Statistics
| Branch: | Revision:

root / vl.c @ 3023f332

History | View | Annotate | Download (150.3 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "hw/hw.h"
25
#include "hw/boards.h"
26
#include "hw/usb.h"
27
#include "hw/pcmcia.h"
28
#include "hw/pc.h"
29
#include "hw/audiodev.h"
30
#include "hw/isa.h"
31
#include "hw/baum.h"
32
#include "hw/bt.h"
33
#include "net.h"
34
#include "console.h"
35
#include "sysemu.h"
36
#include "gdbstub.h"
37
#include "qemu-timer.h"
38
#include "qemu-char.h"
39
#include "cache-utils.h"
40
#include "block.h"
41
#include "audio/audio.h"
42
#include "migration.h"
43
#include "kvm.h"
44
#include "balloon.h"
45

    
46
#include <unistd.h>
47
#include <fcntl.h>
48
#include <signal.h>
49
#include <time.h>
50
#include <errno.h>
51
#include <sys/time.h>
52
#include <zlib.h>
53

    
54
#ifndef _WIN32
55
#include <sys/times.h>
56
#include <sys/wait.h>
57
#include <termios.h>
58
#include <sys/mman.h>
59
#include <sys/ioctl.h>
60
#include <sys/resource.h>
61
#include <sys/socket.h>
62
#include <netinet/in.h>
63
#include <net/if.h>
64
#if defined(__NetBSD__)
65
#include <net/if_tap.h>
66
#endif
67
#ifdef __linux__
68
#include <linux/if_tun.h>
69
#endif
70
#include <arpa/inet.h>
71
#include <dirent.h>
72
#include <netdb.h>
73
#include <sys/select.h>
74
#ifdef _BSD
75
#include <sys/stat.h>
76
#ifdef __FreeBSD__
77
#include <libutil.h>
78
#else
79
#include <util.h>
80
#endif
81
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
82
#include <freebsd/stdlib.h>
83
#else
84
#ifdef __linux__
85
#include <pty.h>
86
#include <malloc.h>
87
#include <linux/rtc.h>
88

    
89
/* For the benefit of older linux systems which don't supply it,
90
   we use a local copy of hpet.h. */
91
/* #include <linux/hpet.h> */
92
#include "hpet.h"
93

    
94
#include <linux/ppdev.h>
95
#include <linux/parport.h>
96
#endif
97
#ifdef __sun__
98
#include <sys/stat.h>
99
#include <sys/ethernet.h>
100
#include <sys/sockio.h>
101
#include <netinet/arp.h>
102
#include <netinet/in.h>
103
#include <netinet/in_systm.h>
104
#include <netinet/ip.h>
105
#include <netinet/ip_icmp.h> // must come after ip.h
106
#include <netinet/udp.h>
107
#include <netinet/tcp.h>
108
#include <net/if.h>
109
#include <syslog.h>
110
#include <stropts.h>
111
#endif
112
#endif
113
#endif
114

    
115
#include "qemu_socket.h"
116

    
117
#if defined(CONFIG_SLIRP)
118
#include "libslirp.h"
119
#endif
120

    
121
#if defined(__OpenBSD__)
122
#include <util.h>
123
#endif
124

    
125
#if defined(CONFIG_VDE)
126
#include <libvdeplug.h>
127
#endif
128

    
129
#ifdef _WIN32
130
#include <malloc.h>
131
#include <sys/timeb.h>
132
#include <mmsystem.h>
133
#define getopt_long_only getopt_long
134
#define memalign(align, size) malloc(size)
135
#endif
136

    
137
#ifdef CONFIG_SDL
138
#ifdef __APPLE__
139
#include <SDL/SDL.h>
140
#endif
141
#endif /* CONFIG_SDL */
142

    
143
#ifdef CONFIG_COCOA
144
#undef main
145
#define main qemu_main
146
#endif /* CONFIG_COCOA */
147

    
148
#include "disas.h"
149

    
150
#include "exec-all.h"
151

    
152
//#define DEBUG_UNUSED_IOPORT
153
//#define DEBUG_IOPORT
154
//#define DEBUG_NET
155
//#define DEBUG_SLIRP
156

    
157

    
158
#ifdef DEBUG_IOPORT
159
#  define LOG_IOPORT(...) qemu_log_mask(CPU_LOG_IOPORT, ## __VA_ARGS__)
160
#else
161
#  define LOG_IOPORT(...) do { } while (0)
162
#endif
163

    
164
#ifdef TARGET_PPC
165
#define DEFAULT_RAM_SIZE 144
166
#else
167
#define DEFAULT_RAM_SIZE 128
168
#endif
169

    
170
/* Max number of USB devices that can be specified on the commandline.  */
171
#define MAX_USB_CMDLINE 8
172

    
173
/* Max number of bluetooth switches on the commandline.  */
174
#define MAX_BT_CMDLINE 10
175

    
176
/* XXX: use a two level table to limit memory usage */
177
#define MAX_IOPORTS 65536
178

    
179
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
180
const char *bios_name = NULL;
181
static void *ioport_opaque[MAX_IOPORTS];
182
static IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
183
static IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
184
/* Note: drives_table[MAX_DRIVES] is a dummy block driver if none available
185
   to store the VM snapshots */
186
DriveInfo drives_table[MAX_DRIVES+1];
187
int nb_drives;
188
static int vga_ram_size;
189
enum vga_retrace_method vga_retrace_method = VGA_RETRACE_DUMB;
190
static DisplayState *display_state;
191
int nographic;
192
static int curses;
193
static int sdl;
194
const char* keyboard_layout = NULL;
195
int64_t ticks_per_sec;
196
ram_addr_t ram_size;
197
int nb_nics;
198
NICInfo nd_table[MAX_NICS];
199
int vm_running;
200
static int rtc_utc = 1;
201
static int rtc_date_offset = -1; /* -1 means no change */
202
int cirrus_vga_enabled = 1;
203
int std_vga_enabled = 0;
204
int vmsvga_enabled = 0;
205
#ifdef TARGET_SPARC
206
int graphic_width = 1024;
207
int graphic_height = 768;
208
int graphic_depth = 8;
209
#else
210
int graphic_width = 800;
211
int graphic_height = 600;
212
int graphic_depth = 15;
213
#endif
214
static int full_screen = 0;
215
#ifdef CONFIG_SDL
216
static int no_frame = 0;
217
#endif
218
int no_quit = 0;
219
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
220
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
221
CharDriverState *virtcon_hds[MAX_VIRTIO_CONSOLES];
222
#ifdef TARGET_I386
223
int win2k_install_hack = 0;
224
int rtc_td_hack = 0;
225
#endif
226
int usb_enabled = 0;
227
int smp_cpus = 1;
228
const char *vnc_display;
229
int acpi_enabled = 1;
230
int no_hpet = 0;
231
int fd_bootchk = 1;
232
int no_reboot = 0;
233
int no_shutdown = 0;
234
int cursor_hide = 1;
235
int graphic_rotate = 0;
236
int daemonize = 0;
237
const char *option_rom[MAX_OPTION_ROMS];
238
int nb_option_roms;
239
int semihosting_enabled = 0;
240
#ifdef TARGET_ARM
241
int old_param = 0;
242
#endif
243
const char *qemu_name;
244
int alt_grab = 0;
245
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
246
unsigned int nb_prom_envs = 0;
247
const char *prom_envs[MAX_PROM_ENVS];
248
#endif
249
static int nb_drives_opt;
250
static struct drive_opt {
251
    const char *file;
252
    char opt[1024];
253
} drives_opt[MAX_DRIVES];
254

    
255
static CPUState *cur_cpu;
256
static CPUState *next_cpu;
257
static int event_pending = 1;
258
/* Conversion factor from emulated instructions to virtual clock ticks.  */
259
static int icount_time_shift;
260
/* Arbitrarily pick 1MIPS as the minimum allowable speed.  */
261
#define MAX_ICOUNT_SHIFT 10
262
/* Compensate for varying guest execution speed.  */
263
static int64_t qemu_icount_bias;
264
static QEMUTimer *icount_rt_timer;
265
static QEMUTimer *icount_vm_timer;
266

    
267
uint8_t qemu_uuid[16];
268

    
269
/***********************************************************/
270
/* x86 ISA bus support */
271

    
272
target_phys_addr_t isa_mem_base = 0;
273
PicState2 *isa_pic;
274

    
275
static IOPortReadFunc default_ioport_readb, default_ioport_readw, default_ioport_readl;
276
static IOPortWriteFunc default_ioport_writeb, default_ioport_writew, default_ioport_writel;
277

    
278
static uint32_t ioport_read(int index, uint32_t address)
279
{
280
    static IOPortReadFunc *default_func[3] = {
281
        default_ioport_readb,
282
        default_ioport_readw,
283
        default_ioport_readl
284
    };
285
    IOPortReadFunc *func = ioport_read_table[index][address];
286
    if (!func)
287
        func = default_func[index];
288
    return func(ioport_opaque[address], address);
289
}
290

    
291
static void ioport_write(int index, uint32_t address, uint32_t data)
292
{
293
    static IOPortWriteFunc *default_func[3] = {
294
        default_ioport_writeb,
295
        default_ioport_writew,
296
        default_ioport_writel
297
    };
298
    IOPortWriteFunc *func = ioport_write_table[index][address];
299
    if (!func)
300
        func = default_func[index];
301
    func(ioport_opaque[address], address, data);
302
}
303

    
304
static uint32_t default_ioport_readb(void *opaque, uint32_t address)
305
{
306
#ifdef DEBUG_UNUSED_IOPORT
307
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
308
#endif
309
    return 0xff;
310
}
311

    
312
static void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
313
{
314
#ifdef DEBUG_UNUSED_IOPORT
315
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
316
#endif
317
}
318

    
319
/* default is to make two byte accesses */
320
static uint32_t default_ioport_readw(void *opaque, uint32_t address)
321
{
322
    uint32_t data;
323
    data = ioport_read(0, address);
324
    address = (address + 1) & (MAX_IOPORTS - 1);
325
    data |= ioport_read(0, address) << 8;
326
    return data;
327
}
328

    
329
static void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
330
{
331
    ioport_write(0, address, data & 0xff);
332
    address = (address + 1) & (MAX_IOPORTS - 1);
333
    ioport_write(0, address, (data >> 8) & 0xff);
334
}
335

    
336
static uint32_t default_ioport_readl(void *opaque, uint32_t address)
337
{
338
#ifdef DEBUG_UNUSED_IOPORT
339
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
340
#endif
341
    return 0xffffffff;
342
}
343

    
344
static void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
345
{
346
#ifdef DEBUG_UNUSED_IOPORT
347
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
348
#endif
349
}
350

    
351
/* size is the word size in byte */
352
int register_ioport_read(int start, int length, int size,
353
                         IOPortReadFunc *func, void *opaque)
354
{
355
    int i, bsize;
356

    
357
    if (size == 1) {
358
        bsize = 0;
359
    } else if (size == 2) {
360
        bsize = 1;
361
    } else if (size == 4) {
362
        bsize = 2;
363
    } else {
364
        hw_error("register_ioport_read: invalid size");
365
        return -1;
366
    }
367
    for(i = start; i < start + length; i += size) {
368
        ioport_read_table[bsize][i] = func;
369
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
370
            hw_error("register_ioport_read: invalid opaque");
371
        ioport_opaque[i] = opaque;
372
    }
373
    return 0;
374
}
375

    
376
/* size is the word size in byte */
377
int register_ioport_write(int start, int length, int size,
378
                          IOPortWriteFunc *func, void *opaque)
379
{
380
    int i, bsize;
381

    
382
    if (size == 1) {
383
        bsize = 0;
384
    } else if (size == 2) {
385
        bsize = 1;
386
    } else if (size == 4) {
387
        bsize = 2;
388
    } else {
389
        hw_error("register_ioport_write: invalid size");
390
        return -1;
391
    }
392
    for(i = start; i < start + length; i += size) {
393
        ioport_write_table[bsize][i] = func;
394
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
395
            hw_error("register_ioport_write: invalid opaque");
396
        ioport_opaque[i] = opaque;
397
    }
398
    return 0;
399
}
400

    
401
void isa_unassign_ioport(int start, int length)
402
{
403
    int i;
404

    
405
    for(i = start; i < start + length; i++) {
406
        ioport_read_table[0][i] = default_ioport_readb;
407
        ioport_read_table[1][i] = default_ioport_readw;
408
        ioport_read_table[2][i] = default_ioport_readl;
409

    
410
        ioport_write_table[0][i] = default_ioport_writeb;
411
        ioport_write_table[1][i] = default_ioport_writew;
412
        ioport_write_table[2][i] = default_ioport_writel;
413
    }
414
}
415

    
416
/***********************************************************/
417

    
418
void cpu_outb(CPUState *env, int addr, int val)
419
{
420
    LOG_IOPORT("outb: %04x %02x\n", addr, val);
421
    ioport_write(0, addr, val);
422
#ifdef USE_KQEMU
423
    if (env)
424
        env->last_io_time = cpu_get_time_fast();
425
#endif
426
}
427

    
428
void cpu_outw(CPUState *env, int addr, int val)
429
{
430
    LOG_IOPORT("outw: %04x %04x\n", addr, val);
431
    ioport_write(1, addr, val);
432
#ifdef USE_KQEMU
433
    if (env)
434
        env->last_io_time = cpu_get_time_fast();
435
#endif
436
}
437

    
438
void cpu_outl(CPUState *env, int addr, int val)
439
{
440
    LOG_IOPORT("outl: %04x %08x\n", addr, val);
441
    ioport_write(2, addr, val);
442
#ifdef USE_KQEMU
443
    if (env)
444
        env->last_io_time = cpu_get_time_fast();
445
#endif
446
}
447

    
448
int cpu_inb(CPUState *env, int addr)
449
{
450
    int val;
451
    val = ioport_read(0, addr);
452
    LOG_IOPORT("inb : %04x %02x\n", addr, val);
453
#ifdef USE_KQEMU
454
    if (env)
455
        env->last_io_time = cpu_get_time_fast();
456
#endif
457
    return val;
458
}
459

    
460
int cpu_inw(CPUState *env, int addr)
461
{
462
    int val;
463
    val = ioport_read(1, addr);
464
    LOG_IOPORT("inw : %04x %04x\n", addr, val);
465
#ifdef USE_KQEMU
466
    if (env)
467
        env->last_io_time = cpu_get_time_fast();
468
#endif
469
    return val;
470
}
471

    
472
int cpu_inl(CPUState *env, int addr)
473
{
474
    int val;
475
    val = ioport_read(2, addr);
476
    LOG_IOPORT("inl : %04x %08x\n", addr, val);
477
#ifdef USE_KQEMU
478
    if (env)
479
        env->last_io_time = cpu_get_time_fast();
480
#endif
481
    return val;
482
}
483

    
484
/***********************************************************/
485
void hw_error(const char *fmt, ...)
486
{
487
    va_list ap;
488
    CPUState *env;
489

    
490
    va_start(ap, fmt);
491
    fprintf(stderr, "qemu: hardware error: ");
492
    vfprintf(stderr, fmt, ap);
493
    fprintf(stderr, "\n");
494
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
495
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
496
#ifdef TARGET_I386
497
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
498
#else
499
        cpu_dump_state(env, stderr, fprintf, 0);
500
#endif
501
    }
502
    va_end(ap);
503
    abort();
504
}
505
 
506
/***************/
507
/* ballooning */
508

    
509
static QEMUBalloonEvent *qemu_balloon_event;
510
void *qemu_balloon_event_opaque;
511

    
512
void qemu_add_balloon_handler(QEMUBalloonEvent *func, void *opaque)
513
{
514
    qemu_balloon_event = func;
515
    qemu_balloon_event_opaque = opaque;
516
}
517

    
518
void qemu_balloon(ram_addr_t target)
519
{
520
    if (qemu_balloon_event)
521
        qemu_balloon_event(qemu_balloon_event_opaque, target);
522
}
523

    
524
ram_addr_t qemu_balloon_status(void)
525
{
526
    if (qemu_balloon_event)
527
        return qemu_balloon_event(qemu_balloon_event_opaque, 0);
528
    return 0;
529
}
530

    
531
/***********************************************************/
532
/* keyboard/mouse */
533

    
534
static QEMUPutKBDEvent *qemu_put_kbd_event;
535
static void *qemu_put_kbd_event_opaque;
536
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
537
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
538

    
539
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
540
{
541
    qemu_put_kbd_event_opaque = opaque;
542
    qemu_put_kbd_event = func;
543
}
544

    
545
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
546
                                                void *opaque, int absolute,
547
                                                const char *name)
548
{
549
    QEMUPutMouseEntry *s, *cursor;
550

    
551
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
552
    if (!s)
553
        return NULL;
554

    
555
    s->qemu_put_mouse_event = func;
556
    s->qemu_put_mouse_event_opaque = opaque;
557
    s->qemu_put_mouse_event_absolute = absolute;
558
    s->qemu_put_mouse_event_name = qemu_strdup(name);
559
    s->next = NULL;
560

    
561
    if (!qemu_put_mouse_event_head) {
562
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
563
        return s;
564
    }
565

    
566
    cursor = qemu_put_mouse_event_head;
567
    while (cursor->next != NULL)
568
        cursor = cursor->next;
569

    
570
    cursor->next = s;
571
    qemu_put_mouse_event_current = s;
572

    
573
    return s;
574
}
575

    
576
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
577
{
578
    QEMUPutMouseEntry *prev = NULL, *cursor;
579

    
580
    if (!qemu_put_mouse_event_head || entry == NULL)
581
        return;
582

    
583
    cursor = qemu_put_mouse_event_head;
584
    while (cursor != NULL && cursor != entry) {
585
        prev = cursor;
586
        cursor = cursor->next;
587
    }
588

    
589
    if (cursor == NULL) // does not exist or list empty
590
        return;
591
    else if (prev == NULL) { // entry is head
592
        qemu_put_mouse_event_head = cursor->next;
593
        if (qemu_put_mouse_event_current == entry)
594
            qemu_put_mouse_event_current = cursor->next;
595
        qemu_free(entry->qemu_put_mouse_event_name);
596
        qemu_free(entry);
597
        return;
598
    }
599

    
600
    prev->next = entry->next;
601

    
602
    if (qemu_put_mouse_event_current == entry)
603
        qemu_put_mouse_event_current = prev;
604

    
605
    qemu_free(entry->qemu_put_mouse_event_name);
606
    qemu_free(entry);
607
}
608

    
609
void kbd_put_keycode(int keycode)
610
{
611
    if (qemu_put_kbd_event) {
612
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
613
    }
614
}
615

    
616
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
617
{
618
    QEMUPutMouseEvent *mouse_event;
619
    void *mouse_event_opaque;
620
    int width;
621

    
622
    if (!qemu_put_mouse_event_current) {
623
        return;
624
    }
625

    
626
    mouse_event =
627
        qemu_put_mouse_event_current->qemu_put_mouse_event;
628
    mouse_event_opaque =
629
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
630

    
631
    if (mouse_event) {
632
        if (graphic_rotate) {
633
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
634
                width = 0x7fff;
635
            else
636
                width = graphic_width - 1;
637
            mouse_event(mouse_event_opaque,
638
                                 width - dy, dx, dz, buttons_state);
639
        } else
640
            mouse_event(mouse_event_opaque,
641
                                 dx, dy, dz, buttons_state);
642
    }
643
}
644

    
645
int kbd_mouse_is_absolute(void)
646
{
647
    if (!qemu_put_mouse_event_current)
648
        return 0;
649

    
650
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
651
}
652

    
653
void do_info_mice(void)
654
{
655
    QEMUPutMouseEntry *cursor;
656
    int index = 0;
657

    
658
    if (!qemu_put_mouse_event_head) {
659
        term_printf("No mouse devices connected\n");
660
        return;
661
    }
662

    
663
    term_printf("Mouse devices available:\n");
664
    cursor = qemu_put_mouse_event_head;
665
    while (cursor != NULL) {
666
        term_printf("%c Mouse #%d: %s\n",
667
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
668
                    index, cursor->qemu_put_mouse_event_name);
669
        index++;
670
        cursor = cursor->next;
671
    }
672
}
673

    
674
void do_mouse_set(int index)
675
{
676
    QEMUPutMouseEntry *cursor;
677
    int i = 0;
678

    
679
    if (!qemu_put_mouse_event_head) {
680
        term_printf("No mouse devices connected\n");
681
        return;
682
    }
683

    
684
    cursor = qemu_put_mouse_event_head;
685
    while (cursor != NULL && index != i) {
686
        i++;
687
        cursor = cursor->next;
688
    }
689

    
690
    if (cursor != NULL)
691
        qemu_put_mouse_event_current = cursor;
692
    else
693
        term_printf("Mouse at given index not found\n");
694
}
695

    
696
/* compute with 96 bit intermediate result: (a*b)/c */
697
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
698
{
699
    union {
700
        uint64_t ll;
701
        struct {
702
#ifdef WORDS_BIGENDIAN
703
            uint32_t high, low;
704
#else
705
            uint32_t low, high;
706
#endif
707
        } l;
708
    } u, res;
709
    uint64_t rl, rh;
710

    
711
    u.ll = a;
712
    rl = (uint64_t)u.l.low * (uint64_t)b;
713
    rh = (uint64_t)u.l.high * (uint64_t)b;
714
    rh += (rl >> 32);
715
    res.l.high = rh / c;
716
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
717
    return res.ll;
718
}
719

    
720
/***********************************************************/
721
/* real time host monotonic timer */
722

    
723
#define QEMU_TIMER_BASE 1000000000LL
724

    
725
#ifdef WIN32
726

    
727
static int64_t clock_freq;
728

    
729
static void init_get_clock(void)
730
{
731
    LARGE_INTEGER freq;
732
    int ret;
733
    ret = QueryPerformanceFrequency(&freq);
734
    if (ret == 0) {
735
        fprintf(stderr, "Could not calibrate ticks\n");
736
        exit(1);
737
    }
738
    clock_freq = freq.QuadPart;
739
}
740

    
741
static int64_t get_clock(void)
742
{
743
    LARGE_INTEGER ti;
744
    QueryPerformanceCounter(&ti);
745
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
746
}
747

    
748
#else
749

    
750
static int use_rt_clock;
751

    
752
static void init_get_clock(void)
753
{
754
    use_rt_clock = 0;
755
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
756
    {
757
        struct timespec ts;
758
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
759
            use_rt_clock = 1;
760
        }
761
    }
762
#endif
763
}
764

    
765
static int64_t get_clock(void)
766
{
767
#if defined(__linux__) || (defined(__FreeBSD__) && __FreeBSD_version >= 500000)
768
    if (use_rt_clock) {
769
        struct timespec ts;
770
        clock_gettime(CLOCK_MONOTONIC, &ts);
771
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
772
    } else
773
#endif
774
    {
775
        /* XXX: using gettimeofday leads to problems if the date
776
           changes, so it should be avoided. */
777
        struct timeval tv;
778
        gettimeofday(&tv, NULL);
779
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
780
    }
781
}
782
#endif
783

    
784
/* Return the virtual CPU time, based on the instruction counter.  */
785
static int64_t cpu_get_icount(void)
786
{
787
    int64_t icount;
788
    CPUState *env = cpu_single_env;;
789
    icount = qemu_icount;
790
    if (env) {
791
        if (!can_do_io(env))
792
            fprintf(stderr, "Bad clock read\n");
793
        icount -= (env->icount_decr.u16.low + env->icount_extra);
794
    }
795
    return qemu_icount_bias + (icount << icount_time_shift);
796
}
797

    
798
/***********************************************************/
799
/* guest cycle counter */
800

