root / target-i386 / kvm.c @ 31827373
History | View | Annotate | Download (29.1 kB)
1 |
/*
|
---|---|
2 |
* QEMU KVM support
|
3 |
*
|
4 |
* Copyright (C) 2006-2008 Qumranet Technologies
|
5 |
* Copyright IBM, Corp. 2008
|
6 |
*
|
7 |
* Authors:
|
8 |
* Anthony Liguori <aliguori@us.ibm.com>
|
9 |
*
|
10 |
* This work is licensed under the terms of the GNU GPL, version 2 or later.
|
11 |
* See the COPYING file in the top-level directory.
|
12 |
*
|
13 |
*/
|
14 |
|
15 |
#include <sys/types.h> |
16 |
#include <sys/ioctl.h> |
17 |
#include <sys/mman.h> |
18 |
|
19 |
#include <linux/kvm.h> |
20 |
|
21 |
#include "qemu-common.h" |
22 |
#include "sysemu.h" |
23 |
#include "kvm.h" |
24 |
#include "cpu.h" |
25 |
#include "gdbstub.h" |
26 |
#include "host-utils.h" |
27 |
|
28 |
//#define DEBUG_KVM
|
29 |
|
30 |
#ifdef DEBUG_KVM
|
31 |
#define dprintf(fmt, ...) \
|
32 |
do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0) |
33 |
#else
|
34 |
#define dprintf(fmt, ...) \
|
35 |
do { } while (0) |
36 |
#endif
|
37 |
|
38 |
#define MSR_KVM_WALL_CLOCK 0x11 |
39 |
#define MSR_KVM_SYSTEM_TIME 0x12 |
40 |
|
41 |
#ifdef KVM_CAP_EXT_CPUID
|
42 |
|
43 |
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max) |
44 |
{ |
45 |
struct kvm_cpuid2 *cpuid;
|
46 |
int r, size;
|
47 |
|
48 |
size = sizeof(*cpuid) + max * sizeof(*cpuid->entries); |
49 |
cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
|
50 |
cpuid->nent = max; |
51 |
r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid); |
52 |
if (r == 0 && cpuid->nent >= max) { |
53 |
r = -E2BIG; |
54 |
} |
55 |
if (r < 0) { |
56 |
if (r == -E2BIG) {
|
57 |
qemu_free(cpuid); |
58 |
return NULL; |
59 |
} else {
|
60 |
fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
|
61 |
strerror(-r)); |
62 |
exit(1);
|
63 |
} |
64 |
} |
65 |
return cpuid;
|
66 |
} |
67 |
|
68 |
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
|
69 |
{ |
70 |
struct kvm_cpuid2 *cpuid;
|
71 |
int i, max;
|
72 |
uint32_t ret = 0;
|
73 |
uint32_t cpuid_1_edx; |
74 |
|
75 |
if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
|
76 |
return -1U; |
77 |
} |
78 |
|
79 |
max = 1;
|
80 |
while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) { |
81 |
max *= 2;
|
82 |
} |
83 |
|
84 |
for (i = 0; i < cpuid->nent; ++i) { |
85 |
if (cpuid->entries[i].function == function) {
|
86 |
switch (reg) {
|
87 |
case R_EAX:
|
88 |
ret = cpuid->entries[i].eax; |
89 |
break;
|
90 |
case R_EBX:
|
91 |
ret = cpuid->entries[i].ebx; |
92 |
break;
|
93 |
case R_ECX:
|
94 |
ret = cpuid->entries[i].ecx; |
95 |
break;
|
96 |
case R_EDX:
|
97 |
ret = cpuid->entries[i].edx; |
98 |
if (function == 0x80000001) { |
99 |
/* On Intel, kvm returns cpuid according to the Intel spec,
|
100 |
* so add missing bits according to the AMD spec:
|
101 |
*/
|
102 |
cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
|
103 |
ret |= cpuid_1_edx & 0xdfeff7ff;
|
104 |
} |
105 |
break;
|
106 |
} |
107 |
} |
108 |
} |
109 |
|
110 |
qemu_free(cpuid); |
111 |
|
112 |
return ret;
|
113 |
} |
114 |
|
115 |
#else
|
116 |
|
117 |
uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
|
118 |
{ |
119 |
return -1U; |
