Statistics
| Branch: | Revision:

root / hw / usb-ehci.c @ 3028376e

History | View | Annotate | Download (67.6 kB)

1
/*
2
 * QEMU USB EHCI Emulation
3
 *
4
 * Copyright(c) 2008  Emutex Ltd. (address@hidden)
5
 *
6
 * EHCI project was started by Mark Burkley, with contributions by
7
 * Niels de Vos.  David S. Ahern continued working on it.  Kevin Wolf,
8
 * Jan Kiszka and Vincent Palatin contributed bugfixes.
9
 *
10
 *
11
 * This library is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2 of the License, or(at your option) any later version.
15
 *
16
 * This library is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU General Public License
22
 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23
 */
24

    
25
#include "hw.h"
26
#include "qemu-timer.h"
27
#include "usb.h"
28
#include "pci.h"
29
#include "monitor.h"
30
#include "trace.h"
31

    
32
#define EHCI_DEBUG   0
33

    
34
#if EHCI_DEBUG
35
#define DPRINTF printf
36
#else
37
#define DPRINTF(...)
38
#endif
39

    
40
/* internal processing - reset HC to try and recover */
41
#define USB_RET_PROCERR   (-99)
42

    
43
#define MMIO_SIZE        0x1000
44

    
45
/* Capability Registers Base Address - section 2.2 */
46
#define CAPREGBASE       0x0000
47
#define CAPLENGTH        CAPREGBASE + 0x0000  // 1-byte, 0x0001 reserved
48
#define HCIVERSION       CAPREGBASE + 0x0002  // 2-bytes, i/f version #
49
#define HCSPARAMS        CAPREGBASE + 0x0004  // 4-bytes, structural params
50
#define HCCPARAMS        CAPREGBASE + 0x0008  // 4-bytes, capability params
51
#define EECP             HCCPARAMS + 1
52
#define HCSPPORTROUTE1   CAPREGBASE + 0x000c
53
#define HCSPPORTROUTE2   CAPREGBASE + 0x0010
54

    
55
#define OPREGBASE        0x0020        // Operational Registers Base Address
56

    
57
#define USBCMD           OPREGBASE + 0x0000
58
#define USBCMD_RUNSTOP   (1 << 0)      // run / Stop
59
#define USBCMD_HCRESET   (1 << 1)      // HC Reset
60
#define USBCMD_FLS       (3 << 2)      // Frame List Size
61
#define USBCMD_FLS_SH    2             // Frame List Size Shift
62
#define USBCMD_PSE       (1 << 4)      // Periodic Schedule Enable
63
#define USBCMD_ASE       (1 << 5)      // Asynch Schedule Enable
64
#define USBCMD_IAAD      (1 << 6)      // Int Asynch Advance Doorbell
65
#define USBCMD_LHCR      (1 << 7)      // Light Host Controller Reset
66
#define USBCMD_ASPMC     (3 << 8)      // Async Sched Park Mode Count
67
#define USBCMD_ASPME     (1 << 11)     // Async Sched Park Mode Enable
68
#define USBCMD_ITC       (0x7f << 16)  // Int Threshold Control
69
#define USBCMD_ITC_SH    16            // Int Threshold Control Shift
70

    
71
#define USBSTS           OPREGBASE + 0x0004
72
#define USBSTS_RO_MASK   0x0000003f
73
#define USBSTS_INT       (1 << 0)      // USB Interrupt
74
#define USBSTS_ERRINT    (1 << 1)      // Error Interrupt
75
#define USBSTS_PCD       (1 << 2)      // Port Change Detect
76
#define USBSTS_FLR       (1 << 3)      // Frame List Rollover
77
#define USBSTS_HSE       (1 << 4)      // Host System Error
78
#define USBSTS_IAA       (1 << 5)      // Interrupt on Async Advance
79
#define USBSTS_HALT      (1 << 12)     // HC Halted
80
#define USBSTS_REC       (1 << 13)     // Reclamation
81
#define USBSTS_PSS       (1 << 14)     // Periodic Schedule Status
82
#define USBSTS_ASS       (1 << 15)     // Asynchronous Schedule Status
83

    
84
/*
85
 *  Interrupt enable bits correspond to the interrupt active bits in USBSTS
86
 *  so no need to redefine here.
87
 */
88
#define USBINTR              OPREGBASE + 0x0008
89
#define USBINTR_MASK         0x0000003f
90

    
91
#define FRINDEX              OPREGBASE + 0x000c
92
#define CTRLDSSEGMENT        OPREGBASE + 0x0010
93
#define PERIODICLISTBASE     OPREGBASE + 0x0014
94
#define ASYNCLISTADDR        OPREGBASE + 0x0018
95
#define ASYNCLISTADDR_MASK   0xffffffe0
96

    
97
#define CONFIGFLAG           OPREGBASE + 0x0040
98

    
99
#define PORTSC               (OPREGBASE + 0x0044)
100
#define PORTSC_BEGIN         PORTSC
101
#define PORTSC_END           (PORTSC + 4 * NB_PORTS)
102
/*
103
 * Bits that are reserved or are read-only are masked out of values
104
 * written to us by software
105
 */
106
#define PORTSC_RO_MASK       0x007001c0
107
#define PORTSC_RWC_MASK      0x0000002a
108
#define PORTSC_WKOC_E        (1 << 22)    // Wake on Over Current Enable
109
#define PORTSC_WKDS_E        (1 << 21)    // Wake on Disconnect Enable
110
#define PORTSC_WKCN_E        (1 << 20)    // Wake on Connect Enable
111
#define PORTSC_PTC           (15 << 16)   // Port Test Control
112
#define PORTSC_PTC_SH        16           // Port Test Control shift
113
#define PORTSC_PIC           (3 << 14)    // Port Indicator Control
114
#define PORTSC_PIC_SH        14           // Port Indicator Control Shift
115
#define PORTSC_POWNER        (1 << 13)    // Port Owner
116
#define PORTSC_PPOWER        (1 << 12)    // Port Power
117
#define PORTSC_LINESTAT      (3 << 10)    // Port Line Status
118
#define PORTSC_LINESTAT_SH   10           // Port Line Status Shift
119
#define PORTSC_PRESET        (1 << 8)     // Port Reset
120
#define PORTSC_SUSPEND       (1 << 7)     // Port Suspend
121
#define PORTSC_FPRES         (1 << 6)     // Force Port Resume
122
#define PORTSC_OCC           (1 << 5)     // Over Current Change
123
#define PORTSC_OCA           (1 << 4)     // Over Current Active
124
#define PORTSC_PEDC          (1 << 3)     // Port Enable/Disable Change
125
#define PORTSC_PED           (1 << 2)     // Port Enable/Disable
126
#define PORTSC_CSC           (1 << 1)     // Connect Status Change
127
#define PORTSC_CONNECT       (1 << 0)     // Current Connect Status
128

    
129
#define FRAME_TIMER_FREQ 1000
130
#define FRAME_TIMER_NS   (1000000000 / FRAME_TIMER_FREQ)
131

    
132
#define NB_MAXINTRATE    8        // Max rate at which controller issues ints
133
#define NB_PORTS         6        // Number of downstream ports
134
#define BUFF_SIZE        5*4096   // Max bytes to transfer per transaction
135
#define MAX_ITERATIONS   20       // Max number of QH before we break the loop
136
#define MAX_QH           100      // Max allowable queue heads in a chain
137

    
138
/*  Internal periodic / asynchronous schedule state machine states
139
 */
140
typedef enum {
141
    EST_INACTIVE = 1000,
142
    EST_ACTIVE,
143
    EST_EXECUTING,
144
    EST_SLEEPING,
145
    /*  The following states are internal to the state machine function
146
    */
147
    EST_WAITLISTHEAD,
148
    EST_FETCHENTRY,
149
    EST_FETCHQH,
150
    EST_FETCHITD,
151
    EST_ADVANCEQUEUE,
152
    EST_FETCHQTD,
153
    EST_EXECUTE,
154
    EST_WRITEBACK,
155
    EST_HORIZONTALQH
156
} EHCI_STATES;
157

    
158
/* macros for accessing fields within next link pointer entry */
159
#define NLPTR_GET(x)             ((x) & 0xffffffe0)
160
#define NLPTR_TYPE_GET(x)        (((x) >> 1) & 3)
161
#define NLPTR_TBIT(x)            ((x) & 1)  // 1=invalid, 0=valid
162

    
163
/* link pointer types */
164
#define NLPTR_TYPE_ITD           0     // isoc xfer descriptor
165
#define NLPTR_TYPE_QH            1     // queue head
166
#define NLPTR_TYPE_STITD         2     // split xaction, isoc xfer descriptor
167
#define NLPTR_TYPE_FSTN          3     // frame span traversal node
168

    
169

    
170
/*  EHCI spec version 1.0 Section 3.3
171
 */
172
typedef struct EHCIitd {
173
    uint32_t next;
174

    
175
    uint32_t transact[8];
176
#define ITD_XACT_ACTIVE          (1 << 31)
177
#define ITD_XACT_DBERROR         (1 << 30)
178
#define ITD_XACT_BABBLE          (1 << 29)
179
#define ITD_XACT_XACTERR         (1 << 28)
180
#define ITD_XACT_LENGTH_MASK     0x0fff0000
181
#define ITD_XACT_LENGTH_SH       16
182
#define ITD_XACT_IOC             (1 << 15)
183
#define ITD_XACT_PGSEL_MASK      0x00007000
184
#define ITD_XACT_PGSEL_SH        12
185
#define ITD_XACT_OFFSET_MASK     0x00000fff
186

    
187
    uint32_t bufptr[7];
188
#define ITD_BUFPTR_MASK          0xfffff000
189
#define ITD_BUFPTR_SH            12
190
#define ITD_BUFPTR_EP_MASK       0x00000f00
191
#define ITD_BUFPTR_EP_SH         8
192
#define ITD_BUFPTR_DEVADDR_MASK  0x0000007f
193
#define ITD_BUFPTR_DEVADDR_SH    0
194
#define ITD_BUFPTR_DIRECTION     (1 << 11)
195
#define ITD_BUFPTR_MAXPKT_MASK   0x000007ff
196
#define ITD_BUFPTR_MAXPKT_SH     0
197
#define ITD_BUFPTR_MULT_MASK     0x00000003
198
#define ITD_BUFPTR_MULT_SH       0
199
} EHCIitd;
200

    
201
/*  EHCI spec version 1.0 Section 3.4
202
 */
203
typedef struct EHCIsitd {
204
    uint32_t next;                  // Standard next link pointer
205
    uint32_t epchar;
206
#define SITD_EPCHAR_IO              (1 << 31)
207
#define SITD_EPCHAR_PORTNUM_MASK    0x7f000000
208
#define SITD_EPCHAR_PORTNUM_SH      24
209
#define SITD_EPCHAR_HUBADD_MASK     0x007f0000
210
#define SITD_EPCHAR_HUBADDR_SH      16
211
#define SITD_EPCHAR_EPNUM_MASK      0x00000f00
212
#define SITD_EPCHAR_EPNUM_SH        8
213
#define SITD_EPCHAR_DEVADDR_MASK    0x0000007f
214

    
215
    uint32_t uframe;
216
#define SITD_UFRAME_CMASK_MASK      0x0000ff00
217
#define SITD_UFRAME_CMASK_SH        8
218
#define SITD_UFRAME_SMASK_MASK      0x000000ff
219

    
220
    uint32_t results;
221
#define SITD_RESULTS_IOC              (1 << 31)
222
#define SITD_RESULTS_PGSEL            (1 << 30)
223
#define SITD_RESULTS_TBYTES_MASK      0x03ff0000
224
#define SITD_RESULTS_TYBYTES_SH       16
225
#define SITD_RESULTS_CPROGMASK_MASK   0x0000ff00
226
#define SITD_RESULTS_CPROGMASK_SH     8
227
#define SITD_RESULTS_ACTIVE           (1 << 7)
228
#define SITD_RESULTS_ERR              (1 << 6)
229
#define SITD_RESULTS_DBERR            (1 << 5)
230
#define SITD_RESULTS_BABBLE           (1 << 4)
231
#define SITD_RESULTS_XACTERR          (1 << 3)
232
#define SITD_RESULTS_MISSEDUF         (1 << 2)
233
#define SITD_RESULTS_SPLITXSTATE      (1 << 1)
234