    
801
static int64_t cpu_ticks_prev;
802
static int64_t cpu_ticks_offset;
803
static int64_t cpu_clock_offset;
804
static int cpu_ticks_enabled;
805

    
806
/* return the host CPU cycle counter and handle stop/restart */
807
int64_t cpu_get_ticks(void)
808
{
809
    if (use_icount) {
810
        return cpu_get_icount();
811
    }
812
    if (!cpu_ticks_enabled) {
813
        return cpu_ticks_offset;
814
    } else {
815
        int64_t ticks;
816
        ticks = cpu_get_real_ticks();
817
        if (cpu_ticks_prev > ticks) {
818
            /* Note: non increasing ticks may happen if the host uses
819
               software suspend */
820
            cpu_ticks_offset += cpu_ticks_prev - ticks;
821
        }
822
        cpu_ticks_prev = ticks;
823
        return ticks + cpu_ticks_offset;
824
    }
825
}
826

    
827
/* return the host CPU monotonic timer and handle stop/restart */
828
static int64_t cpu_get_clock(void)
829
{
830
    int64_t ti;
831
    if (!cpu_ticks_enabled) {
832
        return cpu_clock_offset;
833
    } else {
834
        ti = get_clock();
835
        return ti + cpu_clock_offset;
836
    }
837
}
838

    
839
/* enable cpu_get_ticks() */
840
void cpu_enable_ticks(void)
841
{
842
    if (!cpu_ticks_enabled) {
843
        cpu_ticks_offset -= cpu_get_real_ticks();
844
        cpu_clock_offset -= get_clock();
845
        cpu_ticks_enabled = 1;
846
    }
847
}
848

    
849
/* disable cpu_get_ticks() : the clock is stopped. You must not call
850
   cpu_get_ticks() after that.  */
851
void cpu_disable_ticks(void)
852
{
853
    if (cpu_ticks_enabled) {
854
        cpu_ticks_offset = cpu_get_ticks();
855
        cpu_clock_offset = cpu_get_clock();
856
        cpu_ticks_enabled = 0;
857
    }
858
}
859

    
860
/***********************************************************/
861
/* timers */
862

    
863
#define QEMU_TIMER_REALTIME 0
864
#define QEMU_TIMER_VIRTUAL  1
865

    
866
struct QEMUClock {
867
    int type;
868
    /* XXX: add frequency */
869
};
870

    
871
struct QEMUTimer {
872
    QEMUClock *clock;
873
    int64_t expire_time;
874
    QEMUTimerCB *cb;
875
    void *opaque;
876
    struct QEMUTimer *next;
877
};
878

    
879
struct qemu_alarm_timer {
880
    char const *name;
881
    unsigned int flags;
882

    
883
    int (*start)(struct qemu_alarm_timer *t);
884
    void (*stop)(struct qemu_alarm_timer *t);
885
    void (*rearm)(struct qemu_alarm_timer *t);
886
    void *priv;
887
};
888

    
889
#define ALARM_FLAG_DYNTICKS  0x1
890
#define ALARM_FLAG_EXPIRED   0x2
891

    
892
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
893
{
894
    return t->flags & ALARM_FLAG_DYNTICKS;
895
}
896

    
897
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
898
{
899
    if (!alarm_has_dynticks(t))
900
        return;
901

    
902
    t->rearm(t);
903
}
904

    
905
/* TODO: MIN_TIMER_REARM_US should be optimized */
906
#define MIN_TIMER_REARM_US 250
907

    
908
static struct qemu_alarm_timer *alarm_timer;
909
#ifndef _WIN32
910
static int alarm_timer_rfd, alarm_timer_wfd;
911
#endif
912

    
913
#ifdef _WIN32
914

    
915
struct qemu_alarm_win32 {
916
    MMRESULT timerId;
917
    HANDLE host_alarm;
918
    unsigned int period;
919
} alarm_win32_data = {0, NULL, -1};
920

    
921
static int win32_start_timer(struct qemu_alarm_timer *t);
922
static void win32_stop_timer(struct qemu_alarm_timer *t);
923
static void win32_rearm_timer(struct qemu_alarm_timer *t);
924

    
925
#else
926

    
927
static int unix_start_timer(struct qemu_alarm_timer *t);
928
static void unix_stop_timer(struct qemu_alarm_timer *t);
929

    
930
#ifdef __linux__
931

    
932
static int dynticks_start_timer(struct qemu_alarm_timer *t);
933
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
934
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
935

    
936
static int hpet_start_timer(struct qemu_alarm_timer *t);
937
static void hpet_stop_timer(struct qemu_alarm_timer *t);
938

    
939
static int rtc_start_timer(struct qemu_alarm_timer *t);
940
static void rtc_stop_timer(struct qemu_alarm_timer *t);
941

    
942
#endif /* __linux__ */
943

    
944
#endif /* _WIN32 */
945

    
946
/* Correlation between real and virtual time is always going to be
947
   fairly approximate, so ignore small variation.
948
   When the guest is idle real and virtual time will be aligned in
949
   the IO wait loop.  */
950
#define ICOUNT_WOBBLE (QEMU_TIMER_BASE / 10)
951

    
952
static void icount_adjust(void)
953
{
954
    int64_t cur_time;
955
    int64_t cur_icount;
956
    int64_t delta;
957
    static int64_t last_delta;
958
    /* If the VM is not running, then do nothing.  */
959
    if (!vm_running)
960
        return;
961

    
962
    cur_time = cpu_get_clock();
963
    cur_icount = qemu_get_clock(vm_clock);
964
    delta = cur_icount - cur_time;
965
    /* FIXME: This is a very crude algorithm, somewhat prone to oscillation.  */
966
    if (delta > 0
967
        && last_delta + ICOUNT_WOBBLE < delta * 2
968
        && icount_time_shift > 0) {
969
        /* The guest is getting too far ahead.  Slow time down.  */
970
        icount_time_shift--;
971
    }
972
    if (delta < 0
973
        && last_delta - ICOUNT_WOBBLE > delta * 2
974
        && icount_time_shift < MAX_ICOUNT_SHIFT) {
975
        /* The guest is getting too far behind.  Speed time up.  */
976
        icount_time_shift++;
977
    }
978
    last_delta = delta;
979
    qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
980
}
981

    
982
static void icount_adjust_rt(void * opaque)
983
{
984
    qemu_mod_timer(icount_rt_timer,
985
                   qemu_get_clock(rt_clock) + 1000);
986
    icount_adjust();
987
}
988

    
989
static void icount_adjust_vm(void * opaque)
990
{
991
    qemu_mod_timer(icount_vm_timer,
992
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
993
    icount_adjust();
994
}
995

    
996
static void init_icount_adjust(void)
997
{
998
    /* Have both realtime and virtual time triggers for speed adjustment.
999
       The realtime trigger catches emulated time passing too slowly,
1000
       the virtual time trigger catches emulated time passing too fast.
1001
       Realtime triggers occur even when idle, so use them less frequently
1002
       than VM triggers.  */
1003
    icount_rt_timer = qemu_new_timer(rt_clock, icount_adjust_rt, NULL);
1004
    qemu_mod_timer(icount_rt_timer,
1005
                   qemu_get_clock(rt_clock) + 1000);
1006
    icount_vm_timer = qemu_new_timer(vm_clock, icount_adjust_vm, NULL);
1007
    qemu_mod_timer(icount_vm_timer,
1008
                   qemu_get_clock(vm_clock) + QEMU_TIMER_BASE / 10);
1009
}
1010

    
1011
static struct qemu_alarm_timer alarm_timers[] = {
1012
#ifndef _WIN32
1013
#ifdef __linux__
1014
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
1015
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
1016
    /* HPET - if available - is preferred */
1017
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
1018
    /* ...otherwise try RTC */
1019
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
1020
#endif
1021
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
1022
#else
1023
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
1024
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
1025
    {"win32", 0, win32_start_timer,
1026
     win32_stop_timer, NULL, &alarm_win32_data},
1027
#endif
1028
    {NULL, }
1029
};
1030

    
1031
static void show_available_alarms(void)
1032
{
1033
    int i;
1034

    
1035
    printf("Available alarm timers, in order of precedence:\n");
1036
    for (i = 0; alarm_timers[i].name; i++)
1037
        printf("%s\n", alarm_timers[i].name);
1038
}
1039

    
1040
static void configure_alarms(char const *opt)
1041
{
1042
    int i;
1043
    int cur = 0;
1044
    int count = ARRAY_SIZE(alarm_timers) - 1;
1045
    char *arg;
1046
    char *name;
1047
    struct qemu_alarm_timer tmp;
1048

    
1049
    if (!strcmp(opt, "?")) {
1050
        show_available_alarms();
1051
        exit(0);
1052
    }
1053

    
1054
    arg = strdup(opt);
1055

    
1056
    /* Reorder the array */
1057
    name = strtok(arg, ",");
1058
    while (name) {
1059
        for (i = 0; i < count && alarm_timers[i].name; i++) {
1060
            if (!strcmp(alarm_timers[i].name, name))
1061
                break;
1062
        }
1063

    
1064
        if (i == count) {
1065
            fprintf(stderr, "Unknown clock %s\n", name);
1066
            goto next;
1067
        }
1068

    
1069
        if (i < cur)
1070
            /* Ignore */
1071
            goto next;
1072

    
1073
        /* Swap */
1074
        tmp = alarm_timers[i];
1075
        alarm_timers[i] = alarm_timers[cur];
1076
        alarm_timers[cur] = tmp;
1077

    
1078
        cur++;
1079
next:
1080
        name = strtok(NULL, ",");
1081
    }
1082

    
1083
    free(arg);
1084

    
1085
    if (cur) {
1086
        /* Disable remaining timers */
1087
        for (i = cur; i < count; i++)
1088
            alarm_timers[i].name = NULL;
1089
    } else {
1090
        show_available_alarms();
1091
        exit(1);
1092
    }
1093
}
1094

    
1095
QEMUClock *rt_clock;
1096
QEMUClock *vm_clock;
1097

    
1098
static QEMUTimer *active_timers[2];
1099

    
1100
static QEMUClock *qemu_new_clock(int type)
1101
{
1102
    QEMUClock *clock;
1103
    clock = qemu_mallocz(sizeof(QEMUClock));
1104
    if (!clock)
1105
        return NULL;
1106
    clock->type = type;
1107
    return clock;
1108
}
1109

    
1110
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
1111
{
1112
    QEMUTimer *ts;
1113

    
1114
    ts = qemu_mallocz(sizeof(QEMUTimer));
1115
    ts->clock = clock;
1116
    ts->cb = cb;
1117
    ts->opaque = opaque;
1118
    return ts;
1119
}
1120

    
1121
void qemu_free_timer(QEMUTimer *ts)
1122
{
1123
    qemu_free(ts);
1124
}
1125

    
1126
/* stop a timer, but do not dealloc it */
1127
void qemu_del_timer(QEMUTimer *ts)
1128
{
1129
    QEMUTimer **pt, *t;
1130

    
1131
    /* NOTE: this code must be signal safe because
1132
       qemu_timer_expired() can be called from a signal. */
1133
    pt = &active_timers[ts->clock->type];
1134
    for(;;) {
1135
        t = *pt;
1136
        if (!t)
1137
            break;
1138
        if (t == ts) {
1139
            *pt = t->next;
1140
            break;
1141
        }
1142
        pt = &t->next;
1143
    }
1144
}
1145

    
1146
/* modify the current timer so that it will be fired when current_time
1147
   >= expire_time. The corresponding callback will be called. */
1148
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
1149
{
1150
    QEMUTimer **pt, *t;
1151

    
1152
    qemu_del_timer(ts);
1153

    
1154
    /* add the timer in the sorted list */
1155
    /* NOTE: this code must be signal safe because
1156
       qemu_timer_expired() can be called from a signal. */
1157
    pt = &active_timers[ts->clock->type];
1158
    for(;;) {
1159
        t = *pt;
1160
        if (!t)
1161
            break;
1162
        if (t->expire_time > expire_time)
1163
            break;
1164
        pt = &t->next;
1165
    }
1166
    ts->expire_time = expire_time;
1167
    ts->next = *pt;
1168
    *pt = ts;
1169

    
1170
    /* Rearm if necessary  */
1171
    if (pt == &active_timers[ts->clock->type]) {
1172
        if ((alarm_timer->flags & ALARM_FLAG_EXPIRED) == 0) {
1173
            qemu_rearm_alarm_timer(alarm_timer);
1174
        }
1175
        /* Interrupt execution to force deadline recalculation.  */
1176
        if (use_icount && cpu_single_env) {
1177
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
1178
        }
1179
    }
1180
}
1181

    
1182
int qemu_timer_pending(QEMUTimer *ts)
1183
{
1184
    QEMUTimer *t;
1185
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1186
        if (t == ts)
1187
            return 1;
1188
    }
1189
    return 0;
1190
}
1191

    
1192
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1193
{
1194
    if (!timer_head)
1195
        return 0;
1196
    return (timer_head->expire_time <= current_time);
1197
}
1198

    
1199
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1200
{
1201
    QEMUTimer *ts;
1202

    
1203
    for(;;) {
1204
        ts = *ptimer_head;
1205
        if (!ts || ts->expire_time > current_time)
1206
            break;
1207
        /* remove timer from the list before calling the callback */
1208
        *ptimer_head = ts->next;
1209
        ts->next = NULL;
1210

    
1211
        /* run the callback (the timer list can be modified) */
1212
        ts->cb(ts->opaque);
1213
    }
1214
}
1215

    
1216
int64_t qemu_get_clock(QEMUClock *clock)
1217
{
1218
    switch(clock->type) {
1219
    case QEMU_TIMER_REALTIME:
1220
        return get_clock() / 1000000;
1221
    default:
1222
    case QEMU_TIMER_VIRTUAL:
1223
        if (use_icount) {
1224
            return cpu_get_icount();
1225
        } else {
1226
            return cpu_get_clock();
1227
        }
1228
    }
1229
}
1230

    
1231
static void init_timers(void)
1232
{
1233
    init_get_clock();
1234
    ticks_per_sec = QEMU_TIMER_BASE;
1235
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1236
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1237
}
1238

    
1239
/* save a timer */
1240
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1241
{
1242
    uint64_t expire_time;
1243

    
1244
    if (qemu_timer_pending(ts)) {
1245
        expire_time = ts->expire_time;
1246
    } else {
1247
        expire_time = -1;
1248
    }
1249
    qemu_put_be64(f, expire_time);
1250
}
1251

    
1252
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1253
{
1254
    uint64_t expire_time;
1255

    
1256
    expire_time = qemu_get_be64(f);
1257
    if (expire_time != -1) {
1258
        qemu_mod_timer(ts, expire_time);
1259
    } else {
1260
        qemu_del_timer(ts);
1261
    }
1262
}
1263

    
1264
static void timer_save(QEMUFile *f, void *opaque)
1265
{
1266
    if (cpu_ticks_enabled) {
1267
        hw_error("cannot save state if virtual timers are running");
1268
    }
1269
    qemu_put_be64(f, cpu_ticks_offset);
1270
    qemu_put_be64(f, ticks_per_sec);
1271
    qemu_put_be64(f, cpu_clock_offset);
1272
}
1273

    
1274
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1275
{
1276
    if (version_id != 1 && version_id != 2)
1277
        return -EINVAL;
1278
    if (cpu_ticks_enabled) {
1279
        return -EINVAL;
1280
    }
1281
    cpu_ticks_offset=qemu_get_be64(f);
1282
    ticks_per_sec=qemu_get_be64(f);
1283
    if (version_id == 2) {
1284
        cpu_clock_offset=qemu_get_be64(f);
1285
    }
1286
    return 0;
1287
}
1288

    
1289
#ifdef _WIN32
1290
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1291
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1292
#else
1293
static void host_alarm_handler(int host_signum)
1294
#endif
1295
{
1296
#if 0
1297
#define DISP_FREQ 1000
1298
    {
1299
        static int64_t delta_min = INT64_MAX;
1300
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1301
        static int count;
1302
        ti = qemu_get_clock(vm_clock);
1303
        if (last_clock != 0) {
1304
            delta = ti - last_clock;
1305
            if (delta < delta_min)
1306
                delta_min = delta;
1307
            if (delta > delta_max)
1308
                delta_max = delta;
1309
            delta_cum += delta;
1310
            if (++count == DISP_FREQ) {
1311
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1312
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1313
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1314
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1315
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1316
                count = 0;
1317
                delta_min = INT64_MAX;
1318
                delta_max = 0;
1319
                delta_cum = 0;
1320
            }
1321
        }
1322
        last_clock = ti;
1323
    }
1324
#endif
1325
    if (alarm_has_dynticks(alarm_timer) ||
1326
        (!use_icount &&
1327
            qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1328
                               qemu_get_clock(vm_clock))) ||
1329
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1330
                           qemu_get_clock(rt_clock))) {
1331
        CPUState *env = next_cpu;
1332

    
1333
#ifdef _WIN32
1334
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1335
        SetEvent(data->host_alarm);
1336
#else
1337
        static const char byte = 0;
1338
        write(alarm_timer_wfd, &byte, sizeof(byte));
1339
#endif
1340
        alarm_timer->flags |= ALARM_FLAG_EXPIRED;
1341

    
1342
        if (env) {
1343
            /* stop the currently executing cpu because a timer occured */
1344
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1345
#ifdef USE_KQEMU
1346
            if (env->kqemu_enabled) {
1347
                kqemu_cpu_interrupt(env);
1348
            }
1349
#endif
1350
        }
1351
        event_pending = 1;
1352
    }
1353
}
1354

    
1355
static int64_t qemu_next_deadline(void)
1356
{
1357
    int64_t delta;
1358

    
1359
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1360
        delta = active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1361
                     qemu_get_clock(vm_clock);
1362
    } else {
1363
        /* To avoid problems with overflow limit this to 2^32.  */
1364
        delta = INT32_MAX;
1365
    }
1366

    
1367
    if (delta < 0)
1368
        delta = 0;
1369

    
1370
    return delta;
1371
}
1372

    
1373
#if defined(__linux__) || defined(_WIN32)
1374
static uint64_t qemu_next_deadline_dyntick(void)
1375
{
1376
    int64_t delta;
1377
    int64_t rtdelta;
1378

    
1379
    if (use_icount)
1380
        delta = INT32_MAX;
1381
    else
1382
        delta = (qemu_next_deadline() + 999) / 1000;
1383

    
1384
    if (active_timers[QEMU_TIMER_REALTIME]) {
1385
        rtdelta = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1386
                 qemu_get_clock(rt_clock))*1000;
1387
        if (rtdelta < delta)
1388
            delta = rtdelta;
1389
    }
1390

    
1391
    if (delta < MIN_TIMER_REARM_US)
1392
        delta = MIN_TIMER_REARM_US;
1393

    
1394
    return delta;
1395
}
1396
#endif
1397

    
1398
#ifndef _WIN32
1399

    
1400
/* Sets a specific flag */
1401
static int fcntl_setfl(int fd, int flag)
1402
{
1403
    int flags;
1404

    
1405
    flags = fcntl(fd, F_GETFL);
1406
    if (flags == -1)
1407
        return -errno;
1408

    
1409
    if (fcntl(fd, F_SETFL, flags | flag) == -1)
1410
        return -errno;
1411

    
1412
    return 0;
1413
}
1414

    
1415
#if defined(__linux__)
1416

    
1417
#define RTC_FREQ 1024
1418

    
1419
static void enable_sigio_timer(int fd)
1420
{
1421
    struct sigaction act;
1422

    
1423
    /* timer signal */
1424
    sigfillset(&act.sa_mask);
1425
    act.sa_flags = 0;
1426
    act.sa_handler = host_alarm_handler;
1427

    
1428
    sigaction(SIGIO, &act, NULL);
1429
    fcntl_setfl(fd, O_ASYNC);
1430
    fcntl(fd, F_SETOWN, getpid());
1431
}
1432

    
1433
static int hpet_start_timer(struct qemu_alarm_timer *t)
1434
{
1435
    struct hpet_info info;
1436
    int r, fd;
1437

    
1438
    fd = open("/dev/hpet", O_RDONLY);
1439
    if (fd < 0)
1440
        return -1;
1441

    
1442
    /* Set frequency */
1443
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1444
    if (r < 0) {
1445
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1446
                "error, but for better emulation accuracy type:\n"
1447
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1448
        goto fail;
1449
    }
1450

    
1451
    /* Check capabilities */
1452
    r = ioctl(fd, HPET_INFO, &info);
1453
    if (r < 0)
1454
        goto fail;
1455

    
1456
    /* Enable periodic mode */
1457
    r = ioctl(fd, HPET_EPI, 0);
1458
    if (info.hi_flags && (r < 0))
1459
        goto fail;
1460

    
1461
    /* Enable interrupt */
1462
    r = ioctl(fd, HPET_IE_ON, 0);
1463
    if (r < 0)
1464
        goto fail;
1465

    
1466
    enable_sigio_timer(fd);
1467
    t->priv = (void *)(long)fd;
1468

    
1469
    return 0;
1470
fail:
1471
    close(fd);
1472
    return -1;
1473
}
1474

    
1475
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1476
{
1477
    int fd = (long)t->priv;
1478

    
1479
    close(fd);
1480
}
1481

    
1482
static int rtc_start_timer(struct qemu_alarm_timer *t)
1483
{
1484
    int rtc_fd;
1485
    unsigned long current_rtc_freq = 0;
1486

    
1487
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1488
    if (rtc_fd < 0)
1489
        return -1;
1490
    ioctl(rtc_fd, RTC_IRQP_READ, &current_rtc_freq);
1491
    if (current_rtc_freq != RTC_FREQ &&
1492
        ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1493
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1494
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1495
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1496
        goto fail;
1497
    }
1498
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1499
    fail:
1500
        close(rtc_fd);
1501
        return -1;
1502
    }
1503

    
1504
    enable_sigio_timer(rtc_fd);
1505

    
1506
    t->priv = (void *)(long)rtc_fd;
1507

    
1508
    return 0;
1509
}
1510

    
1511
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1512
{
1513
    int rtc_fd = (long)t->priv;
1514

    
1515
    close(rtc_fd);
1516
}
1517

    
1518
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1519
{
1520
    struct sigevent ev;
1521
    timer_t host_timer;
1522
    struct sigaction act;
1523

    
1524
    sigfillset(&act.sa_mask);
1525
    act.sa_flags = 0;
1526
    act.sa_handler = host_alarm_handler;
1527

    
1528
    sigaction(SIGALRM, &act, NULL);
1529

    
1530
    ev.sigev_value.sival_int = 0;
1531
    ev.sigev_notify = SIGEV_SIGNAL;
1532
    ev.sigev_signo = SIGALRM;
1533

    
1534
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1535
        perror("timer_create");
1536

    
1537
        /* disable dynticks */
1538
        fprintf(stderr, "Dynamic Ticks disabled\n");
1539

    
1540
        return -1;
1541
    }
1542

    
1543
    t->priv = (void *)(long)host_timer;
1544

    
1545
    return 0;
1546
}
1547

    
1548
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1549
{
1550
    timer_t host_timer = (timer_t)(long)t->priv;
1551

    
1552
    timer_delete(host_timer);
1553
}
1554

    
1555
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1556
{
1557
    timer_t host_timer = (timer_t)(long)t->priv;
1558
    struct itimerspec timeout;
1559
    int64_t nearest_delta_us = INT64_MAX;
1560
    int64_t current_us;
1561

    
1562
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1563
                !active_timers[QEMU_TIMER_VIRTUAL])
1564
        return;
1565

