Statistics
| Branch: | Revision:

root / target-arm / helper.c @ 30a8cac1

History | View | Annotate | Download (71.2 kB)

1
#include <stdio.h>
2
#include <stdlib.h>
3
#include <string.h>
4

    
5
#include "cpu.h"
6
#include "exec-all.h"
7
#include "gdbstub.h"
8
#include "helpers.h"
9
#include "qemu-common.h"
10
#include "host-utils.h"
11

    
12
static uint32_t cortexa9_cp15_c0_c1[8] =
13
{ 0x1031, 0x11, 0x000, 0, 0x00100103, 0x20000000, 0x01230000, 0x00002111 };
14

    
15
static uint32_t cortexa9_cp15_c0_c2[8] =
16
{ 0x00101111, 0x13112111, 0x21232041, 0x11112131, 0x00111142, 0, 0, 0 };
17

    
18
static uint32_t cortexa8_cp15_c0_c1[8] =
19
{ 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
20

    
21
static uint32_t cortexa8_cp15_c0_c2[8] =
22
{ 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
23

    
24
static uint32_t mpcore_cp15_c0_c1[8] =
25
{ 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
26

    
27
static uint32_t mpcore_cp15_c0_c2[8] =
28
{ 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
29

    
30
static uint32_t arm1136_cp15_c0_c1[8] =
31
{ 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
32

    
33
static uint32_t arm1136_cp15_c0_c2[8] =
34
{ 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
35

    
36
static uint32_t cpu_arm_find_by_name(const char *name);
37

    
38
static inline void set_feature(CPUARMState *env, int feature)
39
{
40
    env->features |= 1u << feature;
41
}
42

    
43
static void cpu_reset_model_id(CPUARMState *env, uint32_t id)
44
{
45
    env->cp15.c0_cpuid = id;
46
    switch (id) {
47
    case ARM_CPUID_ARM926:
48
        set_feature(env, ARM_FEATURE_VFP);
49
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41011090;
50
        env->cp15.c0_cachetype = 0x1dd20d2;
51
        env->cp15.c1_sys = 0x00090078;
52
        break;
53
    case ARM_CPUID_ARM946:
54
        set_feature(env, ARM_FEATURE_MPU);
55
        env->cp15.c0_cachetype = 0x0f004006;
56
        env->cp15.c1_sys = 0x00000078;
57
        break;
58
    case ARM_CPUID_ARM1026:
59
        set_feature(env, ARM_FEATURE_VFP);
60
        set_feature(env, ARM_FEATURE_AUXCR);
61
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410110a0;
62
        env->cp15.c0_cachetype = 0x1dd20d2;
63
        env->cp15.c1_sys = 0x00090078;
64
        break;
65
    case ARM_CPUID_ARM1136_R2:
66
    case ARM_CPUID_ARM1136:
67
        set_feature(env, ARM_FEATURE_V6);
68
        set_feature(env, ARM_FEATURE_VFP);
69
        set_feature(env, ARM_FEATURE_AUXCR);
70
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
71
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
72
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
73
        memcpy(env->cp15.c0_c1, arm1136_cp15_c0_c1, 8 * sizeof(uint32_t));
74
        memcpy(env->cp15.c0_c2, arm1136_cp15_c0_c2, 8 * sizeof(uint32_t));
75
        env->cp15.c0_cachetype = 0x1dd20d2;
76
        break;
77
    case ARM_CPUID_ARM11MPCORE:
78
        set_feature(env, ARM_FEATURE_V6);
79
        set_feature(env, ARM_FEATURE_V6K);
80
        set_feature(env, ARM_FEATURE_VFP);
81
        set_feature(env, ARM_FEATURE_AUXCR);
82
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410120b4;
83
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11111111;
84
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00000000;
85
        memcpy(env->cp15.c0_c1, mpcore_cp15_c0_c1, 8 * sizeof(uint32_t));
86
        memcpy(env->cp15.c0_c2, mpcore_cp15_c0_c2, 8 * sizeof(uint32_t));
87
        env->cp15.c0_cachetype = 0x1dd20d2;
88
        break;
89
    case ARM_CPUID_CORTEXA8:
90
        set_feature(env, ARM_FEATURE_V6);
91
        set_feature(env, ARM_FEATURE_V6K);
92
        set_feature(env, ARM_FEATURE_V7);
93
        set_feature(env, ARM_FEATURE_AUXCR);
94
        set_feature(env, ARM_FEATURE_THUMB2);
95
        set_feature(env, ARM_FEATURE_VFP);
96
        set_feature(env, ARM_FEATURE_VFP3);
97
        set_feature(env, ARM_FEATURE_NEON);
98
        set_feature(env, ARM_FEATURE_THUMB2EE);
99
        env->vfp.xregs[ARM_VFP_FPSID] = 0x410330c0;
100
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
101
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x00011100;
102
        memcpy(env->cp15.c0_c1, cortexa8_cp15_c0_c1, 8 * sizeof(uint32_t));
103
        memcpy(env->cp15.c0_c2, cortexa8_cp15_c0_c2, 8 * sizeof(uint32_t));
104
        env->cp15.c0_cachetype = 0x82048004;
105
        env->cp15.c0_clid = (1 << 27) | (2 << 24) | 3;
106
        env->cp15.c0_ccsid[0] = 0xe007e01a; /* 16k L1 dcache. */
107
        env->cp15.c0_ccsid[1] = 0x2007e01a; /* 16k L1 icache. */
108
        env->cp15.c0_ccsid[2] = 0xf0000000; /* No L2 icache. */
109
        break;
110
    case ARM_CPUID_CORTEXA9:
111
        set_feature(env, ARM_FEATURE_V6);
112
        set_feature(env, ARM_FEATURE_V6K);
113
        set_feature(env, ARM_FEATURE_V7);
114
        set_feature(env, ARM_FEATURE_AUXCR);
115
        set_feature(env, ARM_FEATURE_THUMB2);
116
        set_feature(env, ARM_FEATURE_VFP);
117
        set_feature(env, ARM_FEATURE_VFP3);
118
        set_feature(env, ARM_FEATURE_VFP_FP16);
119
        set_feature(env, ARM_FEATURE_NEON);
120
        set_feature(env, ARM_FEATURE_THUMB2EE);
121
        env->vfp.xregs[ARM_VFP_FPSID] = 0x41034000; /* Guess */
122
        env->vfp.xregs[ARM_VFP_MVFR0] = 0x11110222;
123
        env->vfp.xregs[ARM_VFP_MVFR1] = 0x01111111;
124
        memcpy(env->cp15.c0_c1, cortexa9_cp15_c0_c1, 8 * sizeof(uint32_t));
125
        memcpy(env->cp15.c0_c2, cortexa9_cp15_c0_c2, 8 * sizeof(uint32_t));
126
        env->cp15.c0_cachetype = 0x80038003;
127
        env->cp15.c0_clid = (1 << 27) | (1 << 24) | 3;
128
        env->cp15.c0_ccsid[0] = 0xe00fe015; /* 16k L1 dcache. */
129
        env->cp15.c0_ccsid[1] = 0x200fe015; /* 16k L1 icache. */
130
        break;
131
    case ARM_CPUID_CORTEXM3:
132
        set_feature(env, ARM_FEATURE_V6);
133
        set_feature(env, ARM_FEATURE_THUMB2);
134
        set_feature(env, ARM_FEATURE_V7);
135
        set_feature(env, ARM_FEATURE_M);
136
        set_feature(env, ARM_FEATURE_DIV);
137
        break;
138
    case ARM_CPUID_ANY: /* For userspace emulation.  */
139
        set_feature(env, ARM_FEATURE_V6);
140
        set_feature(env, ARM_FEATURE_V6K);
141
        set_feature(env, ARM_FEATURE_V7);
142
        set_feature(env, ARM_FEATURE_THUMB2);
143
        set_feature(env, ARM_FEATURE_VFP);
144
        set_feature(env, ARM_FEATURE_VFP3);
145
        set_feature(env, ARM_FEATURE_VFP_FP16);
146
        set_feature(env, ARM_FEATURE_NEON);
147
        set_feature(env, ARM_FEATURE_THUMB2EE);
148
        set_feature(env, ARM_FEATURE_DIV);
149
        break;
150
    case ARM_CPUID_TI915T:
151
    case ARM_CPUID_TI925T:
152
        set_feature(env, ARM_FEATURE_OMAPCP);
153
        env->cp15.c0_cpuid = ARM_CPUID_TI925T; /* Depends on wiring.  */
154
        env->cp15.c0_cachetype = 0x5109149;
155
        env->cp15.c1_sys = 0x00000070;
156
        env->cp15.c15_i_max = 0x000;
157
        env->cp15.c15_i_min = 0xff0;
158
        break;
159
    case ARM_CPUID_PXA250:
160
    case ARM_CPUID_PXA255:
161
    case ARM_CPUID_PXA260:
162
    case ARM_CPUID_PXA261:
163
    case ARM_CPUID_PXA262:
164
        set_feature(env, ARM_FEATURE_XSCALE);
165
        /* JTAG_ID is ((id << 28) | 0x09265013) */
166
        env->cp15.c0_cachetype = 0xd172172;
167
        env->cp15.c1_sys = 0x00000078;
168
        break;
169
    case ARM_CPUID_PXA270_A0:
170
    case ARM_CPUID_PXA270_A1:
171
    case ARM_CPUID_PXA270_B0:
172
    case ARM_CPUID_PXA270_B1:
173
    case ARM_CPUID_PXA270_C0:
174
    case ARM_CPUID_PXA270_C5:
175
        set_feature(env, ARM_FEATURE_XSCALE);
176
        /* JTAG_ID is ((id << 28) | 0x09265013) */
177
        set_feature(env, ARM_FEATURE_IWMMXT);
178
        env->iwmmxt.cregs[ARM_IWMMXT_wCID] = 0x69051000 | 'Q';
179
        env->cp15.c0_cachetype = 0xd172172;
180
        env->cp15.c1_sys = 0x00000078;
181
        break;
182
    default:
183
        cpu_abort(env, "Bad CPU ID: %x\n", id);
184
        break;
185
    }
186
}
187

    
188
void cpu_reset(CPUARMState *env)
189
{
190
    uint32_t id;
191

    
192
    if (qemu_loglevel_mask(CPU_LOG_RESET)) {
193
        qemu_log("CPU Reset (CPU %d)\n", env->cpu_index);
194
        log_cpu_state(env, 0);
195
    }
196

    
197
    id = env->cp15.c0_cpuid;
198
    memset(env, 0, offsetof(CPUARMState, breakpoints));
199
    if (id)
200
        cpu_reset_model_id(env, id);
201
#if defined (CONFIG_USER_ONLY)
202
    env->uncached_cpsr = ARM_CPU_MODE_USR;
203
    env->vfp.xregs[ARM_VFP_FPEXC] = 1 << 30;
204
#else
205
    /* SVC mode with interrupts disabled.  */
206
    env->uncached_cpsr = ARM_CPU_MODE_SVC | CPSR_A | CPSR_F | CPSR_I;
207
    /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
208
       clear at reset.  */
209
    if (IS_M(env))
210
        env->uncached_cpsr &= ~CPSR_I;
211
    env->vfp.xregs[ARM_VFP_FPEXC] = 0;
212
    env->cp15.c2_base_mask = 0xffffc000u;
213
#endif
214
    env->regs[15] = 0;
215
    tlb_flush(env, 1);
216
}
217

    
218
static int vfp_gdb_get_reg(CPUState *env, uint8_t *buf, int reg)
219
{
220
    int nregs;
221

    
222
    /* VFP data registers are always little-endian.  */
223
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
224
    if (reg < nregs) {
225
        stfq_le_p(buf, env->vfp.regs[reg]);
226
        return 8;
227
    }
228
    if (arm_feature(env, ARM_FEATURE_NEON)) {
229
        /* Aliases for Q regs.  */
230
        nregs += 16;
231
        if (reg < nregs) {
232
            stfq_le_p(buf, env->vfp.regs[(reg - 32) * 2]);
233
            stfq_le_p(buf + 8, env->vfp.regs[(reg - 32) * 2 + 1]);
234
            return 16;
235
        }
236
    }
237
    switch (reg - nregs) {
238
    case 0: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSID]); return 4;
239
    case 1: stl_p(buf, env->vfp.xregs[ARM_VFP_FPSCR]); return 4;
240
    case 2: stl_p(buf, env->vfp.xregs[ARM_VFP_FPEXC]); return 4;
241
    }
242
    return 0;
243
}
244