    
235
    uint32_t bufptr[2];
236
#define SITD_BUFPTR_MASK              0xfffff000
237
#define SITD_BUFPTR_CURROFF_MASK      0x00000fff
238
#define SITD_BUFPTR_TPOS_MASK         0x00000018
239
#define SITD_BUFPTR_TPOS_SH           3
240
#define SITD_BUFPTR_TCNT_MASK         0x00000007
241

    
242
    uint32_t backptr;                 // Standard next link pointer
243
} EHCIsitd;
244

    
245
/*  EHCI spec version 1.0 Section 3.5
246
 */
247
typedef struct EHCIqtd {
248
    uint32_t next;                    // Standard next link pointer
249
    uint32_t altnext;                 // Standard next link pointer
250
    uint32_t token;
251
#define QTD_TOKEN_DTOGGLE             (1 << 31)
252
#define QTD_TOKEN_TBYTES_MASK         0x7fff0000
253
#define QTD_TOKEN_TBYTES_SH           16
254
#define QTD_TOKEN_IOC                 (1 << 15)
255
#define QTD_TOKEN_CPAGE_MASK          0x00007000
256
#define QTD_TOKEN_CPAGE_SH            12
257
#define QTD_TOKEN_CERR_MASK           0x00000c00
258
#define QTD_TOKEN_CERR_SH             10
259
#define QTD_TOKEN_PID_MASK            0x00000300
260
#define QTD_TOKEN_PID_SH              8
261
#define QTD_TOKEN_ACTIVE              (1 << 7)
262
#define QTD_TOKEN_HALT                (1 << 6)
263
#define QTD_TOKEN_DBERR               (1 << 5)
264
#define QTD_TOKEN_BABBLE              (1 << 4)
265
#define QTD_TOKEN_XACTERR             (1 << 3)
266
#define QTD_TOKEN_MISSEDUF            (1 << 2)
267
#define QTD_TOKEN_SPLITXSTATE         (1 << 1)
268
#define QTD_TOKEN_PING                (1 << 0)
269

    
270
    uint32_t bufptr[5];               // Standard buffer pointer
271
#define QTD_BUFPTR_MASK               0xfffff000
272
} EHCIqtd;
273

    
274
/*  EHCI spec version 1.0 Section 3.6
275
 */
276
typedef struct EHCIqh {
277
    uint32_t next;                    // Standard next link pointer
278

    
279
    /* endpoint characteristics */
280
    uint32_t epchar;
281
#define QH_EPCHAR_RL_MASK             0xf0000000
282
#define QH_EPCHAR_RL_SH               28
283
#define QH_EPCHAR_C                   (1 << 27)
284
#define QH_EPCHAR_MPLEN_MASK          0x07FF0000
285
#define QH_EPCHAR_MPLEN_SH            16
286
#define QH_EPCHAR_H                   (1 << 15)
287
#define QH_EPCHAR_DTC                 (1 << 14)
288
#define QH_EPCHAR_EPS_MASK            0x00003000
289
#define QH_EPCHAR_EPS_SH              12
290
#define EHCI_QH_EPS_FULL              0
291
#define EHCI_QH_EPS_LOW               1
292
#define EHCI_QH_EPS_HIGH              2
293
#define EHCI_QH_EPS_RESERVED          3
294

    
295
#define QH_EPCHAR_EP_MASK             0x00000f00
296
#define QH_EPCHAR_EP_SH               8
297
#define QH_EPCHAR_I                   (1 << 7)
298
#define QH_EPCHAR_DEVADDR_MASK        0x0000007f
299
#define QH_EPCHAR_DEVADDR_SH          0
300

    
301
    /* endpoint capabilities */
302
    uint32_t epcap;
303
#define QH_EPCAP_MULT_MASK            0xc0000000
304
#define QH_EPCAP_MULT_SH              30
305
#define QH_EPCAP_PORTNUM_MASK         0x3f800000
306
#define QH_EPCAP_PORTNUM_SH           23
307
#define QH_EPCAP_HUBADDR_MASK         0x007f0000
308
#define QH_EPCAP_HUBADDR_SH           16
309
#define QH_EPCAP_CMASK_MASK           0x0000ff00
310
#define QH_EPCAP_CMASK_SH             8
311
#define QH_EPCAP_SMASK_MASK           0x000000ff
312
#define QH_EPCAP_SMASK_SH             0
313

    
314
    uint32_t current_qtd;             // Standard next link pointer
315
    uint32_t next_qtd;                // Standard next link pointer
316
    uint32_t altnext_qtd;
317
#define QH_ALTNEXT_NAKCNT_MASK        0x0000001e
318
#define QH_ALTNEXT_NAKCNT_SH          1
319

    
320
    uint32_t token;                   // Same as QTD token
321
    uint32_t bufptr[5];               // Standard buffer pointer
322
#define BUFPTR_CPROGMASK_MASK         0x000000ff
323
#define BUFPTR_FRAMETAG_MASK          0x0000001f
324
#define BUFPTR_SBYTES_MASK            0x00000fe0
325
#define BUFPTR_SBYTES_SH              5
326
} EHCIqh;
327

    
328
/*  EHCI spec version 1.0 Section 3.7
329
 */
330
typedef struct EHCIfstn {
331
    uint32_t next;                    // Standard next link pointer
332
    uint32_t backptr;                 // Standard next link pointer
333
} EHCIfstn;
334

    
335
typedef struct EHCIQueue EHCIQueue;
336
typedef struct EHCIState EHCIState;
337

    
338
enum async_state {
339
    EHCI_ASYNC_NONE = 0,
340
    EHCI_ASYNC_INFLIGHT,
341
    EHCI_ASYNC_FINISHED,
342
};
343

    
344
struct EHCIQueue {
345
    EHCIState *ehci;
346
    QTAILQ_ENTRY(EHCIQueue) next;
347
    bool async_schedule;
348
    uint32_t seen;
349
    uint64_t ts;
350

    
351
    /* cached data from guest - needs to be flushed
352
     * when guest removes an entry (doorbell, handshake sequence)
353
     */
354
    EHCIqh qh;             // copy of current QH (being worked on)
355
    uint32_t qhaddr;       // address QH read from
356
    EHCIqtd qtd;           // copy of current QTD (being worked on)
357
    uint32_t qtdaddr;      // address QTD read from
358

    
359
    USBPacket packet;
360
    uint8_t buffer[BUFF_SIZE];
361
    int pid;
362
    uint32_t tbytes;
363
    enum async_state async;
364
    int usb_status;
365
};
366

    
367
struct EHCIState {
368
    PCIDevice dev;
369
    USBBus bus;
370
    qemu_irq irq;
371
    target_phys_addr_t mem_base;
372
    int mem;
373
    int companion_count;
374

    
375
    /* properties */
376
    uint32_t freq;
377
    uint32_t maxframes;
378

    
379
    /*
380
     *  EHCI spec version 1.0 Section 2.3
381
     *  Host Controller Operational Registers
382
     */
383
    union {
384
        uint8_t mmio[MMIO_SIZE];
385
        struct {
386
            uint8_t cap[OPREGBASE];
387
            uint32_t usbcmd;
388
            uint32_t usbsts;
389
            uint32_t usbintr;
390
            uint32_t frindex;
391
            uint32_t ctrldssegment;
392
            uint32_t periodiclistbase;
393
            uint32_t asynclistaddr;
394
            uint32_t notused[9];
395
            uint32_t configflag;
396
            uint32_t portsc[NB_PORTS];
397
        };
398
    };
399

    
400
    /*
401
     *  Internal states, shadow registers, etc
402
     */
403
    uint32_t sofv;
404
    QEMUTimer *frame_timer;
405
    int attach_poll_counter;
406
    int astate;                        // Current state in asynchronous schedule
407
    int pstate;                        // Current state in periodic schedule
408
    USBPort ports[NB_PORTS];
409
    USBPort *companion_ports[NB_PORTS];
410
    uint32_t usbsts_pending;
411
    QTAILQ_HEAD(, EHCIQueue) queues;
412

    
413
    uint32_t a_fetch_addr;   // which address to look at next
414
    uint32_t p_fetch_addr;   // which address to look at next
415

    
416
    USBPacket ipacket;
417
    uint8_t ibuffer[BUFF_SIZE];
418
    int isoch_pause;
419

    
420
    uint64_t last_run_ns;
421
};
422

    
423
#define SET_LAST_RUN_CLOCK(s) \
424
    (s)->last_run_ns = qemu_get_clock_ns(vm_clock);
425

    
426
/* nifty macros from Arnon's EHCI version  */
427
#define get_field(data, field) \
428
    (((data) & field##_MASK) >> field##_SH)
429

    
430
#define set_field(data, newval, field) do { \
431
    uint32_t val = *data; \
432
    val &= ~ field##_MASK; \
433
    val |= ((newval) << field##_SH) & field##_MASK; \
434
    *data = val; \
435
    } while(0)
436

    
437
static const char *ehci_state_names[] = {
438
    [ EST_INACTIVE ]     = "INACTIVE",
439
    [ EST_ACTIVE ]       = "ACTIVE",
440
    [ EST_EXECUTING ]    = "EXECUTING",
441
    [ EST_SLEEPING ]     = "SLEEPING",
442
    [ EST_WAITLISTHEAD ] = "WAITLISTHEAD",
443
    [ EST_FETCHENTRY ]   = "FETCH ENTRY",
444
    [ EST_FETCHQH ]      = "FETCH QH",
445
    [ EST_FETCHITD ]     = "FETCH ITD",
446
    [ EST_ADVANCEQUEUE ] = "ADVANCEQUEUE",
447
    [ EST_FETCHQTD ]     = "FETCH QTD",
448
    [ EST_EXECUTE ]      = "EXECUTE",
449
    [ EST_WRITEBACK ]    = "WRITEBACK",
450
    [ EST_HORIZONTALQH ] = "HORIZONTALQH",
451
};
452

    
453
static const char *ehci_mmio_names[] = {
454
    [ CAPLENGTH ]        = "CAPLENGTH",
455
    [ HCIVERSION ]       = "HCIVERSION",
456
    [ HCSPARAMS ]        = "HCSPARAMS",
457
    [ HCCPARAMS ]        = "HCCPARAMS",
458
    [ USBCMD ]           = "USBCMD",
459
    [ USBSTS ]           = "USBSTS",
460
    [ USBINTR ]          = "USBINTR",
461
    [ FRINDEX ]          = "FRINDEX",
462
    [ PERIODICLISTBASE ] = "P-LIST BASE",
463
    [ ASYNCLISTADDR ]    = "A-LIST ADDR",
464
    [ PORTSC_BEGIN ]     = "PORTSC #0",
465
    [ PORTSC_BEGIN + 4]  = "PORTSC #1",
466
    [ PORTSC_BEGIN + 8]  = "PORTSC #2",
467
    [ PORTSC_BEGIN + 12] = "PORTSC #3",
468
    [ CONFIGFLAG ]       = "CONFIGFLAG",
469
};
470

    
471
static const char *nr2str(const char **n, size_t len, uint32_t nr)
472
{
473
    if (nr < len && n[nr] != NULL) {
474
        return n[nr];
475
    } else {
476
        return "unknown";
477
    }
478
}
479

    
480
static const char *state2str(uint32_t state)
481
{
482
    return nr2str(ehci_state_names, ARRAY_SIZE(ehci_state_names), state);
483
}
484

    
485
static const char *addr2str(target_phys_addr_t addr)
486
{
487
    return nr2str(ehci_mmio_names, ARRAY_SIZE(ehci_mmio_names), addr);
488
}
489