    
1566
    nearest_delta_us = qemu_next_deadline_dyntick();
1567

    
1568
    /* check whether a timer is already running */
1569
    if (timer_gettime(host_timer, &timeout)) {
1570
        perror("gettime");
1571
        fprintf(stderr, "Internal timer error: aborting\n");
1572
        exit(1);
1573
    }
1574
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1575
    if (current_us && current_us <= nearest_delta_us)
1576
        return;
1577

    
1578
    timeout.it_interval.tv_sec = 0;
1579
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1580
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1581
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1582
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1583
        perror("settime");
1584
        fprintf(stderr, "Internal timer error: aborting\n");
1585
        exit(1);
1586
    }
1587
}
1588

    
1589
#endif /* defined(__linux__) */
1590

    
1591
static int unix_start_timer(struct qemu_alarm_timer *t)
1592
{
1593
    struct sigaction act;
1594
    struct itimerval itv;
1595
    int err;
1596

    
1597
    /* timer signal */
1598
    sigfillset(&act.sa_mask);
1599
    act.sa_flags = 0;
1600
    act.sa_handler = host_alarm_handler;
1601

    
1602
    sigaction(SIGALRM, &act, NULL);
1603

    
1604
    itv.it_interval.tv_sec = 0;
1605
    /* for i386 kernel 2.6 to get 1 ms */
1606
    itv.it_interval.tv_usec = 999;
1607
    itv.it_value.tv_sec = 0;
1608
    itv.it_value.tv_usec = 10 * 1000;
1609

    
1610
    err = setitimer(ITIMER_REAL, &itv, NULL);
1611
    if (err)
1612
        return -1;
1613

    
1614
    return 0;
1615
}
1616

    
1617
static void unix_stop_timer(struct qemu_alarm_timer *t)
1618
{
1619
    struct itimerval itv;
1620

    
1621
    memset(&itv, 0, sizeof(itv));
1622
    setitimer(ITIMER_REAL, &itv, NULL);
1623
}
1624

    
1625
#endif /* !defined(_WIN32) */
1626

    
1627
static void try_to_rearm_timer(void *opaque)
1628
{
1629
    struct qemu_alarm_timer *t = opaque;
1630
#ifndef _WIN32
1631
    ssize_t len;
1632

    
1633
    /* Drain the notify pipe */
1634
    do {
1635
        char buffer[512];
1636
        len = read(alarm_timer_rfd, buffer, sizeof(buffer));
1637
    } while ((len == -1 && errno == EINTR) || len > 0);
1638
#endif
1639

    
1640
    if (t->flags & ALARM_FLAG_EXPIRED) {
1641
        alarm_timer->flags &= ~ALARM_FLAG_EXPIRED;
1642
        qemu_rearm_alarm_timer(alarm_timer);
1643
    }
1644
}
1645

    
1646
#ifdef _WIN32
1647

    
1648
static int win32_start_timer(struct qemu_alarm_timer *t)
1649
{
1650
    TIMECAPS tc;
1651
    struct qemu_alarm_win32 *data = t->priv;
1652
    UINT flags;
1653

    
1654
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1655
    if (!data->host_alarm) {
1656
        perror("Failed CreateEvent");
1657
        return -1;
1658
    }
1659

    
1660
    memset(&tc, 0, sizeof(tc));
1661
    timeGetDevCaps(&tc, sizeof(tc));
1662

    
1663
    if (data->period < tc.wPeriodMin)
1664
        data->period = tc.wPeriodMin;
1665

    
1666
    timeBeginPeriod(data->period);
1667

    
1668
    flags = TIME_CALLBACK_FUNCTION;
1669
    if (alarm_has_dynticks(t))
1670
        flags |= TIME_ONESHOT;
1671
    else
1672
        flags |= TIME_PERIODIC;
1673

    
1674
    data->timerId = timeSetEvent(1,         // interval (ms)
1675
                        data->period,       // resolution
1676
                        host_alarm_handler, // function
1677
                        (DWORD)t,           // parameter
1678
                        flags);
1679

    
1680
    if (!data->timerId) {
1681
        perror("Failed to initialize win32 alarm timer");
1682

    
1683
        timeEndPeriod(data->period);
1684
        CloseHandle(data->host_alarm);
1685
        return -1;
1686
    }
1687

    
1688
    qemu_add_wait_object(data->host_alarm, try_to_rearm_timer, t);
1689

    
1690
    return 0;
1691
}
1692

    
1693
static void win32_stop_timer(struct qemu_alarm_timer *t)
1694
{
1695
    struct qemu_alarm_win32 *data = t->priv;
1696

    
1697
    timeKillEvent(data->timerId);
1698
    timeEndPeriod(data->period);
1699

    
1700
    CloseHandle(data->host_alarm);
1701
}
1702

    
1703
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1704
{
1705
    struct qemu_alarm_win32 *data = t->priv;
1706
    uint64_t nearest_delta_us;
1707

    
1708
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1709
                !active_timers[QEMU_TIMER_VIRTUAL])
1710
        return;
1711

    
1712
    nearest_delta_us = qemu_next_deadline_dyntick();
1713
    nearest_delta_us /= 1000;
1714

    
1715
    timeKillEvent(data->timerId);
1716

    
1717
    data->timerId = timeSetEvent(1,
1718
                        data->period,
1719
                        host_alarm_handler,
1720
                        (DWORD)t,
1721
                        TIME_ONESHOT | TIME_PERIODIC);
1722

    
1723
    if (!data->timerId) {
1724
        perror("Failed to re-arm win32 alarm timer");
1725

    
1726
        timeEndPeriod(data->period);
1727
        CloseHandle(data->host_alarm);
1728
        exit(1);
1729
    }
1730
}
1731

    
1732
#endif /* _WIN32 */
1733

    
1734
static int init_timer_alarm(void)
1735
{
1736
    struct qemu_alarm_timer *t = NULL;
1737
    int i, err = -1;
1738

    
1739
#ifndef _WIN32
1740
    int fds[2];
1741

    
1742
    err = pipe(fds);
1743
    if (err == -1)
1744
        return -errno;
1745

    
1746
    err = fcntl_setfl(fds[0], O_NONBLOCK);
1747
    if (err < 0)
1748
        goto fail;
1749

    
1750
    err = fcntl_setfl(fds[1], O_NONBLOCK);
1751
    if (err < 0)
1752
        goto fail;
1753

    
1754
    alarm_timer_rfd = fds[0];
1755
    alarm_timer_wfd = fds[1];
1756
#endif
1757

    
1758
    for (i = 0; alarm_timers[i].name; i++) {
1759
        t = &alarm_timers[i];
1760

    
1761
        err = t->start(t);
1762
        if (!err)
1763
            break;
1764
    }
1765

    
1766
    if (err) {
1767
        err = -ENOENT;
1768
        goto fail;
1769
    }
1770

    
1771
#ifndef _WIN32
1772
    qemu_set_fd_handler2(alarm_timer_rfd, NULL,
1773
                         try_to_rearm_timer, NULL, t);
1774
#endif
1775

    
1776
    alarm_timer = t;
1777

    
1778
    return 0;
1779

    
1780
fail:
1781
#ifndef _WIN32
1782
    close(fds[0]);
1783
    close(fds[1]);
1784
#endif
1785
    return err;
1786
}
1787

    
1788
static void quit_timers(void)
1789
{
1790
    alarm_timer->stop(alarm_timer);
1791
    alarm_timer = NULL;
1792
}
1793

    
1794
/***********************************************************/
1795
/* host time/date access */
1796
void qemu_get_timedate(struct tm *tm, int offset)
1797
{
1798
    time_t ti;
1799
    struct tm *ret;
1800

    
1801
    time(&ti);
1802
    ti += offset;
1803
    if (rtc_date_offset == -1) {
1804
        if (rtc_utc)
1805
            ret = gmtime(&ti);
1806
        else
1807
            ret = localtime(&ti);
1808
    } else {
1809
        ti -= rtc_date_offset;
1810
        ret = gmtime(&ti);
1811
    }
1812

    
1813
    memcpy(tm, ret, sizeof(struct tm));
1814
}
1815

    
1816
int qemu_timedate_diff(struct tm *tm)
1817
{
1818
    time_t seconds;
1819

    
1820
    if (rtc_date_offset == -1)
1821
        if (rtc_utc)
1822
            seconds = mktimegm(tm);
1823
        else
1824
            seconds = mktime(tm);
1825
    else
1826
        seconds = mktimegm(tm) + rtc_date_offset;
1827

    
1828
    return seconds - time(NULL);
1829
}
1830

    
1831
#ifdef _WIN32
1832
static void socket_cleanup(void)
1833
{
1834
    WSACleanup();
1835
}
1836

    
1837
static int socket_init(void)
1838
{
1839
    WSADATA Data;
1840
    int ret, err;
1841

    
1842
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1843
    if (ret != 0) {
1844
        err = WSAGetLastError();
1845
        fprintf(stderr, "WSAStartup: %d\n", err);
1846
        return -1;
1847
    }
1848
    atexit(socket_cleanup);
1849
    return 0;
1850
}
1851
#endif
1852

    
1853
const char *get_opt_name(char *buf, int buf_size, const char *p)
1854
{
1855
    char *q;
1856

    
1857
    q = buf;
1858
    while (*p != '\0' && *p != '=') {
1859
        if (q && (q - buf) < buf_size - 1)
1860
            *q++ = *p;
1861
        p++;
1862
    }
1863
    if (q)
1864
        *q = '\0';
1865

    
1866
    return p;
1867
}
1868

    
1869
const char *get_opt_value(char *buf, int buf_size, const char *p)
1870
{
1871
    char *q;
1872

    
1873
    q = buf;
1874
    while (*p != '\0') {
1875
        if (*p == ',') {
1876
            if (*(p + 1) != ',')
1877
                break;
1878
            p++;
1879
        }
1880
        if (q && (q - buf) < buf_size - 1)
1881
            *q++ = *p;
1882
        p++;
1883
    }
1884
    if (q)
1885
        *q = '\0';
1886

    
1887
    return p;
1888
}
1889

    
1890
int get_param_value(char *buf, int buf_size,
1891
                    const char *tag, const char *str)
1892
{
1893
    const char *p;
1894
    char option[128];
1895

    
1896
    p = str;
1897
    for(;;) {
1898
        p = get_opt_name(option, sizeof(option), p);
1899
        if (*p != '=')
1900
            break;
1901
        p++;
1902
        if (!strcmp(tag, option)) {
1903
            (void)get_opt_value(buf, buf_size, p);
1904
            return strlen(buf);
1905
        } else {
1906
            p = get_opt_value(NULL, 0, p);
1907
        }
1908
        if (*p != ',')
1909
            break;
1910
        p++;
1911
    }
1912
    return 0;
1913
}
1914

    
1915
int check_params(char *buf, int buf_size,
1916
                 const char * const *params, const char *str)
1917
{
1918
    const char *p;
1919
    int i;
1920

    
1921
    p = str;
1922
    for(;;) {
1923
        p = get_opt_name(buf, buf_size, p);
1924
        if (*p != '=')
1925
            return -1;
1926
        p++;
1927
        for(i = 0; params[i] != NULL; i++)
1928
            if (!strcmp(params[i], buf))
1929
                break;
1930
        if (params[i] == NULL)
1931
            return -1;
1932
        p = get_opt_value(NULL, 0, p);
1933
        if (*p != ',')
1934
            break;
1935
        p++;
1936
    }
1937
    return 0;
1938
}
1939

    
1940
/***********************************************************/
1941
/* Bluetooth support */
1942
static int nb_hcis;
1943
static int cur_hci;
1944
static struct HCIInfo *hci_table[MAX_NICS];
1945

    
1946
static struct bt_vlan_s {
1947
    struct bt_scatternet_s net;
1948
    int id;
1949
    struct bt_vlan_s *next;
1950
} *first_bt_vlan;
1951

    
1952
/* find or alloc a new bluetooth "VLAN" */
1953
static struct bt_scatternet_s *qemu_find_bt_vlan(int id)
1954
{
1955
    struct bt_vlan_s **pvlan, *vlan;
1956
    for (vlan = first_bt_vlan; vlan != NULL; vlan = vlan->next) {
1957
        if (vlan->id == id)
1958
            return &vlan->net;
1959
    }
1960
    vlan = qemu_mallocz(sizeof(struct bt_vlan_s));
1961
    vlan->id = id;
1962
    pvlan = &first_bt_vlan;
1963
    while (*pvlan != NULL)
1964
        pvlan = &(*pvlan)->next;
1965
    *pvlan = vlan;
1966
    return &vlan->net;
1967
}
1968

    
1969
static void null_hci_send(struct HCIInfo *hci, const uint8_t *data, int len)
1970
{
1971
}
1972

    
1973
static int null_hci_addr_set(struct HCIInfo *hci, const uint8_t *bd_addr)
1974
{
1975
    return -ENOTSUP;
1976
}
1977

    
1978
static struct HCIInfo null_hci = {
1979
    .cmd_send = null_hci_send,
1980
    .sco_send = null_hci_send,
1981
    .acl_send = null_hci_send,
1982
    .bdaddr_set = null_hci_addr_set,
1983
};
1984

    
1985
struct HCIInfo *qemu_next_hci(void)
1986
{
1987
    if (cur_hci == nb_hcis)
1988
        return &null_hci;
1989

    
1990
    return hci_table[cur_hci++];
1991
}
1992

    
1993
static struct HCIInfo *hci_init(const char *str)
1994
{
1995
    char *endp;
1996
    struct bt_scatternet_s *vlan = 0;
1997

    
1998
    if (!strcmp(str, "null"))
1999
        /* null */
2000
        return &null_hci;
2001
    else if (!strncmp(str, "host", 4) && (str[4] == '\0' || str[4] == ':'))
2002
        /* host[:hciN] */
2003
        return bt_host_hci(str[4] ? str + 5 : "hci0");
2004
    else if (!strncmp(str, "hci", 3)) {
2005
        /* hci[,vlan=n] */
2006
        if (str[3]) {
2007
            if (!strncmp(str + 3, ",vlan=", 6)) {
2008
                vlan = qemu_find_bt_vlan(strtol(str + 9, &endp, 0));
2009
                if (*endp)
2010
                    vlan = 0;
2011
            }
2012
        } else
2013
            vlan = qemu_find_bt_vlan(0);
2014
        if (vlan)
2015
           return bt_new_hci(vlan);
2016
    }
2017

    
2018
    fprintf(stderr, "qemu: Unknown bluetooth HCI `%s'.\n", str);
2019

    
2020
    return 0;
2021
}
2022

    
2023
static int bt_hci_parse(const char *str)
2024
{
2025
    struct HCIInfo *hci;
2026
    bdaddr_t bdaddr;
2027

    
2028
    if (nb_hcis >= MAX_NICS) {
2029
        fprintf(stderr, "qemu: Too many bluetooth HCIs (max %i).\n", MAX_NICS);
2030
        return -1;
2031
    }
2032

    
2033
    hci = hci_init(str);
2034
    if (!hci)
2035
        return -1;
2036

    
2037
    bdaddr.b[0] = 0x52;
2038
    bdaddr.b[1] = 0x54;
2039
    bdaddr.b[2] = 0x00;
2040
    bdaddr.b[3] = 0x12;
2041
    bdaddr.b[4] = 0x34;
2042
    bdaddr.b[5] = 0x56 + nb_hcis;
2043
    hci->bdaddr_set(hci, bdaddr.b);
2044

    
2045
    hci_table[nb_hcis++] = hci;
2046

    
2047
    return 0;
2048
}
2049

    
2050
static void bt_vhci_add(int vlan_id)
2051
{
2052
    struct bt_scatternet_s *vlan = qemu_find_bt_vlan(vlan_id);
2053

    
2054
    if (!vlan->slave)
2055
        fprintf(stderr, "qemu: warning: adding a VHCI to "
2056
                        "an empty scatternet %i\n", vlan_id);
2057

    
2058
    bt_vhci_init(bt_new_hci(vlan));
2059
}
2060

    
2061
static struct bt_device_s *bt_device_add(const char *opt)
2062
{
2063
    struct bt_scatternet_s *vlan;
2064
    int vlan_id = 0;
2065
    char *endp = strstr(opt, ",vlan=");
2066
    int len = (endp ? endp - opt : strlen(opt)) + 1;
2067
    char devname[10];
2068

    
2069
    pstrcpy(devname, MIN(sizeof(devname), len), opt);
2070

    
2071
    if (endp) {
2072
        vlan_id = strtol(endp + 6, &endp, 0);
2073
        if (*endp) {
2074
            fprintf(stderr, "qemu: unrecognised bluetooth vlan Id\n");
2075
            return 0;
2076
        }
2077
    }
2078

    
2079
    vlan = qemu_find_bt_vlan(vlan_id);
2080

    
2081
    if (!vlan->slave)
2082
        fprintf(stderr, "qemu: warning: adding a slave device to "
2083
                        "an empty scatternet %i\n", vlan_id);
2084

    
2085
    if (!strcmp(devname, "keyboard"))
2086
        return bt_keyboard_init(vlan);
2087

    
2088
    fprintf(stderr, "qemu: unsupported bluetooth device `%s'\n", devname);
2089
    return 0;
2090
}
2091

    
2092
static int bt_parse(const char *opt)
2093
{
2094
    const char *endp, *p;
2095
    int vlan;
2096

    
2097
    if (strstart(opt, "hci", &endp)) {
2098
        if (!*endp || *endp == ',') {
2099
            if (*endp)
2100
                if (!strstart(endp, ",vlan=", 0))
2101
                    opt = endp + 1;
2102

    
2103
            return bt_hci_parse(opt);
2104
       }
2105
    } else if (strstart(opt, "vhci", &endp)) {
2106
        if (!*endp || *endp == ',') {
2107
            if (*endp) {
2108
                if (strstart(endp, ",vlan=", &p)) {
2109
                    vlan = strtol(p, (char **) &endp, 0);
2110
                    if (*endp) {
2111
                        fprintf(stderr, "qemu: bad scatternet '%s'\n", p);
2112
                        return 1;
2113
                    }
2114
                } else {
2115
                    fprintf(stderr, "qemu: bad parameter '%s'\n", endp + 1);
2116
                    return 1;
2117
                }
2118
            } else
2119
                vlan = 0;
2120

    
2121
            bt_vhci_add(vlan);
2122
            return 0;
2123
        }
2124
    } else if (strstart(opt, "device:", &endp))
2125
        return !bt_device_add(endp);
2126

    
2127
    fprintf(stderr, "qemu: bad bluetooth parameter '%s'\n", opt);
2128
    return 1;
2129
}
2130

    
2131
/***********************************************************/
2132
/* QEMU Block devices */
2133

    
2134
#define HD_ALIAS "index=%d,media=disk"
2135
#ifdef TARGET_PPC
2136
#define CDROM_ALIAS "index=1,media=cdrom"
2137
#else
2138
#define CDROM_ALIAS "index=2,media=cdrom"
2139
#endif
2140
#define FD_ALIAS "index=%d,if=floppy"
2141
#define PFLASH_ALIAS "if=pflash"
2142
#define MTD_ALIAS "if=mtd"
2143
#define SD_ALIAS "index=0,if=sd"
2144

    
2145
static int drive_add(const char *file, const char *fmt, ...)
2146
{
2147
    va_list ap;
2148

    
2149
    if (nb_drives_opt >= MAX_DRIVES) {
2150
        fprintf(stderr, "qemu: too many drives\n");
2151
        exit(1);
2152
    }
2153

    
2154
    drives_opt[nb_drives_opt].file = file;
2155
    va_start(ap, fmt);
2156
    vsnprintf(drives_opt[nb_drives_opt].opt,
2157
              sizeof(drives_opt[0].opt), fmt, ap);
2158
    va_end(ap);
2159

    
2160
    return nb_drives_opt++;
2161
}
2162

    
2163
int drive_get_index(BlockInterfaceType type, int bus, int unit)
2164
{
2165
    int index;
2166

    
2167
    /* seek interface, bus and unit */
2168

    
2169
    for (index = 0; index < nb_drives; index++)
2170
        if (drives_table[index].type == type &&
2171
            drives_table[index].bus == bus &&
2172
            drives_table[index].unit == unit)
2173
        return index;
2174

    
2175
    return -1;
2176
}
2177

    
2178
int drive_get_max_bus(BlockInterfaceType type)
2179
{
2180
    int max_bus;
2181
    int index;
2182

    
2183
    max_bus = -1;
2184
    for (index = 0; index < nb_drives; index++) {
2185
        if(drives_table[index].type == type &&
2186
           drives_table[index].bus > max_bus)
2187
            max_bus = drives_table[index].bus;
2188
    }
2189
    return max_bus;
2190
}
2191

    
2192
const char *drive_get_serial(BlockDriverState *bdrv)
2193
{
2194
    int index;
2195

    
2196
    for (index = 0; index < nb_drives; index++)
2197
        if (drives_table[index].bdrv == bdrv)
2198
            return drives_table[index].serial;
2199

    
2200
    return "\0";
2201
}
2202

    
2203
static void bdrv_format_print(void *opaque, const char *name)
2204
{
2205
    fprintf(stderr, " %s", name);
2206
}
2207

    
2208
static int drive_init(struct drive_opt *arg, int snapshot,
2209
                      QEMUMachine *machine)
2210
{
2211
    char buf[128];
2212
    char file[1024];
2213
    char devname[128];
2214
    char serial[21];
2215
    const char *mediastr = "";
2216
    BlockInterfaceType type;
2217
    enum { MEDIA_DISK, MEDIA_CDROM } media;
2218
    int bus_id, unit_id;
2219
    int cyls, heads, secs, translation;
2220
    BlockDriverState *bdrv;
2221
    BlockDriver *drv = NULL;
2222
    int max_devs;
2223
    int index;
2224
    int cache;
2225
    int bdrv_flags;
2226
    char *str = arg->opt;
2227
    static const char * const params[] = { "bus", "unit", "if", "index",
2228
                                           "cyls", "heads", "secs", "trans",
2229
                                           "media", "snapshot", "file",
2230
                                           "cache", "format", "serial", NULL };
2231

    
2232
    if (check_params(buf, sizeof(buf), params, str) < 0) {
2233
         fprintf(stderr, "qemu: unknown parameter '%s' in '%s'\n",
2234
                         buf, str);
2235
         return -1;
2236
    }
2237

    
2238
    file[0] = 0;
2239
    cyls = heads = secs = 0;
2240
    bus_id = 0;
2241
    unit_id = -1;
2242
    translation = BIOS_ATA_TRANSLATION_AUTO;
2243
    index = -1;
2244
    cache = 3;
2245

    
2246
    if (machine->use_scsi) {
2247
        type = IF_SCSI;
2248
        max_devs = MAX_SCSI_DEVS;
2249
        pstrcpy(devname, sizeof(devname), "scsi");
2250
    } else {
2251
        type = IF_IDE;
2252
        max_devs = MAX_IDE_DEVS;
2253
        pstrcpy(devname, sizeof(devname), "ide");
2254
    }
2255
    media = MEDIA_DISK;
2256

    
2257
    /* extract parameters */
2258

    
2259
    if (get_param_value(buf, sizeof(buf), "bus", str)) {
2260
        bus_id = strtol(buf, NULL, 0);
2261
        if (bus_id < 0) {
2262
            fprintf(stderr, "qemu: '%s' invalid bus id\n", str);
2263
            return -1;
2264
        }
2265
    }
2266

    
2267
    if (get_param_value(buf, sizeof(buf), "unit", str)) {
2268
        unit_id = strtol(buf, NULL, 0);
2269
        if (unit_id < 0) {
2270
            fprintf(stderr, "qemu: '%s' invalid unit id\n", str);
2271
            return -1;
2272
        }
2273
    }
2274