    
245
static int vfp_gdb_set_reg(CPUState *env, uint8_t *buf, int reg)
246
{
247
    int nregs;
248

    
249
    nregs = arm_feature(env, ARM_FEATURE_VFP3) ? 32 : 16;
250
    if (reg < nregs) {
251
        env->vfp.regs[reg] = ldfq_le_p(buf);
252
        return 8;
253
    }
254
    if (arm_feature(env, ARM_FEATURE_NEON)) {
255
        nregs += 16;
256
        if (reg < nregs) {
257
            env->vfp.regs[(reg - 32) * 2] = ldfq_le_p(buf);
258
            env->vfp.regs[(reg - 32) * 2 + 1] = ldfq_le_p(buf + 8);
259
            return 16;
260
        }
261
    }
262
    switch (reg - nregs) {
263
    case 0: env->vfp.xregs[ARM_VFP_FPSID] = ldl_p(buf); return 4;
264
    case 1: env->vfp.xregs[ARM_VFP_FPSCR] = ldl_p(buf); return 4;
265
    case 2: env->vfp.xregs[ARM_VFP_FPEXC] = ldl_p(buf) & (1 << 30); return 4;
266
    }
267
    return 0;
268
}
269

    
270
CPUARMState *cpu_arm_init(const char *cpu_model)
271
{
272
    CPUARMState *env;
273
    uint32_t id;
274
    static int inited = 0;
275

    
276
    id = cpu_arm_find_by_name(cpu_model);
277
    if (id == 0)
278
        return NULL;
279
    env = qemu_mallocz(sizeof(CPUARMState));
280
    cpu_exec_init(env);
281
    if (!inited) {
282
        inited = 1;
283
        arm_translate_init();
284
    }
285

    
286
    env->cpu_model_str = cpu_model;
287
    env->cp15.c0_cpuid = id;
288
    cpu_reset(env);
289
    if (arm_feature(env, ARM_FEATURE_NEON)) {
290
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
291
                                 51, "arm-neon.xml", 0);
292
    } else if (arm_feature(env, ARM_FEATURE_VFP3)) {
293
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
294
                                 35, "arm-vfp3.xml", 0);
295
    } else if (arm_feature(env, ARM_FEATURE_VFP)) {
296
        gdb_register_coprocessor(env, vfp_gdb_get_reg, vfp_gdb_set_reg,
297
                                 19, "arm-vfp.xml", 0);
298
    }
299
    qemu_init_vcpu(env);
300
    return env;
301
}
302

    
303
struct arm_cpu_t {
304
    uint32_t id;
305
    const char *name;
306
};
307

    
308
static const struct arm_cpu_t arm_cpu_names[] = {
309
    { ARM_CPUID_ARM926, "arm926"},
310
    { ARM_CPUID_ARM946, "arm946"},
311
    { ARM_CPUID_ARM1026, "arm1026"},
312
    { ARM_CPUID_ARM1136, "arm1136"},
313
    { ARM_CPUID_ARM1136_R2, "arm1136-r2"},
314
    { ARM_CPUID_ARM11MPCORE, "arm11mpcore"},
315
    { ARM_CPUID_CORTEXM3, "cortex-m3"},
316
    { ARM_CPUID_CORTEXA8, "cortex-a8"},
317
    { ARM_CPUID_CORTEXA9, "cortex-a9"},
318
    { ARM_CPUID_TI925T, "ti925t" },
319
    { ARM_CPUID_PXA250, "pxa250" },
320
    { ARM_CPUID_PXA255, "pxa255" },
321
    { ARM_CPUID_PXA260, "pxa260" },
322
    { ARM_CPUID_PXA261, "pxa261" },
323
    { ARM_CPUID_PXA262, "pxa262" },
324
    { ARM_CPUID_PXA270, "pxa270" },
325
    { ARM_CPUID_PXA270_A0, "pxa270-a0" },
326
    { ARM_CPUID_PXA270_A1, "pxa270-a1" },
327
    { ARM_CPUID_PXA270_B0, "pxa270-b0" },
328
    { ARM_CPUID_PXA270_B1, "pxa270-b1" },
329
    { ARM_CPUID_PXA270_C0, "pxa270-c0" },
330
    { ARM_CPUID_PXA270_C5, "pxa270-c5" },
331
    { ARM_CPUID_ANY, "any"},
332
    { 0, NULL}
333
};
334

    
335
void arm_cpu_list(FILE *f, int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
336
{
337
    int i;
338

    
339
    (*cpu_fprintf)(f, "Available CPUs:\n");
340
    for (i = 0; arm_cpu_names[i].name; i++) {
341
        (*cpu_fprintf)(f, "  %s\n", arm_cpu_names[i].name);
342
    }
343
}
344

    
345
/* return 0 if not found */
346
static uint32_t cpu_arm_find_by_name(const char *name)
347
{
348
    int i;
349
    uint32_t id;
350

    
351
    id = 0;
352
    for (i = 0; arm_cpu_names[i].name; i++) {
353
        if (strcmp(name, arm_cpu_names[i].name) == 0) {
354
            id = arm_cpu_names[i].id;
355
            break;
356
        }
357
    }
358
    return id;
359
}
360

    
361
void cpu_arm_close(CPUARMState *env)
362
{
363
    free(env);
364
}
365

    
366
uint32_t cpsr_read(CPUARMState *env)
367
{
368
    int ZF;
369
    ZF = (env->ZF == 0);
370
    return env->uncached_cpsr | (env->NF & 0x80000000) | (ZF << 30) |
371
        (env->CF << 29) | ((env->VF & 0x80000000) >> 3) | (env->QF << 27)
372
        | (env->thumb << 5) | ((env->condexec_bits & 3) << 25)
373
        | ((env->condexec_bits & 0xfc) << 8)
374
        | (env->GE << 16);
375
}
376

    
377
void cpsr_write(CPUARMState *env, uint32_t val, uint32_t mask)
378
{
379
    if (mask & CPSR_NZCV) {
380
        env->ZF = (~val) & CPSR_Z;
381
        env->NF = val;
382
        env->CF = (val >> 29) & 1;
383
        env->VF = (val << 3) & 0x80000000;
384
    }
385
    if (mask & CPSR_Q)
386
        env->QF = ((val & CPSR_Q) != 0);
387
    if (mask & CPSR_T)
388
        env->thumb = ((val & CPSR_T) != 0);
389
    if (mask & CPSR_IT_0_1) {
390
        env->condexec_bits &= ~3;
391
        env->condexec_bits |= (val >> 25) & 3;
392
    }
393
    if (mask & CPSR_IT_2_7) {
394
        env->condexec_bits &= 3;
395
        env->condexec_bits |= (val >> 8) & 0xfc;
396
    }
397
    if (mask & CPSR_GE) {
398
        env->GE = (val >> 16) & 0xf;
399
    }
400

    
401
    if ((env->uncached_cpsr ^ val) & mask & CPSR_M) {
402
        switch_mode(env, val & CPSR_M);
403
    }
404
    mask &= ~CACHED_CPSR_BITS;
405
    env->uncached_cpsr = (env->uncached_cpsr & ~mask) | (val & mask);
406
}
407

    
408
/* Sign/zero extend */
409
uint32_t HELPER(sxtb16)(uint32_t x)
410
{
411
    uint32_t res;
412
    res = (uint16_t)(int8_t)x;
413
    res |= (uint32_t)(int8_t)(x >> 16) << 16;
414
    return res;
415
}
416

    
417
uint32_t HELPER(uxtb16)(uint32_t x)
418
{
419
    uint32_t res;
420
    res = (uint16_t)(uint8_t)x;
421
    res |= (uint32_t)(uint8_t)(x >> 16) << 16;
422
    return res;
423
}
424

    
425
uint32_t HELPER(clz)(uint32_t x)
426
{
427
    return clz32(x);
428
}
429

    
430
int32_t HELPER(sdiv)(int32_t num, int32_t den)
431
{
432
    if (den == 0)
433
      return 0;
434
    if (num == INT_MIN && den == -1)
435
      return INT_MIN;
436
    return num / den;
437
}
438

    
439
uint32_t HELPER(udiv)(uint32_t num, uint32_t den)
440
{
441
    if (den == 0)
442
      return 0;
443
    return num / den;
444
}
445

    
446
uint32_t HELPER(rbit)(uint32_t x)
447
{
448
    x =  ((x & 0xff000000) >> 24)
449
       | ((x & 0x00ff0000) >> 8)
450
       | ((x & 0x0000ff00) << 8)
451
       | ((x & 0x000000ff) << 24);
452
    x =  ((x & 0xf0f0f0f0) >> 4)
453
       | ((x & 0x0f0f0f0f) << 4);
454
    x =  ((x & 0x88888888) >> 3)
455
       | ((x & 0x44444444) >> 1)
456
       | ((x & 0x22222222) << 1)
457
       | ((x & 0x11111111) << 3);
458
    return x;
459
}
460

    
461
uint32_t HELPER(abs)(uint32_t x)
462
{
463
    return ((int32_t)x < 0) ? -x : x;
464
}
465

    
466
#if defined(CONFIG_USER_ONLY)
467

    
468
void do_interrupt (CPUState *env)
469
{
470
    env->exception_index = -1;
471
}
472

    
473
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address, int rw,
474
                              int mmu_idx, int is_softmmu)
475
{
476
    if (rw == 2) {
477
        env->exception_index = EXCP_PREFETCH_ABORT;
478
        env->cp15.c6_insn = address;
479
    } else {
480
        env->exception_index = EXCP_DATA_ABORT;
481
        env->cp15.c6_data = address;
482
    }
483
    return 1;
484
}
485

    
486
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
487
{
488
    return addr;
489
}
490

    
491
/* These should probably raise undefined insn exceptions.  */
492
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
493
{
494
    int op1 = (insn >> 8) & 0xf;
495
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
496
    return;
497
}
498

    
499
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
500
{
501
    int op1 = (insn >> 8) & 0xf;
502
    cpu_abort(env, "cp%i insn %08x\n", op1, insn);
503
    return 0;
504
}
505

    
506
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
507
{
508
    cpu_abort(env, "cp15 insn %08x\n", insn);
509
}
510

    
511
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
512
{
513
    cpu_abort(env, "cp15 insn %08x\n", insn);
514
}
515

    
516
/* These should probably raise undefined insn exceptions.  */
517
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
518
{
519
    cpu_abort(env, "v7m_mrs %d\n", reg);
520
}
521

    
522
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
523
{
524
    cpu_abort(env, "v7m_mrs %d\n", reg);
525
    return 0;
526
}
527

    
528
void switch_mode(CPUState *env, int mode)
529
{
530
    if (mode != ARM_CPU_MODE_USR)
531
        cpu_abort(env, "Tried to switch out of user mode\n");
532
}
533

    
534
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
535
{
536
    cpu_abort(env, "banked r13 write\n");
537
}
538

    
539
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
540
{
541
    cpu_abort(env, "banked r13 read\n");
542
    return 0;
543
}
544

    
545
#else
546

    
547
extern int semihosting_enabled;
548

    
549
/* Map CPU modes onto saved register banks.  */
550
static inline int bank_number (int mode)
551
{
552
    switch (mode) {
553
    case ARM_CPU_MODE_USR:
554
    case ARM_CPU_MODE_SYS:
555
        return 0;
556
    case ARM_CPU_MODE_SVC:
557
        return 1;
558
    case ARM_CPU_MODE_ABT:
559
        return 2;
560
    case ARM_CPU_MODE_UND:
561
        return 3;
562
    case ARM_CPU_MODE_IRQ:
563
        return 4;
564
    case ARM_CPU_MODE_FIQ:
565
        return 5;
566
    }
567
    cpu_abort(cpu_single_env, "Bad mode %x\n", mode);
568
    return -1;
569
}
570

