Statistics
| Branch: | Revision:

root / cpu-all.h @ 2e70f6ef

History | View | Annotate | Download (27.6 kB)

1
/*
2
 * defines common to all virtual CPUs
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#ifndef CPU_ALL_H
21
#define CPU_ALL_H
22

    
23
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
24
#define WORDS_ALIGNED
25
#endif
26

    
27
/* some important defines:
28
 *
29
 * WORDS_ALIGNED : if defined, the host cpu can only make word aligned
30
 * memory accesses.
31
 *
32
 * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
33
 * otherwise little endian.
34
 *
35
 * (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
36
 *
37
 * TARGET_WORDS_BIGENDIAN : same for target cpu
38
 */
39

    
40
#include "bswap.h"
41
#include "softfloat.h"
42

    
43
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44
#define BSWAP_NEEDED
45
#endif
46

    
47
#ifdef BSWAP_NEEDED
48

    
49
static inline uint16_t tswap16(uint16_t s)
50
{
51
    return bswap16(s);
52
}
53

    
54
static inline uint32_t tswap32(uint32_t s)
55
{
56
    return bswap32(s);
57
}
58

    
59
static inline uint64_t tswap64(uint64_t s)
60
{
61
    return bswap64(s);
62
}
63

    
64
static inline void tswap16s(uint16_t *s)
65
{
66
    *s = bswap16(*s);
67
}
68

    
69
static inline void tswap32s(uint32_t *s)
70
{
71
    *s = bswap32(*s);
72
}
73

    
74
static inline void tswap64s(uint64_t *s)
75
{
76
    *s = bswap64(*s);
77
}
78

    
79
#else
80

    
81
static inline uint16_t tswap16(uint16_t s)
82
{
83
    return s;
84
}
85

    
86
static inline uint32_t tswap32(uint32_t s)
87
{
88
    return s;
89
}
90

    
91
static inline uint64_t tswap64(uint64_t s)
92
{
93
    return s;
94
}
95

    
96
static inline void tswap16s(uint16_t *s)
97
{
98
}
99

    
100
static inline void tswap32s(uint32_t *s)
101
{
102
}
103

    
104
static inline void tswap64s(uint64_t *s)
105
{
106
}
107

    
108
#endif
109

    
110
#if TARGET_LONG_SIZE == 4
111
#define tswapl(s) tswap32(s)
112
#define tswapls(s) tswap32s((uint32_t *)(s))
113
#define bswaptls(s) bswap32s(s)
114
#else
115
#define tswapl(s) tswap64(s)
116
#define tswapls(s) tswap64s((uint64_t *)(s))
117
#define bswaptls(s) bswap64s(s)
118
#endif
119

    
120
typedef union {
121
    float32 f;
122
    uint32_t l;
123
} CPU_FloatU;
124

    
125
/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
126
   endian ! */
127
typedef union {
128
    float64 d;
129
#if defined(WORDS_BIGENDIAN) \
130
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
131
    struct {
132
        uint32_t upper;
133
        uint32_t lower;
134
    } l;
135
#else
136
    struct {
137
        uint32_t lower;
138
        uint32_t upper;
139
    } l;
140
#endif
141
    uint64_t ll;
142
} CPU_DoubleU;
143

    
144
#ifdef TARGET_SPARC
145
typedef union {
146
    float128 q;
147
#if defined(WORDS_BIGENDIAN) \
148
    || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
149
    struct {
150
        uint32_t upmost;
151
        uint32_t upper;
152
        uint32_t lower;
153
        uint32_t lowest;
154
    } l;
155
    struct {
156
        uint64_t upper;
157
        uint64_t lower;
158
    } ll;
159
#else
160
    struct {
161
        uint32_t lowest;
162
        uint32_t lower;
163
        uint32_t upper;
164
        uint32_t upmost;
165
    } l;
166
    struct {
167
        uint64_t lower;
168
        uint64_t upper;
169
    } ll;
170
#endif
171
} CPU_QuadU;
172
#endif
173

    
174
/* CPU memory access without any memory or io remapping */
175

    
176
/*
177
 * the generic syntax for the memory accesses is:
178
 *
179
 * load: ld{type}{sign}{size}{endian}_{access_type}(ptr)
180
 *
181
 * store: st{type}{size}{endian}_{access_type}(ptr, val)
182
 *
183
 * type is:
184
 * (empty): integer access
185
 *   f    : float access
186
 *
187
 * sign is:
188
 * (empty): for floats or 32 bit size
189
 *   u    : unsigned
190
 *   s    : signed
191
 *
192
 * size is:
193
 *   b: 8 bits
194
 *   w: 16 bits
195
 *   l: 32 bits
196
 *   q: 64 bits
197
 *
198
 * endian is:
199
 * (empty): target cpu endianness or 8 bit access
200
 *   r    : reversed target cpu endianness (not implemented yet)
201
 *   be   : big endian (not implemented yet)
202
 *   le   : little endian (not implemented yet)
203
 *
204
 * access_type is:
205
 *   raw    : host memory access
206
 *   user   : user mode access using soft MMU
207
 *   kernel : kernel mode access using soft MMU
208
 */
209
static inline int ldub_p(void *ptr)
210
{
211
    return *(uint8_t *)ptr;
212
}
213