    
2275
    if (get_param_value(buf, sizeof(buf), "if", str)) {
2276
        pstrcpy(devname, sizeof(devname), buf);
2277
        if (!strcmp(buf, "ide")) {
2278
            type = IF_IDE;
2279
            max_devs = MAX_IDE_DEVS;
2280
        } else if (!strcmp(buf, "scsi")) {
2281
            type = IF_SCSI;
2282
            max_devs = MAX_SCSI_DEVS;
2283
        } else if (!strcmp(buf, "floppy")) {
2284
            type = IF_FLOPPY;
2285
            max_devs = 0;
2286
        } else if (!strcmp(buf, "pflash")) {
2287
            type = IF_PFLASH;
2288
            max_devs = 0;
2289
        } else if (!strcmp(buf, "mtd")) {
2290
            type = IF_MTD;
2291
            max_devs = 0;
2292
        } else if (!strcmp(buf, "sd")) {
2293
            type = IF_SD;
2294
            max_devs = 0;
2295
        } else if (!strcmp(buf, "virtio")) {
2296
            type = IF_VIRTIO;
2297
            max_devs = 0;
2298
        } else {
2299
            fprintf(stderr, "qemu: '%s' unsupported bus type '%s'\n", str, buf);
2300
            return -1;
2301
        }
2302
    }
2303

    
2304
    if (get_param_value(buf, sizeof(buf), "index", str)) {
2305
        index = strtol(buf, NULL, 0);
2306
        if (index < 0) {
2307
            fprintf(stderr, "qemu: '%s' invalid index\n", str);
2308
            return -1;
2309
        }
2310
    }
2311

    
2312
    if (get_param_value(buf, sizeof(buf), "cyls", str)) {
2313
        cyls = strtol(buf, NULL, 0);
2314
    }
2315

    
2316
    if (get_param_value(buf, sizeof(buf), "heads", str)) {
2317
        heads = strtol(buf, NULL, 0);
2318
    }
2319

    
2320
    if (get_param_value(buf, sizeof(buf), "secs", str)) {
2321
        secs = strtol(buf, NULL, 0);
2322
    }
2323

    
2324
    if (cyls || heads || secs) {
2325
        if (cyls < 1 || cyls > 16383) {
2326
            fprintf(stderr, "qemu: '%s' invalid physical cyls number\n", str);
2327
            return -1;
2328
        }
2329
        if (heads < 1 || heads > 16) {
2330
            fprintf(stderr, "qemu: '%s' invalid physical heads number\n", str);
2331
            return -1;
2332
        }
2333
        if (secs < 1 || secs > 63) {
2334
            fprintf(stderr, "qemu: '%s' invalid physical secs number\n", str);
2335
            return -1;
2336
        }
2337
    }
2338

    
2339
    if (get_param_value(buf, sizeof(buf), "trans", str)) {
2340
        if (!cyls) {
2341
            fprintf(stderr,
2342
                    "qemu: '%s' trans must be used with cyls,heads and secs\n",
2343
                    str);
2344
            return -1;
2345
        }
2346
        if (!strcmp(buf, "none"))
2347
            translation = BIOS_ATA_TRANSLATION_NONE;
2348
        else if (!strcmp(buf, "lba"))
2349
            translation = BIOS_ATA_TRANSLATION_LBA;
2350
        else if (!strcmp(buf, "auto"))
2351
            translation = BIOS_ATA_TRANSLATION_AUTO;
2352
        else {
2353
            fprintf(stderr, "qemu: '%s' invalid translation type\n", str);
2354
            return -1;
2355
        }
2356
    }
2357

    
2358
    if (get_param_value(buf, sizeof(buf), "media", str)) {
2359
        if (!strcmp(buf, "disk")) {
2360
            media = MEDIA_DISK;
2361
        } else if (!strcmp(buf, "cdrom")) {
2362
            if (cyls || secs || heads) {
2363
                fprintf(stderr,
2364
                        "qemu: '%s' invalid physical CHS format\n", str);
2365
                return -1;
2366
            }
2367
            media = MEDIA_CDROM;
2368
        } else {
2369
            fprintf(stderr, "qemu: '%s' invalid media\n", str);
2370
            return -1;
2371
        }
2372
    }
2373

    
2374
    if (get_param_value(buf, sizeof(buf), "snapshot", str)) {
2375
        if (!strcmp(buf, "on"))
2376
            snapshot = 1;
2377
        else if (!strcmp(buf, "off"))
2378
            snapshot = 0;
2379
        else {
2380
            fprintf(stderr, "qemu: '%s' invalid snapshot option\n", str);
2381
            return -1;
2382
        }
2383
    }
2384

    
2385
    if (get_param_value(buf, sizeof(buf), "cache", str)) {
2386
        if (!strcmp(buf, "off") || !strcmp(buf, "none"))
2387
            cache = 0;
2388
        else if (!strcmp(buf, "writethrough"))
2389
            cache = 1;
2390
        else if (!strcmp(buf, "writeback"))
2391
            cache = 2;
2392
        else {
2393
           fprintf(stderr, "qemu: invalid cache option\n");
2394
           return -1;
2395
        }
2396
    }
2397

    
2398
    if (get_param_value(buf, sizeof(buf), "format", str)) {
2399
       if (strcmp(buf, "?") == 0) {
2400
            fprintf(stderr, "qemu: Supported formats:");
2401
            bdrv_iterate_format(bdrv_format_print, NULL);
2402
            fprintf(stderr, "\n");
2403
            return -1;
2404
        }
2405
        drv = bdrv_find_format(buf);
2406
        if (!drv) {
2407
            fprintf(stderr, "qemu: '%s' invalid format\n", buf);
2408
            return -1;
2409
        }
2410
    }
2411

    
2412
    if (arg->file == NULL)
2413
        get_param_value(file, sizeof(file), "file", str);
2414
    else
2415
        pstrcpy(file, sizeof(file), arg->file);
2416

    
2417
    if (!get_param_value(serial, sizeof(serial), "serial", str))
2418
            memset(serial, 0,  sizeof(serial));
2419

    
2420
    /* compute bus and unit according index */
2421

    
2422
    if (index != -1) {
2423
        if (bus_id != 0 || unit_id != -1) {
2424
            fprintf(stderr,
2425
                    "qemu: '%s' index cannot be used with bus and unit\n", str);
2426
            return -1;
2427
        }
2428
        if (max_devs == 0)
2429
        {
2430
            unit_id = index;
2431
            bus_id = 0;
2432
        } else {
2433
            unit_id = index % max_devs;
2434
            bus_id = index / max_devs;
2435
        }
2436
    }
2437

    
2438
    /* if user doesn't specify a unit_id,
2439
     * try to find the first free
2440
     */
2441

    
2442
    if (unit_id == -1) {
2443
       unit_id = 0;
2444
       while (drive_get_index(type, bus_id, unit_id) != -1) {
2445
           unit_id++;
2446
           if (max_devs && unit_id >= max_devs) {
2447
               unit_id -= max_devs;
2448
               bus_id++;
2449
           }
2450
       }
2451
    }
2452

    
2453
    /* check unit id */
2454

    
2455
    if (max_devs && unit_id >= max_devs) {
2456
        fprintf(stderr, "qemu: '%s' unit %d too big (max is %d)\n",
2457
                        str, unit_id, max_devs - 1);
2458
        return -1;
2459
    }
2460

    
2461
    /*
2462
     * ignore multiple definitions
2463
     */
2464

    
2465
    if (drive_get_index(type, bus_id, unit_id) != -1)
2466
        return 0;
2467

    
2468
    /* init */
2469

    
2470
    if (type == IF_IDE || type == IF_SCSI)
2471
        mediastr = (media == MEDIA_CDROM) ? "-cd" : "-hd";
2472
    if (max_devs)
2473
        snprintf(buf, sizeof(buf), "%s%i%s%i",
2474
                 devname, bus_id, mediastr, unit_id);
2475
    else
2476
        snprintf(buf, sizeof(buf), "%s%s%i",
2477
                 devname, mediastr, unit_id);
2478
    bdrv = bdrv_new(buf);
2479
    drives_table[nb_drives].bdrv = bdrv;
2480
    drives_table[nb_drives].type = type;
2481
    drives_table[nb_drives].bus = bus_id;
2482
    drives_table[nb_drives].unit = unit_id;
2483
    strncpy(drives_table[nb_drives].serial, serial, sizeof(serial));
2484
    nb_drives++;
2485

    
2486
    switch(type) {
2487
    case IF_IDE:
2488
    case IF_SCSI:
2489
        switch(media) {
2490
        case MEDIA_DISK:
2491
            if (cyls != 0) {
2492
                bdrv_set_geometry_hint(bdrv, cyls, heads, secs);
2493
                bdrv_set_translation_hint(bdrv, translation);
2494
            }
2495
            break;
2496
        case MEDIA_CDROM:
2497
            bdrv_set_type_hint(bdrv, BDRV_TYPE_CDROM);
2498
            break;
2499
        }
2500
        break;
2501
    case IF_SD:
2502
        /* FIXME: This isn't really a floppy, but it's a reasonable
2503
           approximation.  */
2504
    case IF_FLOPPY:
2505
        bdrv_set_type_hint(bdrv, BDRV_TYPE_FLOPPY);
2506
        break;
2507
    case IF_PFLASH:
2508
    case IF_MTD:
2509
    case IF_VIRTIO:
2510
        break;
2511
    }
2512
    if (!file[0])
2513
        return 0;
2514
    bdrv_flags = 0;
2515
    if (snapshot) {
2516
        bdrv_flags |= BDRV_O_SNAPSHOT;
2517
        cache = 2; /* always use write-back with snapshot */
2518
    }
2519
    if (cache == 0) /* no caching */
2520
        bdrv_flags |= BDRV_O_NOCACHE;
2521
    else if (cache == 2) /* write-back */
2522
        bdrv_flags |= BDRV_O_CACHE_WB;
2523
    else if (cache == 3) /* not specified */
2524
        bdrv_flags |= BDRV_O_CACHE_DEF;
2525
    if (bdrv_open2(bdrv, file, bdrv_flags, drv) < 0 || qemu_key_check(bdrv, file)) {
2526
        fprintf(stderr, "qemu: could not open disk image %s\n",
2527
                        file);
2528
        return -1;
2529
    }
2530
    return 0;
2531
}
2532

    
2533
/***********************************************************/
2534
/* USB devices */
2535

    
2536
static USBPort *used_usb_ports;
2537
static USBPort *free_usb_ports;
2538

    
2539
/* ??? Maybe change this to register a hub to keep track of the topology.  */
2540
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
2541
                            usb_attachfn attach)
2542
{
2543
    port->opaque = opaque;
2544
    port->index = index;
2545
    port->attach = attach;
2546
    port->next = free_usb_ports;
2547
    free_usb_ports = port;
2548
}
2549

    
2550
int usb_device_add_dev(USBDevice *dev)
2551
{
2552
    USBPort *port;
2553

    
2554
    /* Find a USB port to add the device to.  */
2555
    port = free_usb_ports;
2556
    if (!port->next) {
2557
        USBDevice *hub;
2558

    
2559
        /* Create a new hub and chain it on.  */
2560
        free_usb_ports = NULL;
2561
        port->next = used_usb_ports;
2562
        used_usb_ports = port;
2563

    
2564
        hub = usb_hub_init(VM_USB_HUB_SIZE);
2565
        usb_attach(port, hub);
2566
        port = free_usb_ports;
2567
    }
2568

    
2569
    free_usb_ports = port->next;
2570
    port->next = used_usb_ports;
2571
    used_usb_ports = port;
2572
    usb_attach(port, dev);
2573
    return 0;
2574
}
2575

    
2576
static int usb_device_add(const char *devname)
2577
{
2578
    const char *p;
2579
    USBDevice *dev;
2580

    
2581
    if (!free_usb_ports)
2582
        return -1;
2583

    
2584
    if (strstart(devname, "host:", &p)) {
2585
        dev = usb_host_device_open(p);
2586
    } else if (!strcmp(devname, "mouse")) {
2587
        dev = usb_mouse_init();
2588
    } else if (!strcmp(devname, "tablet")) {
2589
        dev = usb_tablet_init();
2590
    } else if (!strcmp(devname, "keyboard")) {
2591
        dev = usb_keyboard_init();
2592
    } else if (strstart(devname, "disk:", &p)) {
2593
        dev = usb_msd_init(p);
2594
    } else if (!strcmp(devname, "wacom-tablet")) {
2595
        dev = usb_wacom_init();
2596
    } else if (strstart(devname, "serial:", &p)) {
2597
        dev = usb_serial_init(p);
2598
#ifdef CONFIG_BRLAPI
2599
    } else if (!strcmp(devname, "braille")) {
2600
        dev = usb_baum_init();
2601
#endif
2602
    } else if (strstart(devname, "net:", &p)) {
2603
        int nic = nb_nics;
2604

    
2605
        if (net_client_init("nic", p) < 0)
2606
            return -1;
2607
        nd_table[nic].model = "usb";
2608
        dev = usb_net_init(&nd_table[nic]);
2609
    } else if (!strcmp(devname, "bt") || strstart(devname, "bt:", &p)) {
2610
        dev = usb_bt_init(devname[2] ? hci_init(p) :
2611
                        bt_new_hci(qemu_find_bt_vlan(0)));
2612
    } else {
2613
        return -1;
2614
    }
2615
    if (!dev)
2616
        return -1;
2617

    
2618
    return usb_device_add_dev(dev);
2619
}
2620

    
2621
int usb_device_del_addr(int bus_num, int addr)
2622
{
2623
    USBPort *port;
2624
    USBPort **lastp;
2625
    USBDevice *dev;
2626

    
2627
    if (!used_usb_ports)
2628
        return -1;
2629

    
2630
    if (bus_num != 0)
2631
        return -1;
2632

    
2633
    lastp = &used_usb_ports;
2634
    port = used_usb_ports;
2635
    while (port && port->dev->addr != addr) {
2636
        lastp = &port->next;
2637
        port = port->next;
2638
    }
2639

    
2640
    if (!port)
2641
        return -1;
2642

    
2643
    dev = port->dev;
2644
    *lastp = port->next;
2645
    usb_attach(port, NULL);
2646
    dev->handle_destroy(dev);
2647
    port->next = free_usb_ports;
2648
    free_usb_ports = port;
2649
    return 0;
2650
}
2651

    
2652
static int usb_device_del(const char *devname)
2653
{
2654
    int bus_num, addr;
2655
    const char *p;
2656

    
2657
    if (strstart(devname, "host:", &p))
2658
        return usb_host_device_close(p);
2659

    
2660
    if (!used_usb_ports)
2661
        return -1;
2662

    
2663
    p = strchr(devname, '.');
2664
    if (!p)
2665
        return -1;
2666
    bus_num = strtoul(devname, NULL, 0);
2667
    addr = strtoul(p + 1, NULL, 0);
2668

    
2669
    return usb_device_del_addr(bus_num, addr);
2670
}
2671

    
2672
void do_usb_add(const char *devname)
2673
{
2674
    usb_device_add(devname);
2675
}
2676

    
2677
void do_usb_del(const char *devname)
2678
{
2679
    usb_device_del(devname);
2680
}
2681

    
2682
void usb_info(void)
2683
{
2684
    USBDevice *dev;
2685
    USBPort *port;
2686
    const char *speed_str;
2687

    
2688
    if (!usb_enabled) {
2689
        term_printf("USB support not enabled\n");
2690
        return;
2691
    }
2692

    
2693
    for (port = used_usb_ports; port; port = port->next) {
2694
        dev = port->dev;
2695
        if (!dev)
2696
            continue;
2697
        switch(dev->speed) {
2698
        case USB_SPEED_LOW:
2699
            speed_str = "1.5";
2700
            break;
2701
        case USB_SPEED_FULL:
2702
            speed_str = "12";
2703
            break;
2704
        case USB_SPEED_HIGH:
2705
            speed_str = "480";
2706
            break;
2707
        default:
2708
            speed_str = "?";
2709
            break;
2710
        }
2711
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
2712
                    0, dev->addr, speed_str, dev->devname);
2713
    }
2714
}
2715

    
2716
/***********************************************************/
2717
/* PCMCIA/Cardbus */
2718

    
2719
static struct pcmcia_socket_entry_s {
2720
    struct pcmcia_socket_s *socket;
2721
    struct pcmcia_socket_entry_s *next;
2722
} *pcmcia_sockets = 0;
2723

    
2724
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
2725
{
2726
    struct pcmcia_socket_entry_s *entry;
2727

    
2728
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
2729
    entry->socket = socket;
2730
    entry->next = pcmcia_sockets;
2731
    pcmcia_sockets = entry;
2732
}
2733

    
2734
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
2735
{
2736
    struct pcmcia_socket_entry_s *entry, **ptr;
2737

    
2738
    ptr = &pcmcia_sockets;
2739
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
2740
        if (entry->socket == socket) {
2741
            *ptr = entry->next;
2742
            qemu_free(entry);
2743
        }
2744
}
2745

    
2746
void pcmcia_info(void)
2747
{
2748
    struct pcmcia_socket_entry_s *iter;
2749
    if (!pcmcia_sockets)
2750
        term_printf("No PCMCIA sockets\n");
2751

    
2752
    for (iter = pcmcia_sockets; iter; iter = iter->next)
2753
        term_printf("%s: %s\n", iter->socket->slot_string,
2754
                    iter->socket->attached ? iter->socket->card_string :
2755
                    "Empty");
2756
}
2757

    
2758
/***********************************************************/
2759
/* register display */
2760

    
2761
void register_displaystate(DisplayState *ds)
2762
{
2763
    DisplayState **s;
2764
    s = &display_state;
2765
    while (*s != NULL)
2766
        s = &(*s)->next;
2767
    ds->next = NULL;
2768
    *s = ds;
2769
}
2770

    
2771
DisplayState *get_displaystate(void)
2772
{
2773
    return display_state;
2774
}
2775

    
2776
/* dumb display */
2777

    
2778
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
2779
{
2780
}
2781

    
2782
static void dumb_resize(DisplayState *ds)
2783
{
2784
}
2785

    
2786
static void dumb_display_init(DisplayState *ds)
2787
{
2788
    DisplayChangeListener *dcl = qemu_mallocz(sizeof(DisplayChangeListener));
2789
    if (!dcl)
2790
        exit(1);
2791
    dcl->dpy_update = dumb_update;
2792
    dcl->dpy_resize = dumb_resize;
2793
    dcl->dpy_refresh = NULL;
2794
    dcl->idle = 1;
2795
    dcl->gui_timer_interval = 500;
2796
    register_displaychangelistener(ds, dcl);
2797
}
2798

    
2799
/***********************************************************/
2800
/* I/O handling */
2801

    
2802
#define MAX_IO_HANDLERS 64
2803

    
2804
typedef struct IOHandlerRecord {
2805
    int fd;
2806
    IOCanRWHandler *fd_read_poll;
2807
    IOHandler *fd_read;
2808
    IOHandler *fd_write;
2809
    int deleted;
2810
    void *opaque;
2811
    /* temporary data */
2812
    struct pollfd *ufd;
2813
    struct IOHandlerRecord *next;
2814
} IOHandlerRecord;
2815

    
2816
static IOHandlerRecord *first_io_handler;
2817

    
2818
/* XXX: fd_read_poll should be suppressed, but an API change is
2819
   necessary in the character devices to suppress fd_can_read(). */
2820
int qemu_set_fd_handler2(int fd,
2821
                         IOCanRWHandler *fd_read_poll,
2822
                         IOHandler *fd_read,
2823
                         IOHandler *fd_write,
2824
                         void *opaque)
2825
{
2826
    IOHandlerRecord **pioh, *ioh;
2827

    
2828
    if (!fd_read && !fd_write) {
2829
        pioh = &first_io_handler;
2830
        for(;;) {
2831
            ioh = *pioh;
2832
            if (ioh == NULL)
2833
                break;
2834
            if (ioh->fd == fd) {
2835
                ioh->deleted = 1;
2836
                break;
2837
            }
2838
            pioh = &ioh->next;
2839
        }
2840
    } else {
2841
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
2842
            if (ioh->fd == fd)
2843
                goto found;
2844
        }
2845
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
2846
        if (!ioh)
2847
            return -1;
2848
        ioh->next = first_io_handler;
2849
        first_io_handler = ioh;
2850
    found:
2851
        ioh->fd = fd;
2852
        ioh->fd_read_poll = fd_read_poll;
2853
        ioh->fd_read = fd_read;
2854
        ioh->fd_write = fd_write;
2855
        ioh->opaque = opaque;
2856
        ioh->deleted = 0;
2857
    }
2858
    return 0;
2859
}
2860

    
2861
int qemu_set_fd_handler(int fd,
2862
                        IOHandler *fd_read,
2863
                        IOHandler *fd_write,
2864
                        void *opaque)
2865
{
2866
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
2867
}
2868

    
2869
#ifdef _WIN32
2870
/***********************************************************/
2871
/* Polling handling */
2872

    
2873
typedef struct PollingEntry {
2874
    PollingFunc *func;
2875
    void *opaque;
2876
    struct PollingEntry *next;
2877
} PollingEntry;
2878

    
2879
static PollingEntry *first_polling_entry;
2880

    
2881
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
2882
{
2883
    PollingEntry **ppe, *pe;
2884
    pe = qemu_mallocz(sizeof(PollingEntry));
2885
    if (!pe)
2886
        return -1;
2887
    pe->func = func;
2888
    pe->opaque = opaque;
2889
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
2890
    *ppe = pe;
2891
    return 0;
2892
}
2893

    
2894
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
2895
{
2896
    PollingEntry **ppe, *pe;
2897
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
2898
        pe = *ppe;
2899
        if (pe->func == func && pe->opaque == opaque) {
2900
            *ppe = pe->next;
2901
            qemu_free(pe);
2902
            break;
2903
        }
2904
    }
2905
}
2906

    
2907
/***********************************************************/
2908
/* Wait objects support */
2909
typedef struct WaitObjects {
2910
    int num;
2911
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
2912
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
2913
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
2914
} WaitObjects;
2915

    
2916
static WaitObjects wait_objects = {0};
2917

    
2918
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2919
{
2920
    WaitObjects *w = &wait_objects;
2921

    
2922
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
2923
        return -1;
2924
    w->events[w->num] = handle;
2925
    w->func[w->num] = func;
2926
    w->opaque[w->num] = opaque;
2927
    w->num++;
2928
    return 0;
2929
}
2930

    
2931
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
2932
{
2933
    int i, found;
2934
    WaitObjects *w = &wait_objects;
2935

    
2936
    found = 0;
2937
    for (i = 0; i < w->num; i++) {
2938
        if (w->events[i] == handle)
2939
            found = 1;
2940
        if (found) {
2941
            w->events[i] = w->events[i + 1];
2942
            w->func[i] = w->func[i + 1];
2943
            w->opaque[i] = w->opaque[i + 1];
2944
        }
2945
    }
2946
    if (found)
2947
        w->num--;
2948
}
2949
#endif
2950

    
2951
/***********************************************************/
2952
/* ram save/restore */
2953

    
2954
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
2955
{
2956
    int v;
2957

    
2958
    v = qemu_get_byte(f);
2959
    switch(v) {
2960
    case 0:
2961
        if (qemu_get_buffer(f, buf, len) != len)
2962
            return -EIO;
2963
        break;
2964
    case 1:
2965
        v = qemu_get_byte(f);
2966
        memset(buf, v, len);
2967
        break;
2968
    default:
2969
        return -EINVAL;
2970
    }
2971