    
571
void switch_mode(CPUState *env, int mode)
572
{
573
    int old_mode;
574
    int i;
575

    
576
    old_mode = env->uncached_cpsr & CPSR_M;
577
    if (mode == old_mode)
578
        return;
579

    
580
    if (old_mode == ARM_CPU_MODE_FIQ) {
581
        memcpy (env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
582
        memcpy (env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
583
    } else if (mode == ARM_CPU_MODE_FIQ) {
584
        memcpy (env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
585
        memcpy (env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
586
    }
587

    
588
    i = bank_number(old_mode);
589
    env->banked_r13[i] = env->regs[13];
590
    env->banked_r14[i] = env->regs[14];
591
    env->banked_spsr[i] = env->spsr;
592

    
593
    i = bank_number(mode);
594
    env->regs[13] = env->banked_r13[i];
595
    env->regs[14] = env->banked_r14[i];
596
    env->spsr = env->banked_spsr[i];
597
}
598

    
599
static void v7m_push(CPUARMState *env, uint32_t val)
600
{
601
    env->regs[13] -= 4;
602
    stl_phys(env->regs[13], val);
603
}
604

    
605
static uint32_t v7m_pop(CPUARMState *env)
606
{
607
    uint32_t val;
608
    val = ldl_phys(env->regs[13]);
609
    env->regs[13] += 4;
610
    return val;
611
}
612

    
613
/* Switch to V7M main or process stack pointer.  */
614
static void switch_v7m_sp(CPUARMState *env, int process)
615
{
616
    uint32_t tmp;
617
    if (env->v7m.current_sp != process) {
618
        tmp = env->v7m.other_sp;
619
        env->v7m.other_sp = env->regs[13];
620
        env->regs[13] = tmp;
621
        env->v7m.current_sp = process;
622
    }
623
}
624

    
625
static void do_v7m_exception_exit(CPUARMState *env)
626
{
627
    uint32_t type;
628
    uint32_t xpsr;
629

    
630
    type = env->regs[15];
631
    if (env->v7m.exception != 0)
632
        armv7m_nvic_complete_irq(env->v7m.nvic, env->v7m.exception);
633

    
634
    /* Switch to the target stack.  */
635
    switch_v7m_sp(env, (type & 4) != 0);
636
    /* Pop registers.  */
637
    env->regs[0] = v7m_pop(env);
638
    env->regs[1] = v7m_pop(env);
639
    env->regs[2] = v7m_pop(env);
640
    env->regs[3] = v7m_pop(env);
641
    env->regs[12] = v7m_pop(env);
642
    env->regs[14] = v7m_pop(env);
643
    env->regs[15] = v7m_pop(env);
644
    xpsr = v7m_pop(env);
645
    xpsr_write(env, xpsr, 0xfffffdff);
646
    /* Undo stack alignment.  */
647
    if (xpsr & 0x200)
648
        env->regs[13] |= 4;
649
    /* ??? The exception return type specifies Thread/Handler mode.  However
650
       this is also implied by the xPSR value. Not sure what to do
651
       if there is a mismatch.  */
652
    /* ??? Likewise for mismatches between the CONTROL register and the stack
653
       pointer.  */
654
}
655

    
656
static void do_interrupt_v7m(CPUARMState *env)
657
{
658
    uint32_t xpsr = xpsr_read(env);
659
    uint32_t lr;
660
    uint32_t addr;
661

    
662
    lr = 0xfffffff1;
663
    if (env->v7m.current_sp)
664
        lr |= 4;
665
    if (env->v7m.exception == 0)
666
        lr |= 8;
667

    
668
    /* For exceptions we just mark as pending on the NVIC, and let that
669
       handle it.  */
670
    /* TODO: Need to escalate if the current priority is higher than the
671
       one we're raising.  */
672
    switch (env->exception_index) {
673
    case EXCP_UDEF:
674
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_USAGE);
675
        return;
676
    case EXCP_SWI:
677
        env->regs[15] += 2;
678
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_SVC);
679
        return;
680
    case EXCP_PREFETCH_ABORT:
681
    case EXCP_DATA_ABORT:
682
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_MEM);
683
        return;
684
    case EXCP_BKPT:
685
        if (semihosting_enabled) {
686
            int nr;
687
            nr = lduw_code(env->regs[15]) & 0xff;
688
            if (nr == 0xab) {
689
                env->regs[15] += 2;
690
                env->regs[0] = do_arm_semihosting(env);
691
                return;
692
            }
693
        }
694
        armv7m_nvic_set_pending(env->v7m.nvic, ARMV7M_EXCP_DEBUG);
695
        return;
696
    case EXCP_IRQ:
697
        env->v7m.exception = armv7m_nvic_acknowledge_irq(env->v7m.nvic);
698
        break;
699
    case EXCP_EXCEPTION_EXIT:
700
        do_v7m_exception_exit(env);
701
        return;
702
    default:
703
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
704
        return; /* Never happens.  Keep compiler happy.  */
705
    }
706

    
707
    /* Align stack pointer.  */
708
    /* ??? Should only do this if Configuration Control Register
709
       STACKALIGN bit is set.  */
710
    if (env->regs[13] & 4) {
711
        env->regs[13] -= 4;
712
        xpsr |= 0x200;
713
    }
714
    /* Switch to the handler mode.  */
715
    v7m_push(env, xpsr);
716
    v7m_push(env, env->regs[15]);
717
    v7m_push(env, env->regs[14]);
718
    v7m_push(env, env->regs[12]);
719
    v7m_push(env, env->regs[3]);
720
    v7m_push(env, env->regs[2]);
721
    v7m_push(env, env->regs[1]);
722
    v7m_push(env, env->regs[0]);
723
    switch_v7m_sp(env, 0);
724
    env->uncached_cpsr &= ~CPSR_IT;
725
    env->regs[14] = lr;
726
    addr = ldl_phys(env->v7m.vecbase + env->v7m.exception * 4);
727
    env->regs[15] = addr & 0xfffffffe;
728
    env->thumb = addr & 1;
729
}
730

    
731
/* Handle a CPU exception.  */
732
void do_interrupt(CPUARMState *env)
733
{
734
    uint32_t addr;
735
    uint32_t mask;
736
    int new_mode;
737
    uint32_t offset;
738

    
739
    if (IS_M(env)) {
740
        do_interrupt_v7m(env);
741
        return;
742
    }
743
    /* TODO: Vectored interrupt controller.  */
744
    switch (env->exception_index) {
745
    case EXCP_UDEF:
746
        new_mode = ARM_CPU_MODE_UND;
747
        addr = 0x04;
748
        mask = CPSR_I;
749
        if (env->thumb)
750
            offset = 2;
751
        else
752
            offset = 4;
753
        break;
754
    case EXCP_SWI:
755
        if (semihosting_enabled) {
756
            /* Check for semihosting interrupt.  */
757
            if (env->thumb) {
758
                mask = lduw_code(env->regs[15] - 2) & 0xff;
759
            } else {
760
                mask = ldl_code(env->regs[15] - 4) & 0xffffff;
761
            }
762
            /* Only intercept calls from privileged modes, to provide some
763
               semblance of security.  */
764
            if (((mask == 0x123456 && !env->thumb)
765
                    || (mask == 0xab && env->thumb))
766
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
767
                env->regs[0] = do_arm_semihosting(env);
768
                return;
769
            }
770
        }
771
        new_mode = ARM_CPU_MODE_SVC;
772
        addr = 0x08;
773
        mask = CPSR_I;
774
        /* The PC already points to the next instruction.  */
775
        offset = 0;
776
        break;
777
    case EXCP_BKPT:
778
        /* See if this is a semihosting syscall.  */
779
        if (env->thumb && semihosting_enabled) {
780
            mask = lduw_code(env->regs[15]) & 0xff;
781
            if (mask == 0xab
782
                  && (env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR) {
783
                env->regs[15] += 2;
784
                env->regs[0] = do_arm_semihosting(env);
785
                return;
786
            }
787
        }
788
        /* Fall through to prefetch abort.  */
789
    case EXCP_PREFETCH_ABORT:
790
        new_mode = ARM_CPU_MODE_ABT;
791
        addr = 0x0c;
792
        mask = CPSR_A | CPSR_I;
793
        offset = 4;
794
        break;
795
    case EXCP_DATA_ABORT:
796
        new_mode = ARM_CPU_MODE_ABT;
797
        addr = 0x10;
798
        mask = CPSR_A | CPSR_I;
799
        offset = 8;
800
        break;
801
    case EXCP_IRQ:
802
        new_mode = ARM_CPU_MODE_IRQ;
803
        addr = 0x18;
804
        /* Disable IRQ and imprecise data aborts.  */
805
        mask = CPSR_A | CPSR_I;
806
        offset = 4;
807
        break;
808
    case EXCP_FIQ:
809
        new_mode = ARM_CPU_MODE_FIQ;
810
        addr = 0x1c;
811
        /* Disable FIQ, IRQ and imprecise data aborts.  */
812
        mask = CPSR_A | CPSR_I | CPSR_F;
813
        offset = 4;
814
        break;
815
    default:
816
        cpu_abort(env, "Unhandled exception 0x%x\n", env->exception_index);
817
        return; /* Never happens.  Keep compiler happy.  */
818
    }
819
    /* High vectors.  */
820
    if (env->cp15.c1_sys & (1 << 13)) {
821
        addr += 0xffff0000;
822
    }
823
    switch_mode (env, new_mode);
824
    env->spsr = cpsr_read(env);
825
    /* Clear IT bits.  */
826
    env->condexec_bits = 0;
827
    /* Switch to the new mode, and to the correct instruction set.  */
828
    env->uncached_cpsr = (env->uncached_cpsr & ~CPSR_M) | new_mode;
829
    env->uncached_cpsr |= mask;
830
    env->thumb = (env->cp15.c1_sys & (1 << 30)) != 0;
831
    env->regs[14] = env->regs[15] + offset;
832
    env->regs[15] = addr;
833
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
834
}
835

    
836
/* Check section/page access permissions.
837
   Returns the page protection flags, or zero if the access is not
838
   permitted.  */
839
static inline int check_ap(CPUState *env, int ap, int domain, int access_type,
840
                           int is_user)
841
{
842
  int prot_ro;
843

    
844
  if (domain == 3)
845
    return PAGE_READ | PAGE_WRITE;
846

    
847
  if (access_type == 1)
848
      prot_ro = 0;
849
  else
850
      prot_ro = PAGE_READ;
851

    
852
  switch (ap) {
853
  case 0:
854
      if (access_type == 1)
855
          return 0;
856
      switch ((env->cp15.c1_sys >> 8) & 3) {
857
      case 1:
858
          return is_user ? 0 : PAGE_READ;
859
      case 2:
860
          return PAGE_READ;
861
      default:
862
          return 0;
863
      }
864
  case 1:
865
      return is_user ? 0 : PAGE_READ | PAGE_WRITE;
866
  case 2:
867
      if (is_user)
868
          return prot_ro;
869
      else
870
          return PAGE_READ | PAGE_WRITE;
871
  case 3:
872
      return PAGE_READ | PAGE_WRITE;
873
  case 4: /* Reserved.  */
874
      return 0;
875
  case 5:
876
      return is_user ? 0 : prot_ro;
877
  case 6:
878
      return prot_ro;
879
  case 7:
880
      if (!arm_feature (env, ARM_FEATURE_V7))
881
          return 0;
882
      return prot_ro;
883
  default:
884
      abort();
885
  }
886
}
887

    
888
static uint32_t get_level1_table_address(CPUState *env, uint32_t address)
889
{
890
    uint32_t table;
891

    
892
    if (address & env->cp15.c2_mask)
893
        table = env->cp15.c2_base1 & 0xffffc000;
894
    else
895
        table = env->cp15.c2_base0 & env->cp15.c2_base_mask;
896

    
897
    table |= (address >> 18) & 0x3ffc;
898
    return table;
899
}
900

    
901
static int get_phys_addr_v5(CPUState *env, uint32_t address, int access_type,
902
                            int is_user, uint32_t *phys_ptr, int *prot)
903
{
904
    int code;
905
    uint32_t table;
906
    uint32_t desc;
907
    int type;
908
    int ap;
909
    int domain;
910
    uint32_t phys_addr;
911