    
490
static void ehci_trace_usbsts(uint32_t mask, int state)
491
{
492
    /* interrupts */
493
    if (mask & USBSTS_INT) {
494
        trace_usb_ehci_usbsts("INT", state);
495
    }
496
    if (mask & USBSTS_ERRINT) {
497
        trace_usb_ehci_usbsts("ERRINT", state);
498
    }
499
    if (mask & USBSTS_PCD) {
500
        trace_usb_ehci_usbsts("PCD", state);
501
    }
502
    if (mask & USBSTS_FLR) {
503
        trace_usb_ehci_usbsts("FLR", state);
504
    }
505
    if (mask & USBSTS_HSE) {
506
        trace_usb_ehci_usbsts("HSE", state);
507
    }
508
    if (mask & USBSTS_IAA) {
509
        trace_usb_ehci_usbsts("IAA", state);
510
    }
511

    
512
    /* status */
513
    if (mask & USBSTS_HALT) {
514
        trace_usb_ehci_usbsts("HALT", state);
515
    }
516
    if (mask & USBSTS_REC) {
517
        trace_usb_ehci_usbsts("REC", state);
518
    }
519
    if (mask & USBSTS_PSS) {
520
        trace_usb_ehci_usbsts("PSS", state);
521
    }
522
    if (mask & USBSTS_ASS) {
523
        trace_usb_ehci_usbsts("ASS", state);
524
    }
525
}
526

    
527
static inline void ehci_set_usbsts(EHCIState *s, int mask)
528
{
529
    if ((s->usbsts & mask) == mask) {
530
        return;
531
    }
532
    ehci_trace_usbsts(mask, 1);
533
    s->usbsts |= mask;
534
}
535

    
536
static inline void ehci_clear_usbsts(EHCIState *s, int mask)
537
{
538
    if ((s->usbsts & mask) == 0) {
539
        return;
540
    }
541
    ehci_trace_usbsts(mask, 0);
542
    s->usbsts &= ~mask;
543
}
544

    
545
static inline void ehci_set_interrupt(EHCIState *s, int intr)
546
{
547
    int level = 0;
548

    
549
    // TODO honour interrupt threshold requests
550

    
551
    ehci_set_usbsts(s, intr);
552

    
553
    if ((s->usbsts & USBINTR_MASK) & s->usbintr) {
554
        level = 1;
555
    }
556

    
557
    qemu_set_irq(s->irq, level);
558
}
559

    
560
static inline void ehci_record_interrupt(EHCIState *s, int intr)
561
{
562
    s->usbsts_pending |= intr;
563
}
564

    
565
static inline void ehci_commit_interrupt(EHCIState *s)
566
{
567
    if (!s->usbsts_pending) {
568
        return;
569
    }
570
    ehci_set_interrupt(s, s->usbsts_pending);
571
    s->usbsts_pending = 0;
572
}
573

    
574
static void ehci_set_state(EHCIState *s, int async, int state)
575
{
576
    if (async) {
577
        trace_usb_ehci_state("async", state2str(state));
578
        s->astate = state;
579
    } else {
580
        trace_usb_ehci_state("periodic", state2str(state));
581
        s->pstate = state;
582
    }
583
}
584

    
585
static int ehci_get_state(EHCIState *s, int async)
586
{
587
    return async ? s->astate : s->pstate;
588
}
589

    
590
static void ehci_set_fetch_addr(EHCIState *s, int async, uint32_t addr)
591
{
592
    if (async) {
593
        s->a_fetch_addr = addr;
594
    } else {
595
        s->p_fetch_addr = addr;
596
    }
597
}
598

    
599
static int ehci_get_fetch_addr(EHCIState *s, int async)
600
{
601
    return async ? s->a_fetch_addr : s->p_fetch_addr;
602
}
603

    
604
static void ehci_trace_qh(EHCIQueue *q, target_phys_addr_t addr, EHCIqh *qh)
605
{
606
    /* need three here due to argument count limits */
607
    trace_usb_ehci_qh_ptrs(q, addr, qh->next,
608
                           qh->current_qtd, qh->next_qtd, qh->altnext_qtd);
609
    trace_usb_ehci_qh_fields(addr,
610
                             get_field(qh->epchar, QH_EPCHAR_RL),
611
                             get_field(qh->epchar, QH_EPCHAR_MPLEN),
612
                             get_field(qh->epchar, QH_EPCHAR_EPS),
613
                             get_field(qh->epchar, QH_EPCHAR_EP),
614
                             get_field(qh->epchar, QH_EPCHAR_DEVADDR));
615
    trace_usb_ehci_qh_bits(addr,
616
                           (bool)(qh->epchar & QH_EPCHAR_C),
617
                           (bool)(qh->epchar & QH_EPCHAR_H),
618
                           (bool)(qh->epchar & QH_EPCHAR_DTC),
619
                           (bool)(qh->epchar & QH_EPCHAR_I));
620
}
621

    
622
static void ehci_trace_qtd(EHCIQueue *q, target_phys_addr_t addr, EHCIqtd *qtd)
623
{
624
    /* need three here due to argument count limits */
625
    trace_usb_ehci_qtd_ptrs(q, addr, qtd->next, qtd->altnext);
626
    trace_usb_ehci_qtd_fields(addr,
627
                              get_field(qtd->token, QTD_TOKEN_TBYTES),
628
                              get_field(qtd->token, QTD_TOKEN_CPAGE),
629
                              get_field(qtd->token, QTD_TOKEN_CERR),
630
                              get_field(qtd->token, QTD_TOKEN_PID));
631
    trace_usb_ehci_qtd_bits(addr,
632
                            (bool)(qtd->token & QTD_TOKEN_IOC),
633
                            (bool)(qtd->token & QTD_TOKEN_ACTIVE),
634
                            (bool)(qtd->token & QTD_TOKEN_HALT),
635
                            (bool)(qtd->token & QTD_TOKEN_BABBLE),
636
                            (bool)(qtd->token & QTD_TOKEN_XACTERR));
637
}
638

    
639
static void ehci_trace_itd(EHCIState *s, target_phys_addr_t addr, EHCIitd *itd)
640
{
641
    trace_usb_ehci_itd(addr, itd->next,
642
                       get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT),
643
                       get_field(itd->bufptr[2], ITD_BUFPTR_MULT),
644
                       get_field(itd->bufptr[0], ITD_BUFPTR_EP),
645
                       get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR));
646
}
647

    
648
/* queue management */
649

    
650
static EHCIQueue *ehci_alloc_queue(EHCIState *ehci, int async)
651
{
652
    EHCIQueue *q;
653

    
654
    q = qemu_mallocz(sizeof(*q));
655
    q->ehci = ehci;
656
    q->async_schedule = async;
657
    QTAILQ_INSERT_HEAD(&ehci->queues, q, next);
658
    trace_usb_ehci_queue_action(q, "alloc");
659
    return q;
660
}
661

    
662
static void ehci_free_queue(EHCIQueue *q)
663
{
664
    trace_usb_ehci_queue_action(q, "free");
665
    if (q->async == EHCI_ASYNC_INFLIGHT) {
666
        usb_cancel_packet(&q->packet);
667
    }
668
    QTAILQ_REMOVE(&q->ehci->queues, q, next);
669
    qemu_free(q);
670
}
671

    
672
static EHCIQueue *ehci_find_queue_by_qh(EHCIState *ehci, uint32_t addr)
673
{
674
    EHCIQueue *q;
675

    
676
    QTAILQ_FOREACH(q, &ehci->queues, next) {
677
        if (addr == q->qhaddr) {
678
            return q;
679
        }
680
    }
681
    return NULL;
682
}
683

    
684
static void ehci_queues_rip_unused(EHCIState *ehci)
685
{
686
    EHCIQueue *q, *tmp;
687

    
688
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
689
        if (q->seen) {
690
            q->seen = 0;
691
            q->ts = ehci->last_run_ns;
692
            continue;
693
        }
694
        if (ehci->last_run_ns < q->ts + 250000000) {
695
            /* allow 0.25 sec idle */
696
            continue;
697
        }
698
        ehci_free_queue(q);
699
    }
700
}
701

    
702
static void ehci_queues_rip_device(EHCIState *ehci, USBDevice *dev)
703
{
704
    EHCIQueue *q, *tmp;
705

    
706
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
707
        if (q->packet.owner != dev) {
708
            continue;
709
        }
710
        ehci_free_queue(q);
711
    }
712
}
713

    
714
static void ehci_queues_rip_all(EHCIState *ehci)
715
{
716
    EHCIQueue *q, *tmp;
717

    
718
    QTAILQ_FOREACH_SAFE(q, &ehci->queues, next, tmp) {
719
        ehci_free_queue(q);
720
    }
721
}
722

    
723
/* Attach or detach a device on root hub */
724

    
725
static void ehci_attach(USBPort *port)
726
{
727
    EHCIState *s = port->opaque;
728
    uint32_t *portsc = &s->portsc[port->index];
729

    
730
    trace_usb_ehci_port_attach(port->index, port->dev->product_desc);
731

    
732
    if (*portsc & PORTSC_POWNER) {
733
        USBPort *companion = s->companion_ports[port->index];
734
        companion->dev = port->dev;
735
        companion->ops->attach(companion);
736
        return;
737
    }
738

    
739
    *portsc |= PORTSC_CONNECT;
740
    *portsc |= PORTSC_CSC;
741

    
742
    ehci_set_interrupt(s, USBSTS_PCD);
743
}
744

    
745
static void ehci_detach(USBPort *port)
746
{
747
    EHCIState *s = port->opaque;
748
    uint32_t *portsc = &s->portsc[port->index];
749

    
750
    trace_usb_ehci_port_detach(port->index);
751

    
752
    if (*portsc & PORTSC_POWNER) {
753
        USBPort *companion = s->companion_ports[port->index];
754
        companion->ops->detach(companion);
755
        companion->dev = NULL;
756
        return;
757
    }
758

    
759
    ehci_queues_rip_device(s, port->dev);
760

    
761
    *portsc &= ~(PORTSC_CONNECT|PORTSC_PED);
762
    *portsc |= PORTSC_CSC;
763

    
764
    ehci_set_interrupt(s, USBSTS_PCD);
765
}
766

    
767
static void ehci_child_detach(USBPort *port, USBDevice *child)
768
{
769
    EHCIState *s = port->opaque;
770
    uint32_t portsc = s->portsc[port->index];
771

    
772
    if (portsc & PORTSC_POWNER) {
773
        USBPort *companion = s->companion_ports[port->index];
774
        companion->ops->child_detach(companion, child);
775
        companion->dev = NULL;
776
        return;
777
    }
778

    
779
    ehci_queues_rip_device(s, child);
780
}
781

    
782
static void ehci_wakeup(USBPort *port)
783
{
784
    EHCIState *s = port->opaque;
785
    uint32_t portsc = s->portsc[port->index];
786

    
787
    if (portsc & PORTSC_POWNER) {
788
        USBPort *companion = s->companion_ports[port->index];
789
        if (companion->ops->wakeup) {
790
            companion->ops->wakeup(companion);
791
        }
792
    }
793
}
794

    
795
static int ehci_register_companion(USBBus *bus, USBPort *ports[],
796
                                   uint32_t portcount, uint32_t firstport)
797
{
798
    EHCIState *s = container_of(bus, EHCIState, bus);
799
    uint32_t i;
800

    
801
    if (firstport + portcount > NB_PORTS) {
802
        qerror_report(QERR_INVALID_PARAMETER_VALUE, "firstport",
803
                      "firstport on masterbus");
804
        error_printf_unless_qmp(
805
            "firstport value of %u makes companion take ports %u - %u, which "
806
            "is outside of the valid range of 0 - %u\n", firstport, firstport,
807
            firstport + portcount - 1, NB_PORTS - 1);
808
        return -1;
809
    }
810

    
811
    for (i = 0; i < portcount; i++) {
812
        if (s->companion_ports[firstport + i]) {
813
            qerror_report(QERR_INVALID_PARAMETER_VALUE, "masterbus",
814
                          "an USB masterbus");
815
            error_printf_unless_qmp(
816
                "port %u on masterbus %s already has a companion assigned\n",
817
                firstport + i, bus->qbus.name);
818
            return -1;
819
        }
820
    }
821