    
2972
    if (qemu_file_has_error(f))
2973
        return -EIO;
2974

    
2975
    return 0;
2976
}
2977

    
2978
static int ram_load_v1(QEMUFile *f, void *opaque)
2979
{
2980
    int ret;
2981
    ram_addr_t i;
2982

    
2983
    if (qemu_get_be32(f) != phys_ram_size)
2984
        return -EINVAL;
2985
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
2986
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
2987
        if (ret)
2988
            return ret;
2989
    }
2990
    return 0;
2991
}
2992

    
2993
#define BDRV_HASH_BLOCK_SIZE 1024
2994
#define IOBUF_SIZE 4096
2995
#define RAM_CBLOCK_MAGIC 0xfabe
2996

    
2997
typedef struct RamDecompressState {
2998
    z_stream zstream;
2999
    QEMUFile *f;
3000
    uint8_t buf[IOBUF_SIZE];
3001
} RamDecompressState;
3002

    
3003
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
3004
{
3005
    int ret;
3006
    memset(s, 0, sizeof(*s));
3007
    s->f = f;
3008
    ret = inflateInit(&s->zstream);
3009
    if (ret != Z_OK)
3010
        return -1;
3011
    return 0;
3012
}
3013

    
3014
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
3015
{
3016
    int ret, clen;
3017

    
3018
    s->zstream.avail_out = len;
3019
    s->zstream.next_out = buf;
3020
    while (s->zstream.avail_out > 0) {
3021
        if (s->zstream.avail_in == 0) {
3022
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
3023
                return -1;
3024
            clen = qemu_get_be16(s->f);
3025
            if (clen > IOBUF_SIZE)
3026
                return -1;
3027
            qemu_get_buffer(s->f, s->buf, clen);
3028
            s->zstream.avail_in = clen;
3029
            s->zstream.next_in = s->buf;
3030
        }
3031
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
3032
        if (ret != Z_OK && ret != Z_STREAM_END) {
3033
            return -1;
3034
        }
3035
    }
3036
    return 0;
3037
}
3038

    
3039
static void ram_decompress_close(RamDecompressState *s)
3040
{
3041
    inflateEnd(&s->zstream);
3042
}
3043

    
3044
#define RAM_SAVE_FLAG_FULL        0x01
3045
#define RAM_SAVE_FLAG_COMPRESS        0x02
3046
#define RAM_SAVE_FLAG_MEM_SIZE        0x04
3047
#define RAM_SAVE_FLAG_PAGE        0x08
3048
#define RAM_SAVE_FLAG_EOS        0x10
3049

    
3050
static int is_dup_page(uint8_t *page, uint8_t ch)
3051
{
3052
    uint32_t val = ch << 24 | ch << 16 | ch << 8 | ch;
3053
    uint32_t *array = (uint32_t *)page;
3054
    int i;
3055

    
3056
    for (i = 0; i < (TARGET_PAGE_SIZE / 4); i++) {
3057
        if (array[i] != val)
3058
            return 0;
3059
    }
3060

    
3061
    return 1;
3062
}
3063

    
3064
static int ram_save_block(QEMUFile *f)
3065
{
3066
    static ram_addr_t current_addr = 0;
3067
    ram_addr_t saved_addr = current_addr;
3068
    ram_addr_t addr = 0;
3069
    int found = 0;
3070

    
3071
    while (addr < phys_ram_size) {
3072
        if (cpu_physical_memory_get_dirty(current_addr, MIGRATION_DIRTY_FLAG)) {
3073
            uint8_t ch;
3074

    
3075
            cpu_physical_memory_reset_dirty(current_addr,
3076
                                            current_addr + TARGET_PAGE_SIZE,
3077
                                            MIGRATION_DIRTY_FLAG);
3078

    
3079
            ch = *(phys_ram_base + current_addr);
3080

    
3081
            if (is_dup_page(phys_ram_base + current_addr, ch)) {
3082
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_COMPRESS);
3083
                qemu_put_byte(f, ch);
3084
            } else {
3085
                qemu_put_be64(f, current_addr | RAM_SAVE_FLAG_PAGE);
3086
                qemu_put_buffer(f, phys_ram_base + current_addr, TARGET_PAGE_SIZE);
3087
            }
3088

    
3089
            found = 1;
3090
            break;
3091
        }
3092
        addr += TARGET_PAGE_SIZE;
3093
        current_addr = (saved_addr + addr) % phys_ram_size;
3094
    }
3095

    
3096
    return found;
3097
}
3098

    
3099
static ram_addr_t ram_save_threshold = 10;
3100

    
3101
static ram_addr_t ram_save_remaining(void)
3102
{
3103
    ram_addr_t addr;
3104
    ram_addr_t count = 0;
3105

    
3106
    for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3107
        if (cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3108
            count++;
3109
    }
3110

    
3111
    return count;
3112
}
3113

    
3114
static int ram_save_live(QEMUFile *f, int stage, void *opaque)
3115
{
3116
    ram_addr_t addr;
3117

    
3118
    if (stage == 1) {
3119
        /* Make sure all dirty bits are set */
3120
        for (addr = 0; addr < phys_ram_size; addr += TARGET_PAGE_SIZE) {
3121
            if (!cpu_physical_memory_get_dirty(addr, MIGRATION_DIRTY_FLAG))
3122
                cpu_physical_memory_set_dirty(addr);
3123
        }
3124
        
3125
        /* Enable dirty memory tracking */
3126
        cpu_physical_memory_set_dirty_tracking(1);
3127

    
3128
        qemu_put_be64(f, phys_ram_size | RAM_SAVE_FLAG_MEM_SIZE);
3129
    }
3130

    
3131
    while (!qemu_file_rate_limit(f)) {
3132
        int ret;
3133

    
3134
        ret = ram_save_block(f);
3135
        if (ret == 0) /* no more blocks */
3136
            break;
3137
    }
3138

    
3139
    /* try transferring iterative blocks of memory */
3140

    
3141
    if (stage == 3) {
3142
        cpu_physical_memory_set_dirty_tracking(0);
3143

    
3144
        /* flush all remaining blocks regardless of rate limiting */
3145
        while (ram_save_block(f) != 0);
3146
    }
3147

    
3148
    qemu_put_be64(f, RAM_SAVE_FLAG_EOS);
3149

    
3150
    return (stage == 2) && (ram_save_remaining() < ram_save_threshold);
3151
}
3152

    
3153
static int ram_load_dead(QEMUFile *f, void *opaque)
3154
{
3155
    RamDecompressState s1, *s = &s1;
3156
    uint8_t buf[10];
3157
    ram_addr_t i;
3158

    
3159
    if (ram_decompress_open(s, f) < 0)
3160
        return -EINVAL;
3161
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
3162
        if (ram_decompress_buf(s, buf, 1) < 0) {
3163
            fprintf(stderr, "Error while reading ram block header\n");
3164
            goto error;
3165
        }
3166
        if (buf[0] == 0) {
3167
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
3168
                fprintf(stderr, "Error while reading ram block address=0x%08" PRIx64, (uint64_t)i);
3169
                goto error;
3170
            }
3171
        } else {
3172
        error:
3173
            printf("Error block header\n");
3174
            return -EINVAL;
3175
        }
3176
    }
3177
    ram_decompress_close(s);
3178

    
3179
    return 0;
3180
}
3181

    
3182
static int ram_load(QEMUFile *f, void *opaque, int version_id)
3183
{
3184
    ram_addr_t addr;
3185
    int flags;
3186

    
3187
    if (version_id == 1)
3188
        return ram_load_v1(f, opaque);
3189

    
3190
    if (version_id == 2) {
3191
        if (qemu_get_be32(f) != phys_ram_size)
3192
            return -EINVAL;
3193
        return ram_load_dead(f, opaque);
3194
    }
3195

    
3196
    if (version_id != 3)
3197
        return -EINVAL;
3198

    
3199
    do {
3200
        addr = qemu_get_be64(f);
3201

    
3202
        flags = addr & ~TARGET_PAGE_MASK;
3203
        addr &= TARGET_PAGE_MASK;
3204

    
3205
        if (flags & RAM_SAVE_FLAG_MEM_SIZE) {
3206
            if (addr != phys_ram_size)
3207
                return -EINVAL;
3208
        }
3209

    
3210
        if (flags & RAM_SAVE_FLAG_FULL) {
3211
            if (ram_load_dead(f, opaque) < 0)
3212
                return -EINVAL;
3213
        }
3214
        
3215
        if (flags & RAM_SAVE_FLAG_COMPRESS) {
3216
            uint8_t ch = qemu_get_byte(f);
3217
            memset(phys_ram_base + addr, ch, TARGET_PAGE_SIZE);
3218
        } else if (flags & RAM_SAVE_FLAG_PAGE)
3219
            qemu_get_buffer(f, phys_ram_base + addr, TARGET_PAGE_SIZE);
3220
    } while (!(flags & RAM_SAVE_FLAG_EOS));
3221

    
3222
    return 0;
3223
}
3224

    
3225
void qemu_service_io(void)
3226
{
3227
    CPUState *env = cpu_single_env;
3228
    if (env) {
3229
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3230
#ifdef USE_KQEMU
3231
        if (env->kqemu_enabled) {
3232
            kqemu_cpu_interrupt(env);
3233
        }
3234
#endif
3235
    }
3236
}
3237

    
3238
/***********************************************************/
3239
/* bottom halves (can be seen as timers which expire ASAP) */
3240

    
3241
struct QEMUBH {
3242
    QEMUBHFunc *cb;
3243
    void *opaque;
3244
    int scheduled;
3245
    int idle;
3246
    int deleted;
3247
    QEMUBH *next;
3248
};
3249

    
3250
static QEMUBH *first_bh = NULL;
3251

    
3252
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
3253
{
3254
    QEMUBH *bh;
3255
    bh = qemu_mallocz(sizeof(QEMUBH));
3256
    if (!bh)
3257
        return NULL;
3258
    bh->cb = cb;
3259
    bh->opaque = opaque;
3260
    bh->next = first_bh;
3261
    first_bh = bh;
3262
    return bh;
3263
}
3264

    
3265
int qemu_bh_poll(void)
3266
{
3267
    QEMUBH *bh, **bhp;
3268
    int ret;
3269

    
3270
    ret = 0;
3271
    for (bh = first_bh; bh; bh = bh->next) {
3272
        if (!bh->deleted && bh->scheduled) {
3273
            bh->scheduled = 0;
3274
            if (!bh->idle)
3275
                ret = 1;
3276
            bh->idle = 0;
3277
            bh->cb(bh->opaque);
3278
        }
3279
    }
3280

    
3281
    /* remove deleted bhs */
3282
    bhp = &first_bh;
3283
    while (*bhp) {
3284
        bh = *bhp;
3285
        if (bh->deleted) {
3286
            *bhp = bh->next;
3287
            qemu_free(bh);
3288
        } else
3289
            bhp = &bh->next;
3290
    }
3291

    
3292
    return ret;
3293
}
3294

    
3295
void qemu_bh_schedule_idle(QEMUBH *bh)
3296
{
3297
    if (bh->scheduled)
3298
        return;
3299
    bh->scheduled = 1;
3300
    bh->idle = 1;
3301
}
3302

    
3303
void qemu_bh_schedule(QEMUBH *bh)
3304
{
3305
    CPUState *env = cpu_single_env;
3306
    if (bh->scheduled)
3307
        return;
3308
    bh->scheduled = 1;
3309
    bh->idle = 0;
3310
    /* stop the currently executing CPU to execute the BH ASAP */
3311
    if (env) {
3312
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
3313
    }
3314
}
3315

    
3316
void qemu_bh_cancel(QEMUBH *bh)
3317
{
3318
    bh->scheduled = 0;
3319
}
3320

    
3321
void qemu_bh_delete(QEMUBH *bh)
3322
{
3323
    bh->scheduled = 0;
3324
    bh->deleted = 1;
3325
}
3326

    
3327
static void qemu_bh_update_timeout(int *timeout)
3328
{
3329
    QEMUBH *bh;
3330

    
3331
    for (bh = first_bh; bh; bh = bh->next) {
3332
        if (!bh->deleted && bh->scheduled) {
3333
            if (bh->idle) {
3334
                /* idle bottom halves will be polled at least
3335
                 * every 10ms */
3336
                *timeout = MIN(10, *timeout);
3337
            } else {
3338
                /* non-idle bottom halves will be executed
3339
                 * immediately */
3340
                *timeout = 0;
3341
                break;
3342
            }
3343
        }
3344
    }
3345
}
3346

    
3347
/***********************************************************/
3348
/* machine registration */
3349

    
3350
static QEMUMachine *first_machine = NULL;
3351

    
3352
int qemu_register_machine(QEMUMachine *m)
3353
{
3354
    QEMUMachine **pm;
3355
    pm = &first_machine;
3356
    while (*pm != NULL)
3357
        pm = &(*pm)->next;
3358
    m->next = NULL;
3359
    *pm = m;
3360
    return 0;
3361
}
3362

    
3363
static QEMUMachine *find_machine(const char *name)
3364
{
3365
    QEMUMachine *m;
3366

    
3367
    for(m = first_machine; m != NULL; m = m->next) {
3368
        if (!strcmp(m->name, name))
3369
            return m;
3370
    }
3371
    return NULL;
3372
}
3373

    
3374
/***********************************************************/
3375
/* main execution loop */
3376

    
3377
static void gui_update(void *opaque)
3378
{
3379
    uint64_t interval = GUI_REFRESH_INTERVAL;
3380
    DisplayState *ds = opaque;
3381
    DisplayChangeListener *dcl = ds->listeners;
3382

    
3383
    dpy_refresh(ds);
3384

    
3385
    while (dcl != NULL) {
3386
        if (dcl->gui_timer_interval &&
3387
            dcl->gui_timer_interval < interval)
3388
            interval = dcl->gui_timer_interval;
3389
        dcl = dcl->next;
3390
    }
3391
    qemu_mod_timer(ds->gui_timer, interval + qemu_get_clock(rt_clock));
3392
}
3393

    
3394
struct vm_change_state_entry {
3395
    VMChangeStateHandler *cb;
3396
    void *opaque;
3397
    LIST_ENTRY (vm_change_state_entry) entries;
3398
};
3399

    
3400
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
3401

    
3402
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
3403
                                                     void *opaque)
3404
{
3405
    VMChangeStateEntry *e;
3406

    
3407
    e = qemu_mallocz(sizeof (*e));
3408
    if (!e)
3409
        return NULL;
3410

    
3411
    e->cb = cb;
3412
    e->opaque = opaque;
3413
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
3414
    return e;
3415
}
3416

    
3417
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
3418
{
3419
    LIST_REMOVE (e, entries);
3420
    qemu_free (e);
3421
}
3422

    
3423
static void vm_state_notify(int running)
3424
{
3425
    VMChangeStateEntry *e;
3426

    
3427
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
3428
        e->cb(e->opaque, running);
3429
    }
3430
}
3431

    
3432
/* XXX: support several handlers */
3433
static VMStopHandler *vm_stop_cb;
3434
static void *vm_stop_opaque;
3435

    
3436
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
3437
{
3438
    vm_stop_cb = cb;
3439
    vm_stop_opaque = opaque;
3440
    return 0;
3441
}
3442

    
3443
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
3444
{
3445
    vm_stop_cb = NULL;
3446
}
3447

    
3448
void vm_start(void)
3449
{
3450
    if (!vm_running) {
3451
        cpu_enable_ticks();
3452
        vm_running = 1;
3453
        vm_state_notify(1);
3454
        qemu_rearm_alarm_timer(alarm_timer);
3455
    }
3456
}
3457

    
3458
void vm_stop(int reason)
3459
{
3460
    if (vm_running) {
3461
        cpu_disable_ticks();
3462
        vm_running = 0;
3463
        if (reason != 0) {
3464
            if (vm_stop_cb) {
3465
                vm_stop_cb(vm_stop_opaque, reason);
3466
            }
3467
        }
3468
        vm_state_notify(0);
3469
    }
3470
}
3471

    
3472
/* reset/shutdown handler */
3473

    
3474
typedef struct QEMUResetEntry {
3475
    QEMUResetHandler *func;
3476
    void *opaque;
3477
    struct QEMUResetEntry *next;
3478
} QEMUResetEntry;
3479

    
3480
static QEMUResetEntry *first_reset_entry;
3481
static int reset_requested;
3482
static int shutdown_requested;
3483
static int powerdown_requested;
3484

    
3485
int qemu_shutdown_requested(void)
3486
{
3487
    int r = shutdown_requested;
3488
    shutdown_requested = 0;
3489
    return r;
3490
}
3491

    
3492
int qemu_reset_requested(void)
3493
{
3494
    int r = reset_requested;
3495
    reset_requested = 0;
3496
    return r;
3497
}
3498

    
3499
int qemu_powerdown_requested(void)
3500
{
3501
    int r = powerdown_requested;
3502
    powerdown_requested = 0;
3503
    return r;
3504
}
3505

    
3506
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
3507
{
3508
    QEMUResetEntry **pre, *re;
3509

    
3510
    pre = &first_reset_entry;
3511
    while (*pre != NULL)
3512
        pre = &(*pre)->next;
3513
    re = qemu_mallocz(sizeof(QEMUResetEntry));
3514
    re->func = func;
3515
    re->opaque = opaque;
3516
    re->next = NULL;
3517
    *pre = re;
3518
}
3519

    
3520
void qemu_system_reset(void)
3521
{
3522
    QEMUResetEntry *re;
3523

    
3524
    /* reset all devices */
3525
    for(re = first_reset_entry; re != NULL; re = re->next) {
3526
        re->func(re->opaque);
3527
    }
3528
}
3529

    
3530
void qemu_system_reset_request(void)
3531
{
3532
    if (no_reboot) {
3533
        shutdown_requested = 1;
3534
    } else {
3535
        reset_requested = 1;
3536
    }
3537
    if (cpu_single_env)
3538
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3539
}
3540

    
3541
void qemu_system_shutdown_request(void)
3542
{
3543
    shutdown_requested = 1;
3544
    if (cpu_single_env)
3545
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3546
}
3547

    
3548
void qemu_system_powerdown_request(void)
3549
{
3550
    powerdown_requested = 1;
3551
    if (cpu_single_env)
3552
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
3553
}
3554

    
3555
#ifdef _WIN32
3556
static void host_main_loop_wait(int *timeout)
3557
{
3558
    int ret, ret2, i;
3559
    PollingEntry *pe;
3560

    
3561

    
3562
    /* XXX: need to suppress polling by better using win32 events */
3563
    ret = 0;
3564
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
3565
        ret |= pe->func(pe->opaque);
3566
    }
3567
    if (ret == 0) {
3568
        int err;
3569
        WaitObjects *w = &wait_objects;
3570

    
3571
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, *timeout);
3572
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
3573
            if (w->func[ret - WAIT_OBJECT_0])
3574
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
3575

    
3576
            /* Check for additional signaled events */
3577
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
3578

    
3579
                /* Check if event is signaled */
3580
                ret2 = WaitForSingleObject(w->events[i], 0);
3581
                if(ret2 == WAIT_OBJECT_0) {
3582
                    if (w->func[i])
3583
                        w->func[i](w->opaque[i]);
3584
                } else if (ret2 == WAIT_TIMEOUT) {
3585
                } else {
3586
                    err = GetLastError();
3587
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
3588
                }
3589
            }
3590
        } else if (ret == WAIT_TIMEOUT) {
3591
        } else {
3592
            err = GetLastError();
3593
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
3594
        }
3595
    }
3596

    
3597
    *timeout = 0;
3598
}
3599
#else
3600
static void host_main_loop_wait(int *timeout)
3601
{
3602
}
3603
#endif
3604

    
3605
void main_loop_wait(int timeout)
3606
{
3607
    IOHandlerRecord *ioh;
3608
    fd_set rfds, wfds, xfds;
3609
    int ret, nfds;
3610
    struct timeval tv;
3611

    
3612
    qemu_bh_update_timeout(&timeout);
3613

    
3614
    host_main_loop_wait(&timeout);
3615

    
3616
    /* poll any events */
3617
    /* XXX: separate device handlers from system ones */
3618
    nfds = -1;
3619
    FD_ZERO(&rfds);
3620
    FD_ZERO(&wfds);
3621
    FD_ZERO(&xfds);
3622
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3623
        if (ioh->deleted)
3624
            continue;
3625
        if (ioh->fd_read &&
3626
            (!ioh->fd_read_poll ||
3627
             ioh->fd_read_poll(ioh->opaque) != 0)) {
3628
            FD_SET(ioh->fd, &rfds);
3629
            if (ioh->fd > nfds)
3630
                nfds = ioh->fd;
3631
        }
3632
        if (ioh->fd_write) {
3633
            FD_SET(ioh->fd, &wfds);
3634
            if (ioh->fd > nfds)
3635
                nfds = ioh->fd;
3636
        }
3637
    }
3638

    
3639
    tv.tv_sec = timeout / 1000;
3640
    tv.tv_usec = (timeout % 1000) * 1000;
3641

    
3642
#if defined(CONFIG_SLIRP)
3643
    if (slirp_is_inited()) {
3644
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
3645
    }
3646
#endif
3647
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
3648
    if (ret > 0) {
3649
        IOHandlerRecord **pioh;
3650

    
3651
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
3652
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
3653
                ioh->fd_read(ioh->opaque);
3654
            }
3655
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
3656
                ioh->fd_write(ioh->opaque);
3657
            }
3658
        }
3659

    
3660
        /* remove deleted IO handlers */
3661
        pioh = &first_io_handler;
3662
        while (*pioh) {
3663
            ioh = *pioh;
3664
            if (ioh->deleted) {
3665
                *pioh = ioh->next;
3666
                qemu_free(ioh);
3667
            } else
3668
                pioh = &ioh->next;
3669
        }
3670
    }
3671
#if defined(CONFIG_SLIRP)
3672
    if (slirp_is_inited()) {
3673
        if (ret < 0) {
3674
            FD_ZERO(&rfds);
3675
            FD_ZERO(&wfds);
3676
            FD_ZERO(&xfds);
3677
        }
3678
        slirp_select_poll(&rfds, &wfds, &xfds);
3679
    }
3680
#endif
3681

    
3682
    /* vm time timers */
3683
    if (vm_running && likely(!(cur_cpu->singlestep_enabled & SSTEP_NOTIMER)))
3684
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
3685
                        qemu_get_clock(vm_clock));
3686

    
3687
    /* real time timers */
3688
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
3689
                    qemu_get_clock(rt_clock));
3690

    
3691
    /* Check bottom-halves last in case any of the earlier events triggered
3692
       them.  */
3693
    qemu_bh_poll();
3694

    
3695
}
3696

    
3697
static int main_loop(void)
3698
{
3699
    int ret, timeout;
3700
#ifdef CONFIG_PROFILER
3701
    int64_t ti;
3702
#endif
3703
    CPUState *env;
3704

    
3705
    cur_cpu = first_cpu;
3706
    next_cpu = cur_cpu->next_cpu ?: first_cpu;
3707
    for(;;) {
3708
        if (vm_running) {
3709

