {
910
        qemu_free(xsave);
911
        return ret;
912
    }
913

    
914
    cwd = (uint16_t)xsave->region[0];
915
    swd = (uint16_t)(xsave->region[0] >> 16);
916
    twd = (uint16_t)xsave->region[1];
917
    fop = (uint16_t)(xsave->region[1] >> 16);
918
    env->fpstt = (swd >> 11) & 7;
919
    env->fpus = swd;
920
    env->fpuc = cwd;
921
    for (i = 0; i < 8; ++i)
922
        env->fptags[i] = !((twd >> i) & 1);
923
    env->mxcsr = xsave->region[XSAVE_MXCSR];
924
    memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
925
            sizeof env->fpregs);
926
    memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
927
            sizeof env->xmm_regs);
928
    env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
929
    memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
930
            sizeof env->ymmh_regs);
931
    qemu_free(xsave);
932
    return 0;
933
#else
934
    return kvm_get_fpu(env);
935
#endif
936
}
937

    
938
static int kvm_get_xcrs(CPUState *env)
939
{
940
#ifdef KVM_CAP_XCRS
941
    int i, ret;
942
    struct kvm_xcrs xcrs;
943

    
944
    if (!kvm_has_xcrs())
945
        return 0;
946

    
947
    ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
948
    if (ret < 0)
949
        return ret;
950

    
951
    for (i = 0; i < xcrs.nr_xcrs; i++)
952
        /* Only support xcr0 now */
953
        if (xcrs.xcrs[0].xcr == 0) {
954
            env->xcr0 = xcrs.xcrs[0].value;
955
            break;
956
        }
957
    return 0;
958
#else
959
    return 0;
960
#endif
961
}
962

    
963
static int kvm_get_sregs(CPUState *env)
964
{
965
    struct kvm_sregs sregs;
966
    uint32_t hflags;
967
    int bit, i, ret;
968

    
969
    ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
970
    if (ret < 0)
971
        return ret;
972

    
973
    /* There can only be one pending IRQ set in the bitmap at a time, so try
974
       to find it and save its number instead (-1 for none). */
975
    env->interrupt_injected = -1;
976
    for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
977
        if (sregs.interrupt_bitmap[i]) {
978
            bit = ctz64(sregs.interrupt_bitmap[i]);
979
            env->interrupt_injected = i * 64 + bit;
980
            break;
981
        }
982
    }
983

    
984
    get_seg(&env->segs[R_CS], &sregs.cs);
985
    get_seg(&env->segs[R_DS], &sregs.ds);
986
    get_seg(&env->segs[R_ES], &sregs.es);
987
    get_seg(&env->segs[R_FS], &sregs.fs);
988
    get_seg(&env->segs[R_GS], &sregs.gs);
989
    get_seg(&env->segs[R_SS], &sregs.ss);
990

    
991
    get_seg(&env->tr, &sregs.tr);
992
    get_seg(&env->ldt, &sregs.ldt);
993

    
994
    env->idt.limit = sregs.idt.limit;
995
    env->idt.base = sregs.idt.base;
996
    env->gdt.limit = sregs.gdt.limit;
997
    env->gdt.base = sregs.gdt.base;
998

    
999
    env->cr[0] = sregs.cr0;
1000
    env->cr[2] = sregs.cr2;
1001
    env->cr[3] = sregs.cr3;
1002
    env->cr[4] = sregs.cr4;
1003

    
1004
    cpu_set_apic_base(env->apic_state, sregs.apic_base);
1005

    
1006
    env->efer = sregs.efer;
1007
    //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1008

    
1009
#define HFLAG_COPY_MASK ~( \
1010
                        HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1011
                        HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1012
                        HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1013
                        HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1014

    
1015

    
1016

    
1017
    hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1018
    hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1019
    hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1020
            (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1021
    hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1022
    hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1023
            (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1024

    
1025
    if (env->efer & MSR_EFER_LMA) {
1026
        hflags |= HF_LMA_MASK;
1027
    }
1028