    
214
static inline int ldsb_p(void *ptr)
215
{
216
    return *(int8_t *)ptr;
217
}
218

    
219
static inline void stb_p(void *ptr, int v)
220
{
221
    *(uint8_t *)ptr = v;
222
}
223

    
224
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
225
   kernel handles unaligned load/stores may give better results, but
226
   it is a system wide setting : bad */
227
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
228

    
229
/* conservative code for little endian unaligned accesses */
230
static inline int lduw_le_p(void *ptr)
231
{
232
#ifdef __powerpc__
233
    int val;
234
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
235
    return val;
236
#elif defined(__sparc__)
237
#ifndef ASI_PRIMARY_LITTLE
238
#define ASI_PRIMARY_LITTLE 0x88
239
#endif
240

    
241
    int val;
242
    __asm__ __volatile__ ("lduha [%1] %2, %0" : "=r" (val) : "r" (ptr),
243
                          "i" (ASI_PRIMARY_LITTLE));
244
    return val;
245
#else
246
    uint8_t *p = ptr;
247
    return p[0] | (p[1] << 8);
248
#endif
249
}
250

    
251
static inline int ldsw_le_p(void *ptr)
252
{
253
#ifdef __powerpc__
254
    int val;
255
    __asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
256
    return (int16_t)val;
257
#elif defined(__sparc__)
258
    int val;
259
    __asm__ __volatile__ ("ldsha [%1] %2, %0" : "=r" (val) : "r" (ptr),
260
                          "i" (ASI_PRIMARY_LITTLE));
261
    return val;
262
#else
263
    uint8_t *p = ptr;
264
    return (int16_t)(p[0] | (p[1] << 8));
265
#endif
266
}
267

    
268
static inline int ldl_le_p(void *ptr)
269
{
270
#ifdef __powerpc__
271
    int val;
272
    __asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
273
    return val;
274
#elif defined(__sparc__)
275
    int val;
276
    __asm__ __volatile__ ("lduwa [%1] %2, %0" : "=r" (val) : "r" (ptr),
277
                          "i" (ASI_PRIMARY_LITTLE));
278
    return val;
279
#else
280
    uint8_t *p = ptr;
281
    return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
282
#endif
283
}
284

    
285
static inline uint64_t ldq_le_p(void *ptr)
286
{
287
#if defined(__sparc__)
288
    uint64_t val;
289
    __asm__ __volatile__ ("ldxa [%1] %2, %0" : "=r" (val) : "r" (ptr),
290
                          "i" (ASI_PRIMARY_LITTLE));
291
    return val;
292
#else
293
    uint8_t *p = ptr;
294
    uint32_t v1, v2;
295
    v1 = ldl_le_p(p);
296
    v2 = ldl_le_p(p + 4);
297
    return v1 | ((uint64_t)v2 << 32);
298
#endif
299
}
300

    
301
static inline void stw_le_p(void *ptr, int v)
302
{
303
#ifdef __powerpc__
304
    __asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
305
#elif defined(__sparc__)
306
    __asm__ __volatile__ ("stha %1, [%2] %3" : "=m" (*(uint16_t *)ptr) : "r" (v),
307
                          "r" (ptr), "i" (ASI_PRIMARY_LITTLE));
308
#else
309
    uint8_t *p = ptr;
310
    p[0] = v;
311
    p[1] = v >> 8;
312
#endif
313
}
314

    
315
static inline void stl_le_p(void *ptr, int v)
316
{
317
#ifdef __powerpc__
318
    __asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
319
#elif defined(__sparc__)
320
    __asm__ __volatile__ ("stwa %1, [%2] %3" : "=m" (*(uint32_t *)ptr) : "r" (v),
321
                          "r" (ptr), "i" (ASI_PRIMARY_LITTLE));
322
#else
323
    uint8_t *p = ptr;
324
    p[0] = v;
325
    p[1] = v >> 8;
326
    p[2] = v >> 16;
327
    p[3] = v >> 24;
328
#endif
329
}
330