    
912
    /* Pagetable walk.  */
913
    /* Lookup l1 descriptor.  */
914
    table = get_level1_table_address(env, address);
915
    desc = ldl_phys(table);
916
    type = (desc & 3);
917
    domain = (env->cp15.c3 >> ((desc >> 4) & 0x1e)) & 3;
918
    if (type == 0) {
919
        /* Section translation fault.  */
920
        code = 5;
921
        goto do_fault;
922
    }
923
    if (domain == 0 || domain == 2) {
924
        if (type == 2)
925
            code = 9; /* Section domain fault.  */
926
        else
927
            code = 11; /* Page domain fault.  */
928
        goto do_fault;
929
    }
930
    if (type == 2) {
931
        /* 1Mb section.  */
932
        phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
933
        ap = (desc >> 10) & 3;
934
        code = 13;
935
    } else {
936
        /* Lookup l2 entry.  */
937
        if (type == 1) {
938
            /* Coarse pagetable.  */
939
            table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
940
        } else {
941
            /* Fine pagetable.  */
942
            table = (desc & 0xfffff000) | ((address >> 8) & 0xffc);
943
        }
944
        desc = ldl_phys(table);
945
        switch (desc & 3) {
946
        case 0: /* Page translation fault.  */
947
            code = 7;
948
            goto do_fault;
949
        case 1: /* 64k page.  */
950
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
951
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
952
            break;
953
        case 2: /* 4k page.  */
954
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
955
            ap = (desc >> (4 + ((address >> 13) & 6))) & 3;
956
            break;
957
        case 3: /* 1k page.  */
958
            if (type == 1) {
959
                if (arm_feature(env, ARM_FEATURE_XSCALE)) {
960
                    phys_addr = (desc & 0xfffff000) | (address & 0xfff);
961
                } else {
962
                    /* Page translation fault.  */
963
                    code = 7;
964
                    goto do_fault;
965
                }
966
            } else {
967
                phys_addr = (desc & 0xfffffc00) | (address & 0x3ff);
968
            }
969
            ap = (desc >> 4) & 3;
970
            break;
971
        default:
972
            /* Never happens, but compiler isn't smart enough to tell.  */
973
            abort();
974
        }
975
        code = 15;
976
    }
977
    *prot = check_ap(env, ap, domain, access_type, is_user);
978
    if (!*prot) {
979
        /* Access permission fault.  */
980
        goto do_fault;
981
    }
982
    *phys_ptr = phys_addr;
983
    return 0;
984
do_fault:
985
    return code | (domain << 4);
986
}
987

    
988
static int get_phys_addr_v6(CPUState *env, uint32_t address, int access_type,
989
                            int is_user, uint32_t *phys_ptr, int *prot)
990
{
991
    int code;
992
    uint32_t table;
993
    uint32_t desc;
994
    uint32_t xn;
995
    int type;
996
    int ap;
997
    int domain;
998
    uint32_t phys_addr;
999

    
1000
    /* Pagetable walk.  */
1001
    /* Lookup l1 descriptor.  */
1002
    table = get_level1_table_address(env, address);
1003
    desc = ldl_phys(table);
1004
    type = (desc & 3);
1005
    if (type == 0) {
1006
        /* Section translation fault.  */
1007
        code = 5;
1008
        domain = 0;
1009
        goto do_fault;
1010
    } else if (type == 2 && (desc & (1 << 18))) {
1011
        /* Supersection.  */
1012
        domain = 0;
1013
    } else {
1014
        /* Section or page.  */
1015
        domain = (desc >> 4) & 0x1e;
1016
    }
1017
    domain = (env->cp15.c3 >> domain) & 3;
1018
    if (domain == 0 || domain == 2) {
1019
        if (type == 2)
1020
            code = 9; /* Section domain fault.  */
1021
        else
1022
            code = 11; /* Page domain fault.  */
1023
        goto do_fault;
1024
    }
1025
    if (type == 2) {
1026
        if (desc & (1 << 18)) {
1027
            /* Supersection.  */
1028
            phys_addr = (desc & 0xff000000) | (address & 0x00ffffff);
1029
        } else {
1030
            /* Section.  */
1031
            phys_addr = (desc & 0xfff00000) | (address & 0x000fffff);
1032
        }
1033
        ap = ((desc >> 10) & 3) | ((desc >> 13) & 4);
1034
        xn = desc & (1 << 4);
1035
        code = 13;
1036
    } else {
1037
        /* Lookup l2 entry.  */
1038
        table = (desc & 0xfffffc00) | ((address >> 10) & 0x3fc);
1039
        desc = ldl_phys(table);
1040
        ap = ((desc >> 4) & 3) | ((desc >> 7) & 4);
1041
        switch (desc & 3) {
1042
        case 0: /* Page translation fault.  */
1043
            code = 7;
1044
            goto do_fault;
1045
        case 1: /* 64k page.  */
1046
            phys_addr = (desc & 0xffff0000) | (address & 0xffff);
1047
            xn = desc & (1 << 15);
1048
            break;
1049
        case 2: case 3: /* 4k page.  */
1050
            phys_addr = (desc & 0xfffff000) | (address & 0xfff);
1051
            xn = desc & 1;
1052
            break;
1053
        default:
1054
            /* Never happens, but compiler isn't smart enough to tell.  */
1055
            abort();
1056
        }
1057
        code = 15;
1058
    }
1059
    if (xn && access_type == 2)
1060
        goto do_fault;
1061

    
1062
    /* The simplified model uses AP[0] as an access control bit.  */
1063
    if ((env->cp15.c1_sys & (1 << 29)) && (ap & 1) == 0) {
1064
        /* Access flag fault.  */
1065
        code = (code == 15) ? 6 : 3;
1066
        goto do_fault;
1067
    }
1068
    *prot = check_ap(env, ap, domain, access_type, is_user);
1069
    if (!*prot) {
1070
        /* Access permission fault.  */
1071
        goto do_fault;
1072
    }
1073
    *phys_ptr = phys_addr;
1074
    return 0;
1075
do_fault:
1076
    return code | (domain << 4);
1077
}
1078

    
1079
static int get_phys_addr_mpu(CPUState *env, uint32_t address, int access_type,
1080
                             int is_user, uint32_t *phys_ptr, int *prot)
1081
{
1082
    int n;
1083
    uint32_t mask;
1084
    uint32_t base;
1085

    
1086
    *phys_ptr = address;
1087
    for (n = 7; n >= 0; n--) {
1088
        base = env->cp15.c6_region[n];
1089
        if ((base & 1) == 0)
1090
            continue;
1091
        mask = 1 << ((base >> 1) & 0x1f);
1092
        /* Keep this shift separate from the above to avoid an
1093
           (undefined) << 32.  */
1094
        mask = (mask << 1) - 1;
1095
        if (((base ^ address) & ~mask) == 0)
1096
            break;
1097
    }
1098
    if (n < 0)
1099
        return 2;
1100

    
1101
    if (access_type == 2) {
1102
        mask = env->cp15.c5_insn;
1103
    } else {
1104
        mask = env->cp15.c5_data;
1105
    }
1106
    mask = (mask >> (n * 4)) & 0xf;
1107
    switch (mask) {
1108
    case 0:
1109
        return 1;
1110
    case 1:
1111
        if (is_user)
1112
          return 1;
1113
        *prot = PAGE_READ | PAGE_WRITE;
1114
        break;
1115
    case 2:
1116
        *prot = PAGE_READ;
1117
        if (!is_user)
1118
            *prot |= PAGE_WRITE;
1119
        break;
1120
    case 3:
1121
        *prot = PAGE_READ | PAGE_WRITE;
1122
        break;
1123
    case 5:
1124
        if (is_user)
1125
            return 1;
1126
        *prot = PAGE_READ;
1127
        break;
1128
    case 6:
1129
        *prot = PAGE_READ;
1130
        break;
1131
    default:
1132
        /* Bad permission.  */
1133
        return 1;
1134
    }
1135
    return 0;
1136
}
1137

    
1138
static inline int get_phys_addr(CPUState *env, uint32_t address,
1139
                                int access_type, int is_user,
1140
                                uint32_t *phys_ptr, int *prot)
1141
{
1142
    /* Fast Context Switch Extension.  */
1143
    if (address < 0x02000000)
1144
        address += env->cp15.c13_fcse;
1145

    
1146
    if ((env->cp15.c1_sys & 1) == 0) {
1147
        /* MMU/MPU disabled.  */
1148
        *phys_ptr = address;
1149
        *prot = PAGE_READ | PAGE_WRITE;
1150
        return 0;
1151
    } else if (arm_feature(env, ARM_FEATURE_MPU)) {
1152
        return get_phys_addr_mpu(env, address, access_type, is_user, phys_ptr,
1153
                                 prot);
1154
    } else if (env->cp15.c1_sys & (1 << 23)) {
1155
        return get_phys_addr_v6(env, address, access_type, is_user, phys_ptr,
1156
                                prot);
1157
    } else {
1158
        return get_phys_addr_v5(env, address, access_type, is_user, phys_ptr,
1159
                                prot);
1160
    }
1161
}
1162

    
1163
int cpu_arm_handle_mmu_fault (CPUState *env, target_ulong address,
1164
                              int access_type, int mmu_idx, int is_softmmu)
1165
{
1166
    uint32_t phys_addr;
1167
    int prot;
1168
    int ret, is_user;
1169

    
1170
    is_user = mmu_idx == MMU_USER_IDX;
1171
    ret = get_phys_addr(env, address, access_type, is_user, &phys_addr, &prot);
1172
    if (ret == 0) {
1173
        /* Map a single [sub]page.  */
1174
        phys_addr &= ~(uint32_t)0x3ff;
1175
        address &= ~(uint32_t)0x3ff;
1176
        return tlb_set_page (env, address, phys_addr, prot, mmu_idx,
1177
                             is_softmmu);
1178
    }
1179

    
1180
    if (access_type == 2) {
1181
        env->cp15.c5_insn = ret;
1182
        env->cp15.c6_insn = address;
1183
        env->exception_index = EXCP_PREFETCH_ABORT;
1184
    } else {
1185
        env->cp15.c5_data = ret;
1186
        if (access_type == 1 && arm_feature(env, ARM_FEATURE_V6))
1187
            env->cp15.c5_data |= (1 << 11);
1188
        env->cp15.c6_data = address;
1189
        env->exception_index = EXCP_DATA_ABORT;
1190
    }
1191
    return 1;
1192
}
1193

    
1194
target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr)
1195
{
1196
    uint32_t phys_addr;
1197
    int prot;
1198
    int ret;
1199

    
1200
    ret = get_phys_addr(env, addr, 0, 0, &phys_addr, &prot);
1201

    
1202
    if (ret != 0)
1203
        return -1;
1204

    
1205
    return phys_addr;
1206
}
1207

    
1208
void HELPER(set_cp)(CPUState *env, uint32_t insn, uint32_t val)
1209
{
1210
    int cp_num = (insn >> 8) & 0xf;
1211
    int cp_info = (insn >> 5) & 7;
1212
    int src = (insn >> 16) & 0xf;
1213
    int operand = insn & 0xf;
1214

    
1215
    if (env->cp[cp_num].cp_write)
1216
        env->cp[cp_num].cp_write(env->cp[cp_num].opaque,
1217
                                 cp_info, src, operand, val);
1218
}
1219

    
1220
uint32_t HELPER(get_cp)(CPUState *env, uint32_t insn)
1221
{
1222
    int cp_num = (insn >> 8) & 0xf;
1223
    int cp_info = (insn >> 5) & 7;
1224
    int dest = (insn >> 16) & 0xf;
1225
    int operand = insn & 0xf;
1226

    
1227
    if (env->cp[cp_num].cp_read)
1228
        return env->cp[cp_num].cp_read(env->cp[cp_num].opaque,
1229
                                       cp_info, dest, operand);
1230
    return 0;
1231
}
1232

    
1233
/* Return basic MPU access permission bits.  */
1234
static uint32_t simple_mpu_ap_bits(uint32_t val)
1235
{
1236
    uint32_t ret;
1237
    uint32_t mask;
1238
    int i;
1239
    ret = 0;
1240
    mask = 3;
1241
    for (i = 0; i < 16; i += 2) {
1242
        ret |= (val >> i) & mask;
1243
        mask <<= 2;
1244
    }
1245
    return ret;
1246
}
1247