    
822
    for (i = 0; i < portcount; i++) {
823
        s->companion_ports[firstport + i] = ports[i];
824
        s->ports[firstport + i].speedmask |=
825
            USB_SPEED_MASK_LOW | USB_SPEED_MASK_FULL;
826
        /* Ensure devs attached before the initial reset go to the companion */
827
        s->portsc[firstport + i] = PORTSC_POWNER;
828
    }
829

    
830
    s->companion_count++;
831
    s->mmio[0x05] = (s->companion_count << 4) | portcount;
832

    
833
    return 0;
834
}
835

    
836
/* 4.1 host controller initialization */
837
static void ehci_reset(void *opaque)
838
{
839
    EHCIState *s = opaque;
840
    int i;
841
    USBDevice *devs[NB_PORTS];
842

    
843
    trace_usb_ehci_reset();
844

    
845
    /*
846
     * Do the detach before touching portsc, so that it correctly gets send to
847
     * us or to our companion based on PORTSC_POWNER before the reset.
848
     */
849
    for(i = 0; i < NB_PORTS; i++) {
850
        devs[i] = s->ports[i].dev;
851
        if (devs[i]) {
852
            usb_attach(&s->ports[i], NULL);
853
        }
854
    }
855

    
856
    memset(&s->mmio[OPREGBASE], 0x00, MMIO_SIZE - OPREGBASE);
857

    
858
    s->usbcmd = NB_MAXINTRATE << USBCMD_ITC_SH;
859
    s->usbsts = USBSTS_HALT;
860

    
861
    s->astate = EST_INACTIVE;
862
    s->pstate = EST_INACTIVE;
863
    s->isoch_pause = -1;
864
    s->attach_poll_counter = 0;
865

    
866
    for(i = 0; i < NB_PORTS; i++) {
867
        if (s->companion_ports[i]) {
868
            s->portsc[i] = PORTSC_POWNER | PORTSC_PPOWER;
869
        } else {
870
            s->portsc[i] = PORTSC_PPOWER;
871
        }
872
        if (devs[i]) {
873
            usb_attach(&s->ports[i], devs[i]);
874
        }
875
    }
876
    ehci_queues_rip_all(s);
877
}
878

    
879
static uint32_t ehci_mem_readb(void *ptr, target_phys_addr_t addr)
880
{
881
    EHCIState *s = ptr;
882
    uint32_t val;
883

    
884
    val = s->mmio[addr];
885

    
886
    return val;
887
}
888

    
889
static uint32_t ehci_mem_readw(void *ptr, target_phys_addr_t addr)
890
{
891
    EHCIState *s = ptr;
892
    uint32_t val;
893

    
894
    val = s->mmio[addr] | (s->mmio[addr+1] << 8);
895

    
896
    return val;
897
}
898

    
899
static uint32_t ehci_mem_readl(void *ptr, target_phys_addr_t addr)
900
{
901
    EHCIState *s = ptr;
902
    uint32_t val;
903

    
904
    val = s->mmio[addr] | (s->mmio[addr+1] << 8) |
905
          (s->mmio[addr+2] << 16) | (s->mmio[addr+3] << 24);
906

    
907
    trace_usb_ehci_mmio_readl(addr, addr2str(addr), val);
908
    return val;
909
}
910

    
911
static void ehci_mem_writeb(void *ptr, target_phys_addr_t addr, uint32_t val)
912
{
913
    fprintf(stderr, "EHCI doesn't handle byte writes to MMIO\n");
914
    exit(1);
915
}
916

    
917
static void ehci_mem_writew(void *ptr, target_phys_addr_t addr, uint32_t val)
918
{
919
    fprintf(stderr, "EHCI doesn't handle 16-bit writes to MMIO\n");
920
    exit(1);
921
}
922

    
923
static void handle_port_owner_write(EHCIState *s, int port, uint32_t owner)
924
{
925
    USBDevice *dev = s->ports[port].dev;
926
    uint32_t *portsc = &s->portsc[port];
927
    uint32_t orig;
928

    
929
    if (s->companion_ports[port] == NULL)
930
        return;
931

    
932
    owner = owner & PORTSC_POWNER;
933
    orig  = *portsc & PORTSC_POWNER;
934

    
935
    if (!(owner ^ orig)) {
936
        return;
937
    }
938

    
939
    if (dev) {
940
        usb_attach(&s->ports[port], NULL);
941
    }
942

    
943
    *portsc &= ~PORTSC_POWNER;
944
    *portsc |= owner;
945

    
946
    if (dev) {
947
        usb_attach(&s->ports[port], dev);
948
    }
949
}
950

    
951
static void handle_port_status_write(EHCIState *s, int port, uint32_t val)
952
{
953
    uint32_t *portsc = &s->portsc[port];
954
    USBDevice *dev = s->ports[port].dev;
955

    
956
    /* Clear rwc bits */
957
    *portsc &= ~(val & PORTSC_RWC_MASK);
958
    /* The guest may clear, but not set the PED bit */
959
    *portsc &= val | ~PORTSC_PED;
960
    /* POWNER is masked out by RO_MASK as it is RO when we've no companion */
961
    handle_port_owner_write(s, port, val);
962
    /* And finally apply RO_MASK */
963
    val &= PORTSC_RO_MASK;
964

    
965
    if ((val & PORTSC_PRESET) && !(*portsc & PORTSC_PRESET)) {
966
        trace_usb_ehci_port_reset(port, 1);
967
    }
968

    
969
    if (!(val & PORTSC_PRESET) &&(*portsc & PORTSC_PRESET)) {
970
        trace_usb_ehci_port_reset(port, 0);
971
        if (dev) {
972
            usb_attach(&s->ports[port], dev);
973
            usb_send_msg(dev, USB_MSG_RESET);
974
            *portsc &= ~PORTSC_CSC;
975
        }
976

    
977
        /*
978
         *  Table 2.16 Set the enable bit(and enable bit change) to indicate
979
         *  to SW that this port has a high speed device attached
980
         */
981
        if (dev && (dev->speedmask & USB_SPEED_MASK_HIGH)) {
982
            val |= PORTSC_PED;
983
        }
984
    }
985

    
986
    *portsc &= ~PORTSC_RO_MASK;
987
    *portsc |= val;
988
}
989

    
990
static void ehci_mem_writel(void *ptr, target_phys_addr_t addr, uint32_t val)
991
{
992
    EHCIState *s = ptr;
993
    uint32_t *mmio = (uint32_t *)(&s->mmio[addr]);
994
    uint32_t old = *mmio;
995
    int i;
996

    
997
    trace_usb_ehci_mmio_writel(addr, addr2str(addr), val);
998

    
999
    /* Only aligned reads are allowed on OHCI */
1000
    if (addr & 3) {
1001
        fprintf(stderr, "usb-ehci: Mis-aligned write to addr 0x"
1002
                TARGET_FMT_plx "\n", addr);
1003
        return;
1004
    }
1005

    
1006
    if (addr >= PORTSC && addr < PORTSC + 4 * NB_PORTS) {
1007
        handle_port_status_write(s, (addr-PORTSC)/4, val);
1008
        trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1009
        return;
1010
    }
1011

    
1012
    if (addr < OPREGBASE) {
1013
        fprintf(stderr, "usb-ehci: write attempt to read-only register"
1014
                TARGET_FMT_plx "\n", addr);
1015
        return;
1016
    }
1017

    
1018

    
1019
    /* Do any register specific pre-write processing here.  */
1020
    switch(addr) {
1021
    case USBCMD:
1022
        if ((val & USBCMD_RUNSTOP) && !(s->usbcmd & USBCMD_RUNSTOP)) {
1023
            qemu_mod_timer(s->frame_timer, qemu_get_clock_ns(vm_clock));
1024
            SET_LAST_RUN_CLOCK(s);
1025
            ehci_clear_usbsts(s, USBSTS_HALT);
1026
        }
1027

    
1028
        if (!(val & USBCMD_RUNSTOP) && (s->usbcmd & USBCMD_RUNSTOP)) {
1029
            qemu_del_timer(s->frame_timer);
1030
            // TODO - should finish out some stuff before setting halt
1031
            ehci_set_usbsts(s, USBSTS_HALT);
1032
        }
1033

    
1034
        if (val & USBCMD_HCRESET) {
1035
            ehci_reset(s);
1036
            val &= ~USBCMD_HCRESET;
1037
        }
1038

    
1039
        /* not supporting dynamic frame list size at the moment */
1040
        if ((val & USBCMD_FLS) && !(s->usbcmd & USBCMD_FLS)) {
1041
            fprintf(stderr, "attempt to set frame list size -- value %d\n",
1042
                    val & USBCMD_FLS);
1043
            val &= ~USBCMD_FLS;
1044
        }
1045
        break;
1046

    
1047
    case USBSTS:
1048
        val &= USBSTS_RO_MASK;              // bits 6 thru 31 are RO
1049
        ehci_clear_usbsts(s, val);          // bits 0 thru 5 are R/WC
1050
        val = s->usbsts;
1051
        ehci_set_interrupt(s, 0);
1052
        break;
1053

    
1054
    case USBINTR:
1055
        val &= USBINTR_MASK;
1056
        break;
1057

    
1058
    case FRINDEX:
1059
        s->sofv = val >> 3;
1060
        break;
1061

    
1062
    case CONFIGFLAG:
1063
        val &= 0x1;
1064
        if (val) {
1065
            for(i = 0; i < NB_PORTS; i++)
1066
                handle_port_owner_write(s, i, 0);
1067
        }
1068
        break;
1069

    
1070
    case PERIODICLISTBASE:
1071
        if ((s->usbcmd & USBCMD_PSE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1072
            fprintf(stderr,
1073
              "ehci: PERIODIC list base register set while periodic schedule\n"
1074
              "      is enabled and HC is enabled\n");
1075
        }
1076
        break;
1077

    
1078
    case ASYNCLISTADDR:
1079
        if ((s->usbcmd & USBCMD_ASE) && (s->usbcmd & USBCMD_RUNSTOP)) {
1080
            fprintf(stderr,
1081
              "ehci: ASYNC list address register set while async schedule\n"
1082
              "      is enabled and HC is enabled\n");
1083
        }
1084
        break;
1085
    }
1086

    
1087
    *mmio = val;
1088
    trace_usb_ehci_mmio_change(addr, addr2str(addr), *mmio, old);
1089
}
1090

    
1091

    
1092
// TODO : Put in common header file, duplication from usb-ohci.c
1093

    
1094
/* Get an array of dwords from main memory */
1095
static inline int get_dwords(uint32_t addr, uint32_t *buf, int num)
1096
{
1097
    int i;
1098

    
1099
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1100
        cpu_physical_memory_rw(addr,(uint8_t *)buf, sizeof(*buf), 0);
1101
        *buf = le32_to_cpu(*buf);
1102
    }
1103

    
1104
    return 1;
1105
}
1106

    
1107
/* Put an array of dwords in to main memory */
1108
static inline int put_dwords(uint32_t addr, uint32_t *buf, int num)
1109
{
1110
    int i;
1111

    
1112
    for(i = 0; i < num; i++, buf++, addr += sizeof(*buf)) {
1113
        uint32_t tmp = cpu_to_le32(*buf);
1114
        cpu_physical_memory_rw(addr,(uint8_t *)&tmp, sizeof(tmp), 1);
1115
    }
1116

    
1117
    return 1;
1118
}
1119

    
1120
// 4.10.2
1121

    
1122
static int ehci_qh_do_overlay(EHCIQueue *q)
1123
{
1124
    int i;
1125
    int dtoggle;
1126
    int ping;
1127
    int eps;
1128
    int reload;
1129

    
1130
    // remember values in fields to preserve in qh after overlay
1131

    
1132
    dtoggle = q->qh.token & QTD_TOKEN_DTOGGLE;
1133
    ping    = q->qh.token & QTD_TOKEN_PING;
1134

    
1135
    q->qh.current_qtd = q->qtdaddr;
1136
    q->qh.next_qtd    = q->qtd.next;
1137
    q->qh.altnext_qtd = q->qtd.altnext;
1138
    q->qh.token       = q->qtd.token;
1139

    
1140

    
1141
    eps = get_field(q->qh.epchar, QH_EPCHAR_EPS);
1142
    if (eps == EHCI_QH_EPS_HIGH) {
1143
        q->qh.token &= ~QTD_TOKEN_PING;
1144
        q->qh.token |= ping;
1145
    }
1146