    
331
static inline void stq_le_p(void *ptr, uint64_t v)
332
{
333
#if defined(__sparc__)
334
    __asm__ __volatile__ ("stxa %1, [%2] %3" : "=m" (*(uint64_t *)ptr) : "r" (v),
335
                          "r" (ptr), "i" (ASI_PRIMARY_LITTLE));
336
#undef ASI_PRIMARY_LITTLE
337
#else
338
    uint8_t *p = ptr;
339
    stl_le_p(p, (uint32_t)v);
340
    stl_le_p(p + 4, v >> 32);
341
#endif
342
}
343

    
344
/* float access */
345

    
346
static inline float32 ldfl_le_p(void *ptr)
347
{
348
    union {
349
        float32 f;
350
        uint32_t i;
351
    } u;
352
    u.i = ldl_le_p(ptr);
353
    return u.f;
354
}
355

    
356
static inline void stfl_le_p(void *ptr, float32 v)
357
{
358
    union {
359
        float32 f;
360
        uint32_t i;
361
    } u;
362
    u.f = v;
363
    stl_le_p(ptr, u.i);
364
}
365

    
366
static inline float64 ldfq_le_p(void *ptr)
367
{
368
    CPU_DoubleU u;
369
    u.l.lower = ldl_le_p(ptr);
370
    u.l.upper = ldl_le_p(ptr + 4);
371
    return u.d;
372
}
373

    
374
static inline void stfq_le_p(void *ptr, float64 v)
375
{
376
    CPU_DoubleU u;
377
    u.d = v;
378
    stl_le_p(ptr, u.l.lower);
379
    stl_le_p(ptr + 4, u.l.upper);
380
}
381

    
382
#else
383

    
384
static inline int lduw_le_p(void *ptr)
385
{
386
    return *(uint16_t *)ptr;
387
}
388

    
389
static inline int ldsw_le_p(void *ptr)
390
{
391
    return *(int16_t *)ptr;
392
}
393

    
394
static inline int ldl_le_p(void *ptr)
395
{
396
    return *(uint32_t *)ptr;
397
}
398

    
399
static inline uint64_t ldq_le_p(void *ptr)
400
{
401
    return *(uint64_t *)ptr;
402
}
403

    
404
static inline void stw_le_p(void *ptr, int v)
405
{
406
    *(uint16_t *)ptr = v;
407
}
408

    
409
static inline void stl_le_p(void *ptr, int v)
410
{
411
    *(uint32_t *)ptr = v;
412
}
413

    
414
static inline void stq_le_p(void *ptr, uint64_t v)
415
{
416
    *(uint64_t *)ptr = v;
417
}
418

    
419
/* float access */
420

    
421
static inline float32 ldfl_le_p(void *ptr)
422
{
423
    return *(float32 *)ptr;
424
}
425

    
426
static inline float64 ldfq_le_p(void *ptr)
427
{
428
    return *(float64 *)ptr;
429
}
430

    
431
static inline void stfl_le_p(void *ptr, float32 v)
432
{
433
    *(float32 *)ptr = v;
434
}
435

    
436
static inline void stfq_le_p(void *ptr, float64 v)
437
{
438
    *(float64 *)ptr = v;
439
}
440
#endif
441

    
442
#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
443

    
444
static inline int lduw_be_p(void *ptr)
445
{
446
#if defined(__i386__)
447
    int val;
448
    asm volatile ("movzwl %1, %0\n"
449
                  "xchgb %b0, %h0\n"
450
                  : "=q" (val)
451
                  : "m" (*(uint16_t *)ptr));
452
    return val;
453
#else
454
    uint8_t *b = (uint8_t *) ptr;
455
    return ((b[0] << 8) | b[1]);
456
#endif
457
}
458

    
459
static inline int ldsw_be_p(void *ptr)
460
{
461
#if defined(__i386__)
462
    int val;
463
    asm volatile ("movzwl %1, %0\n"
464
                  "xchgb %b0, %h0\n"
465
                  : "=q" (val)
466
                  : "m" (*(uint16_t *)ptr));
467
    return (int16_t)val;
468
#else
469
    uint8_t *b = (uint8_t *) ptr;
470
    return (int16_t)((b[0] << 8) | b[1]);
471
#endif
472
}
473

    
474
static inline int ldl_be_p(void *ptr)
475
{
476
#if defined(__i386__) || defined(__x86_64__)
477
    int val;
478
    asm volatile ("movl %1, %0\n"
479
                  "bswap %0\n"
480
                  : "=r" (val)
481
                  : "m" (*(uint32_t *)ptr));
482
    return val;
483
#else
484
    uint8_t *b = (uint8_t *) ptr;
485
    return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
486
#endif
487
}
488

    
489
static inline uint64_t ldq_be_p(void *ptr)
490
{
491
    uint32_t a,b;
492
    a = ldl_be_p(ptr);
493
    b = ldl_be_p((uint8_t *)ptr + 4);
494
    return (((uint64_t)a<<32)|b);
495
}
496