120 |
} |
121 |
|
122 |
#endif
|
123 |
|
124 |
static void kvm_trim_features(uint32_t *features, uint32_t supported) |
125 |
{ |
126 |
int i;
|
127 |
uint32_t mask; |
128 |
|
129 |
for (i = 0; i < 32; ++i) { |
130 |
mask = 1U << i;
|
131 |
if ((*features & mask) && !(supported & mask)) {
|
132 |
*features &= ~mask; |
133 |
} |
134 |
} |
135 |
} |
136 |
|
137 |
int kvm_arch_init_vcpu(CPUState *env)
|
138 |
{ |
139 |
struct {
|
140 |
struct kvm_cpuid2 cpuid;
|
141 |
struct kvm_cpuid_entry2 entries[100]; |
142 |
} __attribute__((packed)) cpuid_data; |
143 |
uint32_t limit, i, j, cpuid_i; |
144 |
uint32_t unused; |
145 |
|
146 |
env->mp_state = KVM_MP_STATE_RUNNABLE; |
147 |
|
148 |
kvm_trim_features(&env->cpuid_features, |
149 |
kvm_arch_get_supported_cpuid(env, 1, R_EDX));
|
150 |
|
151 |
i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR; |
152 |
kvm_trim_features(&env->cpuid_ext_features, |
153 |
kvm_arch_get_supported_cpuid(env, 1, R_ECX));
|
154 |
env->cpuid_ext_features |= i; |
155 |
|
156 |
kvm_trim_features(&env->cpuid_ext2_features, |
157 |
kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
|
158 |
kvm_trim_features(&env->cpuid_ext3_features, |
159 |
kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
|
160 |
|
161 |
cpuid_i = 0;
|
162 |
|
163 |
cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused); |
164 |
|
165 |
for (i = 0; i <= limit; i++) { |
166 |
struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
|
167 |
|
168 |
switch (i) {
|
169 |
case 2: { |
170 |
/* Keep reading function 2 till all the input is received */
|
171 |
int times;
|
172 |
|
173 |
c->function = i; |
174 |
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC | |
175 |
KVM_CPUID_FLAG_STATE_READ_NEXT; |
176 |
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
177 |
times = c->eax & 0xff;
|
178 |
|
179 |
for (j = 1; j < times; ++j) { |
180 |
c = &cpuid_data.entries[cpuid_i++]; |
181 |
c->function = i; |
182 |
c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC; |
183 |
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
184 |
} |
185 |
break;
|
186 |
} |
187 |
case 4: |
188 |
case 0xb: |
189 |
case 0xd: |
190 |
for (j = 0; ; j++) { |
191 |
c->function = i; |
192 |
c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX; |
193 |
c->index = j; |
194 |
cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx); |
195 |
|
196 |
if (i == 4 && c->eax == 0) |
197 |
break;
|
198 |
if (i == 0xb && !(c->ecx & 0xff00)) |
199 |
break;
|
200 |
if (i == 0xd && c->eax == 0) |
201 |
break;
|
202 |
|
203 |
c = &cpuid_data.entries[cpuid_i++]; |
204 |
} |
205 |
break;
|
206 |
default:
|
207 |
c->function = i; |
208 |
c->flags = 0;
|
209 |
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
210 |
break;
|
211 |
} |
212 |
} |
213 |
cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused); |
214 |
|
215 |
for (i = 0x80000000; i <= limit; i++) { |
216 |
struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
|
217 |
|
218 |
c->function = i; |
219 |
c->flags = 0;
|
220 |
cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
|
221 |
} |
222 |
|
223 |
cpuid_data.cpuid.nent = cpuid_i; |