    
1147
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1148
    set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1149

    
1150
    for (i = 0; i < 5; i++) {
1151
        q->qh.bufptr[i] = q->qtd.bufptr[i];
1152
    }
1153

    
1154
    if (!(q->qh.epchar & QH_EPCHAR_DTC)) {
1155
        // preserve QH DT bit
1156
        q->qh.token &= ~QTD_TOKEN_DTOGGLE;
1157
        q->qh.token |= dtoggle;
1158
    }
1159

    
1160
    q->qh.bufptr[1] &= ~BUFPTR_CPROGMASK_MASK;
1161
    q->qh.bufptr[2] &= ~BUFPTR_FRAMETAG_MASK;
1162

    
1163
    put_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1164

    
1165
    return 0;
1166
}
1167

    
1168
static int ehci_buffer_rw(EHCIQueue *q, int bytes, int rw)
1169
{
1170
    int bufpos = 0;
1171
    int cpage, offset;
1172
    uint32_t head;
1173
    uint32_t tail;
1174

    
1175

    
1176
    if (!bytes) {
1177
        return 0;
1178
    }
1179

    
1180
    cpage = get_field(q->qh.token, QTD_TOKEN_CPAGE);
1181
    if (cpage > 4) {
1182
        fprintf(stderr, "cpage out of range (%d)\n", cpage);
1183
        return USB_RET_PROCERR;
1184
    }
1185

    
1186
    offset = q->qh.bufptr[0] & ~QTD_BUFPTR_MASK;
1187

    
1188
    do {
1189
        /* start and end of this page */
1190
        head = q->qh.bufptr[cpage] & QTD_BUFPTR_MASK;
1191
        tail = head + ~QTD_BUFPTR_MASK + 1;
1192
        /* add offset into page */
1193
        head |= offset;
1194

    
1195
        if (bytes <= (tail - head)) {
1196
            tail = head + bytes;
1197
        }
1198

    
1199
        trace_usb_ehci_data(rw, cpage, offset, head, tail-head, bufpos);
1200
        cpu_physical_memory_rw(head, q->buffer + bufpos, tail - head, rw);
1201

    
1202
        bufpos += (tail - head);
1203
        offset += (tail - head);
1204
        bytes -= (tail - head);
1205

    
1206
        if (bytes > 0) {
1207
            cpage++;
1208
            offset = 0;
1209
        }
1210
    } while (bytes > 0);
1211

    
1212
    /* save cpage */
1213
    set_field(&q->qh.token, cpage, QTD_TOKEN_CPAGE);
1214

    
1215
    /* save offset into cpage */
1216
    q->qh.bufptr[0] &= QTD_BUFPTR_MASK;
1217
    q->qh.bufptr[0] |= offset;
1218

    
1219
    return 0;
1220
}
1221

    
1222
static void ehci_async_complete_packet(USBPort *port, USBPacket *packet)
1223
{
1224
    EHCIQueue *q;
1225
    EHCIState *s = port->opaque;
1226
    uint32_t portsc = s->portsc[port->index];
1227

    
1228
    if (portsc & PORTSC_POWNER) {
1229
        USBPort *companion = s->companion_ports[port->index];
1230
        companion->ops->complete(companion, packet);
1231
        return;
1232
    }
1233

    
1234
    q = container_of(packet, EHCIQueue, packet);
1235
    trace_usb_ehci_queue_action(q, "wakeup");
1236
    assert(q->async == EHCI_ASYNC_INFLIGHT);
1237
    q->async = EHCI_ASYNC_FINISHED;
1238
    q->usb_status = packet->len;
1239
}
1240

    
1241
static void ehci_execute_complete(EHCIQueue *q)
1242
{
1243
    int c_err, reload;
1244

    
1245
    assert(q->async != EHCI_ASYNC_INFLIGHT);
1246
    q->async = EHCI_ASYNC_NONE;
1247

    
1248
    DPRINTF("execute_complete: qhaddr 0x%x, next %x, qtdaddr 0x%x, status %d\n",
1249
            q->qhaddr, q->qh.next, q->qtdaddr, q->usb_status);
1250

    
1251
    if (q->usb_status < 0) {
1252
err:
1253
        /* TO-DO: put this is in a function that can be invoked below as well */
1254
        c_err = get_field(q->qh.token, QTD_TOKEN_CERR);
1255
        c_err--;
1256
        set_field(&q->qh.token, c_err, QTD_TOKEN_CERR);
1257

    
1258
        switch(q->usb_status) {
1259
        case USB_RET_NODEV:
1260
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_XACTERR);
1261
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1262
            break;
1263
        case USB_RET_STALL:
1264
            q->qh.token |= QTD_TOKEN_HALT;
1265
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1266
            break;
1267
        case USB_RET_NAK:
1268
            /* 4.10.3 */
1269
            reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1270
            if ((q->pid == USB_TOKEN_IN) && reload) {
1271
                int nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1272
                nakcnt--;
1273
                set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1274
            } else if (!reload) {
1275
                return;
1276
            }
1277
            break;
1278
        case USB_RET_BABBLE:
1279
            q->qh.token |= (QTD_TOKEN_HALT | QTD_TOKEN_BABBLE);
1280
            ehci_record_interrupt(q->ehci, USBSTS_ERRINT);
1281
            break;
1282
        default:
1283
            /* should not be triggerable */
1284
            fprintf(stderr, "USB invalid response %d to handle\n", q->usb_status);
1285
            assert(0);
1286
            break;
1287
        }
1288
    } else {
1289
        // DPRINTF("Short packet condition\n");
1290
        // TODO check 4.12 for splits
1291

    
1292
        if ((q->usb_status > q->tbytes) && (q->pid == USB_TOKEN_IN)) {
1293
            q->usb_status = USB_RET_BABBLE;
1294
            goto err;
1295
        }
1296

    
1297
        if (q->tbytes && q->pid == USB_TOKEN_IN) {
1298
            if (ehci_buffer_rw(q, q->usb_status, 1) != 0) {
1299
                q->usb_status = USB_RET_PROCERR;
1300
                return;
1301
            }
1302
            q->tbytes -= q->usb_status;
1303
        } else {
1304
            q->tbytes = 0;
1305
        }
1306

    
1307
        DPRINTF("updating tbytes to %d\n", q->tbytes);
1308
        set_field(&q->qh.token, q->tbytes, QTD_TOKEN_TBYTES);
1309
    }
1310

    
1311
    q->qh.token ^= QTD_TOKEN_DTOGGLE;
1312
    q->qh.token &= ~QTD_TOKEN_ACTIVE;
1313

    
1314
    if ((q->usb_status >= 0) && (q->qh.token & QTD_TOKEN_IOC)) {
1315
        ehci_record_interrupt(q->ehci, USBSTS_INT);
1316
    }
1317
}
1318

    
1319
// 4.10.3
1320

    
1321
static int ehci_execute(EHCIQueue *q)
1322
{
1323
    USBPort *port;
1324
    USBDevice *dev;
1325
    int ret;
1326
    int i;
1327
    int endp;
1328
    int devadr;
1329

    
1330
    if ( !(q->qh.token & QTD_TOKEN_ACTIVE)) {
1331
        fprintf(stderr, "Attempting to execute inactive QH\n");
1332
        return USB_RET_PROCERR;
1333
    }
1334

    
1335
    q->tbytes = (q->qh.token & QTD_TOKEN_TBYTES_MASK) >> QTD_TOKEN_TBYTES_SH;
1336
    if (q->tbytes > BUFF_SIZE) {
1337
        fprintf(stderr, "Request for more bytes than allowed\n");
1338
        return USB_RET_PROCERR;
1339
    }
1340

    
1341
    q->pid = (q->qh.token & QTD_TOKEN_PID_MASK) >> QTD_TOKEN_PID_SH;
1342
    switch(q->pid) {
1343
        case 0: q->pid = USB_TOKEN_OUT; break;
1344
        case 1: q->pid = USB_TOKEN_IN; break;
1345
        case 2: q->pid = USB_TOKEN_SETUP; break;
1346
        default: fprintf(stderr, "bad token\n"); break;
1347
    }
1348

    
1349
    if ((q->tbytes && q->pid != USB_TOKEN_IN) &&
1350
        (ehci_buffer_rw(q, q->tbytes, 0) != 0)) {
1351
        return USB_RET_PROCERR;
1352
    }
1353

    
1354
    endp = get_field(q->qh.epchar, QH_EPCHAR_EP);
1355
    devadr = get_field(q->qh.epchar, QH_EPCHAR_DEVADDR);
1356

    
1357
    ret = USB_RET_NODEV;
1358

    
1359
    // TO-DO: associating device with ehci port
1360
    for(i = 0; i < NB_PORTS; i++) {
1361
        port = &q->ehci->ports[i];
1362
        dev = port->dev;
1363

    
1364
        if (!(q->ehci->portsc[i] &(PORTSC_CONNECT))) {
1365
            DPRINTF("Port %d, no exec, not connected(%08X)\n",
1366
                    i, q->ehci->portsc[i]);
1367
            continue;
1368
        }
1369

    
1370
        q->packet.pid = q->pid;
1371
        q->packet.devaddr = devadr;
1372
        q->packet.devep = endp;
1373
        q->packet.data = q->buffer;
1374
        q->packet.len = q->tbytes;
1375

    
1376
        ret = usb_handle_packet(dev, &q->packet);
1377

    
1378
        DPRINTF("submit: qh %x next %x qtd %x pid %x len %d (total %d) endp %x ret %d\n",
1379
                q->qhaddr, q->qh.next, q->qtdaddr, q->pid,
1380
                q->packet.len, q->tbytes, endp, ret);
1381

    
1382
        if (ret != USB_RET_NODEV) {
1383
            break;
1384
        }
1385
    }
1386

    
1387
    if (ret > BUFF_SIZE) {
1388
        fprintf(stderr, "ret from usb_handle_packet > BUFF_SIZE\n");
1389
        return USB_RET_PROCERR;
1390
    }
1391

    
1392
    return ret;
1393
}
1394

    
1395
/*  4.7.2
1396
 */
1397

    
1398
static int ehci_process_itd(EHCIState *ehci,
1399
                            EHCIitd *itd)
1400
{
1401
    USBPort *port;
1402
    USBDevice *dev;
1403
    int ret;
1404
    uint32_t i, j, len, len1, len2, pid, dir, devaddr, endp;
1405
    uint32_t pg, off, ptr1, ptr2, max, mult;
1406

    
1407
    dir =(itd->bufptr[1] & ITD_BUFPTR_DIRECTION);
1408
    devaddr = get_field(itd->bufptr[0], ITD_BUFPTR_DEVADDR);
1409
    endp = get_field(itd->bufptr[0], ITD_BUFPTR_EP);
1410
    max = get_field(itd->bufptr[1], ITD_BUFPTR_MAXPKT);
1411
    mult = get_field(itd->bufptr[2], ITD_BUFPTR_MULT);
1412

    
1413
    for(i = 0; i < 8; i++) {
1414
        if (itd->transact[i] & ITD_XACT_ACTIVE) {
1415
            pg   = get_field(itd->transact[i], ITD_XACT_PGSEL);
1416
            off  = itd->transact[i] & ITD_XACT_OFFSET_MASK;
1417
            ptr1 = (itd->bufptr[pg] & ITD_BUFPTR_MASK);
1418
            ptr2 = (itd->bufptr[pg+1] & ITD_BUFPTR_MASK);
1419
            len  = get_field(itd->transact[i], ITD_XACT_LENGTH);
1420

    
1421
            if (len > max * mult) {
1422
                len = max * mult;
1423
            }
1424

    
1425
            if (len > BUFF_SIZE) {
1426
                return USB_RET_PROCERR;
1427
            }
1428

    
1429
            if (off + len > 4096) {
1430
                /* transfer crosses page border */
1431
                len2 = off + len - 4096;
1432
                len1 = len - len2;
1433
            } else {
1434
                len1 = len;
1435
                len2 = 0;
1436
            }
1437