    
1029
    if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1030
        hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1031
    } else {
1032
        hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1033
                (DESC_B_SHIFT - HF_CS32_SHIFT);
1034
        hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1035
                (DESC_B_SHIFT - HF_SS32_SHIFT);
1036
        if (!(env->cr[0] & CR0_PE_MASK) ||
1037
                   (env->eflags & VM_MASK) ||
1038
                   !(hflags & HF_CS32_MASK)) {
1039
                hflags |= HF_ADDSEG_MASK;
1040
            } else {
1041
                hflags |= ((env->segs[R_DS].base |
1042
                                env->segs[R_ES].base |
1043
                                env->segs[R_SS].base) != 0) <<
1044
                    HF_ADDSEG_SHIFT;
1045
            }
1046
    }
1047
    env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1048

    
1049
    return 0;
1050
}
1051

    
1052
static int kvm_get_msrs(CPUState *env)
1053
{
1054
    struct {
1055
        struct kvm_msrs info;
1056
        struct kvm_msr_entry entries[100];
1057
    } msr_data;
1058
    struct kvm_msr_entry *msrs = msr_data.entries;
1059
    int ret, i, n;
1060

    
1061
    n = 0;
1062
    msrs[n++].index = MSR_IA32_SYSENTER_CS;
1063
    msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1064
    msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1065
    if (kvm_has_msr_star(env))
1066
        msrs[n++].index = MSR_STAR;
1067
    if (kvm_has_msr_hsave_pa(env))
1068
        msrs[n++].index = MSR_VM_HSAVE_PA;
1069
    msrs[n++].index = MSR_IA32_TSC;
1070
#ifdef TARGET_X86_64
1071
    if (lm_capable_kernel) {
1072
        msrs[n++].index = MSR_CSTAR;
1073
        msrs[n++].index = MSR_KERNELGSBASE;
1074
        msrs[n++].index = MSR_FMASK;
1075
        msrs[n++].index = MSR_LSTAR;
1076
    }
1077
#endif
1078
    msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1079
    msrs[n++].index = MSR_KVM_WALL_CLOCK;
1080
#ifdef KVM_CAP_ASYNC_PF
1081
    msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1082
#endif
1083

    
1084
#ifdef KVM_CAP_MCE
1085
    if (env->mcg_cap) {
1086
        msrs[n++].index = MSR_MCG_STATUS;
1087
        msrs[n++].index = MSR_MCG_CTL;
1088
        for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1089
            msrs[n++].index = MSR_MC0_CTL + i;
1090
    }
1091
#endif
1092

    
1093
    msr_data.info.nmsrs = n;
1094
    ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1095
    if (ret < 0)
1096
        return ret;
1097

    
1098
    for (i = 0; i < ret; i++) {
1099
        switch (msrs[i].index) {
1100
        case MSR_IA32_SYSENTER_CS:
1101
            env->sysenter_cs = msrs[i].data;
1102
            break;
1103
        case MSR_IA32_SYSENTER_ESP:
1104
            env->sysenter_esp = msrs[i].data;
1105
            break;
1106
        case MSR_IA32_SYSENTER_EIP:
1107
            env->sysenter_eip = msrs[i].data;
1108
            break;
1109
        case MSR_STAR:
1110
            env->star = msrs[i].data;
1111
            break;
1112
#ifdef TARGET_X86_64
1113
        case MSR_CSTAR:
1114
            env->cstar = msrs[i].data;
1115
            break;
1116
        case MSR_KERNELGSBASE:
1117
            env->kernelgsbase = msrs[i].data;
1118
            break;
1119
        case MSR_FMASK:
1120
            env->fmask = msrs[i].data;
1121
            break;
1122
        case MSR_LSTAR:
1123
            env->lstar = msrs[i].data;
1124
            break;
1125
#endif
1126
        case MSR_IA32_TSC:
1127
            env->tsc = msrs[i].data;
1128
            break;
1129
        case MSR_VM_HSAVE_PA:
1130
            env->vm_hsave = msrs[i].data;
1131
            break;
1132
        case MSR_KVM_SYSTEM_TIME:
1133
            env->system_time_msr = msrs[i].data;
1134
            break;
1135
        case MSR_KVM_WALL_CLOCK:
1136
            env->wall_clock_msr = msrs[i].data;
1137
            break;
1138
#ifdef KVM_CAP_MCE
1139
        case MSR_MCG_STATUS:
1140
            env->mcg_status = msrs[i].data;
1141
            break;
1142
        case MSR_MCG_CTL:
1143
            env->mcg_ctl = msrs[i].data;
1144
            break;
1145
#endif
1146
        default:
1147
#ifdef KVM_CAP_MCE
1148
            if (msrs[i].index >= MSR_MC0_CTL &&
1149
                msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1150
                env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1151
            }
1152
#endif
1153
            break;
1154
#ifdef KVM_CAP_ASYNC_PF
1155
        case MSR_KVM_ASYNC_PF_EN:
1156
            env->async_pf_en_msr = msrs[i].data;
1157
            break;
1158
#endif
1159
        }
1160
    }
1161