    
497
static inline void stw_be_p(void *ptr, int v)
498
{
499
#if defined(__i386__)
500
    asm volatile ("xchgb %b0, %h0\n"
501
                  "movw %w0, %1\n"
502
                  : "=q" (v)
503
                  : "m" (*(uint16_t *)ptr), "0" (v));
504
#else
505
    uint8_t *d = (uint8_t *) ptr;
506
    d[0] = v >> 8;
507
    d[1] = v;
508
#endif
509
}
510

    
511
static inline void stl_be_p(void *ptr, int v)
512
{
513
#if defined(__i386__) || defined(__x86_64__)
514
    asm volatile ("bswap %0\n"
515
                  "movl %0, %1\n"
516
                  : "=r" (v)
517
                  : "m" (*(uint32_t *)ptr), "0" (v));
518
#else
519
    uint8_t *d = (uint8_t *) ptr;
520
    d[0] = v >> 24;
521
    d[1] = v >> 16;
522
    d[2] = v >> 8;
523
    d[3] = v;
524
#endif
525
}
526

    
527
static inline void stq_be_p(void *ptr, uint64_t v)
528
{
529
    stl_be_p(ptr, v >> 32);
530
    stl_be_p((uint8_t *)ptr + 4, v);
531
}
532

    
533
/* float access */
534

    
535
static inline float32 ldfl_be_p(void *ptr)
536
{
537
    union {
538
        float32 f;
539
        uint32_t i;
540
    } u;
541
    u.i = ldl_be_p(ptr);
542
    return u.f;
543
}
544

    
545
static inline void stfl_be_p(void *ptr, float32 v)
546
{
547
    union {
548
        float32 f;
549
        uint32_t i;
550
    } u;
551
    u.f = v;
552
    stl_be_p(ptr, u.i);
553
}
554

    
555
static inline float64 ldfq_be_p(void *ptr)
556
{
557
    CPU_DoubleU u;
558
    u.l.upper = ldl_be_p(ptr);
559
    u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
560
    return u.d;
561
}
562

    
563
static inline void stfq_be_p(void *ptr, float64 v)
564
{
565
    CPU_DoubleU u;
566
    u.d = v;
567
    stl_be_p(ptr, u.l.upper);
568
    stl_be_p((uint8_t *)ptr + 4, u.l.lower);
569
}
570

    
571
#else
572

    
573
static inline int lduw_be_p(void *ptr)
574
{
575
    return *(uint16_t *)ptr;
576
}
577

    
578
static inline int ldsw_be_p(void *ptr)
579
{
580
    return *(int16_t *)ptr;
581
}
582

    
583
static inline int ldl_be_p(void *ptr)
584
{
585
    return *(uint32_t *)ptr;
586
}
587

    
588
static inline uint64_t ldq_be_p(void *ptr)
589
{
590
    return *(uint64_t *)ptr;
591
}
592

    
593
static inline void stw_be_p(void *ptr, int v)
594
{
595
    *(uint16_t *)ptr = v;
596
}
597

    
598
static inline void stl_be_p(void *ptr, int v)
599
{
600
    *(uint32_t *)ptr = v;
601
}
602

    
603
static inline void stq_be_p(void *ptr, uint64_t v)
604
{
605
    *(uint64_t *)ptr = v;
606
}
607

    
608
/* float access */
609

    
610
static inline float32 ldfl_be_p(void *ptr)
611
{
612
    return *(float32 *)ptr;
613
}
614

    
615
static inline float64 ldfq_be_p(void *ptr)
616
{
617
    return *(float64 *)ptr;
618
}
619

    
620
static inline void stfl_be_p(void *ptr, float32 v)
621
{
622
    *(float32 *)ptr = v;
623
}
624

    
625
static inline void stfq_be_p(void *ptr, float64 v)
626
{
627
    *(float64 *)ptr = v;
628
}
629

    
630
#endif
631

    
632
/* target CPU memory access functions */
633
#if defined(TARGET_WORDS_BIGENDIAN)
634
#define lduw_p(p) lduw_be_p(p)
635
#define ldsw_p(p) ldsw_be_p(p)
636
#define ldl_p(p) ldl_be_p(p)
637
#define ldq_p(p) ldq_be_p(p)
638
#define ldfl_p(p) ldfl_be_p(p)
639
#define ldfq_p(p) ldfq_be_p(p)
640
#define stw_p(p, v) stw_be_p(p, v)
641
#define stl_p(p, v) stl_be_p(p, v)
642
#define stq_p(p, v) stq_be_p(p, v)
643
#define stfl_p(p, v) stfl_be_p(p, v)
644
#define stfq_p(p, v) stfq_be_p(p, v)
645
#else
646
#define lduw_p(p) lduw_le_p(p)
647
#define ldsw_p(p) ldsw_le_p(p)
648
#define ldl_p(p) ldl_le_p(p)
649
#define ldq_p(p) ldq_le_p(p)
650
#define ldfl_p(p) ldfl_le_p(p)
651
#define ldfq_p(p) ldfq_le_p(p)
652
#define stw_p(p, v) stw_le_p(p, v)
653
#define stl_p(p, v) stl_le_p(p, v)
654
#define stq_p(p, v) stq_le_p(p, v)
655
#define stfl_p(p, v) stfl_le_p(p, v)
656
#define stfq_p(p, v) stfq_le_p(p, v)
657
#endif
658