    
1438
            if (!dir) {
1439
                pid = USB_TOKEN_OUT;
1440
                trace_usb_ehci_data(0, pg, off, ptr1 + off, len1, 0);
1441
                cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 0);
1442
                if (len2) {
1443
                    trace_usb_ehci_data(0, pg+1, 0, ptr2, len2, len1);
1444
                    cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 0);
1445
                }
1446
            } else {
1447
                pid = USB_TOKEN_IN;
1448
            }
1449

    
1450
            ret = USB_RET_NODEV;
1451

    
1452
            for (j = 0; j < NB_PORTS; j++) {
1453
                port = &ehci->ports[j];
1454
                dev = port->dev;
1455

    
1456
                if (!(ehci->portsc[j] &(PORTSC_CONNECT))) {
1457
                    continue;
1458
                }
1459

    
1460
                ehci->ipacket.pid = pid;
1461
                ehci->ipacket.devaddr = devaddr;
1462
                ehci->ipacket.devep = endp;
1463
                ehci->ipacket.data = ehci->ibuffer;
1464
                ehci->ipacket.len = len;
1465

    
1466
                ret = usb_handle_packet(dev, &ehci->ipacket);
1467

    
1468
                if (ret != USB_RET_NODEV) {
1469
                    break;
1470
                }
1471
            }
1472

    
1473
#if 0
1474
            /*  In isoch, there is no facility to indicate a NAK so let's
1475
             *  instead just complete a zero-byte transaction.  Setting
1476
             *  DBERR seems too draconian.
1477
             */
1478

1479
            if (ret == USB_RET_NAK) {
1480
                if (ehci->isoch_pause > 0) {
1481
                    DPRINTF("ISOCH: received a NAK but paused so returning\n");
1482
                    ehci->isoch_pause--;
1483
                    return 0;
1484
                } else if (ehci->isoch_pause == -1) {
1485
                    DPRINTF("ISOCH: recv NAK & isoch pause inactive, setting\n");
1486
                    // Pause frindex for up to 50 msec waiting for data from
1487
                    // remote
1488
                    ehci->isoch_pause = 50;
1489
                    return 0;
1490
                } else {
1491
                    DPRINTF("ISOCH: isoch pause timeout! return 0\n");
1492
                    ret = 0;
1493
                }
1494
            } else {
1495
                DPRINTF("ISOCH: received ACK, clearing pause\n");
1496
                ehci->isoch_pause = -1;
1497
            }
1498
#else
1499
            if (ret == USB_RET_NAK) {
1500
                ret = 0;
1501
            }
1502
#endif
1503

    
1504
            if (ret >= 0) {
1505
                if (!dir) {
1506
                    /* OUT */
1507
                    set_field(&itd->transact[i], len - ret, ITD_XACT_LENGTH);
1508
                } else {
1509
                    /* IN */
1510
                    if (len1 > ret) {
1511
                        len1 = ret;
1512
                    }
1513
                    if (len2 > ret - len1) {
1514
                        len2 = ret - len1;
1515
                    }
1516
                    if (len1) {
1517
                        trace_usb_ehci_data(1, pg, off, ptr1 + off, len1, 0);
1518
                        cpu_physical_memory_rw(ptr1 + off, &ehci->ibuffer[0], len1, 1);
1519
                    }
1520
                    if (len2) {
1521
                        trace_usb_ehci_data(1, pg+1, 0, ptr2, len2, len1);
1522
                        cpu_physical_memory_rw(ptr2, &ehci->ibuffer[len1], len2, 1);
1523
                    }
1524
                    set_field(&itd->transact[i], ret, ITD_XACT_LENGTH);
1525
                }
1526

    
1527
                if (itd->transact[i] & ITD_XACT_IOC) {
1528
                    ehci_record_interrupt(ehci, USBSTS_INT);
1529
                }
1530
            }
1531
            itd->transact[i] &= ~ITD_XACT_ACTIVE;
1532
        }
1533
    }
1534
    return 0;
1535
}
1536

    
1537
/*  This state is the entry point for asynchronous schedule
1538
 *  processing.  Entry here consitutes a EHCI start event state (4.8.5)
1539
 */
1540
static int ehci_state_waitlisthead(EHCIState *ehci,  int async)
1541
{
1542
    EHCIqh qh;
1543
    int i = 0;
1544
    int again = 0;
1545
    uint32_t entry = ehci->asynclistaddr;
1546

    
1547
    /* set reclamation flag at start event (4.8.6) */
1548
    if (async) {
1549
        ehci_set_usbsts(ehci, USBSTS_REC);
1550
    }
1551

    
1552
    ehci_queues_rip_unused(ehci);
1553

    
1554
    /*  Find the head of the list (4.9.1.1) */
1555
    for(i = 0; i < MAX_QH; i++) {
1556
        get_dwords(NLPTR_GET(entry), (uint32_t *) &qh, sizeof(EHCIqh) >> 2);
1557
        ehci_trace_qh(NULL, NLPTR_GET(entry), &qh);
1558

    
1559
        if (qh.epchar & QH_EPCHAR_H) {
1560
            if (async) {
1561
                entry |= (NLPTR_TYPE_QH << 1);
1562
            }
1563

    
1564
            ehci_set_fetch_addr(ehci, async, entry);
1565
            ehci_set_state(ehci, async, EST_FETCHENTRY);
1566
            again = 1;
1567
            goto out;
1568
        }
1569

    
1570
        entry = qh.next;
1571
        if (entry == ehci->asynclistaddr) {
1572
            break;
1573
        }
1574
    }
1575

    
1576
    /* no head found for list. */
1577

    
1578
    ehci_set_state(ehci, async, EST_ACTIVE);
1579

    
1580
out:
1581
    return again;
1582
}
1583

    
1584

    
1585
/*  This state is the entry point for periodic schedule processing as
1586
 *  well as being a continuation state for async processing.
1587
 */
1588
static int ehci_state_fetchentry(EHCIState *ehci, int async)
1589
{
1590
    int again = 0;
1591
    uint32_t entry = ehci_get_fetch_addr(ehci, async);
1592

    
1593
    if (entry < 0x1000) {
1594
        DPRINTF("fetchentry: entry invalid (0x%08x)\n", entry);
1595
        ehci_set_state(ehci, async, EST_ACTIVE);
1596
        goto out;
1597
    }
1598

    
1599
    /* section 4.8, only QH in async schedule */
1600
    if (async && (NLPTR_TYPE_GET(entry) != NLPTR_TYPE_QH)) {
1601
        fprintf(stderr, "non queue head request in async schedule\n");
1602
        return -1;
1603
    }
1604

    
1605
    switch (NLPTR_TYPE_GET(entry)) {
1606
    case NLPTR_TYPE_QH:
1607
        ehci_set_state(ehci, async, EST_FETCHQH);
1608
        again = 1;
1609
        break;
1610

    
1611
    case NLPTR_TYPE_ITD:
1612
        ehci_set_state(ehci, async, EST_FETCHITD);
1613
        again = 1;
1614
        break;
1615

    
1616
    default:
1617
        // TODO: handle siTD and FSTN types
1618
        fprintf(stderr, "FETCHENTRY: entry at %X is of type %d "
1619
                "which is not supported yet\n", entry, NLPTR_TYPE_GET(entry));
1620
        return -1;
1621
    }
1622

    
1623
out:
1624
    return again;
1625
}
1626

    
1627
static EHCIQueue *ehci_state_fetchqh(EHCIState *ehci, int async)
1628
{
1629
    uint32_t entry;
1630
    EHCIQueue *q;
1631
    int reload;
1632

    
1633
    entry = ehci_get_fetch_addr(ehci, async);
1634
    q = ehci_find_queue_by_qh(ehci, entry);
1635
    if (NULL == q) {
1636
        q = ehci_alloc_queue(ehci, async);
1637
    }
1638
    q->qhaddr = entry;
1639
    q->seen++;
1640

    
1641
    if (q->seen > 1) {
1642
        /* we are going in circles -- stop processing */
1643
        ehci_set_state(ehci, async, EST_ACTIVE);
1644
        q = NULL;
1645
        goto out;
1646
    }
1647

    
1648
    get_dwords(NLPTR_GET(q->qhaddr), (uint32_t *) &q->qh, sizeof(EHCIqh) >> 2);
1649
    ehci_trace_qh(q, NLPTR_GET(q->qhaddr), &q->qh);
1650

    
1651
    if (q->async == EHCI_ASYNC_INFLIGHT) {
1652
        /* I/O still in progress -- skip queue */
1653
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1654
        goto out;
1655
    }
1656
    if (q->async == EHCI_ASYNC_FINISHED) {
1657
        /* I/O finished -- continue processing queue */
1658
        trace_usb_ehci_queue_action(q, "resume");
1659
        ehci_set_state(ehci, async, EST_EXECUTING);
1660
        goto out;
1661
    }
1662

    
1663
    if (async && (q->qh.epchar & QH_EPCHAR_H)) {
1664

    
1665
        /*  EHCI spec version 1.0 Section 4.8.3 & 4.10.1 */
1666
        if (ehci->usbsts & USBSTS_REC) {
1667
            ehci_clear_usbsts(ehci, USBSTS_REC);
1668
        } else {
1669
            DPRINTF("FETCHQH:  QH 0x%08x. H-bit set, reclamation status reset"
1670
                       " - done processing\n", q->qhaddr);
1671
            ehci_set_state(ehci, async, EST_ACTIVE);
1672
            q = NULL;
1673
            goto out;
1674
        }
1675
    }
1676

    
1677
#if EHCI_DEBUG
1678
    if (q->qhaddr != q->qh.next) {
1679
    DPRINTF("FETCHQH:  QH 0x%08x (h %x halt %x active %x) next 0x%08x\n",
1680
               q->qhaddr,
1681
               q->qh.epchar & QH_EPCHAR_H,
1682
               q->qh.token & QTD_TOKEN_HALT,
1683
               q->qh.token & QTD_TOKEN_ACTIVE,
1684
               q->qh.next);
1685
    }
1686
#endif
1687

    
1688
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1689
    if (reload) {
1690
        set_field(&q->qh.altnext_qtd, reload, QH_ALTNEXT_NAKCNT);
1691
    }
1692

    
1693
    if (q->qh.token & QTD_TOKEN_HALT) {
1694
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1695

    
1696
    } else if ((q->qh.token & QTD_TOKEN_ACTIVE) && (q->qh.current_qtd > 0x1000)) {
1697
        q->qtdaddr = q->qh.current_qtd;
1698
        ehci_set_state(ehci, async, EST_FETCHQTD);
1699

    
1700
    } else {
1701
        /*  EHCI spec version 1.0 Section 4.10.2 */
1702
        ehci_set_state(ehci, async, EST_ADVANCEQUEUE);
1703
    }
1704

    
1705
out:
1706
    return q;
1707
}
1708

    
1709
static int ehci_state_fetchitd(EHCIState *ehci, int async)
1710
{
1711
    uint32_t entry;
1712
    EHCIitd itd;
1713

    
1714
    assert(!async);
1715
    entry = ehci_get_fetch_addr(ehci, async);
1716

    
1717
    get_dwords(NLPTR_GET(entry),(uint32_t *) &itd,
1718
               sizeof(EHCIitd) >> 2);
1719
    ehci_trace_itd(ehci, entry, &itd);
1720

    
1721
    if (ehci_process_itd(ehci, &itd) != 0) {
1722
        return -1;
1723
    }
1724

    
1725
    put_dwords(NLPTR_GET(entry), (uint32_t *) &itd,
1726
                sizeof(EHCIitd) >> 2);
1727
    ehci_set_fetch_addr(ehci, async, itd.next);
1728
    ehci_set_state(ehci, async, EST_FETCHENTRY);
1729

    
1730
    return 1;
1731
}
1732

    
1733
/* Section 4.10.2 - paragraph 3 */
1734
static int ehci_state_advqueue(EHCIQueue *q, int async)
1735
{
1736
#if 0
1737
    /* TO-DO: 4.10.2 - paragraph 2
1738
     * if I-bit is set to 1 and QH is not active
1739
     * go to horizontal QH
1740
     */
1741
    if (I-bit set) {
1742
        ehci_set_state(ehci, async, EST_HORIZONTALQH);
1743
        goto out;
1744
    }
1745
#endif
1746