    
1162
    return 0;
1163
}
1164

    
1165
static int kvm_put_mp_state(CPUState *env)
1166
{
1167
    struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1168

    
1169
    return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1170
}
1171

    
1172
static int kvm_get_mp_state(CPUState *env)
1173
{
1174
    struct kvm_mp_state mp_state;
1175
    int ret;
1176

    
1177
    ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1178
    if (ret < 0) {
1179
        return ret;
1180
    }
1181
    env->mp_state = mp_state.mp_state;
1182
    return 0;
1183
}
1184

    
1185
static int kvm_put_vcpu_events(CPUState *env, int level)
1186
{
1187
#ifdef KVM_CAP_VCPU_EVENTS
1188
    struct kvm_vcpu_events events;
1189

    
1190
    if (!kvm_has_vcpu_events()) {
1191
        return 0;
1192
    }
1193

    
1194
    events.exception.injected = (env->exception_injected >= 0);
1195
    events.exception.nr = env->exception_injected;
1196
    events.exception.has_error_code = env->has_error_code;
1197
    events.exception.error_code = env->error_code;
1198

    
1199
    events.interrupt.injected = (env->interrupt_injected >= 0);
1200
    events.interrupt.nr = env->interrupt_injected;
1201
    events.interrupt.soft = env->soft_interrupt;
1202

    
1203
    events.nmi.injected = env->nmi_injected;
1204
    events.nmi.pending = env->nmi_pending;
1205
    events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1206

    
1207
    events.sipi_vector = env->sipi_vector;
1208

    
1209
    events.flags = 0;
1210
    if (level >= KVM_PUT_RESET_STATE) {
1211
        events.flags |=
1212
            KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1213
    }
1214

    
1215
    return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1216
#else
1217
    return 0;
1218
#endif
1219
}
1220

    
1221
static int kvm_get_vcpu_events(CPUState *env)
1222
{
1223
#ifdef KVM_CAP_VCPU_EVENTS
1224
    struct kvm_vcpu_events events;
1225
    int ret;
1226

    
1227
    if (!kvm_has_vcpu_events()) {
1228
        return 0;
1229
    }
1230

    
1231
    ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1232
    if (ret < 0) {
1233
       return ret;
1234
    }
1235
    env->exception_injected =
1236
       events.exception.injected ? events.exception.nr : -1;
1237
    env->has_error_code = events.exception.has_error_code;
1238
    env->error_code = events.exception.error_code;
1239

    
1240
    env->interrupt_injected =
1241
        events.interrupt.injected ? events.interrupt.nr : -1;
1242
    env->soft_interrupt = events.interrupt.soft;
1243

    
1244
    env->nmi_injected = events.nmi.injected;
1245
    env->nmi_pending = events.nmi.pending;
1246
    if (events.nmi.masked) {
1247
        env->hflags2 |= HF2_NMI_MASK;
1248
    } else {
1249
        env->hflags2 &= ~HF2_NMI_MASK;
1250
    }
1251

    
1252
    env->sipi_vector = events.sipi_vector;
1253
#endif
1254

    
1255
    return 0;
1256
}
1257

    
1258
static int kvm_guest_debug_workarounds(CPUState *env)
1259
{
1260
    int ret = 0;
1261
#ifdef KVM_CAP_SET_GUEST_DEBUG
1262
    unsigned long reinject_trap = 0;
1263

    
1264
    if (!kvm_has_vcpu_events()) {
1265
        if (env->exception_injected == 1) {
1266
            reinject_trap = KVM_GUESTDBG_INJECT_DB;
1267
        } else if (env->exception_injected == 3) {
1268
            reinject_trap = KVM_GUESTDBG_INJECT_BP;
1269
        }
1270
        env->exception_injected = -1;
1271
    }
1272