    
1248
/* Pad basic MPU access permission bits to extended format.  */
1249
static uint32_t extended_mpu_ap_bits(uint32_t val)
1250
{
1251
    uint32_t ret;
1252
    uint32_t mask;
1253
    int i;
1254
    ret = 0;
1255
    mask = 3;
1256
    for (i = 0; i < 16; i += 2) {
1257
        ret |= (val & mask) << i;
1258
        mask <<= 2;
1259
    }
1260
    return ret;
1261
}
1262

    
1263
void HELPER(set_cp15)(CPUState *env, uint32_t insn, uint32_t val)
1264
{
1265
    int op1;
1266
    int op2;
1267
    int crm;
1268

    
1269
    op1 = (insn >> 21) & 7;
1270
    op2 = (insn >> 5) & 7;
1271
    crm = insn & 0xf;
1272
    switch ((insn >> 16) & 0xf) {
1273
    case 0:
1274
        /* ID codes.  */
1275
        if (arm_feature(env, ARM_FEATURE_XSCALE))
1276
            break;
1277
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1278
            break;
1279
        if (arm_feature(env, ARM_FEATURE_V7)
1280
                && op1 == 2 && crm == 0 && op2 == 0) {
1281
            env->cp15.c0_cssel = val & 0xf;
1282
            break;
1283
        }
1284
        goto bad_reg;
1285
    case 1: /* System configuration.  */
1286
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1287
            op2 = 0;
1288
        switch (op2) {
1289
        case 0:
1290
            if (!arm_feature(env, ARM_FEATURE_XSCALE) || crm == 0)
1291
                env->cp15.c1_sys = val;
1292
            /* ??? Lots of these bits are not implemented.  */
1293
            /* This may enable/disable the MMU, so do a TLB flush.  */
1294
            tlb_flush(env, 1);
1295
            break;
1296
        case 1: /* Auxiliary cotrol register.  */
1297
            if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1298
                env->cp15.c1_xscaleauxcr = val;
1299
                break;
1300
            }
1301
            /* Not implemented.  */
1302
            break;
1303
        case 2:
1304
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1305
                goto bad_reg;
1306
            if (env->cp15.c1_coproc != val) {
1307
                env->cp15.c1_coproc = val;
1308
                /* ??? Is this safe when called from within a TB?  */
1309
                tb_flush(env);
1310
            }
1311
            break;
1312
        default:
1313
            goto bad_reg;
1314
        }
1315
        break;
1316
    case 2: /* MMU Page table control / MPU cache control.  */
1317
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1318
            switch (op2) {
1319
            case 0:
1320
                env->cp15.c2_data = val;
1321
                break;
1322
            case 1:
1323
                env->cp15.c2_insn = val;
1324
                break;
1325
            default:
1326
                goto bad_reg;
1327
            }
1328
        } else {
1329
            switch (op2) {
1330
            case 0:
1331
                env->cp15.c2_base0 = val;
1332
                break;
1333
            case 1:
1334
                env->cp15.c2_base1 = val;
1335
                break;
1336
            case 2:
1337
                val &= 7;
1338
                env->cp15.c2_control = val;
1339
                env->cp15.c2_mask = ~(((uint32_t)0xffffffffu) >> val);
1340
                env->cp15.c2_base_mask = ~((uint32_t)0x3fffu >> val);
1341
                break;
1342
            default:
1343
                goto bad_reg;
1344
            }
1345
        }
1346
        break;
1347
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1348
        env->cp15.c3 = val;
1349
        tlb_flush(env, 1); /* Flush TLB as domain not tracked in TLB */
1350
        break;
1351
    case 4: /* Reserved.  */
1352
        goto bad_reg;
1353
    case 5: /* MMU Fault status / MPU access permission.  */
1354
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1355
            op2 = 0;
1356
        switch (op2) {
1357
        case 0:
1358
            if (arm_feature(env, ARM_FEATURE_MPU))
1359
                val = extended_mpu_ap_bits(val);
1360
            env->cp15.c5_data = val;
1361
            break;
1362
        case 1:
1363
            if (arm_feature(env, ARM_FEATURE_MPU))
1364
                val = extended_mpu_ap_bits(val);
1365
            env->cp15.c5_insn = val;
1366
            break;
1367
        case 2:
1368
            if (!arm_feature(env, ARM_FEATURE_MPU))
1369
                goto bad_reg;
1370
            env->cp15.c5_data = val;
1371
            break;
1372
        case 3:
1373
            if (!arm_feature(env, ARM_FEATURE_MPU))
1374
                goto bad_reg;
1375
            env->cp15.c5_insn = val;
1376
            break;
1377
        default:
1378
            goto bad_reg;
1379
        }
1380
        break;
1381
    case 6: /* MMU Fault address / MPU base/size.  */
1382
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1383
            if (crm >= 8)
1384
                goto bad_reg;
1385
            env->cp15.c6_region[crm] = val;
1386
        } else {
1387
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1388
                op2 = 0;
1389
            switch (op2) {
1390
            case 0:
1391
                env->cp15.c6_data = val;
1392
                break;
1393
            case 1: /* ??? This is WFAR on armv6 */
1394
            case 2:
1395
                env->cp15.c6_insn = val;
1396
                break;
1397
            default:
1398
                goto bad_reg;
1399
            }
1400
        }
1401
        break;
1402
    case 7: /* Cache control.  */
1403
        env->cp15.c15_i_max = 0x000;
1404
        env->cp15.c15_i_min = 0xff0;
1405
        /* No cache, so nothing to do.  */
1406
        /* ??? MPCore has VA to PA translation functions.  */
1407
        break;
1408
    case 8: /* MMU TLB control.  */
1409
        switch (op2) {
1410
        case 0: /* Invalidate all.  */
1411
            tlb_flush(env, 0);
1412
            break;
1413
        case 1: /* Invalidate single TLB entry.  */
1414
#if 0
1415
            /* ??? This is wrong for large pages and sections.  */
1416
            /* As an ugly hack to make linux work we always flush a 4K
1417
               pages.  */
1418
            val &= 0xfffff000;
1419
            tlb_flush_page(env, val);
1420
            tlb_flush_page(env, val + 0x400);
1421
            tlb_flush_page(env, val + 0x800);
1422
            tlb_flush_page(env, val + 0xc00);
1423
#else
1424
            tlb_flush(env, 1);
1425
#endif
1426
            break;
1427
        case 2: /* Invalidate on ASID.  */
1428
            tlb_flush(env, val == 0);
1429
            break;
1430
        case 3: /* Invalidate single entry on MVA.  */
1431
            /* ??? This is like case 1, but ignores ASID.  */
1432
            tlb_flush(env, 1);
1433
            break;
1434
        default:
1435
            goto bad_reg;
1436
        }
1437
        break;
1438
    case 9:
1439
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1440
            break;
1441
        switch (crm) {
1442
        case 0: /* Cache lockdown.  */
1443
            switch (op1) {
1444
            case 0: /* L1 cache.  */
1445
                switch (op2) {
1446
                case 0:
1447
                    env->cp15.c9_data = val;
1448
                    break;
1449
                case 1:
1450
                    env->cp15.c9_insn = val;
1451
                    break;
1452
                default:
1453
                    goto bad_reg;
1454
                }
1455
                break;
1456
            case 1: /* L2 cache.  */
1457
                /* Ignore writes to L2 lockdown/auxiliary registers.  */
1458
                break;
1459
            default:
1460
                goto bad_reg;
1461
            }
1462
            break;
1463
        case 1: /* TCM memory region registers.  */
1464
            /* Not implemented.  */
1465
            goto bad_reg;
1466
        default:
1467
            goto bad_reg;
1468
        }
1469
        break;
1470
    case 10: /* MMU TLB lockdown.  */
1471
        /* ??? TLB lockdown not implemented.  */
1472
        break;
1473
    case 12: /* Reserved.  */
1474
        goto bad_reg;
1475
    case 13: /* Process ID.  */
1476
        switch (op2) {
1477
        case 0:
1478
            /* Unlike real hardware the qemu TLB uses virtual addresses,
1479
               not modified virtual addresses, so this causes a TLB flush.
1480
             */
1481
            if (env->cp15.c13_fcse != val)
1482
              tlb_flush(env, 1);
1483
            env->cp15.c13_fcse = val;
1484
            break;
1485
        case 1:
1486
            /* This changes the ASID, so do a TLB flush.  */
1487
            if (env->cp15.c13_context != val
1488
                && !arm_feature(env, ARM_FEATURE_MPU))
1489
              tlb_flush(env, 0);
1490
            env->cp15.c13_context = val;
1491
            break;
1492
        default:
1493
            goto bad_reg;
1494
        }
1495
        break;
1496
    case 14: /* Reserved.  */
1497
        goto bad_reg;
1498
    case 15: /* Implementation specific.  */
1499
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1500
            if (op2 == 0 && crm == 1) {
1501
                if (env->cp15.c15_cpar != (val & 0x3fff)) {
1502
                    /* Changes cp0 to cp13 behavior, so needs a TB flush.  */
1503
                    tb_flush(env);
1504
                    env->cp15.c15_cpar = val & 0x3fff;
1505
                }
1506
                break;
1507
            }
1508
            goto bad_reg;
1509
        }
1510
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1511
            switch (crm) {
1512
            case 0:
1513
                break;
1514
            case 1: /* Set TI925T configuration.  */
1515
                env->cp15.c15_ticonfig = val & 0xe7;
1516
                env->cp15.c0_cpuid = (val & (1 << 5)) ? /* OS_TYPE bit */
1517
                        ARM_CPUID_TI915T : ARM_CPUID_TI925T;
1518
                break;
1519
            case 2: /* Set I_max.  */
1520
                env->cp15.c15_i_max = val;
1521
                break;
1522
            case 3: /* Set I_min.  */
1523
                env->cp15.c15_i_min = val;
1524
                break;
1525
            case 4: /* Set thread-ID.  */
1526
                env->cp15.c15_threadid = val & 0xffff;
1527
                break;
1528
            case 8: /* Wait-for-interrupt (deprecated).  */
1529
                cpu_interrupt(env, CPU_INTERRUPT_HALT);
1530
                break;
1531
            default:
1532
                goto bad_reg;
1533
            }
1534
        }
1535
        break;
1536
    }
1537
    return;
1538
bad_reg:
1539
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1540
    cpu_abort(env, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1541
              (insn >> 16) & 0xf, crm, op1, op2);
1542
}
1543

    
1544
uint32_t HELPER(get_cp15)(CPUState *env, uint32_t insn)
1545
{
1546
    int op1;
1547
    int op2;
1548
    int crm;
1549

    
1550
    op1 = (insn >> 21) & 7;
1551
    op2 = (insn >> 5) & 7;
1552
    crm = insn & 0xf;
1553
    switch ((insn >> 16) & 0xf) {
1554
    case 0: /* ID codes.  */
1555
        switch (op1) {
1556
        case 0:
1557
            switch (crm) {
1558
            case 0:
1559
                switch (op2) {
1560
                case 0: /* Device ID.  */
1561
                    return env->cp15.c0_cpuid;
1562
                case 1: /* Cache Type.  */
1563
                    return env->cp15.c0_cachetype;
1564
                case 2: /* TCM status.  */
1565
                    return 0;
1566
                case 3: /* TLB type register.  */
1567
                    return 0; /* No lockable TLB entries.  */
1568
                case 5: /* CPU ID */
1569
                    if (ARM_CPUID(env) == ARM_CPUID_CORTEXA9) {
1570
                        return env->cpu_index | 0x80000900;
1571
                    } else {
1572
                        return env->cpu_index;
1573
                    }
1574
                default:
1575
                    goto bad_reg;
1576
                }
1577
            case 1:
1578
                if (!arm_feature(env, ARM_FEATURE_V6))
1579
                    goto bad_reg;
1580
                return env->cp15.c0_c1[op2];
1581
            case 2:
1582
                if (!arm_feature(env, ARM_FEATURE_V6))
1583
                    goto bad_reg;
1584
                return env->cp15.c0_c2[op2];
1585
            case 3: case 4: case 5: case 6: case 7:
1586
                return 0;
1587
            default:
1588
                goto bad_reg;
1589
            }
1590
        case 1:
1591
            /* These registers aren't documented on arm11 cores.  However
1592
               Linux looks at them anyway.  */
1593
            if (!arm_feature(env, ARM_FEATURE_V6))
1594
                goto bad_reg;
1595
            if (crm != 0)
1596
                goto bad_reg;
1597
            if (!arm_feature(env, ARM_FEATURE_V7))
1598
                return 0;
1599