    
1747
    /*
1748
     * want data and alt-next qTD is valid
1749
     */
1750
    if (((q->qh.token & QTD_TOKEN_TBYTES_MASK) != 0) &&
1751
        (q->qh.altnext_qtd > 0x1000) &&
1752
        (NLPTR_TBIT(q->qh.altnext_qtd) == 0)) {
1753
        q->qtdaddr = q->qh.altnext_qtd;
1754
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1755

    
1756
    /*
1757
     *  next qTD is valid
1758
     */
1759
    } else if ((q->qh.next_qtd > 0x1000) &&
1760
               (NLPTR_TBIT(q->qh.next_qtd) == 0)) {
1761
        q->qtdaddr = q->qh.next_qtd;
1762
        ehci_set_state(q->ehci, async, EST_FETCHQTD);
1763

    
1764
    /*
1765
     *  no valid qTD, try next QH
1766
     */
1767
    } else {
1768
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1769
    }
1770

    
1771
    return 1;
1772
}
1773

    
1774
/* Section 4.10.2 - paragraph 4 */
1775
static int ehci_state_fetchqtd(EHCIQueue *q, int async)
1776
{
1777
    int again = 0;
1778

    
1779
    get_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qtd, sizeof(EHCIqtd) >> 2);
1780
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), &q->qtd);
1781

    
1782
    if (q->qtd.token & QTD_TOKEN_ACTIVE) {
1783
        ehci_set_state(q->ehci, async, EST_EXECUTE);
1784
        again = 1;
1785
    } else {
1786
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1787
        again = 1;
1788
    }
1789

    
1790
    return again;
1791
}
1792

    
1793
static int ehci_state_horizqh(EHCIQueue *q, int async)
1794
{
1795
    int again = 0;
1796

    
1797
    if (ehci_get_fetch_addr(q->ehci, async) != q->qh.next) {
1798
        ehci_set_fetch_addr(q->ehci, async, q->qh.next);
1799
        ehci_set_state(q->ehci, async, EST_FETCHENTRY);
1800
        again = 1;
1801
    } else {
1802
        ehci_set_state(q->ehci, async, EST_ACTIVE);
1803
    }
1804

    
1805
    return again;
1806
}
1807

    
1808
/*
1809
 *  Write the qh back to guest physical memory.  This step isn't
1810
 *  in the EHCI spec but we need to do it since we don't share
1811
 *  physical memory with our guest VM.
1812
 *
1813
 *  The first three dwords are read-only for the EHCI, so skip them
1814
 *  when writing back the qh.
1815
 */
1816
static void ehci_flush_qh(EHCIQueue *q)
1817
{
1818
    uint32_t *qh = (uint32_t *) &q->qh;
1819
    uint32_t dwords = sizeof(EHCIqh) >> 2;
1820
    uint32_t addr = NLPTR_GET(q->qhaddr);
1821

    
1822
    put_dwords(addr + 3 * sizeof(uint32_t), qh + 3, dwords - 3);
1823
}
1824

    
1825
static int ehci_state_execute(EHCIQueue *q, int async)
1826
{
1827
    int again = 0;
1828
    int reload, nakcnt;
1829
    int smask;
1830

    
1831
    if (ehci_qh_do_overlay(q) != 0) {
1832
        return -1;
1833
    }
1834

    
1835
    smask = get_field(q->qh.epcap, QH_EPCAP_SMASK);
1836

    
1837
    if (!smask) {
1838
        reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1839
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1840
        if (reload && !nakcnt) {
1841
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1842
            again = 1;
1843
            goto out;
1844
        }
1845
    }
1846

    
1847
    // TODO verify enough time remains in the uframe as in 4.4.1.1
1848
    // TODO write back ptr to async list when done or out of time
1849
    // TODO Windows does not seem to ever set the MULT field
1850

    
1851
    if (!async) {
1852
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1853
        if (!transactCtr) {
1854
            ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1855
            again = 1;
1856
            goto out;
1857
        }
1858
    }
1859

    
1860
    if (async) {
1861
        ehci_set_usbsts(q->ehci, USBSTS_REC);
1862
    }
1863

    
1864
    q->usb_status = ehci_execute(q);
1865
    if (q->usb_status == USB_RET_PROCERR) {
1866
        again = -1;
1867
        goto out;
1868
    }
1869
    if (q->usb_status == USB_RET_ASYNC) {
1870
        ehci_flush_qh(q);
1871
        trace_usb_ehci_queue_action(q, "suspend");
1872
        q->async = EHCI_ASYNC_INFLIGHT;
1873
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1874
        again = 1;
1875
        goto out;
1876
    }
1877

    
1878
    ehci_set_state(q->ehci, async, EST_EXECUTING);
1879
    again = 1;
1880

    
1881
out:
1882
    return again;
1883
}
1884

    
1885
static int ehci_state_executing(EHCIQueue *q, int async)
1886
{
1887
    int again = 0;
1888
    int reload, nakcnt;
1889

    
1890
    ehci_execute_complete(q);
1891
    if (q->usb_status == USB_RET_ASYNC) {
1892
        goto out;
1893
    }
1894
    if (q->usb_status == USB_RET_PROCERR) {
1895
        again = -1;
1896
        goto out;
1897
    }
1898

    
1899
    // 4.10.3
1900
    if (!async) {
1901
        int transactCtr = get_field(q->qh.epcap, QH_EPCAP_MULT);
1902
        transactCtr--;
1903
        set_field(&q->qh.epcap, transactCtr, QH_EPCAP_MULT);
1904
        // 4.10.3, bottom of page 82, should exit this state when transaction
1905
        // counter decrements to 0
1906
    }
1907

    
1908
    reload = get_field(q->qh.epchar, QH_EPCHAR_RL);
1909
    if (reload) {
1910
        nakcnt = get_field(q->qh.altnext_qtd, QH_ALTNEXT_NAKCNT);
1911
        if (q->usb_status == USB_RET_NAK) {
1912
            if (nakcnt) {
1913
                nakcnt--;
1914
            }
1915
        } else {
1916
            nakcnt = reload;
1917
        }
1918
        set_field(&q->qh.altnext_qtd, nakcnt, QH_ALTNEXT_NAKCNT);
1919
    }
1920

    
1921
    /* 4.10.5 */
1922
    if ((q->usb_status == USB_RET_NAK) || (q->qh.token & QTD_TOKEN_ACTIVE)) {
1923
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1924
    } else {
1925
        ehci_set_state(q->ehci, async, EST_WRITEBACK);
1926
    }
1927

    
1928
    again = 1;
1929

    
1930
out:
1931
    ehci_flush_qh(q);
1932
    return again;
1933
}
1934

    
1935

    
1936
static int ehci_state_writeback(EHCIQueue *q, int async)
1937
{
1938
    int again = 0;
1939

    
1940
    /*  Write back the QTD from the QH area */
1941
    ehci_trace_qtd(q, NLPTR_GET(q->qtdaddr), (EHCIqtd*) &q->qh.next_qtd);
1942
    put_dwords(NLPTR_GET(q->qtdaddr),(uint32_t *) &q->qh.next_qtd,
1943
                sizeof(EHCIqtd) >> 2);
1944

    
1945
    /*
1946
     * EHCI specs say go horizontal here.
1947
     *
1948
     * We can also advance the queue here for performance reasons.  We
1949
     * need to take care to only take that shortcut in case we've
1950
     * processed the qtd just written back without errors, i.e. halt
1951
     * bit is clear.
1952
     */
1953
    if (q->qh.token & QTD_TOKEN_HALT) {
1954
        ehci_set_state(q->ehci, async, EST_HORIZONTALQH);
1955
        again = 1;
1956
    } else {
1957
        ehci_set_state(q->ehci, async, EST_ADVANCEQUEUE);
1958
        again = 1;
1959
    }
1960
    return again;
1961
}
1962

    
1963
/*
1964
 * This is the state machine that is common to both async and periodic
1965
 */
1966

    
1967
static void ehci_advance_state(EHCIState *ehci,
1968
                               int async)
1969
{
1970
    EHCIQueue *q = NULL;
1971
    int again;
1972
    int iter = 0;
1973

    
1974
    do {
1975
        if (ehci_get_state(ehci, async) == EST_FETCHQH) {
1976
            iter++;
1977
            /* if we are roaming a lot of QH without executing a qTD
1978
             * something is wrong with the linked list. TO-DO: why is
1979
             * this hack needed?
1980
             */
1981
            assert(iter < MAX_ITERATIONS);
1982
#if 0
1983
            if (iter > MAX_ITERATIONS) {
1984
                DPRINTF("\n*** advance_state: bailing on MAX ITERATIONS***\n");
1985
                ehci_set_state(ehci, async, EST_ACTIVE);
1986
                break;
1987
            }
1988
#endif
1989
        }
1990
        switch(ehci_get_state(ehci, async)) {
1991
        case EST_WAITLISTHEAD:
1992
            again = ehci_state_waitlisthead(ehci, async);
1993
            break;
1994

    
1995
        case EST_FETCHENTRY:
1996
            again = ehci_state_fetchentry(ehci, async);
1997
            break;
1998

    
1999
        case EST_FETCHQH:
2000
            q = ehci_state_fetchqh(ehci, async);
2001
            again = q ? 1 : 0;
2002
            break;
2003

    
2004
        case EST_FETCHITD:
2005
            again = ehci_state_fetchitd(ehci, async);
2006
            break;
2007

    
2008
        case EST_ADVANCEQUEUE:
2009
            again = ehci_state_advqueue(q, async);
2010
            break;
2011

    
2012
        case EST_FETCHQTD:
2013
            again = ehci_state_fetchqtd(q, async);
2014
            break;
2015

    
2016
        case EST_HORIZONTALQH:
2017
            again = ehci_state_horizqh(q, async);
2018
            break;
2019

    
2020
        case EST_EXECUTE:
2021
            iter = 0;
2022
            again = ehci_state_execute(q, async);
2023
            break;
2024

    
2025
        case EST_EXECUTING:
2026
            assert(q != NULL);
2027
            again = ehci_state_executing(q, async);
2028
            break;
2029

    
2030
        case EST_WRITEBACK:
2031
            again = ehci_state_writeback(q, async);
2032
            break;
2033

    
2034
        default:
2035
            fprintf(stderr, "Bad state!\n");
2036
            again = -1;
2037
            assert(0);
2038
            break;
2039
        }
2040

    
2041
        if (again < 0) {
2042
            fprintf(stderr, "processing error - resetting ehci HC\n");
2043
            ehci_reset(ehci);
2044
            again = 0;
2045
            assert(0);
2046
        }
2047
    }
2048
    while (again);
2049

    
2050
    ehci_commit_interrupt(ehci);
2051
}
2052

    
2053
static void ehci_advance_async_state(EHCIState *ehci)
2054
{
2055
    int async = 1;
2056

    
2057
    switch(ehci_get_state(ehci, async)) {
2058
    case EST_INACTIVE:
2059
        if (!(ehci->usbcmd & USBCMD_ASE)) {
2060
            break;
2061
        }
2062
        ehci_set_usbsts(ehci, USBSTS_ASS);
2063
        ehci_set_state(ehci, async, EST_ACTIVE);
2064
        // No break, fall through to ACTIVE
2065

    
2066
    case EST_ACTIVE:
2067
        if ( !(ehci->usbcmd & USBCMD_ASE)) {
2068
            ehci_clear_usbsts(ehci, USBSTS_ASS);
2069
            ehci_set_state(ehci, async, EST_INACTIVE);
2070
            break;
2071
        }
2072

    
2073
        /* If the doorbell is set, the guest wants to make a change to the
2074
         * schedule. The host controller needs to release cached data.
2075
         * (section 4.8.2)
2076
         */
2077
        if (ehci->usbcmd & USBCMD_IAAD) {
2078
            DPRINTF("ASYNC: doorbell request acknowledged\n");
2079
            ehci->usbcmd &= ~USBCMD_IAAD;
2080
            ehci_set_interrupt(ehci, USBSTS_IAA);
2081
            break;
2082
        }
2083