    
3710
            for(;;) {
3711
                /* get next cpu */
3712
                env = next_cpu;
3713
#ifdef CONFIG_PROFILER
3714
                ti = profile_getclock();
3715
#endif
3716
                if (use_icount) {
3717
                    int64_t count;
3718
                    int decr;
3719
                    qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
3720
                    env->icount_decr.u16.low = 0;
3721
                    env->icount_extra = 0;
3722
                    count = qemu_next_deadline();
3723
                    count = (count + (1 << icount_time_shift) - 1)
3724
                            >> icount_time_shift;
3725
                    qemu_icount += count;
3726
                    decr = (count > 0xffff) ? 0xffff : count;
3727
                    count -= decr;
3728
                    env->icount_decr.u16.low = decr;
3729
                    env->icount_extra = count;
3730
                }
3731
                ret = cpu_exec(env);
3732
#ifdef CONFIG_PROFILER
3733
                qemu_time += profile_getclock() - ti;
3734
#endif
3735
                if (use_icount) {
3736
                    /* Fold pending instructions back into the
3737
                       instruction counter, and clear the interrupt flag.  */
3738
                    qemu_icount -= (env->icount_decr.u16.low
3739
                                    + env->icount_extra);
3740
                    env->icount_decr.u32 = 0;
3741
                    env->icount_extra = 0;
3742
                }
3743
                next_cpu = env->next_cpu ?: first_cpu;
3744
                if (event_pending && likely(ret != EXCP_DEBUG)) {
3745
                    ret = EXCP_INTERRUPT;
3746
                    event_pending = 0;
3747
                    break;
3748
                }
3749
                if (ret == EXCP_HLT) {
3750
                    /* Give the next CPU a chance to run.  */
3751
                    cur_cpu = env;
3752
                    continue;
3753
                }
3754
                if (ret != EXCP_HALTED)
3755
                    break;
3756
                /* all CPUs are halted ? */
3757
                if (env == cur_cpu)
3758
                    break;
3759
            }
3760
            cur_cpu = env;
3761

    
3762
            if (shutdown_requested) {
3763
                ret = EXCP_INTERRUPT;
3764
                if (no_shutdown) {
3765
                    vm_stop(0);
3766
                    no_shutdown = 0;
3767
                }
3768
                else
3769
                    break;
3770
            }
3771
            if (reset_requested) {
3772
                reset_requested = 0;
3773
                qemu_system_reset();
3774
                ret = EXCP_INTERRUPT;
3775
            }
3776
            if (powerdown_requested) {
3777
                powerdown_requested = 0;
3778
                qemu_system_powerdown();
3779
                ret = EXCP_INTERRUPT;
3780
            }
3781
            if (unlikely(ret == EXCP_DEBUG)) {
3782
                gdb_set_stop_cpu(cur_cpu);
3783
                vm_stop(EXCP_DEBUG);
3784
            }
3785
            /* If all cpus are halted then wait until the next IRQ */
3786
            /* XXX: use timeout computed from timers */
3787
            if (ret == EXCP_HALTED) {
3788
                if (use_icount) {
3789
                    int64_t add;
3790
                    int64_t delta;
3791
                    /* Advance virtual time to the next event.  */
3792
                    if (use_icount == 1) {
3793
                        /* When not using an adaptive execution frequency
3794
                           we tend to get badly out of sync with real time,
3795
                           so just delay for a reasonable amount of time.  */
3796
                        delta = 0;
3797
                    } else {
3798
                        delta = cpu_get_icount() - cpu_get_clock();
3799
                    }
3800
                    if (delta > 0) {
3801
                        /* If virtual time is ahead of real time then just
3802
                           wait for IO.  */
3803
                        timeout = (delta / 1000000) + 1;
3804
                    } else {
3805
                        /* Wait for either IO to occur or the next
3806
                           timer event.  */
3807
                        add = qemu_next_deadline();
3808
                        /* We advance the timer before checking for IO.
3809
                           Limit the amount we advance so that early IO
3810
                           activity won't get the guest too far ahead.  */
3811
                        if (add > 10000000)
3812
                            add = 10000000;
3813
                        delta += add;
3814
                        add = (add + (1 << icount_time_shift) - 1)
3815
                              >> icount_time_shift;
3816
                        qemu_icount += add;
3817
                        timeout = delta / 1000000;
3818
                        if (timeout < 0)
3819
                            timeout = 0;
3820
                    }
3821
                } else {
3822
                    timeout = 5000;
3823
                }
3824
            } else {
3825
                timeout = 0;
3826
            }
3827
        } else {
3828
            if (shutdown_requested) {
3829
                ret = EXCP_INTERRUPT;
3830
                break;
3831
            }
3832
            timeout = 5000;
3833
        }
3834
#ifdef CONFIG_PROFILER
3835
        ti = profile_getclock();
3836
#endif
3837
        main_loop_wait(timeout);
3838
#ifdef CONFIG_PROFILER
3839
        dev_time += profile_getclock() - ti;
3840
#endif
3841
    }
3842
    cpu_disable_ticks();
3843
    return ret;
3844
}
3845

    
3846
static void help(int exitcode)
3847
{
3848
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
3849
           "usage: %s [options] [disk_image]\n"
3850
           "\n"
3851
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
3852
           "\n"
3853
           "Standard options:\n"
3854
           "-M machine      select emulated machine (-M ? for list)\n"
3855
           "-cpu cpu        select CPU (-cpu ? for list)\n"
3856
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
3857
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
3858
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
3859
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
3860
           "-drive [file=file][,if=type][,bus=n][,unit=m][,media=d][,index=i]\n"
3861
           "       [,cyls=c,heads=h,secs=s[,trans=t]][,snapshot=on|off]\n"
3862
           "       [,cache=writethrough|writeback|none][,format=f][,serial=s]\n"
3863
           "                use 'file' as a drive image\n"
3864
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
3865
           "-sd file        use 'file' as SecureDigital card image\n"
3866
           "-pflash file    use 'file' as a parallel flash image\n"
3867
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
3868
           "-snapshot       write to temporary files instead of disk image files\n"
3869
#ifdef CONFIG_SDL
3870
           "-no-frame       open SDL window without a frame and window decorations\n"
3871
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
3872
           "-no-quit        disable SDL window close capability\n"
3873
           "-sdl            enable SDL\n"
3874
#endif
3875
#ifdef TARGET_I386
3876
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
3877
#endif
3878
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
3879
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
3880
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
3881
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
3882
#ifndef _WIN32
3883
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
3884
#endif
3885
#ifdef HAS_AUDIO
3886
           "-audio-help     print list of audio drivers and their options\n"
3887
           "-soundhw c1,... enable audio support\n"
3888
           "                and only specified sound cards (comma separated list)\n"
3889
           "                use -soundhw ? to get the list of supported cards\n"
3890
           "                use -soundhw all to enable all of them\n"
3891
#endif
3892
           "-vga [std|cirrus|vmware|none]\n"
3893
           "                select video card type\n"
3894
           "-localtime      set the real time clock to local time [default=utc]\n"
3895
           "-full-screen    start in full screen\n"
3896
#ifdef TARGET_I386
3897
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
3898
           "-rtc-td-hack    use it to fix time drift in Windows ACPI HAL\n"
3899
#endif
3900
           "-usb            enable the USB driver (will be the default soon)\n"
3901
           "-usbdevice name add the host or guest USB device 'name'\n"
3902
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
3903
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
3904
#endif
3905
           "-name string    set the name of the guest\n"
3906
           "-uuid %%08x-%%04x-%%04x-%%04x-%%012x specify machine UUID\n"
3907
           "\n"
3908
           "Network options:\n"
3909
           "-net nic[,vlan=n][,macaddr=addr][,model=type][,name=str]\n"
3910
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
3911
#ifdef CONFIG_SLIRP
3912
           "-net user[,vlan=n][,name=str][,hostname=host]\n"
3913
           "                connect the user mode network stack to VLAN 'n' and send\n"
3914
           "                hostname 'host' to DHCP clients\n"
3915
#endif
3916
#ifdef _WIN32
3917
           "-net tap[,vlan=n][,name=str],ifname=name\n"
3918
           "                connect the host TAP network interface to VLAN 'n'\n"
3919
#else
3920
           "-net tap[,vlan=n][,name=str][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
3921
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
3922
           "                network scripts 'file' (default=%s)\n"
3923
           "                and 'dfile' (default=%s);\n"
3924
           "                use '[down]script=no' to disable script execution;\n"
3925
           "                use 'fd=h' to connect to an already opened TAP interface\n"
3926
#endif
3927
           "-net socket[,vlan=n][,name=str][,fd=h][,listen=[host]:port][,connect=host:port]\n"
3928
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
3929
           "-net socket[,vlan=n][,name=str][,fd=h][,mcast=maddr:port]\n"
3930
           "                connect the vlan 'n' to multicast maddr and port\n"
3931
#ifdef CONFIG_VDE
3932
           "-net vde[,vlan=n][,name=str][,sock=socketpath][,port=n][,group=groupname][,mode=octalmode]\n"
3933
           "                connect the vlan 'n' to port 'n' of a vde switch running\n"
3934
           "                on host and listening for incoming connections on 'socketpath'.\n"
3935
           "                Use group 'groupname' and mode 'octalmode' to change default\n"
3936
           "                ownership and permissions for communication port.\n"
3937
#endif
3938
           "-net none       use it alone to have zero network devices; if no -net option\n"
3939
           "                is provided, the default is '-net nic -net user'\n"
3940
           "\n"
3941
           "-bt hci,null    Dumb bluetooth HCI - doesn't respond to commands\n"
3942
           "-bt hci,host[:id]\n"
3943
           "                Use host's HCI with the given name\n"
3944
           "-bt hci[,vlan=n]\n"
3945
           "                Emulate a standard HCI in virtual scatternet 'n'\n"
3946
           "-bt vhci[,vlan=n]\n"
3947
           "                Add host computer to virtual scatternet 'n' using VHCI\n"
3948
           "-bt device:dev[,vlan=n]\n"
3949
           "                Emulate a bluetooth device 'dev' in scatternet 'n'\n"
3950
           "\n"
3951
#ifdef CONFIG_SLIRP
3952
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
3953
           "-bootp file     advertise file in BOOTP replies\n"
3954
#ifndef _WIN32
3955
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
3956
#endif
3957
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
3958
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
3959
#endif
3960
           "\n"
3961
           "Linux boot specific:\n"
3962
           "-kernel bzImage use 'bzImage' as kernel image\n"
3963
           "-append cmdline use 'cmdline' as kernel command line\n"
3964
           "-initrd file    use 'file' as initial ram disk\n"
3965
           "\n"
3966
           "Debug/Expert options:\n"
3967
           "-monitor dev    redirect the monitor to char device 'dev'\n"
3968
           "-serial dev     redirect the serial port to char device 'dev'\n"
3969
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
3970
           "-pidfile file   Write PID to 'file'\n"
3971
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
3972
           "-s              wait gdb connection to port\n"
3973
           "-p port         set gdb connection port [default=%s]\n"
3974
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
3975
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
3976
           "                translation (t=none or lba) (usually qemu can guess them)\n"
3977
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
3978
#ifdef USE_KQEMU
3979
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
3980
           "-no-kqemu       disable KQEMU kernel module usage\n"
3981
#endif
3982
#ifdef CONFIG_KVM
3983
           "-enable-kvm     enable KVM full virtualization support\n"
3984
#endif
3985
#ifdef TARGET_I386
3986
           "-no-acpi        disable ACPI\n"
3987
           "-no-hpet        disable HPET\n"
3988
#endif
3989
#ifdef CONFIG_CURSES
3990
           "-curses         use a curses/ncurses interface instead of SDL\n"
3991
#endif
3992
           "-no-reboot      exit instead of rebooting\n"
3993
           "-no-shutdown    stop before shutdown\n"
3994
           "-loadvm [tag|id]  start right away with a saved state (loadvm in monitor)\n"
3995
           "-vnc display    start a VNC server on display\n"
3996
#ifndef _WIN32
3997
           "-daemonize      daemonize QEMU after initializing\n"
3998
#endif
3999
           "-option-rom rom load a file, rom, into the option ROM space\n"
4000
#ifdef TARGET_SPARC
4001
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
4002
#endif
4003
           "-clock          force the use of the given methods for timer alarm.\n"
4004
           "                To see what timers are available use -clock ?\n"
4005
           "-startdate      select initial date of the clock\n"
4006
           "-icount [N|auto]\n"
4007
           "                Enable virtual instruction counter with 2^N clock ticks per instruction\n"
4008
           "\n"
4009
           "During emulation, the following keys are useful:\n"
4010
           "ctrl-alt-f      toggle full screen\n"
4011
           "ctrl-alt-n      switch to virtual console 'n'\n"
4012
           "ctrl-alt        toggle mouse and keyboard grab\n"
4013
           "\n"
4014
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
4015
           ,
4016
           "qemu",
4017
           DEFAULT_RAM_SIZE,
4018
#ifndef _WIN32
4019
           DEFAULT_NETWORK_SCRIPT,
4020
           DEFAULT_NETWORK_DOWN_SCRIPT,
4021
#endif
4022
           DEFAULT_GDBSTUB_PORT,
4023
           "/tmp/qemu.log");
4024
    exit(exitcode);
4025
}
4026

    
4027
#define HAS_ARG 0x0001
4028

    
4029
enum {
4030
    QEMU_OPTION_h,
4031

    
4032
    QEMU_OPTION_M,
4033
    QEMU_OPTION_cpu,
4034
    QEMU_OPTION_fda,
4035
    QEMU_OPTION_fdb,
4036
    QEMU_OPTION_hda,
4037
    QEMU_OPTION_hdb,
4038
    QEMU_OPTION_hdc,
4039
    QEMU_OPTION_hdd,
4040
    QEMU_OPTION_drive,
4041
    QEMU_OPTION_cdrom,
4042
    QEMU_OPTION_mtdblock,
4043
    QEMU_OPTION_sd,
4044
    QEMU_OPTION_pflash,
4045
    QEMU_OPTION_boot,
4046
    QEMU_OPTION_snapshot,
4047
#ifdef TARGET_I386
4048
    QEMU_OPTION_no_fd_bootchk,
4049
#endif
4050
    QEMU_OPTION_m,
4051
    QEMU_OPTION_nographic,
4052
    QEMU_OPTION_portrait,
4053
#ifdef HAS_AUDIO
4054
    QEMU_OPTION_audio_help,
4055
    QEMU_OPTION_soundhw,
4056
#endif
4057

    
4058
    QEMU_OPTION_net,
4059
    QEMU_OPTION_tftp,
4060
    QEMU_OPTION_bootp,
4061
    QEMU_OPTION_smb,
4062
    QEMU_OPTION_redir,
4063
    QEMU_OPTION_bt,
4064

    
4065
    QEMU_OPTION_kernel,
4066
    QEMU_OPTION_append,
4067
    QEMU_OPTION_initrd,
4068

    
4069
    QEMU_OPTION_S,
4070
    QEMU_OPTION_s,
4071
    QEMU_OPTION_p,
4072
    QEMU_OPTION_d,
4073
    QEMU_OPTION_hdachs,
4074
    QEMU_OPTION_L,
4075
    QEMU_OPTION_bios,
4076
    QEMU_OPTION_k,
4077
    QEMU_OPTION_localtime,
4078
    QEMU_OPTION_g,
4079
    QEMU_OPTION_vga,
4080
    QEMU_OPTION_echr,
4081
    QEMU_OPTION_monitor,
4082
    QEMU_OPTION_serial,
4083
    QEMU_OPTION_virtiocon,
4084
    QEMU_OPTION_parallel,
4085
    QEMU_OPTION_loadvm,
4086
    QEMU_OPTION_full_screen,
4087
    QEMU_OPTION_no_frame,
4088
    QEMU_OPTION_alt_grab,
4089
    QEMU_OPTION_no_quit,
4090
    QEMU_OPTION_sdl,
4091
    QEMU_OPTION_pidfile,
4092
    QEMU_OPTION_no_kqemu,
4093
    QEMU_OPTION_kernel_kqemu,
4094
    QEMU_OPTION_enable_kvm,
4095
    QEMU_OPTION_win2k_hack,
4096
    QEMU_OPTION_rtc_td_hack,
4097
    QEMU_OPTION_usb,
4098
    QEMU_OPTION_usbdevice,
4099
    QEMU_OPTION_smp,
4100
    QEMU_OPTION_vnc,
4101
    QEMU_OPTION_no_acpi,
4102
    QEMU_OPTION_no_hpet,
4103
    QEMU_OPTION_curses,
4104
    QEMU_OPTION_no_reboot,
4105
    QEMU_OPTION_no_shutdown,
4106
    QEMU_OPTION_show_cursor,
4107
    QEMU_OPTION_daemonize,
4108
    QEMU_OPTION_option_rom,
4109
    QEMU_OPTION_semihosting,
4110
    QEMU_OPTION_name,
4111
    QEMU_OPTION_prom_env,
4112
    QEMU_OPTION_old_param,
4113
    QEMU_OPTION_clock,
4114
    QEMU_OPTION_startdate,
4115
    QEMU_OPTION_tb_size,
4116
    QEMU_OPTION_icount,
4117
    QEMU_OPTION_uuid,
4118
    QEMU_OPTION_incoming,
4119
};
4120

    
4121
typedef struct QEMUOption {
4122
    const char *name;
4123
    int flags;
4124
    int index;
4125
} QEMUOption;
4126

    
4127
static const QEMUOption qemu_options[] = {
4128
    { "h", 0, QEMU_OPTION_h },
4129
    { "help", 0, QEMU_OPTION_h },
4130

    
4131
    { "M", HAS_ARG, QEMU_OPTION_M },
4132
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
4133
    { "fda", HAS_ARG, QEMU_OPTION_fda },
4134
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
4135
    { "hda", HAS_ARG, QEMU_OPTION_hda },
4136
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
4137
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
4138
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
4139
    { "drive", HAS_ARG, QEMU_OPTION_drive },
4140
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
4141
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
4142
    { "sd", HAS_ARG, QEMU_OPTION_sd },
4143
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
4144
    { "boot", HAS_ARG, QEMU_OPTION_boot },
4145
    { "snapshot", 0, QEMU_OPTION_snapshot },
4146
#ifdef TARGET_I386
4147
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
4148
#endif
4149
    { "m", HAS_ARG, QEMU_OPTION_m },
4150
    { "nographic", 0, QEMU_OPTION_nographic },
4151
    { "portrait", 0, QEMU_OPTION_portrait },
4152
    { "k", HAS_ARG, QEMU_OPTION_k },
4153
#ifdef HAS_AUDIO
4154
    { "audio-help", 0, QEMU_OPTION_audio_help },
4155
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
4156
#endif
4157

    
4158
    { "net", HAS_ARG, QEMU_OPTION_net},
4159
#ifdef CONFIG_SLIRP
4160
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
4161
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
4162
#ifndef _WIN32
4163
    { "smb", HAS_ARG, QEMU_OPTION_smb },
4164
#endif
4165
    { "redir", HAS_ARG, QEMU_OPTION_redir },
4166
#endif
4167
    { "bt", HAS_ARG, QEMU_OPTION_bt },
4168

    
4169
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
4170
    { "append", HAS_ARG, QEMU_OPTION_append },
4171
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
4172

    
4173
    { "S", 0, QEMU_OPTION_S },
4174
    { "s", 0, QEMU_OPTION_s },
4175
    { "p", HAS_ARG, QEMU_OPTION_p },
4176
    { "d", HAS_ARG, QEMU_OPTION_d },
4177
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
4178
    { "L", HAS_ARG, QEMU_OPTION_L },
4179
    { "bios", HAS_ARG, QEMU_OPTION_bios },
4180
#ifdef USE_KQEMU
4181
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
4182
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
4183
#endif
4184
#ifdef CONFIG_KVM
4185
    { "enable-kvm", 0, QEMU_OPTION_enable_kvm },
4186
#endif
4187
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
4188
    { "g", 1, QEMU_OPTION_g },
4189
#endif
4190
    { "localtime", 0, QEMU_OPTION_localtime },
4191
    { "vga", HAS_ARG, QEMU_OPTION_vga },
4192
    { "echr", HAS_ARG, QEMU_OPTION_echr },
4193
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
4194
    { "serial", HAS_ARG, QEMU_OPTION_serial },
4195
    { "virtioconsole", HAS_ARG, QEMU_OPTION_virtiocon },
4196
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
4197
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
4198
    { "full-screen", 0, QEMU_OPTION_full_screen },
4199
#ifdef CONFIG_SDL
4200
    { "no-frame", 0, QEMU_OPTION_no_frame },
4201
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
4202
    { "no-quit", 0, QEMU_OPTION_no_quit },
4203
    { "sdl", 0, QEMU_OPTION_sdl },
4204
#endif
4205
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
4206
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
4207
    { "rtc-td-hack", 0, QEMU_OPTION_rtc_td_hack },
4208
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
4209
    { "smp", HAS_ARG, QEMU_OPTION_smp },
4210
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
4211
#ifdef CONFIG_CURSES
4212
    { "curses", 0, QEMU_OPTION_curses },
4213
#endif
4214
    { "uuid", HAS_ARG, QEMU_OPTION_uuid },
4215

    
4216
    /* temporary options */
4217
    { "usb", 0, QEMU_OPTION_usb },
4218
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
4219
    { "no-hpet", 0, QEMU_OPTION_no_hpet },
4220
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
4221
    { "no-shutdown", 0, QEMU_OPTION_no_shutdown },
4222
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
4223
    { "daemonize", 0, QEMU_OPTION_daemonize },
4224
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
4225
#if defined(TARGET_ARM) || defined(TARGET_M68K)
4226
    { "semihosting", 0, QEMU_OPTION_semihosting },
4227
#endif
4228
    { "name", HAS_ARG, QEMU_OPTION_name },
4229
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
4230
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
4231
#endif
4232
#if defined(TARGET_ARM)
4233
    { "old-param", 0, QEMU_OPTION_old_param },
4234
#endif
4235
    { "clock", HAS_ARG, QEMU_OPTION_clock },
4236
    { "startdate", HAS_ARG, QEMU_OPTION_startdate },
4237
    { "tb-size", HAS_ARG, QEMU_OPTION_tb_size },
4238
    { "icount", HAS_ARG, QEMU_OPTION_icount },
4239
    { "incoming", HAS_ARG, QEMU_OPTION_incoming },
4240
    { NULL },
4241
};
4242

    
4243
/* password input */
4244

    
4245
int qemu_key_check(BlockDriverState *bs, const char *name)
4246
{
4247
    char password[256];
4248
    int i;
4249

    
4250
    if (!bdrv_is_encrypted(bs))
4251
        return 0;
4252

    
4253
    term_printf("%s is encrypted.\n", name);
4254
    for(i = 0; i < 3; i++) {
4255
        monitor_readline("Password: ", 1, password, sizeof(password));
4256
        if (bdrv_set_key(bs, password) == 0)
4257
            return 0;
4258
        term_printf("invalid password\n");
4259
    }
4260
    return -EPERM;
4261
}
4262

    
4263
static BlockDriverState *get_bdrv(int index)
4264
{
4265
    if (index > nb_drives)
4266
        return NULL;
4267
    return drives_table[index].bdrv;
4268
}
4269

    
4270
static void read_passwords(void)
4271
{
4272
    BlockDriverState *bs;
4273
    int i;
4274

    
4275
    for(i = 0; i < 6; i++) {
4276
        bs = get_bdrv(i);
4277
        if (bs)
4278
            qemu_key_check(bs, bdrv_get_device_name(bs));
4279
    }
4280
}
4281

    
4282
#ifdef HAS_AUDIO
4283
struct soundhw soundhw[] = {
4284
#ifdef HAS_AUDIO_CHOICE
4285
#if defined(TARGET_I386) || defined(TARGET_MIPS)
4286
    {
4287
        "pcspk",
4288
        "PC speaker",
4289
        0,
4290
        1,
4291
        { .init_isa = pcspk_audio_init }
4292
    },
4293
#endif
4294

    
4295
#ifdef CONFIG_SB16
4296
    {
4297
        "sb16",
4298
        "Creative Sound Blaster 16",
4299
        0,
4300
        1,
4301
        { .init_isa = SB16_init }
4302
    },
4303
#endif
4304