    
659
/* MMU memory access macros */
660

    
661
#if defined(CONFIG_USER_ONLY)
662
/* On some host systems the guest address space is reserved on the host.
663
 * This allows the guest address space to be offset to a convenient location.
664
 */
665
//#define GUEST_BASE 0x20000000
666
#define GUEST_BASE 0
667

    
668
/* All direct uses of g2h and h2g need to go away for usermode softmmu.  */
669
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
670
#define h2g(x) ((target_ulong)(x - GUEST_BASE))
671

    
672
#define saddr(x) g2h(x)
673
#define laddr(x) g2h(x)
674

    
675
#else /* !CONFIG_USER_ONLY */
676
/* NOTE: we use double casts if pointers and target_ulong have
677
   different sizes */
678
#define saddr(x) (uint8_t *)(long)(x)
679
#define laddr(x) (uint8_t *)(long)(x)
680
#endif
681

    
682
#define ldub_raw(p) ldub_p(laddr((p)))
683
#define ldsb_raw(p) ldsb_p(laddr((p)))
684
#define lduw_raw(p) lduw_p(laddr((p)))
685
#define ldsw_raw(p) ldsw_p(laddr((p)))
686
#define ldl_raw(p) ldl_p(laddr((p)))
687
#define ldq_raw(p) ldq_p(laddr((p)))
688
#define ldfl_raw(p) ldfl_p(laddr((p)))
689
#define ldfq_raw(p) ldfq_p(laddr((p)))
690
#define stb_raw(p, v) stb_p(saddr((p)), v)
691
#define stw_raw(p, v) stw_p(saddr((p)), v)
692
#define stl_raw(p, v) stl_p(saddr((p)), v)
693
#define stq_raw(p, v) stq_p(saddr((p)), v)
694
#define stfl_raw(p, v) stfl_p(saddr((p)), v)
695
#define stfq_raw(p, v) stfq_p(saddr((p)), v)
696

    
697

    
698
#if defined(CONFIG_USER_ONLY)
699

    
700
/* if user mode, no other memory access functions */
701
#define ldub(p) ldub_raw(p)
702
#define ldsb(p) ldsb_raw(p)
703
#define lduw(p) lduw_raw(p)
704
#define ldsw(p) ldsw_raw(p)
705
#define ldl(p) ldl_raw(p)
706
#define ldq(p) ldq_raw(p)
707
#define ldfl(p) ldfl_raw(p)
708
#define ldfq(p) ldfq_raw(p)
709
#define stb(p, v) stb_raw(p, v)
710
#define stw(p, v) stw_raw(p, v)
711
#define stl(p, v) stl_raw(p, v)
712
#define stq(p, v) stq_raw(p, v)
713
#define stfl(p, v) stfl_raw(p, v)
714
#define stfq(p, v) stfq_raw(p, v)
715

    
716
#define ldub_code(p) ldub_raw(p)
717
#define ldsb_code(p) ldsb_raw(p)
718
#define lduw_code(p) lduw_raw(p)
719
#define ldsw_code(p) ldsw_raw(p)
720
#define ldl_code(p) ldl_raw(p)
721
#define ldq_code(p) ldq_raw(p)
722

    
723
#define ldub_kernel(p) ldub_raw(p)
724
#define ldsb_kernel(p) ldsb_raw(p)
725
#define lduw_kernel(p) lduw_raw(p)
726
#define ldsw_kernel(p) ldsw_raw(p)
727
#define ldl_kernel(p) ldl_raw(p)
728
#define ldq_kernel(p) ldq_raw(p)
729
#define ldfl_kernel(p) ldfl_raw(p)
730
#define ldfq_kernel(p) ldfq_raw(p)
731
#define stb_kernel(p, v) stb_raw(p, v)
732
#define stw_kernel(p, v) stw_raw(p, v)
733
#define stl_kernel(p, v) stl_raw(p, v)
734
#define stq_kernel(p, v) stq_raw(p, v)
735
#define stfl_kernel(p, v) stfl_raw(p, v)
736
#define stfq_kernel(p, vt) stfq_raw(p, v)
737