    
1600
            switch (op2) {
1601
            case 0:
1602
                return env->cp15.c0_ccsid[env->cp15.c0_cssel];
1603
            case 1:
1604
                return env->cp15.c0_clid;
1605
            case 7:
1606
                return 0;
1607
            }
1608
            goto bad_reg;
1609
        case 2:
1610
            if (op2 != 0 || crm != 0)
1611
                goto bad_reg;
1612
            return env->cp15.c0_cssel;
1613
        default:
1614
            goto bad_reg;
1615
        }
1616
    case 1: /* System configuration.  */
1617
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1618
            op2 = 0;
1619
        switch (op2) {
1620
        case 0: /* Control register.  */
1621
            return env->cp15.c1_sys;
1622
        case 1: /* Auxiliary control register.  */
1623
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1624
                return env->cp15.c1_xscaleauxcr;
1625
            if (!arm_feature(env, ARM_FEATURE_AUXCR))
1626
                goto bad_reg;
1627
            switch (ARM_CPUID(env)) {
1628
            case ARM_CPUID_ARM1026:
1629
                return 1;
1630
            case ARM_CPUID_ARM1136:
1631
            case ARM_CPUID_ARM1136_R2:
1632
                return 7;
1633
            case ARM_CPUID_ARM11MPCORE:
1634
                return 1;
1635
            case ARM_CPUID_CORTEXA8:
1636
                return 2;
1637
            case ARM_CPUID_CORTEXA9:
1638
                return 0;
1639
            default:
1640
                goto bad_reg;
1641
            }
1642
        case 2: /* Coprocessor access register.  */
1643
            if (arm_feature(env, ARM_FEATURE_XSCALE))
1644
                goto bad_reg;
1645
            return env->cp15.c1_coproc;
1646
        default:
1647
            goto bad_reg;
1648
        }
1649
    case 2: /* MMU Page table control / MPU cache control.  */
1650
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1651
            switch (op2) {
1652
            case 0:
1653
                return env->cp15.c2_data;
1654
                break;
1655
            case 1:
1656
                return env->cp15.c2_insn;
1657
                break;
1658
            default:
1659
                goto bad_reg;
1660
            }
1661
        } else {
1662
            switch (op2) {
1663
            case 0:
1664
                return env->cp15.c2_base0;
1665
            case 1:
1666
                return env->cp15.c2_base1;
1667
            case 2:
1668
                return env->cp15.c2_control;
1669
            default:
1670
                goto bad_reg;
1671
            }
1672
        }
1673
    case 3: /* MMU Domain access control / MPU write buffer control.  */
1674
        return env->cp15.c3;
1675
    case 4: /* Reserved.  */
1676
        goto bad_reg;
1677
    case 5: /* MMU Fault status / MPU access permission.  */
1678
        if (arm_feature(env, ARM_FEATURE_OMAPCP))
1679
            op2 = 0;
1680
        switch (op2) {
1681
        case 0:
1682
            if (arm_feature(env, ARM_FEATURE_MPU))
1683
                return simple_mpu_ap_bits(env->cp15.c5_data);
1684
            return env->cp15.c5_data;
1685
        case 1:
1686
            if (arm_feature(env, ARM_FEATURE_MPU))
1687
                return simple_mpu_ap_bits(env->cp15.c5_data);
1688
            return env->cp15.c5_insn;
1689
        case 2:
1690
            if (!arm_feature(env, ARM_FEATURE_MPU))
1691
                goto bad_reg;
1692
            return env->cp15.c5_data;
1693
        case 3:
1694
            if (!arm_feature(env, ARM_FEATURE_MPU))
1695
                goto bad_reg;
1696
            return env->cp15.c5_insn;
1697
        default:
1698
            goto bad_reg;
1699
        }
1700
    case 6: /* MMU Fault address.  */
1701
        if (arm_feature(env, ARM_FEATURE_MPU)) {
1702
            if (crm >= 8)
1703
                goto bad_reg;
1704
            return env->cp15.c6_region[crm];
1705
        } else {
1706
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1707
                op2 = 0;
1708
            switch (op2) {
1709
            case 0:
1710
                return env->cp15.c6_data;
1711
            case 1:
1712
                if (arm_feature(env, ARM_FEATURE_V6)) {
1713
                    /* Watchpoint Fault Adrress.  */
1714
                    return 0; /* Not implemented.  */
1715
                } else {
1716
                    /* Instruction Fault Adrress.  */
1717
                    /* Arm9 doesn't have an IFAR, but implementing it anyway
1718
                       shouldn't do any harm.  */
1719
                    return env->cp15.c6_insn;
1720
                }
1721
            case 2:
1722
                if (arm_feature(env, ARM_FEATURE_V6)) {
1723
                    /* Instruction Fault Adrress.  */
1724
                    return env->cp15.c6_insn;
1725
                } else {
1726
                    goto bad_reg;
1727
                }
1728
            default:
1729
                goto bad_reg;
1730
            }
1731
        }
1732
    case 7: /* Cache control.  */
1733
        /* FIXME: Should only clear Z flag if destination is r15.  */
1734
        env->ZF = 0;
1735
        return 0;
1736
    case 8: /* MMU TLB control.  */
1737
        goto bad_reg;
1738
    case 9: /* Cache lockdown.  */
1739
        switch (op1) {
1740
        case 0: /* L1 cache.  */
1741
            if (arm_feature(env, ARM_FEATURE_OMAPCP))
1742
                return 0;
1743
            switch (op2) {
1744
            case 0:
1745
                return env->cp15.c9_data;
1746
            case 1:
1747
                return env->cp15.c9_insn;
1748
            default:
1749
                goto bad_reg;
1750
            }
1751
        case 1: /* L2 cache */
1752
            if (crm != 0)
1753
                goto bad_reg;
1754
            /* L2 Lockdown and Auxiliary control.  */
1755
            return 0;
1756
        default:
1757
            goto bad_reg;
1758
        }
1759
    case 10: /* MMU TLB lockdown.  */
1760
        /* ??? TLB lockdown not implemented.  */
1761
        return 0;
1762
    case 11: /* TCM DMA control.  */
1763
    case 12: /* Reserved.  */
1764
        goto bad_reg;
1765
    case 13: /* Process ID.  */
1766
        switch (op2) {
1767
        case 0:
1768
            return env->cp15.c13_fcse;
1769
        case 1:
1770
            return env->cp15.c13_context;
1771
        default:
1772
            goto bad_reg;
1773
        }
1774
    case 14: /* Reserved.  */
1775
        goto bad_reg;
1776
    case 15: /* Implementation specific.  */
1777
        if (arm_feature(env, ARM_FEATURE_XSCALE)) {
1778
            if (op2 == 0 && crm == 1)
1779
                return env->cp15.c15_cpar;
1780

    
1781
            goto bad_reg;
1782
        }
1783
        if (arm_feature(env, ARM_FEATURE_OMAPCP)) {
1784
            switch (crm) {
1785
            case 0:
1786
                return 0;
1787
            case 1: /* Read TI925T configuration.  */
1788
                return env->cp15.c15_ticonfig;
1789
            case 2: /* Read I_max.  */
1790
                return env->cp15.c15_i_max;
1791
            case 3: /* Read I_min.  */
1792
                return env->cp15.c15_i_min;
1793
            case 4: /* Read thread-ID.  */
1794
                return env->cp15.c15_threadid;
1795
            case 8: /* TI925T_status */
1796
                return 0;
1797
            }
1798
            /* TODO: Peripheral port remap register:
1799
             * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1800
             * controller base address at $rn & ~0xfff and map size of
1801
             * 0x200 << ($rn & 0xfff), when MMU is off.  */
1802
            goto bad_reg;
1803
        }
1804
        return 0;
1805
    }
1806
bad_reg:
1807
    /* ??? For debugging only.  Should raise illegal instruction exception.  */
1808
    cpu_abort(env, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1809
              (insn >> 16) & 0xf, crm, op1, op2);
1810
    return 0;
1811
}
1812

    
1813
void HELPER(set_r13_banked)(CPUState *env, uint32_t mode, uint32_t val)
1814
{
1815
    env->banked_r13[bank_number(mode)] = val;
1816
}
1817

    
1818
uint32_t HELPER(get_r13_banked)(CPUState *env, uint32_t mode)
1819
{
1820
    return env->banked_r13[bank_number(mode)];
1821
}
1822

    
1823
uint32_t HELPER(v7m_mrs)(CPUState *env, uint32_t reg)
1824
{
1825
    switch (reg) {
1826
    case 0: /* APSR */
1827
        return xpsr_read(env) & 0xf8000000;
1828
    case 1: /* IAPSR */
1829
        return xpsr_read(env) & 0xf80001ff;
1830
    case 2: /* EAPSR */
1831
        return xpsr_read(env) & 0xff00fc00;
1832
    case 3: /* xPSR */
1833
        return xpsr_read(env) & 0xff00fdff;
1834
    case 5: /* IPSR */
1835
        return xpsr_read(env) & 0x000001ff;
1836
    case 6: /* EPSR */
1837
        return xpsr_read(env) & 0x0700fc00;
1838
    case 7: /* IEPSR */
1839
        return xpsr_read(env) & 0x0700edff;
1840
    case 8: /* MSP */
1841
        return env->v7m.current_sp ? env->v7m.other_sp : env->regs[13];
1842
    case 9: /* PSP */
1843
        return env->v7m.current_sp ? env->regs[13] : env->v7m.other_sp;
1844
    case 16: /* PRIMASK */
1845
        return (env->uncached_cpsr & CPSR_I) != 0;
1846
    case 17: /* FAULTMASK */
1847
        return (env->uncached_cpsr & CPSR_F) != 0;
1848
    case 18: /* BASEPRI */
1849
    case 19: /* BASEPRI_MAX */
1850
        return env->v7m.basepri;
1851
    case 20: /* CONTROL */
1852
        return env->v7m.control;
1853
    default:
1854
        /* ??? For debugging only.  */
1855
        cpu_abort(env, "Unimplemented system register read (%d)\n", reg);
1856
        return 0;
1857
    }
1858
}
1859

    
1860
void HELPER(v7m_msr)(CPUState *env, uint32_t reg, uint32_t val)
1861
{
1862
    switch (reg) {
1863
    case 0: /* APSR */
1864
        xpsr_write(env, val, 0xf8000000);
1865
        break;
1866
    case 1: /* IAPSR */
1867
        xpsr_write(env, val, 0xf8000000);
1868
        break;
1869
    case 2: /* EAPSR */
1870
        xpsr_write(env, val, 0xfe00fc00);
1871
        break;
1872
    case 3: /* xPSR */
1873
        xpsr_write(env, val, 0xfe00fc00);
1874
        break;
1875
    case 5: /* IPSR */
1876
        /* IPSR bits are readonly.  */
1877
        break;
1878
    case 6: /* EPSR */
1879
        xpsr_write(env, val, 0x0600fc00);
1880
        break;
1881
    case 7: /* IEPSR */
1882
        xpsr_write(env, val, 0x0600fc00);
1883
        break;
1884
    case 8: /* MSP */
1885
        if (env->v7m.current_sp)
1886
            env->v7m.other_sp = val;
1887
        else
1888
            env->regs[13] = val;
1889
        break;
1890
    case 9: /* PSP */
1891
        if (env->v7m.current_sp)
1892
            env->regs[13] = val;
1893
        else
1894
            env->v7m.other_sp = val;
1895
        break;
1896
    case 16: /* PRIMASK */
1897
        if (val & 1)
1898
            env->uncached_cpsr |= CPSR_I;
1899
        else
1900
            env->uncached_cpsr &= ~CPSR_I;
1901
        break;
1902
    case 17: /* FAULTMASK */
1903
        if (val & 1)
1904
            env->uncached_cpsr |= CPSR_F;
1905
        else
1906
            env->uncached_cpsr &= ~CPSR_F;
1907
        break;
1908
    case 18: /* BASEPRI */
1909
        env->v7m.basepri = val & 0xff;
1910
        break;
1911
    case 19: /* BASEPRI_MAX */
1912
        val &= 0xff;
1913
        if (val != 0 && (val < env->v7m.basepri || env->v7m.basepri == 0))
1914
            env->v7m.basepri = val;
1915
        break;
1916
    case 20: /* CONTROL */
1917
        env->v7m.control = val & 3;
1918
        switch_v7m_sp(env, (val & 2) != 0);
1919
        break;
1920
    default:
1921
        /* ??? For debugging only.  */
1922
        cpu_abort(env, "Unimplemented system register write (%d)\n", reg);
1923
        return;
1924
    }
1925
}
1926