    
1273
    /*
1274
     * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1275
     * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1276
     * by updating the debug state once again if single-stepping is on.
1277
     * Another reason to call kvm_update_guest_debug here is a pending debug
1278
     * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1279
     * reinject them via SET_GUEST_DEBUG.
1280
     */
1281
    if (reinject_trap ||
1282
        (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1283
        ret = kvm_update_guest_debug(env, reinject_trap);
1284
    }
1285
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1286
    return ret;
1287
}
1288

    
1289
static int kvm_put_debugregs(CPUState *env)
1290
{
1291
#ifdef KVM_CAP_DEBUGREGS
1292
    struct kvm_debugregs dbgregs;
1293
    int i;
1294

    
1295
    if (!kvm_has_debugregs()) {
1296
        return 0;
1297
    }
1298

    
1299
    for (i = 0; i < 4; i++) {
1300
        dbgregs.db[i] = env->dr[i];
1301
    }
1302
    dbgregs.dr6 = env->dr[6];
1303
    dbgregs.dr7 = env->dr[7];
1304
    dbgregs.flags = 0;
1305

    
1306
    return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1307
#else
1308
    return 0;
1309
#endif
1310
}
1311

    
1312
static int kvm_get_debugregs(CPUState *env)
1313
{
1314
#ifdef KVM_CAP_DEBUGREGS
1315
    struct kvm_debugregs dbgregs;
1316
    int i, ret;
1317

    
1318
    if (!kvm_has_debugregs()) {
1319
        return 0;
1320
    }
1321

    
1322
    ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1323
    if (ret < 0) {
1324
       return ret;
1325
    }
1326
    for (i = 0; i < 4; i++) {
1327
        env->dr[i] = dbgregs.db[i];
1328
    }
1329
    env->dr[4] = env->dr[6] = dbgregs.dr6;
1330
    env->dr[5] = env->dr[7] = dbgregs.dr7;
1331
#endif
1332

    
1333
    return 0;
1334
}
1335

    
1336
int kvm_arch_put_registers(CPUState *env, int level)
1337
{
1338
    int ret;
1339

    
1340
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1341

    
1342
    ret = kvm_getput_regs(env, 1);
1343
    if (ret < 0)
1344
        return ret;
1345

    
1346
    ret = kvm_put_xsave(env);
1347
    if (ret < 0)
1348
        return ret;
1349

    
1350
    ret = kvm_put_xcrs(env);
1351
    if (ret < 0)
1352
        return ret;
1353

    
1354
    ret = kvm_put_sregs(env);
1355
    if (ret < 0)
1356
        return ret;
1357

    
1358
    ret = kvm_put_msrs(env, level);
1359
    if (ret < 0)
1360
        return ret;
1361

    
1362
    if (level >= KVM_PUT_RESET_STATE) {
1363
        ret = kvm_put_mp_state(env);
1364
        if (ret < 0)
1365
            return ret;
1366
    }
1367

    
1368
    ret = kvm_put_vcpu_events(env, level);
1369
    if (ret < 0)
1370
        return ret;
1371

    
1372
    /* must be last */
1373
    ret = kvm_guest_debug_workarounds(env);
1374
    if (ret < 0)
1375
        return ret;
1376

    
1377
    ret = kvm_put_debugregs(env);
1378
    if (ret < 0)
1379
        return ret;
1380

    
1381
    return 0;
1382
}
1383

    
1384
int kvm_arch_get_registers(CPUState *env)
1385
{
1386
    int ret;
1387

    
1388
    assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1389

    
1390
    ret = kvm_getput_regs(env, 0);
1391
    if (ret < 0)
1392
        return ret;
1393

    
1394
    ret = kvm_get_xsave(env);
1395
    if (ret < 0)
1396
        return ret;
1397

    
1398
    ret = kvm_get_xcrs(env);
1399
    if (ret < 0)
1400
        return ret;
1401

    
1402
    ret = kvm_get_sregs(env);
1403
    if (ret < 0)
1404
        return ret;
1405

    
1406
    ret = kvm_get_msrs(env);
1407
    if (ret < 0)
1408
        return ret;
1409

    
1410
    ret = kvm_get_mp_state(env);
1411
    if (ret < 0)
1412
        return ret;
1413

    
1414
    ret = kvm_get_vcpu_events(env);
1415
    if (ret < 0)
1416
        return ret;
1417