    
2084
        /* make sure guest has acknowledged */
2085
        /* TO-DO: is this really needed? */
2086
        if (ehci->usbsts & USBSTS_IAA) {
2087
            DPRINTF("IAA status bit still set.\n");
2088
            break;
2089
        }
2090

    
2091
        /* check that address register has been set */
2092
        if (ehci->asynclistaddr == 0) {
2093
            break;
2094
        }
2095

    
2096
        ehci_set_state(ehci, async, EST_WAITLISTHEAD);
2097
        ehci_advance_state(ehci, async);
2098
        break;
2099

    
2100
    default:
2101
        /* this should only be due to a developer mistake */
2102
        fprintf(stderr, "ehci: Bad asynchronous state %d. "
2103
                "Resetting to active\n", ehci->astate);
2104
        assert(0);
2105
    }
2106
}
2107

    
2108
static void ehci_advance_periodic_state(EHCIState *ehci)
2109
{
2110
    uint32_t entry;
2111
    uint32_t list;
2112
    int async = 0;
2113

    
2114
    // 4.6
2115

    
2116
    switch(ehci_get_state(ehci, async)) {
2117
    case EST_INACTIVE:
2118
        if ( !(ehci->frindex & 7) && (ehci->usbcmd & USBCMD_PSE)) {
2119
            ehci_set_usbsts(ehci, USBSTS_PSS);
2120
            ehci_set_state(ehci, async, EST_ACTIVE);
2121
            // No break, fall through to ACTIVE
2122
        } else
2123
            break;
2124

    
2125
    case EST_ACTIVE:
2126
        if ( !(ehci->frindex & 7) && !(ehci->usbcmd & USBCMD_PSE)) {
2127
            ehci_clear_usbsts(ehci, USBSTS_PSS);
2128
            ehci_set_state(ehci, async, EST_INACTIVE);
2129
            break;
2130
        }
2131

    
2132
        list = ehci->periodiclistbase & 0xfffff000;
2133
        /* check that register has been set */
2134
        if (list == 0) {
2135
            break;
2136
        }
2137
        list |= ((ehci->frindex & 0x1ff8) >> 1);
2138

    
2139
        cpu_physical_memory_rw(list, (uint8_t *) &entry, sizeof entry, 0);
2140
        entry = le32_to_cpu(entry);
2141

    
2142
        DPRINTF("PERIODIC state adv fr=%d.  [%08X] -> %08X\n",
2143
                ehci->frindex / 8, list, entry);
2144
        ehci_set_fetch_addr(ehci, async,entry);
2145
        ehci_set_state(ehci, async, EST_FETCHENTRY);
2146
        ehci_advance_state(ehci, async);
2147
        break;
2148

    
2149
    default:
2150
        /* this should only be due to a developer mistake */
2151
        fprintf(stderr, "ehci: Bad periodic state %d. "
2152
                "Resetting to active\n", ehci->pstate);
2153
        assert(0);
2154
    }
2155
}
2156

    
2157
static void ehci_frame_timer(void *opaque)
2158
{
2159
    EHCIState *ehci = opaque;
2160
    int64_t expire_time, t_now;
2161
    uint64_t ns_elapsed;
2162
    int frames;
2163
    int i;
2164
    int skipped_frames = 0;
2165

    
2166
    t_now = qemu_get_clock_ns(vm_clock);
2167
    expire_time = t_now + (get_ticks_per_sec() / ehci->freq);
2168

    
2169
    ns_elapsed = t_now - ehci->last_run_ns;
2170
    frames = ns_elapsed / FRAME_TIMER_NS;
2171

    
2172
    for (i = 0; i < frames; i++) {
2173
        if ( !(ehci->usbsts & USBSTS_HALT)) {
2174
            if (ehci->isoch_pause <= 0) {
2175
                ehci->frindex += 8;
2176
            }
2177

    
2178
            if (ehci->frindex > 0x00001fff) {
2179
                ehci->frindex = 0;
2180
                ehci_set_interrupt(ehci, USBSTS_FLR);
2181
            }
2182

    
2183
            ehci->sofv = (ehci->frindex - 1) >> 3;
2184
            ehci->sofv &= 0x000003ff;
2185
        }
2186

    
2187
        if (frames - i > ehci->maxframes) {
2188
            skipped_frames++;
2189
        } else {
2190
            ehci_advance_periodic_state(ehci);
2191
        }
2192

    
2193
        ehci->last_run_ns += FRAME_TIMER_NS;
2194
    }
2195

    
2196
#if 0
2197
    if (skipped_frames) {
2198
        DPRINTF("WARNING - EHCI skipped %d frames\n", skipped_frames);
2199
    }
2200
#endif
2201

    
2202
    /*  Async is not inside loop since it executes everything it can once
2203
     *  called
2204
     */
2205
    ehci_advance_async_state(ehci);
2206

    
2207
    qemu_mod_timer(ehci->frame_timer, expire_time);
2208
}
2209

    
2210
static CPUReadMemoryFunc *ehci_readfn[3]={
2211
    ehci_mem_readb,
2212
    ehci_mem_readw,
2213
    ehci_mem_readl
2214
};
2215

    
2216
static CPUWriteMemoryFunc *ehci_writefn[3]={
2217
    ehci_mem_writeb,
2218
    ehci_mem_writew,
2219
    ehci_mem_writel
2220
};
2221

    
2222
static void ehci_map(PCIDevice *pci_dev, int region_num,
2223
                     pcibus_t addr, pcibus_t size, int type)
2224
{
2225
    EHCIState *s =(EHCIState *)pci_dev;
2226

    
2227
    DPRINTF("ehci_map: region %d, addr %08" PRIx64 ", size %" PRId64 ", s->mem %08X\n",
2228
            region_num, addr, size, s->mem);
2229
    s->mem_base = addr;
2230
    cpu_register_physical_memory(addr, size, s->mem);
2231
}
2232

    
2233
static int usb_ehci_initfn(PCIDevice *dev);
2234

    
2235
static USBPortOps ehci_port_ops = {
2236
    .attach = ehci_attach,
2237
    .detach = ehci_detach,
2238
    .child_detach = ehci_child_detach,
2239
    .wakeup = ehci_wakeup,
2240
    .complete = ehci_async_complete_packet,
2241
};
2242

    
2243
static USBBusOps ehci_bus_ops = {
2244
    .register_companion = ehci_register_companion,
2245
};
2246

    
2247
static Property ehci_properties[] = {
2248
    DEFINE_PROP_UINT32("freq",      EHCIState, freq, FRAME_TIMER_FREQ),
2249
    DEFINE_PROP_UINT32("maxframes", EHCIState, maxframes, 128),
2250
    DEFINE_PROP_END_OF_LIST(),
2251
};
2252

    
2253
static PCIDeviceInfo ehci_info[] = {
2254
    {
2255
        .qdev.name    = "usb-ehci",
2256
        .qdev.size    = sizeof(EHCIState),
2257
        .init         = usb_ehci_initfn,
2258
        .vendor_id    = PCI_VENDOR_ID_INTEL,
2259
        .device_id    = PCI_DEVICE_ID_INTEL_82801D, /* ich4 */
2260
        .revision     = 0x10,
2261
        .class_id     = PCI_CLASS_SERIAL_USB,
2262
        .qdev.props   = ehci_properties,
2263
    },{
2264
        .qdev.name    = "ich9-usb-ehci1",
2265
        .qdev.size    = sizeof(EHCIState),
2266
        .init         = usb_ehci_initfn,
2267
        .vendor_id    = PCI_VENDOR_ID_INTEL,
2268
        .device_id    = PCI_DEVICE_ID_INTEL_82801I_EHCI1,
2269
        .revision     = 0x03,
2270
        .class_id     = PCI_CLASS_SERIAL_USB,
2271
        .qdev.props   = ehci_properties,
2272
    },{
2273
        /* end of list */
2274
    }
2275
};
2276

    
2277
static int usb_ehci_initfn(PCIDevice *dev)
2278
{
2279
    EHCIState *s = DO_UPCAST(EHCIState, dev, dev);
2280
    uint8_t *pci_conf = s->dev.config;
2281
    int i;
2282

    
2283
    pci_set_byte(&pci_conf[PCI_CLASS_PROG], 0x20);
2284

    
2285
    /* capabilities pointer */
2286
    pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x00);
2287
    //pci_set_byte(&pci_conf[PCI_CAPABILITY_LIST], 0x50);
2288

    
2289
    pci_set_byte(&pci_conf[PCI_INTERRUPT_PIN], 4); // interrupt pin 3
2290
    pci_set_byte(&pci_conf[PCI_MIN_GNT], 0);
2291
    pci_set_byte(&pci_conf[PCI_MAX_LAT], 0);
2292

    
2293
    // pci_conf[0x50] = 0x01; // power management caps
2294

    
2295
    pci_set_byte(&pci_conf[USB_SBRN], USB_RELEASE_2); // release number (2.1.4)
2296
    pci_set_byte(&pci_conf[0x61], 0x20);  // frame length adjustment (2.1.5)
2297
    pci_set_word(&pci_conf[0x62], 0x00);  // port wake up capability (2.1.6)
2298

    
2299
    pci_conf[0x64] = 0x00;
2300
    pci_conf[0x65] = 0x00;
2301
    pci_conf[0x66] = 0x00;
2302
    pci_conf[0x67] = 0x00;
2303
    pci_conf[0x68] = 0x01;
2304
    pci_conf[0x69] = 0x00;
2305
    pci_conf[0x6a] = 0x00;
2306
    pci_conf[0x6b] = 0x00;  // USBLEGSUP
2307
    pci_conf[0x6c] = 0x00;
2308
    pci_conf[0x6d] = 0x00;
2309
    pci_conf[0x6e] = 0x00;
2310
    pci_conf[0x6f] = 0xc0;  // USBLEFCTLSTS
2311

    
2312
    // 2.2 host controller interface version
2313
    s->mmio[0x00] = (uint8_t) OPREGBASE;
2314
    s->mmio[0x01] = 0x00;
2315
    s->mmio[0x02] = 0x00;
2316
    s->mmio[0x03] = 0x01;        // HC version
2317
    s->mmio[0x04] = NB_PORTS;    // Number of downstream ports
2318
    s->mmio[0x05] = 0x00;        // No companion ports at present
2319
    s->mmio[0x06] = 0x00;
2320
    s->mmio[0x07] = 0x00;
2321
    s->mmio[0x08] = 0x80;        // We can cache whole frame, not 64-bit capable
2322
    s->mmio[0x09] = 0x68;        // EECP
2323
    s->mmio[0x0a] = 0x00;
2324
    s->mmio[0x0b] = 0x00;
2325

    
2326
    s->irq = s->dev.irq[3];
2327

    
2328
    usb_bus_new(&s->bus, &ehci_bus_ops, &s->dev.qdev);
2329
    for(i = 0; i < NB_PORTS; i++) {
2330
        usb_register_port(&s->bus, &s->ports[i], s, i, &ehci_port_ops,
2331
                          USB_SPEED_MASK_HIGH);
2332
        s->ports[i].dev = 0;
2333
    }
2334

    
2335
    s->frame_timer = qemu_new_timer_ns(vm_clock, ehci_frame_timer, s);
2336
    QTAILQ_INIT(&s->queues);
2337

    
2338
    qemu_register_reset(ehci_reset, s);
2339

    
2340
    s->mem = cpu_register_io_memory(ehci_readfn, ehci_writefn, s,
2341
                                    DEVICE_LITTLE_ENDIAN);
2342

    
2343
    pci_register_bar(&s->dev, 0, MMIO_SIZE, PCI_BASE_ADDRESS_SPACE_MEMORY,
2344
                                                            ehci_map);
2345

    
2346
    fprintf(stderr, "*** EHCI support is under development ***\n");
2347

    
2348
    return 0;
2349
}
2350

    
2351
static void ehci_register(void)
2352
{
2353
    pci_qdev_register_many(ehci_info);
2354
}
2355
device_init(ehci_register);
2356

    
2357
/*
2358
 * vim: expandtab ts=4
2359
 */