    
1927
void cpu_arm_set_cp_io(CPUARMState *env, int cpnum,
1928
                ARMReadCPFunc *cp_read, ARMWriteCPFunc *cp_write,
1929
                void *opaque)
1930
{
1931
    if (cpnum < 0 || cpnum > 14) {
1932
        cpu_abort(env, "Bad coprocessor number: %i\n", cpnum);
1933
        return;
1934
    }
1935

    
1936
    env->cp[cpnum].cp_read = cp_read;
1937
    env->cp[cpnum].cp_write = cp_write;
1938
    env->cp[cpnum].opaque = opaque;
1939
}
1940

    
1941
#endif
1942

    
1943
/* Note that signed overflow is undefined in C.  The following routines are
1944
   careful to use unsigned types where modulo arithmetic is required.
1945
   Failure to do so _will_ break on newer gcc.  */
1946

    
1947
/* Signed saturating arithmetic.  */
1948

    
1949
/* Perform 16-bit signed saturating addition.  */
1950
static inline uint16_t add16_sat(uint16_t a, uint16_t b)
1951
{
1952
    uint16_t res;
1953

    
1954
    res = a + b;
1955
    if (((res ^ a) & 0x8000) && !((a ^ b) & 0x8000)) {
1956
        if (a & 0x8000)
1957
            res = 0x8000;
1958
        else
1959
            res = 0x7fff;
1960
    }
1961
    return res;
1962
}
1963

    
1964
/* Perform 8-bit signed saturating addition.  */
1965
static inline uint8_t add8_sat(uint8_t a, uint8_t b)
1966
{
1967
    uint8_t res;
1968

    
1969
    res = a + b;
1970
    if (((res ^ a) & 0x80) && !((a ^ b) & 0x80)) {
1971
        if (a & 0x80)
1972
            res = 0x80;
1973
        else
1974
            res = 0x7f;
1975
    }
1976
    return res;
1977
}
1978

    
1979
/* Perform 16-bit signed saturating subtraction.  */
1980
static inline uint16_t sub16_sat(uint16_t a, uint16_t b)
1981
{
1982
    uint16_t res;
1983

    
1984
    res = a - b;
1985
    if (((res ^ a) & 0x8000) && ((a ^ b) & 0x8000)) {
1986
        if (a & 0x8000)
1987
            res = 0x8000;
1988
        else
1989
            res = 0x7fff;
1990
    }
1991
    return res;
1992
}
1993

    
1994
/* Perform 8-bit signed saturating subtraction.  */
1995
static inline uint8_t sub8_sat(uint8_t a, uint8_t b)
1996
{
1997
    uint8_t res;
1998

    
1999
    res = a - b;
2000
    if (((res ^ a) & 0x80) && ((a ^ b) & 0x80)) {
2001
        if (a & 0x80)
2002
            res = 0x80;
2003
        else
2004
            res = 0x7f;
2005
    }
2006
    return res;
2007
}
2008

    
2009
#define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2010
#define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2011
#define ADD8(a, b, n)  RESULT(add8_sat(a, b), n, 8);
2012
#define SUB8(a, b, n)  RESULT(sub8_sat(a, b), n, 8);
2013
#define PFX q
2014

    
2015
#include "op_addsub.h"
2016

    
2017
/* Unsigned saturating arithmetic.  */
2018
static inline uint16_t add16_usat(uint16_t a, uint16_t b)
2019
{
2020
    uint16_t res;
2021
    res = a + b;
2022
    if (res < a)
2023
        res = 0xffff;
2024
    return res;
2025
}
2026

    
2027
static inline uint16_t sub16_usat(uint16_t a, uint16_t b)
2028
{
2029
    if (a < b)
2030
        return a - b;
2031
    else
2032
        return 0;
2033
}
2034

    
2035
static inline uint8_t add8_usat(uint8_t a, uint8_t b)
2036
{
2037
    uint8_t res;
2038
    res = a + b;
2039
    if (res < a)
2040
        res = 0xff;
2041
    return res;
2042
}
2043

    
2044
static inline uint8_t sub8_usat(uint8_t a, uint8_t b)
2045
{
2046
    if (a < b)
2047
        return a - b;
2048
    else
2049
        return 0;
2050
}
2051

    
2052
#define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2053
#define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2054
#define ADD8(a, b, n)  RESULT(add8_usat(a, b), n, 8);
2055
#define SUB8(a, b, n)  RESULT(sub8_usat(a, b), n, 8);
2056
#define PFX uq
2057

    
2058
#include "op_addsub.h"
2059

    
2060
/* Signed modulo arithmetic.  */
2061
#define SARITH16(a, b, n, op) do { \
2062
    int32_t sum; \
2063
    sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2064
    RESULT(sum, n, 16); \
2065
    if (sum >= 0) \
2066
        ge |= 3 << (n * 2); \
2067
    } while(0)
2068

    
2069
#define SARITH8(a, b, n, op) do { \
2070
    int32_t sum; \
2071
    sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2072
    RESULT(sum, n, 8); \
2073
    if (sum >= 0) \
2074
        ge |= 1 << n; \
2075
    } while(0)
2076

    
2077

    
2078
#define ADD16(a, b, n) SARITH16(a, b, n, +)
2079
#define SUB16(a, b, n) SARITH16(a, b, n, -)
2080
#define ADD8(a, b, n)  SARITH8(a, b, n, +)
2081
#define SUB8(a, b, n)  SARITH8(a, b, n, -)
2082
#define PFX s
2083
#define ARITH_GE
2084

    
2085
#include "op_addsub.h"
2086

    
2087
/* Unsigned modulo arithmetic.  */
2088
#define ADD16(a, b, n) do { \
2089
    uint32_t sum; \
2090
    sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2091
    RESULT(sum, n, 16); \
2092
    if ((sum >> 16) == 1) \
2093
        ge |= 3 << (n * 2); \
2094
    } while(0)
2095

    
2096
#define ADD8(a, b, n) do { \
2097
    uint32_t sum; \
2098
    sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2099
    RESULT(sum, n, 8); \
2100
    if ((sum >> 8) == 1) \
2101
        ge |= 1 << n; \
2102
    } while(0)
2103

    
2104
#define SUB16(a, b, n) do { \
2105
    uint32_t sum; \
2106
    sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2107
    RESULT(sum, n, 16); \
2108
    if ((sum >> 16) == 0) \
2109
        ge |= 3 << (n * 2); \
2110
    } while(0)
2111

    
2112
#define SUB8(a, b, n) do { \
2113
    uint32_t sum; \
2114
    sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2115
    RESULT(sum, n, 8); \
2116
    if ((sum >> 8) == 0) \
2117
        ge |= 1 << n; \
2118
    } while(0)
2119

    
2120
#define PFX u
2121
#define ARITH_GE
2122

    
2123
#include "op_addsub.h"
2124

    
2125
/* Halved signed arithmetic.  */
2126
#define ADD16(a, b, n) \
2127
  RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2128
#define SUB16(a, b, n) \
2129
  RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2130
#define ADD8(a, b, n) \
2131
  RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2132
#define SUB8(a, b, n) \
2133
  RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2134
#define PFX sh
2135

    
2136
#include "op_addsub.h"
2137

    
2138
/* Halved unsigned arithmetic.  */
2139
#define ADD16(a, b, n) \
2140
  RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2141
#define SUB16(a, b, n) \
2142
  RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2143
#define ADD8(a, b, n) \
2144
  RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2145
#define SUB8(a, b, n) \
2146
  RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2147
#define PFX uh
2148

    
2149
#include "op_addsub.h"
2150

    
2151
static inline uint8_t do_usad(uint8_t a, uint8_t b)
2152
{
2153
    if (a > b)
2154
        return a - b;
2155
    else
2156
        return b - a;
2157
}
2158

    
2159
/* Unsigned sum of absolute byte differences.  */
2160
uint32_t HELPER(usad8)(uint32_t a, uint32_t b)
2161
{
2162
    uint32_t sum;
2163
    sum = do_usad(a, b);
2164
    sum += do_usad(a >> 8, b >> 8);
2165
    sum += do_usad(a >> 16, b >>16);
2166
    sum += do_usad(a >> 24, b >> 24);
2167
    return sum;
2168
}
2169

    
2170
/* For ARMv6 SEL instruction.  */
2171
uint32_t HELPER(sel_flags)(uint32_t flags, uint32_t a, uint32_t b)
2172
{
2173
    uint32_t mask;
2174

    
2175
    mask = 0;
2176
    if (flags & 1)
2177
        mask |= 0xff;
2178
    if (flags & 2)
2179
        mask |= 0xff00;
2180
    if (flags & 4)
2181
        mask |= 0xff0000;
2182
    if (flags & 8)
2183
        mask |= 0xff000000;
2184
    return (a & mask) | (b & ~mask);
2185
}
2186

    
2187
uint32_t HELPER(logicq_cc)(uint64_t val)
2188
{
2189
    return (val >> 32) | (val != 0);
2190
}
2191

    
2192
/* VFP support.  We follow the convention used for VFP instrunctions:
2193
   Single precition routines have a "s" suffix, double precision a
2194
   "d" suffix.  */
2195

    
2196
/* Convert host exception flags to vfp form.  */
2197
static inline int vfp_exceptbits_from_host(int host_bits)
2198
{
2199
    int target_bits = 0;
2200

    
2201
    if (host_bits & float_flag_invalid)
2202
        target_bits |= 1;
2203
    if (host_bits & float_flag_divbyzero)
2204
        target_bits |= 2;
2205
    if (host_bits & float_flag_overflow)
2206
        target_bits |= 4;
2207
    if (host_bits & float_flag_underflow)
2208
        target_bits |= 8;
2209
    if (host_bits & float_flag_inexact)
2210
        target_bits |= 0x10;
2211
    return target_bits;
2212
}
2213

    
2214
uint32_t HELPER(vfp_get_fpscr)(CPUState *env)
2215
{
2216
    int i;
2217
    uint32_t fpscr;
2218

    
2219
    fpscr = (env->vfp.xregs[ARM_VFP_FPSCR] & 0xffc8ffff)
2220
            | (env->vfp.vec_len << 16)
2221
            | (env->vfp.vec_stride << 20);
2222
    i = get_float_exception_flags(&env->vfp.fp_status);
2223
    fpscr |= vfp_exceptbits_from_host(i);
2224
    return fpscr;
2225
}
2226

    
2227
/* Convert vfp exception flags to target form.  */
2228
static inline int vfp_exceptbits_to_host(int target_bits)
2229
{
2230
    int host_bits = 0;
2231

    
2232
    if (target_bits & 1)
2233
        host_bits |= float_flag_invalid;
2234
    if (target_bits & 2)
2235
        host_bits |= float_flag_divbyzero;
2236
    if (target_bits & 4)
2237
        host_bits |= float_flag_overflow;
2238
    if (target_bits & 8)
2239
        host_bits |= float_flag_underflow;
2240
    if (target_bits & 0x10)
2241
        host_bits |= float_flag_inexact;
2242
    return host_bits;
2243
}
2244

    
2245
void HELPER(vfp_set_fpscr)(CPUState *env, uint32_t val)
2246
{
2247
    int i;
2248
    uint32_t changed;
2249