    
738
#endif /* defined(CONFIG_USER_ONLY) */
739

    
740
/* page related stuff */
741

    
742
#define TARGET_PAGE_SIZE (1 << TARGET_PAGE_BITS)
743
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
744
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
745

    
746
/* ??? These should be the larger of unsigned long and target_ulong.  */
747
extern unsigned long qemu_real_host_page_size;
748
extern unsigned long qemu_host_page_bits;
749
extern unsigned long qemu_host_page_size;
750
extern unsigned long qemu_host_page_mask;
751

    
752
#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
753

    
754
/* same as PROT_xxx */
755
#define PAGE_READ      0x0001
756
#define PAGE_WRITE     0x0002
757
#define PAGE_EXEC      0x0004
758
#define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
759
#define PAGE_VALID     0x0008
760
/* original state of the write flag (used when tracking self-modifying
761
   code */
762
#define PAGE_WRITE_ORG 0x0010
763
#define PAGE_RESERVED  0x0020
764

    
765
void page_dump(FILE *f);
766
int page_get_flags(target_ulong address);
767
void page_set_flags(target_ulong start, target_ulong end, int flags);
768
int page_check_range(target_ulong start, target_ulong len, int flags);
769

    
770
void cpu_exec_init_all(unsigned long tb_size);
771
CPUState *cpu_copy(CPUState *env);
772

    
773
void cpu_dump_state(CPUState *env, FILE *f,
774
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
775
                    int flags);
776
void cpu_dump_statistics (CPUState *env, FILE *f,
777
                          int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
778
                          int flags);
779

    
780
void cpu_abort(CPUState *env, const char *fmt, ...)
781
    __attribute__ ((__format__ (__printf__, 2, 3)))
782
    __attribute__ ((__noreturn__));
783
extern CPUState *first_cpu;
784
extern CPUState *cpu_single_env;
785
extern int64_t qemu_icount;
786
extern int use_icount;
787

    
788
#define CPU_INTERRUPT_EXIT   0x01 /* wants exit from main loop */
789
#define CPU_INTERRUPT_HARD   0x02 /* hardware interrupt pending */
790
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
791
#define CPU_INTERRUPT_TIMER  0x08 /* internal timer exception pending */
792
#define CPU_INTERRUPT_FIQ    0x10 /* Fast interrupt pending.  */
793
#define CPU_INTERRUPT_HALT   0x20 /* CPU halt wanted */
794
#define CPU_INTERRUPT_SMI    0x40 /* (x86 only) SMI interrupt pending */
795
#define CPU_INTERRUPT_DEBUG  0x80 /* Debug event occured.  */
796
#define CPU_INTERRUPT_VIRQ   0x100 /* virtual interrupt pending.  */
797
#define CPU_INTERRUPT_NMI    0x200 /* NMI pending. */
798

    
799
void cpu_interrupt(CPUState *s, int mask);
800
void cpu_reset_interrupt(CPUState *env, int mask);
801

    
802
int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type);
803
int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
804
void cpu_watchpoint_remove_all(CPUState *env);
805
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
806
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
807
void cpu_breakpoint_remove_all(CPUState *env);
808

    
809
#define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
810
#define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
811
#define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
812

    
813
void cpu_single_step(CPUState *env, int enabled);
814
void cpu_reset(CPUState *s);
815

    
816
/* Return the physical page corresponding to a virtual one. Use it
817
   only for debugging because no protection checks are done. Return -1
818
   if no page found. */
819
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
820

    
821
#define CPU_LOG_TB_OUT_ASM (1 << 0)
822
#define CPU_LOG_TB_IN_ASM  (1 << 1)
823
#define CPU_LOG_TB_OP      (1 << 2)
824
#define CPU_LOG_TB_OP_OPT  (1 << 3)
825
#define CPU_LOG_INT        (1 << 4)
826
#define CPU_LOG_EXEC       (1 << 5)
827
#define CPU_LOG_PCALL      (1 << 6)
828
#define CPU_LOG_IOPORT     (1 << 7)
829
#define CPU_LOG_TB_CPU     (1 << 8)
830

    
831
/* define log items */
832
typedef struct CPULogItem {
833
    int mask;
834
    const char *name;
835
    const char *help;
836
} CPULogItem;
837

    
838
extern CPULogItem cpu_log_items[];
839

    
840
void cpu_set_log(int log_flags);
841
void cpu_set_log_filename(const char *filename);
842
int cpu_str_to_log_mask(const char *str);
843