    
1418
    ret = kvm_get_debugregs(env);
1419
    if (ret < 0)
1420
        return ret;
1421

    
1422
    return 0;
1423
}
1424

    
1425
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1426
{
1427
    /* Inject NMI */
1428
    if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1429
        env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1430
        DPRINTF("injected NMI\n");
1431
        kvm_vcpu_ioctl(env, KVM_NMI);
1432
    }
1433

    
1434
    /* Try to inject an interrupt if the guest can accept it */
1435
    if (run->ready_for_interrupt_injection &&
1436
        (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1437
        (env->eflags & IF_MASK)) {
1438
        int irq;
1439

    
1440
        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1441
        irq = cpu_get_pic_interrupt(env);
1442
        if (irq >= 0) {
1443
            struct kvm_interrupt intr;
1444
            intr.irq = irq;
1445
            /* FIXME: errors */
1446
            DPRINTF("injected interrupt %d\n", irq);
1447
            kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1448
        }
1449
    }
1450

    
1451
    /* If we have an interrupt but the guest is not ready to receive an
1452
     * interrupt, request an interrupt window exit.  This will
1453
     * cause a return to userspace as soon as the guest is ready to
1454
     * receive interrupts. */
1455
    if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1456
        run->request_interrupt_window = 1;
1457
    else
1458
        run->request_interrupt_window = 0;
1459

    
1460
    DPRINTF("setting tpr\n");
1461
    run->cr8 = cpu_get_apic_tpr(env->apic_state);
1462

    
1463
    return 0;
1464
}
1465

    
1466
int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1467
{
1468
    if (run->if_flag)
1469
        env->eflags |= IF_MASK;
1470
    else
1471
        env->eflags &= ~IF_MASK;
1472
    
1473
    cpu_set_apic_tpr(env->apic_state, run->cr8);
1474
    cpu_set_apic_base(env->apic_state, run->apic_base);
1475

    
1476
    return 0;
1477
}
1478

    
1479
int kvm_arch_process_irqchip_events(CPUState *env)
1480
{
1481
    if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1482
        kvm_cpu_synchronize_state(env);
1483
        do_cpu_init(env);
1484
        env->exception_index = EXCP_HALTED;
1485
    }
1486

    
1487
    if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1488
        kvm_cpu_synchronize_state(env);
1489
        do_cpu_sipi(env);
1490
    }
1491

    
1492
    return env->halted;
1493
}
1494

    
1495
static int kvm_handle_halt(CPUState *env)
1496
{
1497
    if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1498
          (env->eflags & IF_MASK)) &&
1499
        !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1500
        env->halted = 1;
1501
        env->exception_index = EXCP_HLT;
1502
        return 0;
1503
    }
1504

    
1505
    return 1;
1506
}
1507

    
1508
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1509
{
1510
    int ret = 0;
1511

    
1512
    switch (run->exit_reason) {
1513
    case KVM_EXIT_HLT:
1514
        DPRINTF("handle_hlt\n");
1515
        ret = kvm_handle_halt(env);
1516
        break;
1517
    }
1518

    
1519
    return ret;
1520
}
1521

    
1522
#ifdef KVM_CAP_SET_GUEST_DEBUG
1523
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1524
{
1525
    static const uint8_t int3 = 0xcc;
1526

    
1527
    if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1528
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1529
        return -EINVAL;
1530
    return 0;
1531
}
1532

    
1533
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1534
{
1535
    uint8_t int3;
1536

    
1537
    if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1538
        cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1539
        return -EINVAL;
1540
    return 0;
1541
}
1542

    
1543
static struct {
1544
    target_ulong addr;
1545
    int len;
1546
    int type;
1547
} hw_breakpoint[4];
1548

    
1549
static int nb_hw_breakpoint;
1550

    
1551
static int find_hw_breakpoint(target_ulong addr, int len, int type)
1552
{
1553
    int n;
1554

    
1555
    for (n = 0; n < nb_hw_breakpoint; n++)
1556
        if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1557
            (hw_breakpoint[n].len == len || len == -1))
1558
            return n;
1559
    return -1;
1560
}
1561