    
4305
#ifdef CONFIG_CS4231A
4306
    {
4307
        "cs4231a",
4308
        "CS4231A",
4309
        0,
4310
        1,
4311
        { .init_isa = cs4231a_init }
4312
    },
4313
#endif
4314

    
4315
#ifdef CONFIG_ADLIB
4316
    {
4317
        "adlib",
4318
#ifdef HAS_YMF262
4319
        "Yamaha YMF262 (OPL3)",
4320
#else
4321
        "Yamaha YM3812 (OPL2)",
4322
#endif
4323
        0,
4324
        1,
4325
        { .init_isa = Adlib_init }
4326
    },
4327
#endif
4328

    
4329
#ifdef CONFIG_GUS
4330
    {
4331
        "gus",
4332
        "Gravis Ultrasound GF1",
4333
        0,
4334
        1,
4335
        { .init_isa = GUS_init }
4336
    },
4337
#endif
4338

    
4339
#ifdef CONFIG_AC97
4340
    {
4341
        "ac97",
4342
        "Intel 82801AA AC97 Audio",
4343
        0,
4344
        0,
4345
        { .init_pci = ac97_init }
4346
    },
4347
#endif
4348

    
4349
#ifdef CONFIG_ES1370
4350
    {
4351
        "es1370",
4352
        "ENSONIQ AudioPCI ES1370",
4353
        0,
4354
        0,
4355
        { .init_pci = es1370_init }
4356
    },
4357
#endif
4358

    
4359
#endif /* HAS_AUDIO_CHOICE */
4360

    
4361
    { NULL, NULL, 0, 0, { NULL } }
4362
};
4363

    
4364
static void select_soundhw (const char *optarg)
4365
{
4366
    struct soundhw *c;
4367

    
4368
    if (*optarg == '?') {
4369
    show_valid_cards:
4370

    
4371
        printf ("Valid sound card names (comma separated):\n");
4372
        for (c = soundhw; c->name; ++c) {
4373
            printf ("%-11s %s\n", c->name, c->descr);
4374
        }
4375
        printf ("\n-soundhw all will enable all of the above\n");
4376
        exit (*optarg != '?');
4377
    }
4378
    else {
4379
        size_t l;
4380
        const char *p;
4381
        char *e;
4382
        int bad_card = 0;
4383

    
4384
        if (!strcmp (optarg, "all")) {
4385
            for (c = soundhw; c->name; ++c) {
4386
                c->enabled = 1;
4387
            }
4388
            return;
4389
        }
4390

    
4391
        p = optarg;
4392
        while (*p) {
4393
            e = strchr (p, ',');
4394
            l = !e ? strlen (p) : (size_t) (e - p);
4395

    
4396
            for (c = soundhw; c->name; ++c) {
4397
                if (!strncmp (c->name, p, l)) {
4398
                    c->enabled = 1;
4399
                    break;
4400
                }
4401
            }
4402

    
4403
            if (!c->name) {
4404
                if (l > 80) {
4405
                    fprintf (stderr,
4406
                             "Unknown sound card name (too big to show)\n");
4407
                }
4408
                else {
4409
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
4410
                             (int) l, p);
4411
                }
4412
                bad_card = 1;
4413
            }
4414
            p += l + (e != NULL);
4415
        }
4416

    
4417
        if (bad_card)
4418
            goto show_valid_cards;
4419
    }
4420
}
4421
#endif
4422

    
4423
static void select_vgahw (const char *p)
4424
{
4425
    const char *opts;
4426

    
4427
    if (strstart(p, "std", &opts)) {
4428
        std_vga_enabled = 1;
4429
        cirrus_vga_enabled = 0;
4430
        vmsvga_enabled = 0;
4431
    } else if (strstart(p, "cirrus", &opts)) {
4432
        cirrus_vga_enabled = 1;
4433
        std_vga_enabled = 0;
4434
        vmsvga_enabled = 0;
4435
    } else if (strstart(p, "vmware", &opts)) {
4436
        cirrus_vga_enabled = 0;
4437
        std_vga_enabled = 0;
4438
        vmsvga_enabled = 1;
4439
    } else if (strstart(p, "none", &opts)) {
4440
        cirrus_vga_enabled = 0;
4441
        std_vga_enabled = 0;
4442
        vmsvga_enabled = 0;
4443
    } else {
4444
    invalid_vga:
4445
        fprintf(stderr, "Unknown vga type: %s\n", p);
4446
        exit(1);
4447
    }
4448
    while (*opts) {
4449
        const char *nextopt;
4450

    
4451
        if (strstart(opts, ",retrace=", &nextopt)) {
4452
            opts = nextopt;
4453
            if (strstart(opts, "dumb", &nextopt))
4454
                vga_retrace_method = VGA_RETRACE_DUMB;
4455
            else if (strstart(opts, "precise", &nextopt))
4456
                vga_retrace_method = VGA_RETRACE_PRECISE;
4457
            else goto invalid_vga;
4458
        } else goto invalid_vga;
4459
        opts = nextopt;
4460
    }
4461
}
4462

    
4463
#ifdef _WIN32
4464
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
4465
{
4466
    exit(STATUS_CONTROL_C_EXIT);
4467
    return TRUE;
4468
}
4469
#endif
4470

    
4471
static int qemu_uuid_parse(const char *str, uint8_t *uuid)
4472
{
4473
    int ret;
4474

    
4475
    if(strlen(str) != 36)
4476
        return -1;
4477

    
4478
    ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3],
4479
            &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9],
4480
            &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], &uuid[15]);
4481

    
4482
    if(ret != 16)
4483
        return -1;
4484

    
4485
    return 0;
4486
}
4487

    
4488
#define MAX_NET_CLIENTS 32
4489

    
4490
#ifndef _WIN32
4491

    
4492
static void termsig_handler(int signal)
4493
{
4494
    qemu_system_shutdown_request();
4495
}
4496

    
4497
static void termsig_setup(void)
4498
{
4499
    struct sigaction act;
4500

    
4501
    memset(&act, 0, sizeof(act));
4502
    act.sa_handler = termsig_handler;
4503
    sigaction(SIGINT,  &act, NULL);
4504
    sigaction(SIGHUP,  &act, NULL);
4505
    sigaction(SIGTERM, &act, NULL);
4506
}
4507

    
4508
#endif
4509

    
4510
int main(int argc, char **argv, char **envp)
4511
{
4512
#ifdef CONFIG_GDBSTUB
4513
    int use_gdbstub;
4514
    const char *gdbstub_port;
4515
#endif
4516
    uint32_t boot_devices_bitmap = 0;
4517
    int i;
4518
    int snapshot, linux_boot, net_boot;
4519
    const char *initrd_filename;
4520
    const char *kernel_filename, *kernel_cmdline;
4521
    const char *boot_devices = "";
4522
    DisplayState *ds;
4523
    DisplayChangeListener *dcl;
4524
    int cyls, heads, secs, translation;
4525
    const char *net_clients[MAX_NET_CLIENTS];
4526
    int nb_net_clients;
4527
    const char *bt_opts[MAX_BT_CMDLINE];
4528
    int nb_bt_opts;
4529
    int hda_index;
4530
    int optind;
4531
    const char *r, *optarg;
4532
    CharDriverState *monitor_hd;
4533
    const char *monitor_device;
4534
    const char *serial_devices[MAX_SERIAL_PORTS];
4535
    int serial_device_index;
4536
    const char *parallel_devices[MAX_PARALLEL_PORTS];
4537
    int parallel_device_index;
4538
    const char *virtio_consoles[MAX_VIRTIO_CONSOLES];
4539
    int virtio_console_index;
4540
    const char *loadvm = NULL;
4541
    QEMUMachine *machine;
4542
    const char *cpu_model;
4543
    const char *usb_devices[MAX_USB_CMDLINE];
4544
    int usb_devices_index;
4545
    int fds[2];
4546
    int tb_size;
4547
    const char *pid_file = NULL;
4548
    int autostart;
4549
    const char *incoming = NULL;
4550

    
4551
    qemu_cache_utils_init(envp);
4552

    
4553
    LIST_INIT (&vm_change_state_head);
4554
#ifndef _WIN32
4555
    {
4556
        struct sigaction act;
4557
        sigfillset(&act.sa_mask);
4558
        act.sa_flags = 0;
4559
        act.sa_handler = SIG_IGN;
4560
        sigaction(SIGPIPE, &act, NULL);
4561
    }
4562
#else
4563
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
4564
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
4565
       QEMU to run on a single CPU */
4566
    {
4567
        HANDLE h;
4568
        DWORD mask, smask;
4569
        int i;
4570
        h = GetCurrentProcess();
4571
        if (GetProcessAffinityMask(h, &mask, &smask)) {
4572
            for(i = 0; i < 32; i++) {
4573
                if (mask & (1 << i))
4574
                    break;
4575
            }
4576
            if (i != 32) {
4577
                mask = 1 << i;
4578
                SetProcessAffinityMask(h, mask);
4579
            }
4580
        }
4581
    }
4582
#endif
4583

    
4584
    register_machines();
4585
    machine = first_machine;
4586
    cpu_model = NULL;
4587
    initrd_filename = NULL;
4588
    ram_size = 0;
4589
    vga_ram_size = VGA_RAM_SIZE;
4590
#ifdef CONFIG_GDBSTUB
4591
    use_gdbstub = 0;
4592
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
4593
#endif
4594
    snapshot = 0;
4595
    nographic = 0;
4596
    curses = 0;
4597
    kernel_filename = NULL;
4598
    kernel_cmdline = "";
4599
    cyls = heads = secs = 0;
4600
    translation = BIOS_ATA_TRANSLATION_AUTO;
4601
    monitor_device = "vc";
4602

    
4603
    serial_devices[0] = "vc:80Cx24C";
4604
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
4605
        serial_devices[i] = NULL;
4606
    serial_device_index = 0;
4607

    
4608
    parallel_devices[0] = "vc:640x480";
4609
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
4610
        parallel_devices[i] = NULL;
4611
    parallel_device_index = 0;
4612

    
4613
    virtio_consoles[0] = "vc:80Cx24C";
4614
    for(i = 1; i < MAX_VIRTIO_CONSOLES; i++)
4615
        virtio_consoles[i] = NULL;
4616
    virtio_console_index = 0;
4617

    
4618
    usb_devices_index = 0;
4619

    
4620
    nb_net_clients = 0;
4621
    nb_bt_opts = 0;
4622
    nb_drives = 0;
4623
    nb_drives_opt = 0;
4624
    hda_index = -1;
4625

    
4626
    nb_nics = 0;
4627

    
4628
    tb_size = 0;
4629
    autostart= 1;
4630

    
4631
    optind = 1;
4632
    for(;;) {
4633
        if (optind >= argc)
4634
            break;
4635
        r = argv[optind];
4636
        if (r[0] != '-') {
4637
            hda_index = drive_add(argv[optind++], HD_ALIAS, 0);
4638
        } else {
4639
            const QEMUOption *popt;
4640

    
4641
            optind++;
4642
            /* Treat --foo the same as -foo.  */
4643
            if (r[1] == '-')
4644
                r++;
4645
            popt = qemu_options;
4646
            for(;;) {
4647
                if (!popt->name) {
4648
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
4649
                            argv[0], r);
4650
                    exit(1);
4651
                }
4652
                if (!strcmp(popt->name, r + 1))
4653
                    break;
4654
                popt++;
4655
            }
4656
            if (popt->flags & HAS_ARG) {
4657
                if (optind >= argc) {
4658
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
4659
                            argv[0], r);
4660
                    exit(1);
4661
                }
4662
                optarg = argv[optind++];
4663
            } else {
4664
                optarg = NULL;
4665
            }
4666

    
4667
            switch(popt->index) {
4668
            case QEMU_OPTION_M:
4669
                machine = find_machine(optarg);
4670
                if (!machine) {
4671
                    QEMUMachine *m;
4672
                    printf("Supported machines are:\n");
4673
                    for(m = first_machine; m != NULL; m = m->next) {
4674
                        printf("%-10s %s%s\n",
4675
                               m->name, m->desc,
4676
                               m == first_machine ? " (default)" : "");
4677
                    }
4678
                    exit(*optarg != '?');
4679
                }
4680
                break;
4681
            case QEMU_OPTION_cpu:
4682
                /* hw initialization will check this */
4683
                if (*optarg == '?') {
4684
/* XXX: implement xxx_cpu_list for targets that still miss it */
4685
#if defined(cpu_list)
4686
                    cpu_list(stdout, &fprintf);
4687
#endif
4688
                    exit(0);
4689
                } else {
4690
                    cpu_model = optarg;
4691
                }
4692
                break;
4693
            case QEMU_OPTION_initrd:
4694
                initrd_filename = optarg;
4695
                break;
4696
            case QEMU_OPTION_hda:
4697
                if (cyls == 0)
4698
                    hda_index = drive_add(optarg, HD_ALIAS, 0);
4699
                else
4700
                    hda_index = drive_add(optarg, HD_ALIAS
4701
                             ",cyls=%d,heads=%d,secs=%d%s",
4702
                             0, cyls, heads, secs,
4703
                             translation == BIOS_ATA_TRANSLATION_LBA ?
4704
                                 ",trans=lba" :
4705
                             translation == BIOS_ATA_TRANSLATION_NONE ?
4706
                                 ",trans=none" : "");
4707
                 break;
4708
            case QEMU_OPTION_hdb:
4709
            case QEMU_OPTION_hdc:
4710
            case QEMU_OPTION_hdd:
4711
                drive_add(optarg, HD_ALIAS, popt->index - QEMU_OPTION_hda);
4712
                break;
4713
            case QEMU_OPTION_drive:
4714
                drive_add(NULL, "%s", optarg);
4715
                break;
4716
            case QEMU_OPTION_mtdblock:
4717
                drive_add(optarg, MTD_ALIAS);
4718
                break;
4719
            case QEMU_OPTION_sd:
4720
                drive_add(optarg, SD_ALIAS);
4721
                break;
4722
            case QEMU_OPTION_pflash:
4723
                drive_add(optarg, PFLASH_ALIAS);
4724
                break;
4725
            case QEMU_OPTION_snapshot:
4726
                snapshot = 1;
4727
                break;
4728
            case QEMU_OPTION_hdachs:
4729
                {
4730
                    const char *p;
4731
                    p = optarg;
4732
                    cyls = strtol(p, (char **)&p, 0);
4733
                    if (cyls < 1 || cyls > 16383)
4734
                        goto chs_fail;
4735
                    if (*p != ',')
4736
                        goto chs_fail;
4737
                    p++;
4738
                    heads = strtol(p, (char **)&p, 0);
4739
                    if (heads < 1 || heads > 16)
4740
                        goto chs_fail;
4741
                    if (*p != ',')
4742
                        goto chs_fail;
4743
                    p++;
4744
                    secs = strtol(p, (char **)&p, 0);
4745
                    if (secs < 1 || secs > 63)
4746
                        goto chs_fail;
4747
                    if (*p == ',') {
4748
                        p++;
4749
                        if (!strcmp(p, "none"))
4750
                            translation = BIOS_ATA_TRANSLATION_NONE;
4751
                        else if (!strcmp(p, "lba"))
4752
                            translation = BIOS_ATA_TRANSLATION_LBA;
4753
                        else if (!strcmp(p, "auto"))
4754
                            translation = BIOS_ATA_TRANSLATION_AUTO;
4755
                        else
4756
                            goto chs_fail;
4757
                    } else if (*p != '\0') {
4758
                    chs_fail:
4759
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
4760
                        exit(1);
4761
                    }
4762
                    if (hda_index != -1)
4763
                        snprintf(drives_opt[hda_index].opt,
4764
                                 sizeof(drives_opt[hda_index].opt),
4765
                                 HD_ALIAS ",cyls=%d,heads=%d,secs=%d%s",
4766
                                 0, cyls, heads, secs,
4767
                                 translation == BIOS_ATA_TRANSLATION_LBA ?
4768
                                         ",trans=lba" :
4769
                                 translation == BIOS_ATA_TRANSLATION_NONE ?
4770
                                     ",trans=none" : "");
4771
                }
4772
                break;
4773
            case QEMU_OPTION_nographic:
4774
                nographic = 1;
4775
                break;
4776
#ifdef CONFIG_CURSES
4777
            case QEMU_OPTION_curses:
4778
                curses = 1;
4779
                break;
4780
#endif
4781
            case QEMU_OPTION_portrait:
4782
                graphic_rotate = 1;
4783
                break;
4784
            case QEMU_OPTION_kernel:
4785
                kernel_filename = optarg;
4786
                break;
4787
            case QEMU_OPTION_append:
4788
                kernel_cmdline = optarg;
4789
                break;
4790
            case QEMU_OPTION_cdrom:
4791
                drive_add(optarg, CDROM_ALIAS);
4792
                break;
4793
            case QEMU_OPTION_boot:
4794
                boot_devices = optarg;
4795
                /* We just do some generic consistency checks */
4796
                {
4797
                    /* Could easily be extended to 64 devices if needed */
4798
                    const char *p;
4799
                    
4800
                    boot_devices_bitmap = 0;
4801
                    for (p = boot_devices; *p != '\0'; p++) {
4802
                        /* Allowed boot devices are:
4803
                         * a b     : floppy disk drives
4804
                         * c ... f : IDE disk drives
4805
                         * g ... m : machine implementation dependant drives
4806
                         * n ... p : network devices
4807
                         * It's up to each machine implementation to check
4808
                         * if the given boot devices match the actual hardware
4809
                         * implementation and firmware features.
4810
                         */
4811
                        if (*p < 'a' || *p > 'q') {
4812
                            fprintf(stderr, "Invalid boot device '%c'\n", *p);
4813
                            exit(1);
4814
                        }
4815
                        if (boot_devices_bitmap & (1 << (*p - 'a'))) {
4816
                            fprintf(stderr,
4817
                                    "Boot device '%c' was given twice\n",*p);
4818
                            exit(1);
4819
                        }
4820
                        boot_devices_bitmap |= 1 << (*p - 'a');
4821
                    }
4822
                }
4823
                break;
4824
            case QEMU_OPTION_fda:
4825
            case QEMU_OPTION_fdb:
4826
                drive_add(optarg, FD_ALIAS, popt->index - QEMU_OPTION_fda);
4827
                break;
4828
#ifdef TARGET_I386
4829
            case QEMU_OPTION_no_fd_bootchk:
4830
                fd_bootchk = 0;
4831
                break;
4832
#endif
4833
            case QEMU_OPTION_net:
4834
                if (nb_net_clients >= MAX_NET_CLIENTS) {
4835
                    fprintf(stderr, "qemu: too many network clients\n");
4836
                    exit(1);
4837
                }
4838
                net_clients[nb_net_clients] = optarg;
4839
                nb_net_clients++;
4840
                break;
4841
#ifdef CONFIG_SLIRP
4842
            case QEMU_OPTION_tftp:
4843
                tftp_prefix = optarg;
4844
                break;
4845
            case QEMU_OPTION_bootp:
4846
                bootp_filename = optarg;
4847
                break;
4848
#ifndef _WIN32
4849
            case QEMU_OPTION_smb:
4850
                net_slirp_smb(optarg);
4851
                break;
4852
#endif
4853
            case QEMU_OPTION_redir:
4854
                net_slirp_redir(optarg);
4855
                break;
4856
#endif
4857
            case QEMU_OPTION_bt:
4858
                if (nb_bt_opts >= MAX_BT_CMDLINE) {
4859
                    fprintf(stderr, "qemu: too many bluetooth options\n");
4860
                    exit(1);
4861
                }
4862
                bt_opts[nb_bt_opts++] = optarg;
4863
                break;
4864
#ifdef HAS_AUDIO
4865
            case QEMU_OPTION_audio_help:
4866
                AUD_help ();
4867
                exit (0);
4868
                break;
4869
            case QEMU_OPTION_soundhw:
4870
                select_soundhw (optarg);
4871
                break;
4872
#endif
4873
            case QEMU_OPTION_h:
4874
                help(0);
4875
                break;
4876
            case QEMU_OPTION_m: {
4877
                uint64_t value;
4878
                char *ptr;
4879

    
4880
                value = strtoul(optarg, &ptr, 10);
4881
                switch (*ptr) {
4882
                case 0: case 'M': case 'm':
4883
                    value <<= 20;
4884
                    break;
4885
                case 'G': case 'g':
4886
                    value <<= 30;
4887
                    break;
4888
                default:
4889
                    fprintf(stderr, "qemu: invalid ram size: %s\n", optarg);
4890
                    exit(1);
4891
                }
4892

    
4893
                /* On 32-bit hosts, QEMU is limited by virtual address space */
4894
                if (value > (2047 << 20)
4895
#ifndef USE_KQEMU
4896
                    && HOST_LONG_BITS == 32
4897
#endif
4898
                    ) {
4899
                    fprintf(stderr, "qemu: at most 2047 MB RAM can be simulated\n");
4900
                    exit(1);
4901
                }
4902
                if (value != (uint64_t)(ram_addr_t)value) {
4903
                    fprintf(stderr, "qemu: ram size too large\n");
4904
                    exit(1);
4905
                }
4906
                ram_size = value;
4907
                break;
4908
            }
4909
            case QEMU_OPTION_d:
4910
                {
4911
                    int mask;
4912
                    const CPULogItem *item;
4913

    
4914
                    mask = cpu_str_to_log_mask(optarg);
4915
                    if (!mask) {
4916
                        printf("Log items (comma separated):\n");
4917
                    for(item = cpu_log_items; item->mask != 0; item++) {
4918
                        printf("%-10s %s\n", item->name, item->help);
4919
                    }
4920
                    exit(1);
4921
                    }
4922
                    cpu_set_log(mask);
4923
                }
4924
                break;
4925
#ifdef CONFIG_GDBSTUB
4926
            case QEMU_OPTION_s:
4927
                use_gdbstub = 1;
4928
                break;
4929
            case QEMU_OPTION_p:
4930
                gdbstub_port = optarg;
4931
                break;
4932
#endif
4933
            case QEMU_OPTION_L:
4934
                bios_dir = optarg;
4935
                break;
4936
            case QEMU_OPTION_bios:
4937
                bios_name = optarg;
4938
                break;
4939
            case QEMU_OPTION_S:
4940
                autostart = 0;
4941
                break;
4942
            case QEMU_OPTION_k:
4943
                keyboard_layout = optarg;
4944
                break;
4945
            case QEMU_OPTION_localtime:
4946
                rtc_utc = 0;
4947
                break;
4948
            case QEMU_OPTION_vga:
4949
                select_vgahw (optarg);
4950
                break;
4951
            case QEMU_OPTION_g:
4952
                {
4953
                    const char *p;
4954
                    int w, h, depth;
4955
                    p = optarg;
4956
                    w = strtol(p, (char **)&p, 10);
4957
                    if (w <= 0) {
4958
                    graphic_error:
4959
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
4960
                        exit(1);
4961
                    }
4962
                    if (*p != 'x')
4963
                        goto graphic_error;
4964
                    p++;
4965
                    h = strtol(p, (char **)&p, 10);
4966
                    if (h <= 0)
4967
                        goto graphic_error;
4968
                    if (*p == 'x') {
4969
                        p++;
4970
                        depth = strtol(p, (char **)&p, 10);
4971
                        if (depth != 8 && depth != 15 && depth != 16 &&
4972
                            depth != 24 && depth != 32)
4973
                            goto graphic_error;
4974
                    } else if (*p == '\0') {
4975
                        depth = graphic_depth;
4976
                    } else {
4977
                        goto graphic_error;
4978
                    }
4979