    
2250
    changed = env->vfp.xregs[ARM_VFP_FPSCR];
2251
    env->vfp.xregs[ARM_VFP_FPSCR] = (val & 0xffc8ffff);
2252
    env->vfp.vec_len = (val >> 16) & 7;
2253
    env->vfp.vec_stride = (val >> 20) & 3;
2254

    
2255
    changed ^= val;
2256
    if (changed & (3 << 22)) {
2257
        i = (val >> 22) & 3;
2258
        switch (i) {
2259
        case 0:
2260
            i = float_round_nearest_even;
2261
            break;
2262
        case 1:
2263
            i = float_round_up;
2264
            break;
2265
        case 2:
2266
            i = float_round_down;
2267
            break;
2268
        case 3:
2269
            i = float_round_to_zero;
2270
            break;
2271
        }
2272
        set_float_rounding_mode(i, &env->vfp.fp_status);
2273
    }
2274
    if (changed & (1 << 24))
2275
        set_flush_to_zero((val & (1 << 24)) != 0, &env->vfp.fp_status);
2276
    if (changed & (1 << 25))
2277
        set_default_nan_mode((val & (1 << 25)) != 0, &env->vfp.fp_status);
2278

    
2279
    i = vfp_exceptbits_to_host((val >> 8) & 0x1f);
2280
    set_float_exception_flags(i, &env->vfp.fp_status);
2281
}
2282

    
2283
#define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2284

    
2285
#define VFP_BINOP(name) \
2286
float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2287
{ \
2288
    return float32_ ## name (a, b, &env->vfp.fp_status); \
2289
} \
2290
float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2291
{ \
2292
    return float64_ ## name (a, b, &env->vfp.fp_status); \
2293
}
2294
VFP_BINOP(add)
2295
VFP_BINOP(sub)
2296
VFP_BINOP(mul)
2297
VFP_BINOP(div)
2298
#undef VFP_BINOP
2299

    
2300
float32 VFP_HELPER(neg, s)(float32 a)
2301
{
2302
    return float32_chs(a);
2303
}
2304

    
2305
float64 VFP_HELPER(neg, d)(float64 a)
2306
{
2307
    return float64_chs(a);
2308
}
2309

    
2310
float32 VFP_HELPER(abs, s)(float32 a)
2311
{
2312
    return float32_abs(a);
2313
}
2314

    
2315
float64 VFP_HELPER(abs, d)(float64 a)
2316
{
2317
    return float64_abs(a);
2318
}
2319

    
2320
float32 VFP_HELPER(sqrt, s)(float32 a, CPUState *env)
2321
{
2322
    return float32_sqrt(a, &env->vfp.fp_status);
2323
}
2324

    
2325
float64 VFP_HELPER(sqrt, d)(float64 a, CPUState *env)
2326
{
2327
    return float64_sqrt(a, &env->vfp.fp_status);
2328
}
2329

    
2330
/* XXX: check quiet/signaling case */
2331
#define DO_VFP_cmp(p, type) \
2332
void VFP_HELPER(cmp, p)(type a, type b, CPUState *env)  \
2333
{ \
2334
    uint32_t flags; \
2335
    switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2336
    case 0: flags = 0x6; break; \
2337
    case -1: flags = 0x8; break; \
2338
    case 1: flags = 0x2; break; \
2339
    default: case 2: flags = 0x3; break; \
2340
    } \
2341
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2342
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2343
} \
2344
void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2345
{ \
2346
    uint32_t flags; \
2347
    switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2348
    case 0: flags = 0x6; break; \
2349
    case -1: flags = 0x8; break; \
2350
    case 1: flags = 0x2; break; \
2351
    default: case 2: flags = 0x3; break; \
2352
    } \
2353
    env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2354
        | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2355
}
2356
DO_VFP_cmp(s, float32)
2357
DO_VFP_cmp(d, float64)
2358
#undef DO_VFP_cmp
2359

    
2360
/* Helper routines to perform bitwise copies between float and int.  */
2361
static inline float32 vfp_itos(uint32_t i)
2362
{
2363
    union {
2364
        uint32_t i;
2365
        float32 s;
2366
    } v;
2367

    
2368
    v.i = i;
2369
    return v.s;
2370
}
2371

    
2372
static inline uint32_t vfp_stoi(float32 s)
2373
{
2374
    union {
2375
        uint32_t i;
2376
        float32 s;
2377
    } v;
2378

    
2379
    v.s = s;
2380
    return v.i;
2381
}
2382

    
2383
static inline float64 vfp_itod(uint64_t i)
2384
{
2385
    union {
2386
        uint64_t i;
2387
        float64 d;
2388
    } v;
2389

    
2390
    v.i = i;
2391
    return v.d;
2392
}
2393

    
2394
static inline uint64_t vfp_dtoi(float64 d)
2395
{
2396
    union {
2397
        uint64_t i;
2398
        float64 d;
2399
    } v;
2400

    
2401
    v.d = d;
2402
    return v.i;
2403
}
2404

    
2405
/* Integer to float conversion.  */
2406
float32 VFP_HELPER(uito, s)(float32 x, CPUState *env)
2407
{
2408
    return uint32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2409
}
2410

    
2411
float64 VFP_HELPER(uito, d)(float32 x, CPUState *env)
2412
{
2413
    return uint32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2414
}
2415

    
2416
float32 VFP_HELPER(sito, s)(float32 x, CPUState *env)
2417
{
2418
    return int32_to_float32(vfp_stoi(x), &env->vfp.fp_status);
2419
}
2420

    
2421
float64 VFP_HELPER(sito, d)(float32 x, CPUState *env)
2422
{
2423
    return int32_to_float64(vfp_stoi(x), &env->vfp.fp_status);
2424
}
2425

    
2426
/* Float to integer conversion.  */
2427
float32 VFP_HELPER(toui, s)(float32 x, CPUState *env)
2428
{
2429
    return vfp_itos(float32_to_uint32(x, &env->vfp.fp_status));
2430
}
2431

    
2432
float32 VFP_HELPER(toui, d)(float64 x, CPUState *env)
2433
{
2434
    return vfp_itos(float64_to_uint32(x, &env->vfp.fp_status));
2435
}
2436

    
2437
float32 VFP_HELPER(tosi, s)(float32 x, CPUState *env)
2438
{
2439
    return vfp_itos(float32_to_int32(x, &env->vfp.fp_status));
2440
}
2441

    
2442
float32 VFP_HELPER(tosi, d)(float64 x, CPUState *env)
2443
{
2444
    return vfp_itos(float64_to_int32(x, &env->vfp.fp_status));
2445
}
2446

    
2447
float32 VFP_HELPER(touiz, s)(float32 x, CPUState *env)
2448
{
2449
    return vfp_itos(float32_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2450
}
2451

    
2452
float32 VFP_HELPER(touiz, d)(float64 x, CPUState *env)
2453
{
2454
    return vfp_itos(float64_to_uint32_round_to_zero(x, &env->vfp.fp_status));
2455
}
2456

    
2457
float32 VFP_HELPER(tosiz, s)(float32 x, CPUState *env)
2458
{
2459
    return vfp_itos(float32_to_int32_round_to_zero(x, &env->vfp.fp_status));
2460
}
2461

    
2462
float32 VFP_HELPER(tosiz, d)(float64 x, CPUState *env)
2463
{
2464
    return vfp_itos(float64_to_int32_round_to_zero(x, &env->vfp.fp_status));
2465
}
2466

    
2467
/* floating point conversion */
2468
float64 VFP_HELPER(fcvtd, s)(float32 x, CPUState *env)
2469
{
2470
    return float32_to_float64(x, &env->vfp.fp_status);
2471
}
2472

    
2473
float32 VFP_HELPER(fcvts, d)(float64 x, CPUState *env)
2474
{
2475
    return float64_to_float32(x, &env->vfp.fp_status);
2476
}
2477

    
2478
/* VFP3 fixed point conversion.  */
2479
#define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2480
ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2481
{ \
2482
    ftype tmp; \
2483
    tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2484
                                  &env->vfp.fp_status); \
2485
    return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2486
} \
2487
ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2488
{ \
2489
    ftype tmp; \
2490
    tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2491
    return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2492
        &env->vfp.fp_status)); \
2493
}
2494

    
2495
VFP_CONV_FIX(sh, d, float64, int16, )
2496
VFP_CONV_FIX(sl, d, float64, int32, )
2497
VFP_CONV_FIX(uh, d, float64, uint16, u)
2498
VFP_CONV_FIX(ul, d, float64, uint32, u)
2499
VFP_CONV_FIX(sh, s, float32, int16, )
2500
VFP_CONV_FIX(sl, s, float32, int32, )
2501
VFP_CONV_FIX(uh, s, float32, uint16, u)
2502
VFP_CONV_FIX(ul, s, float32, uint32, u)
2503
#undef VFP_CONV_FIX
2504

    
2505
/* Half precision conversions.  */
2506
float32 HELPER(vfp_fcvt_f16_to_f32)(uint32_t a, CPUState *env)
2507
{
2508
    float_status *s = &env->vfp.fp_status;
2509
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2510
    return float16_to_float32(a, ieee, s);
2511
}
2512

    
2513
uint32_t HELPER(vfp_fcvt_f32_to_f16)(float32 a, CPUState *env)
2514
{
2515
    float_status *s = &env->vfp.fp_status;
2516
    int ieee = (env->vfp.xregs[ARM_VFP_FPSCR] & (1 << 26)) == 0;
2517
    return float32_to_float16(a, ieee, s);
2518
}
2519

    
2520
float32 HELPER(recps_f32)(float32 a, float32 b, CPUState *env)
2521
{
2522
    float_status *s = &env->vfp.fp_status;
2523
    float32 two = int32_to_float32(2, s);
2524
    return float32_sub(two, float32_mul(a, b, s), s);
2525
}
2526

    
2527
float32 HELPER(rsqrts_f32)(float32 a, float32 b, CPUState *env)
2528
{
2529
    float_status *s = &env->vfp.fp_status;
2530
    float32 three = int32_to_float32(3, s);
2531
    return float32_sub(three, float32_mul(a, b, s), s);
2532
}
2533

    
2534
/* NEON helpers.  */
2535

    
2536
/* TODO: The architecture specifies the value that the estimate functions
2537
   should return.  We return the exact reciprocal/root instead.  */
2538
float32 HELPER(recpe_f32)(float32 a, CPUState *env)
2539
{
2540
    float_status *s = &env->vfp.fp_status;
2541
    float32 one = int32_to_float32(1, s);
2542
    return float32_div(one, a, s);
2543
}
2544

    
2545
float32 HELPER(rsqrte_f32)(float32 a, CPUState *env)
2546
{
2547
    float_status *s = &env->vfp.fp_status;
2548
    float32 one = int32_to_float32(1, s);
2549
    return float32_div(one, float32_sqrt(a, s), s);
2550
}
2551

    
2552
uint32_t HELPER(recpe_u32)(uint32_t a, CPUState *env)
2553
{
2554
    float_status *s = &env->vfp.fp_status;
2555
    float32 tmp;
2556
    tmp = int32_to_float32(a, s);
2557
    tmp = float32_scalbn(tmp, -32, s);
2558
    tmp = helper_recpe_f32(tmp, env);
2559
    tmp = float32_scalbn(tmp, 31, s);
2560
    return float32_to_int32(tmp, s);
2561
}
2562

    
2563
uint32_t HELPER(rsqrte_u32)(uint32_t a, CPUState *env)
2564
{
2565
    float_status *s = &env->vfp.fp_status;
2566
    float32 tmp;
2567
    tmp = int32_to_float32(a, s);
2568
    tmp = float32_scalbn(tmp, -32, s);
2569
    tmp = helper_rsqrte_f32(tmp, env);
2570
    tmp = float32_scalbn(tmp, 31, s);
2571
    return float32_to_int32(tmp, s);
2572
}
2573

    
2574
void HELPER(set_teecr)(CPUState *env, uint32_t val)
2575
{
2576
    val &= 1;
2577
    if (env->teecr != val) {
2578
        env->teecr = val;
2579
        tb_flush(env);
2580
    }
2581
}