    
1562
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1563
                                  target_ulong len, int type)
1564
{
1565
    switch (type) {
1566
    case GDB_BREAKPOINT_HW:
1567
        len = 1;
1568
        break;
1569
    case GDB_WATCHPOINT_WRITE:
1570
    case GDB_WATCHPOINT_ACCESS:
1571
        switch (len) {
1572
        case 1:
1573
            break;
1574
        case 2:
1575
        case 4:
1576
        case 8:
1577
            if (addr & (len - 1))
1578
                return -EINVAL;
1579
            break;
1580
        default:
1581
            return -EINVAL;
1582
        }
1583
        break;
1584
    default:
1585
        return -ENOSYS;
1586
    }
1587

    
1588
    if (nb_hw_breakpoint == 4)
1589
        return -ENOBUFS;
1590

    
1591
    if (find_hw_breakpoint(addr, len, type) >= 0)
1592
        return -EEXIST;
1593

    
1594
    hw_breakpoint[nb_hw_breakpoint].addr = addr;
1595
    hw_breakpoint[nb_hw_breakpoint].len = len;
1596
    hw_breakpoint[nb_hw_breakpoint].type = type;
1597
    nb_hw_breakpoint++;
1598

    
1599
    return 0;
1600
}
1601

    
1602
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1603
                                  target_ulong len, int type)
1604
{
1605
    int n;
1606

    
1607
    n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1608
    if (n < 0)
1609
        return -ENOENT;
1610

    
1611
    nb_hw_breakpoint--;
1612
    hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1613

    
1614
    return 0;
1615
}
1616

    
1617
void kvm_arch_remove_all_hw_breakpoints(void)
1618
{
1619
    nb_hw_breakpoint = 0;
1620
}
1621

    
1622
static CPUWatchpoint hw_watchpoint;
1623

    
1624
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1625
{
1626
    int handle = 0;
1627
    int n;
1628

    
1629
    if (arch_info->exception == 1) {
1630
        if (arch_info->dr6 & (1 << 14)) {
1631
            if (cpu_single_env->singlestep_enabled)
1632
                handle = 1;
1633
        } else {
1634
            for (n = 0; n < 4; n++)
1635
                if (arch_info->dr6 & (1 << n))
1636
                    switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1637
                    case 0x0:
1638
                        handle = 1;
1639
                        break;
1640
                    case 0x1:
1641
                        handle = 1;
1642
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1643
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1644
                        hw_watchpoint.flags = BP_MEM_WRITE;
1645
                        break;
1646
                    case 0x3:
1647
                        handle = 1;
1648
                        cpu_single_env->watchpoint_hit = &hw_watchpoint;
1649
                        hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1650
                        hw_watchpoint.flags = BP_MEM_ACCESS;
1651
                        break;
1652
                    }
1653
        }
1654
    } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1655
        handle = 1;
1656

    
1657
    if (!handle) {
1658
        cpu_synchronize_state(cpu_single_env);
1659
        assert(cpu_single_env->exception_injected == -1);
1660

    
1661
        cpu_single_env->exception_injected = arch_info->exception;
1662
        cpu_single_env->has_error_code = 0;
1663
    }
1664

    
1665
    return handle;
1666
}
1667

    
1668
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1669
{
1670
    const uint8_t type_code[] = {
1671
        [GDB_BREAKPOINT_HW] = 0x0,
1672
        [GDB_WATCHPOINT_WRITE] = 0x1,
1673
        [GDB_WATCHPOINT_ACCESS] = 0x3
1674
    };
1675
    const uint8_t len_code[] = {
1676
        [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1677
    };
1678
    int n;
1679

    
1680
    if (kvm_sw_breakpoints_active(env))
1681
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1682

    
1683
    if (nb_hw_breakpoint > 0) {
1684
        dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1685
        dbg->arch.debugreg[7] = 0x0600;
1686
        for (n = 0; n < nb_hw_breakpoint; n++) {
1687
            dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1688
            dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1689
                (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1690
                (len_code[hw_breakpoint[n].len] << (18 + n*4));
1691
        }
1692
    }
1693
    /* Legal xcr0 for loading */
1694
    env->xcr0 = 1;
1695
}
1696
#endif /* KVM_CAP_SET_GUEST_DEBUG */
1697

    
1698
bool kvm_arch_stop_on_emulation_error(CPUState *env)
1699
{
1700
      return !(env->cr[0] & CR0_PE_MASK) ||
1701
              ((env->segs[R_CS].selector  & 3) != 3);
1702
}
1703