    
4980
                    graphic_width = w;
4981
                    graphic_height = h;
4982
                    graphic_depth = depth;
4983
                }
4984
                break;
4985
            case QEMU_OPTION_echr:
4986
                {
4987
                    char *r;
4988
                    term_escape_char = strtol(optarg, &r, 0);
4989
                    if (r == optarg)
4990
                        printf("Bad argument to echr\n");
4991
                    break;
4992
                }
4993
            case QEMU_OPTION_monitor:
4994
                monitor_device = optarg;
4995
                break;
4996
            case QEMU_OPTION_serial:
4997
                if (serial_device_index >= MAX_SERIAL_PORTS) {
4998
                    fprintf(stderr, "qemu: too many serial ports\n");
4999
                    exit(1);
5000
                }
5001
                serial_devices[serial_device_index] = optarg;
5002
                serial_device_index++;
5003
                break;
5004
            case QEMU_OPTION_virtiocon:
5005
                if (virtio_console_index >= MAX_VIRTIO_CONSOLES) {
5006
                    fprintf(stderr, "qemu: too many virtio consoles\n");
5007
                    exit(1);
5008
                }
5009
                virtio_consoles[virtio_console_index] = optarg;
5010
                virtio_console_index++;
5011
                break;
5012
            case QEMU_OPTION_parallel:
5013
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
5014
                    fprintf(stderr, "qemu: too many parallel ports\n");
5015
                    exit(1);
5016
                }
5017
                parallel_devices[parallel_device_index] = optarg;
5018
                parallel_device_index++;
5019
                break;
5020
            case QEMU_OPTION_loadvm:
5021
                loadvm = optarg;
5022
                break;
5023
            case QEMU_OPTION_full_screen:
5024
                full_screen = 1;
5025
                break;
5026
#ifdef CONFIG_SDL
5027
            case QEMU_OPTION_no_frame:
5028
                no_frame = 1;
5029
                break;
5030
            case QEMU_OPTION_alt_grab:
5031
                alt_grab = 1;
5032
                break;
5033
            case QEMU_OPTION_no_quit:
5034
                no_quit = 1;
5035
                break;
5036
            case QEMU_OPTION_sdl:
5037
                sdl = 1;
5038
                break;
5039
#endif
5040
            case QEMU_OPTION_pidfile:
5041
                pid_file = optarg;
5042
                break;
5043
#ifdef TARGET_I386
5044
            case QEMU_OPTION_win2k_hack:
5045
                win2k_install_hack = 1;
5046
                break;
5047
            case QEMU_OPTION_rtc_td_hack:
5048
                rtc_td_hack = 1;
5049
                break;
5050
#endif
5051
#ifdef USE_KQEMU
5052
            case QEMU_OPTION_no_kqemu:
5053
                kqemu_allowed = 0;
5054
                break;
5055
            case QEMU_OPTION_kernel_kqemu:
5056
                kqemu_allowed = 2;
5057
                break;
5058
#endif
5059
#ifdef CONFIG_KVM
5060
            case QEMU_OPTION_enable_kvm:
5061
                kvm_allowed = 1;
5062
#ifdef USE_KQEMU
5063
                kqemu_allowed = 0;
5064
#endif
5065
                break;
5066
#endif
5067
            case QEMU_OPTION_usb:
5068
                usb_enabled = 1;
5069
                break;
5070
            case QEMU_OPTION_usbdevice:
5071
                usb_enabled = 1;
5072
                if (usb_devices_index >= MAX_USB_CMDLINE) {
5073
                    fprintf(stderr, "Too many USB devices\n");
5074
                    exit(1);
5075
                }
5076
                usb_devices[usb_devices_index] = optarg;
5077
                usb_devices_index++;
5078
                break;
5079
            case QEMU_OPTION_smp:
5080
                smp_cpus = atoi(optarg);
5081
                if (smp_cpus < 1) {
5082
                    fprintf(stderr, "Invalid number of CPUs\n");
5083
                    exit(1);
5084
                }
5085
                break;
5086
            case QEMU_OPTION_vnc:
5087
                vnc_display = optarg;
5088
                break;
5089
            case QEMU_OPTION_no_acpi:
5090
                acpi_enabled = 0;
5091
                break;
5092
            case QEMU_OPTION_no_hpet:
5093
                no_hpet = 1;
5094
                break;
5095
            case QEMU_OPTION_no_reboot:
5096
                no_reboot = 1;
5097
                break;
5098
            case QEMU_OPTION_no_shutdown:
5099
                no_shutdown = 1;
5100
                break;
5101
            case QEMU_OPTION_show_cursor:
5102
                cursor_hide = 0;
5103
                break;
5104
            case QEMU_OPTION_uuid:
5105
                if(qemu_uuid_parse(optarg, qemu_uuid) < 0) {
5106
                    fprintf(stderr, "Fail to parse UUID string."
5107
                            " Wrong format.\n");
5108
                    exit(1);
5109
                }
5110
                break;
5111
            case QEMU_OPTION_daemonize:
5112
                daemonize = 1;
5113
                break;
5114
            case QEMU_OPTION_option_rom:
5115
                if (nb_option_roms >= MAX_OPTION_ROMS) {
5116
                    fprintf(stderr, "Too many option ROMs\n");
5117
                    exit(1);
5118
                }
5119
                option_rom[nb_option_roms] = optarg;
5120
                nb_option_roms++;
5121
                break;
5122
            case QEMU_OPTION_semihosting:
5123
                semihosting_enabled = 1;
5124
                break;
5125
            case QEMU_OPTION_name:
5126
                qemu_name = optarg;
5127
                break;
5128
#if defined(TARGET_SPARC) || defined(TARGET_PPC)
5129
            case QEMU_OPTION_prom_env:
5130
                if (nb_prom_envs >= MAX_PROM_ENVS) {
5131
                    fprintf(stderr, "Too many prom variables\n");
5132
                    exit(1);
5133
                }
5134
                prom_envs[nb_prom_envs] = optarg;
5135
                nb_prom_envs++;
5136
                break;
5137
#endif
5138
#ifdef TARGET_ARM
5139
            case QEMU_OPTION_old_param:
5140
                old_param = 1;
5141
                break;
5142
#endif
5143
            case QEMU_OPTION_clock:
5144
                configure_alarms(optarg);
5145
                break;
5146
            case QEMU_OPTION_startdate:
5147
                {
5148
                    struct tm tm;
5149
                    time_t rtc_start_date;
5150
                    if (!strcmp(optarg, "now")) {
5151
                        rtc_date_offset = -1;
5152
                    } else {
5153
                        if (sscanf(optarg, "%d-%d-%dT%d:%d:%d",
5154
                               &tm.tm_year,
5155
                               &tm.tm_mon,
5156
                               &tm.tm_mday,
5157
                               &tm.tm_hour,
5158
                               &tm.tm_min,
5159
                               &tm.tm_sec) == 6) {
5160
                            /* OK */
5161
                        } else if (sscanf(optarg, "%d-%d-%d",
5162
                                          &tm.tm_year,
5163
                                          &tm.tm_mon,
5164
                                          &tm.tm_mday) == 3) {
5165
                            tm.tm_hour = 0;
5166
                            tm.tm_min = 0;
5167
                            tm.tm_sec = 0;
5168
                        } else {
5169
                            goto date_fail;
5170
                        }
5171
                        tm.tm_year -= 1900;
5172
                        tm.tm_mon--;
5173
                        rtc_start_date = mktimegm(&tm);
5174
                        if (rtc_start_date == -1) {
5175
                        date_fail:
5176
                            fprintf(stderr, "Invalid date format. Valid format are:\n"
5177
                                    "'now' or '2006-06-17T16:01:21' or '2006-06-17'\n");
5178
                            exit(1);
5179
                        }
5180
                        rtc_date_offset = time(NULL) - rtc_start_date;
5181
                    }
5182
                }
5183
                break;
5184
            case QEMU_OPTION_tb_size:
5185
                tb_size = strtol(optarg, NULL, 0);
5186
                if (tb_size < 0)
5187
                    tb_size = 0;
5188
                break;
5189
            case QEMU_OPTION_icount:
5190
                use_icount = 1;
5191
                if (strcmp(optarg, "auto") == 0) {
5192
                    icount_time_shift = -1;
5193
                } else {
5194
                    icount_time_shift = strtol(optarg, NULL, 0);
5195
                }
5196
                break;
5197
            case QEMU_OPTION_incoming:
5198
                incoming = optarg;
5199
                break;
5200
            }
5201
        }
5202
    }
5203

    
5204
#if defined(CONFIG_KVM) && defined(USE_KQEMU)
5205
    if (kvm_allowed && kqemu_allowed) {
5206
        fprintf(stderr,
5207
                "You can not enable both KVM and kqemu at the same time\n");
5208
        exit(1);
5209
    }
5210
#endif
5211

    
5212
    machine->max_cpus = machine->max_cpus ?: 1; /* Default to UP */
5213
    if (smp_cpus > machine->max_cpus) {
5214
        fprintf(stderr, "Number of SMP cpus requested (%d), exceeds max cpus "
5215
                "supported by machine `%s' (%d)\n", smp_cpus,  machine->name,
5216
                machine->max_cpus);
5217
        exit(1);
5218
    }
5219

    
5220
    if (nographic) {
5221
       if (serial_device_index == 0)
5222
           serial_devices[0] = "stdio";
5223
       if (parallel_device_index == 0)
5224
           parallel_devices[0] = "null";
5225
       if (strncmp(monitor_device, "vc", 2) == 0)
5226
           monitor_device = "stdio";
5227
       if (virtio_console_index == 0)
5228
           virtio_consoles[0] = "null";
5229
    }
5230

    
5231
#ifndef _WIN32
5232
    if (daemonize) {
5233
        pid_t pid;
5234

    
5235
        if (pipe(fds) == -1)
5236
            exit(1);
5237

    
5238
        pid = fork();
5239
        if (pid > 0) {
5240
            uint8_t status;
5241
            ssize_t len;
5242

    
5243
            close(fds[1]);
5244

    
5245
        again:
5246
            len = read(fds[0], &status, 1);
5247
            if (len == -1 && (errno == EINTR))
5248
                goto again;
5249

    
5250
            if (len != 1)
5251
                exit(1);
5252
            else if (status == 1) {
5253
                fprintf(stderr, "Could not acquire pidfile\n");
5254
                exit(1);
5255
            } else
5256
                exit(0);
5257
        } else if (pid < 0)
5258
            exit(1);
5259

    
5260
        setsid();
5261

    
5262
        pid = fork();
5263
        if (pid > 0)
5264
            exit(0);
5265
        else if (pid < 0)
5266
            exit(1);
5267

    
5268
        umask(027);
5269

    
5270
        signal(SIGTSTP, SIG_IGN);
5271
        signal(SIGTTOU, SIG_IGN);
5272
        signal(SIGTTIN, SIG_IGN);
5273
    }
5274
#endif
5275

    
5276
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
5277
        if (daemonize) {
5278
            uint8_t status = 1;
5279
            write(fds[1], &status, 1);
5280
        } else
5281
            fprintf(stderr, "Could not acquire pid file\n");
5282
        exit(1);
5283
    }
5284

    
5285
#ifdef USE_KQEMU
5286
    if (smp_cpus > 1)
5287
        kqemu_allowed = 0;
5288
#endif
5289
    linux_boot = (kernel_filename != NULL);
5290
    net_boot = (boot_devices_bitmap >> ('n' - 'a')) & 0xF;
5291

    
5292
    if (!linux_boot && net_boot == 0 &&
5293
        !machine->nodisk_ok && nb_drives_opt == 0)
5294
        help(1);
5295

    
5296
    if (!linux_boot && *kernel_cmdline != '\0') {
5297
        fprintf(stderr, "-append only allowed with -kernel option\n");
5298
        exit(1);
5299
    }
5300

    
5301
    if (!linux_boot && initrd_filename != NULL) {
5302
        fprintf(stderr, "-initrd only allowed with -kernel option\n");
5303
        exit(1);
5304
    }
5305

    
5306
    /* boot to floppy or the default cd if no hard disk defined yet */
5307
    if (!boot_devices[0]) {
5308
        boot_devices = "cad";
5309
    }
5310
    setvbuf(stdout, NULL, _IOLBF, 0);
5311

    
5312
    init_timers();
5313
    if (init_timer_alarm() < 0) {
5314
        fprintf(stderr, "could not initialize alarm timer\n");
5315
        exit(1);
5316
    }
5317
    if (use_icount && icount_time_shift < 0) {
5318
        use_icount = 2;
5319
        /* 125MIPS seems a reasonable initial guess at the guest speed.
5320
           It will be corrected fairly quickly anyway.  */
5321
        icount_time_shift = 3;
5322
        init_icount_adjust();
5323
    }
5324

    
5325
#ifdef _WIN32
5326
    socket_init();
5327
#endif
5328

    
5329
    /* init network clients */
5330
    if (nb_net_clients == 0) {
5331
        /* if no clients, we use a default config */
5332
        net_clients[nb_net_clients++] = "nic";
5333
#ifdef CONFIG_SLIRP
5334
        net_clients[nb_net_clients++] = "user";
5335
#endif
5336
    }
5337

    
5338
    for(i = 0;i < nb_net_clients; i++) {
5339
        if (net_client_parse(net_clients[i]) < 0)
5340
            exit(1);
5341
    }
5342
    net_client_check();
5343

    
5344
#ifdef TARGET_I386
5345
    /* XXX: this should be moved in the PC machine instantiation code */
5346
    if (net_boot != 0) {
5347
        int netroms = 0;
5348
        for (i = 0; i < nb_nics && i < 4; i++) {
5349
            const char *model = nd_table[i].model;
5350
            char buf[1024];
5351
            if (net_boot & (1 << i)) {
5352
                if (model == NULL)
5353
                    model = "ne2k_pci";
5354
                snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
5355
                if (get_image_size(buf) > 0) {
5356
                    if (nb_option_roms >= MAX_OPTION_ROMS) {
5357
                        fprintf(stderr, "Too many option ROMs\n");
5358
                        exit(1);
5359
                    }
5360
                    option_rom[nb_option_roms] = strdup(buf);
5361
                    nb_option_roms++;
5362
                    netroms++;
5363
                }
5364
            }
5365
        }
5366
        if (netroms == 0) {
5367
            fprintf(stderr, "No valid PXE rom found for network device\n");
5368
            exit(1);
5369
        }
5370
    }
5371
#endif
5372

    
5373
    /* init the bluetooth world */
5374
    for (i = 0; i < nb_bt_opts; i++)
5375
        if (bt_parse(bt_opts[i]))
5376
            exit(1);
5377

    
5378
    /* init the memory */
5379
    phys_ram_size = machine->ram_require & ~RAMSIZE_FIXED;
5380

    
5381
    if (machine->ram_require & RAMSIZE_FIXED) {
5382
        if (ram_size > 0) {
5383
            if (ram_size < phys_ram_size) {
5384
                fprintf(stderr, "Machine `%s' requires %llu bytes of memory\n",
5385
                                machine->name, (unsigned long long) phys_ram_size);
5386
                exit(-1);
5387
            }
5388

    
5389
            phys_ram_size = ram_size;
5390
        } else
5391
            ram_size = phys_ram_size;
5392
    } else {
5393
        if (ram_size == 0)
5394
            ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
5395

    
5396
        phys_ram_size += ram_size;
5397
    }
5398

    
5399
    phys_ram_base = qemu_vmalloc(phys_ram_size);
5400
    if (!phys_ram_base) {
5401
        fprintf(stderr, "Could not allocate physical memory\n");
5402
        exit(1);
5403
    }
5404

    
5405
    /* init the dynamic translator */
5406
    cpu_exec_init_all(tb_size * 1024 * 1024);
5407

    
5408
    bdrv_init();
5409

    
5410
    /* we always create the cdrom drive, even if no disk is there */
5411

    
5412
    if (nb_drives_opt < MAX_DRIVES)
5413
        drive_add(NULL, CDROM_ALIAS);
5414

    
5415
    /* we always create at least one floppy */
5416

    
5417
    if (nb_drives_opt < MAX_DRIVES)
5418
        drive_add(NULL, FD_ALIAS, 0);
5419

    
5420
    /* we always create one sd slot, even if no card is in it */
5421

    
5422
    if (nb_drives_opt < MAX_DRIVES)
5423
        drive_add(NULL, SD_ALIAS);
5424

    
5425
    /* open the virtual block devices */
5426

    
5427
    for(i = 0; i < nb_drives_opt; i++)
5428
        if (drive_init(&drives_opt[i], snapshot, machine) == -1)
5429
            exit(1);
5430

    
5431
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
5432
    register_savevm_live("ram", 0, 3, ram_save_live, NULL, ram_load, NULL);
5433

    
5434
#ifndef _WIN32
5435
    /* must be after terminal init, SDL library changes signal handlers */
5436
    termsig_setup();
5437
#endif
5438

    
5439
    /* Maintain compatibility with multiple stdio monitors */
5440
    if (!strcmp(monitor_device,"stdio")) {
5441
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
5442
            const char *devname = serial_devices[i];
5443
            if (devname && !strcmp(devname,"mon:stdio")) {
5444
                monitor_device = NULL;
5445
                break;
5446
            } else if (devname && !strcmp(devname,"stdio")) {
5447
                monitor_device = NULL;
5448
                serial_devices[i] = "mon:stdio";
5449
                break;
5450
            }
5451
        }
5452
    }
5453

    
5454
    if (kvm_enabled()) {
5455
        int ret;
5456

    
5457
        ret = kvm_init(smp_cpus);
5458
        if (ret < 0) {
5459
            fprintf(stderr, "failed to initialize KVM\n");
5460
            exit(1);
5461
        }
5462
    }
5463

    
5464
    machine->init(ram_size, vga_ram_size, boot_devices,
5465
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
5466

    
5467
    /* Set KVM's vcpu state to qemu's initial CPUState. */
5468
    if (kvm_enabled()) {
5469
        int ret;
5470

    
5471
        ret = kvm_sync_vcpus();
5472
        if (ret < 0) {
5473
            fprintf(stderr, "failed to initialize vcpus\n");
5474
            exit(1);
5475
        }
5476
    }
5477

    
5478
    /* init USB devices */
5479
    if (usb_enabled) {
5480
        for(i = 0; i < usb_devices_index; i++) {
5481
            if (usb_device_add(usb_devices[i]) < 0) {
5482
                fprintf(stderr, "Warning: could not add USB device %s\n",
5483
                        usb_devices[i]);
5484
            }
5485
        }
5486
    }
5487

    
5488
    /* just use the first displaystate for the moment */
5489
    ds = display_state;
5490
    /* terminal init */
5491
    if (nographic) {
5492
        if (curses) {
5493
            fprintf(stderr, "fatal: -nographic can't be used with -curses\n");
5494
            exit(1);
5495
        }
5496
        /* nearly nothing to do */
5497
        dumb_display_init(ds);
5498
    } else { 
5499
#if defined(CONFIG_CURSES)
5500
            if (curses) {
5501
                /* At the moment curses cannot be used with other displays */
5502
                curses_display_init(ds, full_screen);
5503
            } else
5504
#endif
5505
            {
5506
                if (vnc_display != NULL) {
5507
                    vnc_display_init(ds);
5508
                    if (vnc_display_open(ds, vnc_display) < 0)
5509
                        exit(1);
5510
                }
5511
                if (sdl || !vnc_display)
5512
#if defined(CONFIG_SDL)
5513
                    sdl_display_init(ds, full_screen, no_frame);
5514
#elif defined(CONFIG_COCOA)
5515
                    cocoa_display_init(ds, full_screen);
5516
#else
5517
                    dumb_display_init(ds);
5518
#endif
5519
            }
5520
    }
5521
    dpy_resize(ds);
5522

    
5523
    dcl = ds->listeners;
5524
    while (dcl != NULL) {
5525
        if (dcl->dpy_refresh != NULL) {
5526
            ds->gui_timer = qemu_new_timer(rt_clock, gui_update, ds);
5527
            qemu_mod_timer(ds->gui_timer, qemu_get_clock(rt_clock));
5528
        }
5529
        dcl = dcl->next;
5530
    }
5531

    
5532
    if (monitor_device) {
5533
        monitor_hd = qemu_chr_open("monitor", monitor_device);
5534
        if (!monitor_hd) {
5535
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
5536
            exit(1);
5537
        }
5538
        monitor_init(monitor_hd, !nographic);
5539
    }
5540

    
5541
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
5542
        const char *devname = serial_devices[i];
5543
        if (devname && strcmp(devname, "none")) {
5544
            char label[32];
5545
            snprintf(label, sizeof(label), "serial%d", i);
5546
            serial_hds[i] = qemu_chr_open(label, devname);
5547
            if (!serial_hds[i]) {
5548
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
5549
                        devname);
5550
                exit(1);
5551
            }
5552
            if (strstart(devname, "vc", 0))
5553
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
5554
        }
5555
    }
5556

    
5557
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
5558
        const char *devname = parallel_devices[i];
5559
        if (devname && strcmp(devname, "none")) {
5560
            char label[32];
5561
            snprintf(label, sizeof(label), "parallel%d", i);
5562
            parallel_hds[i] = qemu_chr_open(label, devname);
5563
            if (!parallel_hds[i]) {
5564
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
5565
                        devname);
5566
                exit(1);
5567
            }
5568
            if (strstart(devname, "vc", 0))
5569
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
5570
        }
5571
    }
5572

    
5573
    for(i = 0; i < MAX_VIRTIO_CONSOLES; i++) {
5574
        const char *devname = virtio_consoles[i];
5575
        if (devname && strcmp(devname, "none")) {
5576
            char label[32];
5577
            snprintf(label, sizeof(label), "virtcon%d", i);
5578
            virtcon_hds[i] = qemu_chr_open(label, devname);
5579
            if (!virtcon_hds[i]) {
5580
                fprintf(stderr, "qemu: could not open virtio console '%s'\n",
5581
                        devname);
5582
                exit(1);
5583
            }
5584
            if (strstart(devname, "vc", 0))
5585
                qemu_chr_printf(virtcon_hds[i], "virtio console%d\r\n", i);
5586
        }
5587
    }
5588

    
5589
#ifdef CONFIG_GDBSTUB
5590
    if (use_gdbstub) {
5591
        /* XXX: use standard host:port notation and modify options
5592
           accordingly. */
5593
        if (gdbserver_start(gdbstub_port) < 0) {
5594
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
5595
                    gdbstub_port);
5596
            exit(1);
5597
        }
5598
    }
5599
#endif
5600

    
5601
    if (loadvm)
5602
        do_loadvm(loadvm);
5603

    
5604
    if (incoming) {
5605
        autostart = 0; /* fixme how to deal with -daemonize */
5606
        qemu_start_incoming_migration(incoming);
5607
    }
5608

    
5609
    {
5610
        /* XXX: simplify init */
5611
        read_passwords();
5612
        if (autostart) {
5613
            vm_start();
5614
        }
5615
    }
5616

    
5617
    if (daemonize) {
5618
        uint8_t status = 0;
5619
        ssize_t len;
5620
        int fd;
5621

    
5622
    again1:
5623
        len = write(fds[1], &status, 1);
5624
        if (len == -1 && (errno == EINTR))
5625
            goto again1;
5626

    
5627
        if (len != 1)
5628
            exit(1);
5629

    
5630
        chdir("/");
5631
        TFR(fd = open("/dev/null", O_RDWR));
5632
        if (fd == -1)
5633
            exit(1);
5634

    
5635
        dup2(fd, 0);
5636
        dup2(fd, 1);
5637
        dup2(fd, 2);
5638

    
5639
        close(fd);
5640
    }
5641

    
5642
    main_loop();
5643
    quit_timers();
5644
    net_cleanup();
5645

    
5646
    return 0;
5647
}