    
844
/* IO ports API */
845

    
846
/* NOTE: as these functions may be even used when there is an isa
847
   brige on non x86 targets, we always defined them */
848
#ifndef NO_CPU_IO_DEFS
849
void cpu_outb(CPUState *env, int addr, int val);
850
void cpu_outw(CPUState *env, int addr, int val);
851
void cpu_outl(CPUState *env, int addr, int val);
852
int cpu_inb(CPUState *env, int addr);
853
int cpu_inw(CPUState *env, int addr);
854
int cpu_inl(CPUState *env, int addr);
855
#endif
856

    
857
/* address in the RAM (different from a physical address) */
858
#ifdef USE_KQEMU
859
typedef uint32_t ram_addr_t;
860
#else
861
typedef unsigned long ram_addr_t;
862
#endif
863

    
864
/* memory API */
865

    
866
extern ram_addr_t phys_ram_size;
867
extern int phys_ram_fd;
868
extern uint8_t *phys_ram_base;
869
extern uint8_t *phys_ram_dirty;
870
extern ram_addr_t ram_size;
871

    
872
/* physical memory access */
873

    
874
/* MMIO pages are identified by a combination of an IO device index and
875
   3 flags.  The ROMD code stores the page ram offset in iotlb entry, 
876
   so only a limited number of ids are avaiable.  */
877

    
878
#define IO_MEM_SHIFT       3
879
#define IO_MEM_NB_ENTRIES  (1 << (TARGET_PAGE_BITS  - IO_MEM_SHIFT))
880

    
881
#define IO_MEM_RAM         (0 << IO_MEM_SHIFT) /* hardcoded offset */
882
#define IO_MEM_ROM         (1 << IO_MEM_SHIFT) /* hardcoded offset */
883
#define IO_MEM_UNASSIGNED  (2 << IO_MEM_SHIFT)
884
#define IO_MEM_NOTDIRTY    (3 << IO_MEM_SHIFT)
885

    
886
/* Acts like a ROM when read and like a device when written.  */
887
#define IO_MEM_ROMD        (1)
888
#define IO_MEM_SUBPAGE     (2)
889
#define IO_MEM_SUBWIDTH    (4)
890

    
891
/* Flags stored in the low bits of the TLB virtual address.  These are
892
   defined so that fast path ram access is all zeros.  */
893
/* Zero if TLB entry is valid.  */
894
#define TLB_INVALID_MASK   (1 << 3)
895
/* Set if TLB entry references a clean RAM page.  The iotlb entry will
896
   contain the page physical address.  */
897
#define TLB_NOTDIRTY    (1 << 4)
898
/* Set if TLB entry is an IO callback.  */
899
#define TLB_MMIO        (1 << 5)
900

    
901
typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
902
typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
903

    
904
void cpu_register_physical_memory(target_phys_addr_t start_addr,
905
                                  ram_addr_t size,
906
                                  ram_addr_t phys_offset);
907
ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
908
ram_addr_t qemu_ram_alloc(ram_addr_t);
909
void qemu_ram_free(ram_addr_t addr);
910
int cpu_register_io_memory(int io_index,
911
                           CPUReadMemoryFunc **mem_read,
912
                           CPUWriteMemoryFunc **mem_write,
913
                           void *opaque);
914
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
915
CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
916

    
917
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
918
                            int len, int is_write);
919
static inline void cpu_physical_memory_read(target_phys_addr_t addr,
920
                                            uint8_t *buf, int len)
921
{
922
    cpu_physical_memory_rw(addr, buf, len, 0);
923
}
924
static inline void cpu_physical_memory_write(target_phys_addr_t addr,
925
                                             const uint8_t *buf, int len)
926
{
927
    cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
928
}
929
uint32_t ldub_phys(target_phys_addr_t addr);
930
uint32_t lduw_phys(target_phys_addr_t addr);
931
uint32_t ldl_phys(target_phys_addr_t addr);
932
uint64_t ldq_phys(target_phys_addr_t addr);
933
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
934
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
935
void stb_phys(target_phys_addr_t addr, uint32_t val);
936
void stw_phys(target_phys_addr_t addr, uint32_t val);
937
void stl_phys(target_phys_addr_t addr, uint32_t val);
938
void stq_phys(target_phys_addr_t addr, uint64_t val);
939

    
940
void cpu_physical_memory_write_rom(target_phys_addr_t addr,
941
                                   const uint8_t *buf, int len);
942
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
943
                        uint8_t *buf, int len, int is_write);
944

    
945
#define VGA_DIRTY_FLAG  0x01
946
#define CODE_DIRTY_FLAG 0x02
947

    
948
/* read dirty bit (return 0 or 1) */
949
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
950
{
951
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
952
}
953

    
954
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
955
                                                int dirty_flags)
956
{
957
    return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
958
}
959

    
960
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
961
{
962
    phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
963
}
964

    
965
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
966
                                     int dirty_flags);
967
void cpu_tlb_update_dirty(CPUState *env);
968