    
1704
static void hardware_memory_error(void)
1705
{
1706
    fprintf(stderr, "Hardware memory error!\n");
1707
    exit(1);
1708
}
1709

    
1710
#ifdef KVM_CAP_MCE
1711
static void kvm_mce_broadcast_rest(CPUState *env)
1712
{
1713
    CPUState *cenv;
1714

    
1715
    /* Broadcast MCA signal for processor version 06H_EH and above */
1716
    if (cpu_x86_support_mca_broadcast(env)) {
1717
        for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1718
            if (cenv == env) {
1719
                continue;
1720
            }
1721
            kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1722
                               MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0,
1723
                               ABORT_ON_ERROR);
1724
        }
1725
    }
1726
}
1727
#endif
1728

    
1729
int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1730
{
1731
#if defined(KVM_CAP_MCE)
1732
    struct kvm_x86_mce mce = {
1733
            .bank = 9,
1734
    };
1735
    void *vaddr;
1736
    ram_addr_t ram_addr;
1737
    target_phys_addr_t paddr;
1738
    int r;
1739

    
1740
    if ((env->mcg_cap & MCG_SER_P) && addr
1741
        && (code == BUS_MCEERR_AR
1742
            || code == BUS_MCEERR_AO)) {
1743
        if (code == BUS_MCEERR_AR) {
1744
            /* Fake an Intel architectural Data Load SRAR UCR */
1745
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1746
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1747
                | MCI_STATUS_AR | 0x134;
1748
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1749
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1750
        } else {
1751
            /*
1752
             * If there is an MCE excpetion being processed, ignore
1753
             * this SRAO MCE
1754
             */
1755
            r = kvm_mce_in_exception(env);
1756
            if (r == -1) {
1757
                fprintf(stderr, "Failed to get MCE status\n");
1758
            } else if (r) {
1759
                return 0;
1760
            }
1761
            /* Fake an Intel architectural Memory scrubbing UCR */
1762
            mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1763
                | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1764
                | 0xc0;
1765
            mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1766
            mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1767
        }
1768
        vaddr = (void *)addr;
1769
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1770
            !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1771
            fprintf(stderr, "Hardware memory error for memory used by "
1772
                    "QEMU itself instead of guest system!\n");
1773
            /* Hope we are lucky for AO MCE */
1774
            if (code == BUS_MCEERR_AO) {
1775
                return 0;
1776
            } else {
1777
                hardware_memory_error();
1778
            }
1779
        }
1780
        mce.addr = paddr;
1781
        r = kvm_set_mce(env, &mce);
1782
        if (r < 0) {
1783
            fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1784
            abort();
1785
        }
1786
        kvm_mce_broadcast_rest(env);
1787
    } else
1788
#endif
1789
    {
1790
        if (code == BUS_MCEERR_AO) {
1791
            return 0;
1792
        } else if (code == BUS_MCEERR_AR) {
1793
            hardware_memory_error();
1794
        } else {
1795
            return 1;
1796
        }
1797
    }
1798
    return 0;
1799
}
1800

    
1801
int kvm_on_sigbus(int code, void *addr)
1802
{
1803
#if defined(KVM_CAP_MCE)
1804
    if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1805
        uint64_t status;
1806
        void *vaddr;
1807
        ram_addr_t ram_addr;
1808
        target_phys_addr_t paddr;
1809

    
1810
        /* Hope we are lucky for AO MCE */
1811
        vaddr = addr;
1812
        if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1813
            !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1814
            fprintf(stderr, "Hardware memory error for memory used by "
1815
                    "QEMU itself instead of guest system!: %p\n", addr);
1816
            return 0;
1817
        }
1818
        status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1819
            | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1820
            | 0xc0;
1821
        kvm_inject_x86_mce(first_cpu, 9, status,
1822
                           MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1823
                           (MCM_ADDR_PHYS << 6) | 0xc, ABORT_ON_ERROR);
1824
        kvm_mce_broadcast_rest(first_cpu);
1825
    } else
1826
#endif
1827
    {
1828
        if (code == BUS_MCEERR_AO) {
1829
            return 0;
1830
        } else if (code == BUS_MCEERR_AR) {
1831
            hardware_memory_error();
1832
        } else {
1833
            return 1;
1834
        }
1835
    }
1836
    return 0;
1837
}