    
969
void dump_exec_info(FILE *f,
970
                    int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
971

    
972
/*******************************************/
973
/* host CPU ticks (if available) */
974

    
975
#if defined(__powerpc__)
976

    
977
static inline uint32_t get_tbl(void)
978
{
979
    uint32_t tbl;
980
    asm volatile("mftb %0" : "=r" (tbl));
981
    return tbl;
982
}
983

    
984
static inline uint32_t get_tbu(void)
985
{
986
        uint32_t tbl;
987
        asm volatile("mftbu %0" : "=r" (tbl));
988
        return tbl;
989
}
990

    
991
static inline int64_t cpu_get_real_ticks(void)
992
{
993
    uint32_t l, h, h1;
994
    /* NOTE: we test if wrapping has occurred */
995
    do {
996
        h = get_tbu();
997
        l = get_tbl();
998
        h1 = get_tbu();
999
    } while (h != h1);
1000
    return ((int64_t)h << 32) | l;
1001
}
1002

    
1003
#elif defined(__i386__)
1004

    
1005
static inline int64_t cpu_get_real_ticks(void)
1006
{
1007
    int64_t val;
1008
    asm volatile ("rdtsc" : "=A" (val));
1009
    return val;
1010
}
1011

    
1012
#elif defined(__x86_64__)
1013

    
1014
static inline int64_t cpu_get_real_ticks(void)
1015
{
1016
    uint32_t low,high;
1017
    int64_t val;
1018
    asm volatile("rdtsc" : "=a" (low), "=d" (high));
1019
    val = high;
1020
    val <<= 32;
1021
    val |= low;
1022
    return val;
1023
}
1024

    
1025
#elif defined(__hppa__)
1026

    
1027
static inline int64_t cpu_get_real_ticks(void)
1028
{
1029
    int val;
1030
    asm volatile ("mfctl %%cr16, %0" : "=r"(val));
1031
    return val;
1032
}
1033

    
1034
#elif defined(__ia64)
1035

    
1036
static inline int64_t cpu_get_real_ticks(void)
1037
{
1038
        int64_t val;
1039
        asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
1040
        return val;
1041
}
1042

    
1043
#elif defined(__s390__)
1044

    
1045
static inline int64_t cpu_get_real_ticks(void)
1046
{
1047
    int64_t val;
1048
    asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
1049
    return val;
1050
}
1051

    
1052
#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
1053

    
1054
static inline int64_t cpu_get_real_ticks (void)
1055
{
1056
#if     defined(_LP64)
1057
        uint64_t        rval;
1058
        asm volatile("rd %%tick,%0" : "=r"(rval));
1059
        return rval;
1060
#else
1061
        union {
1062
                uint64_t i64;
1063
                struct {
1064
                        uint32_t high;
1065
                        uint32_t low;
1066
                }       i32;
1067
        } rval;
1068
        asm volatile("rd %%tick,%1; srlx %1,32,%0"
1069
                : "=r"(rval.i32.high), "=r"(rval.i32.low));
1070
        return rval.i64;
1071
#endif
1072
}
1073

    
1074
#elif defined(__mips__)
1075

    
1076
static inline int64_t cpu_get_real_ticks(void)
1077
{
1078
#if __mips_isa_rev >= 2
1079
    uint32_t count;
1080
    static uint32_t cyc_per_count = 0;
1081

    
1082
    if (!cyc_per_count)
1083
        __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
1084

    
1085
    __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
1086
    return (int64_t)(count * cyc_per_count);
1087
#else
1088
    /* FIXME */
1089
    static int64_t ticks = 0;
1090
    return ticks++;
1091
#endif
1092
}
1093

    
1094
#else
1095
/* The host CPU doesn't have an easily accessible cycle counter.
1096
   Just return a monotonically increasing value.  This will be
1097
   totally wrong, but hopefully better than nothing.  */
1098
static inline int64_t cpu_get_real_ticks (void)
1099
{
1100
    static int64_t ticks = 0;
1101
    return ticks++;
1102
}
1103
#endif
1104

    
1105
/* profiling */
1106
#ifdef CONFIG_PROFILER
1107
static inline int64_t profile_getclock(void)
1108
{
1109
    return cpu_get_real_ticks();
1110
}
1111

    
1112
extern int64_t kqemu_time, kqemu_time_start;
1113
extern int64_t qemu_time, qemu_time_start;
1114
extern int64_t tlb_flush_time;
1115
extern int64_t kqemu_exec_count;
1116
extern int64_t dev_time;
1117
extern int64_t kqemu_ret_int_count;
1118
extern int64_t kqemu_ret_excp_count;
1119
extern int64_t kqemu_ret_intr_count;
1120
#endif
1121

    
1122
#endif /* CPU_ALL_H */