224 |
|
225 |
return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
|
226 |
} |
227 |
|
228 |
void kvm_arch_reset_vcpu(CPUState *env)
|
229 |
{ |
230 |
env->interrupt_injected = -1;
|
231 |
env->nmi_injected = 0;
|
232 |
env->nmi_pending = 0;
|
233 |
} |
234 |
|
235 |
static int kvm_has_msr_star(CPUState *env) |
236 |
{ |
237 |
static int has_msr_star; |
238 |
int ret;
|
239 |
|
240 |
/* first time */
|
241 |
if (has_msr_star == 0) { |
242 |
struct kvm_msr_list msr_list, *kvm_msr_list;
|
243 |
|
244 |
has_msr_star = -1;
|
245 |
|
246 |
/* Obtain MSR list from KVM. These are the MSRs that we must
|
247 |
* save/restore */
|
248 |
msr_list.nmsrs = 0;
|
249 |
ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list); |
250 |
if (ret < 0 && ret != -E2BIG) { |
251 |
return 0; |
252 |
} |
253 |
/* Old kernel modules had a bug and could write beyond the provided
|
254 |
memory. Allocate at least a safe amount of 1K. */
|
255 |
kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) + |
256 |
msr_list.nmsrs * |
257 |
sizeof(msr_list.indices[0]))); |
258 |
|
259 |
kvm_msr_list->nmsrs = msr_list.nmsrs; |
260 |
ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list); |
261 |
if (ret >= 0) { |
262 |
int i;
|
263 |
|
264 |
for (i = 0; i < kvm_msr_list->nmsrs; i++) { |
265 |
if (kvm_msr_list->indices[i] == MSR_STAR) {
|
266 |
has_msr_star = 1;
|
267 |
break;
|
268 |
} |
269 |
} |
270 |
} |
271 |
|
272 |
free(kvm_msr_list); |
273 |
} |
274 |
|
275 |
if (has_msr_star == 1) |
276 |
return 1; |
277 |
return 0; |
278 |
} |
279 |
|
280 |
int kvm_arch_init(KVMState *s, int smp_cpus) |
281 |
{ |
282 |
int ret;
|
283 |
|
284 |
/* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
|
285 |
* directly. In order to use vm86 mode, a TSS is needed. Since this
|
286 |
* must be part of guest physical memory, we need to allocate it. Older
|
287 |
* versions of KVM just assumed that it would be at the end of physical
|
288 |
* memory but that doesn't work with more than 4GB of memory. We simply
|
289 |
* refuse to work with those older versions of KVM. */
|
290 |
ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR); |
291 |
if (ret <= 0) { |
292 |
fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
|
293 |
return ret;
|
294 |
} |
295 |
|
296 |
/* this address is 3 pages before the bios, and the bios should present
|
297 |
* as unavaible memory. FIXME, need to ensure the e820 map deals with
|
298 |
* this?
|
299 |
*/
|
300 |
return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000); |
301 |
} |
302 |
|
303 |
static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
304 |
{ |
305 |
lhs->selector = rhs->selector; |
306 |
lhs->base = rhs->base; |
307 |
lhs->limit = rhs->limit; |
308 |
lhs->type = 3;
|
309 |
lhs->present = 1;
|
310 |
lhs->dpl = 3;
|
311 |
lhs->db = 0;
|
312 |
lhs->s = 1;
|
313 |
lhs->l = 0;
|
314 |
lhs->g = 0;
|
315 |
lhs->avl = 0;
|
316 |
lhs->unusable = 0;
|
317 |
} |
318 |
|
319 |
static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs) |
320 |
{ |
321 |
unsigned flags = rhs->flags;
|
322 |
lhs->selector = rhs->selector; |
323 |
lhs->base = rhs->base; |
324 |
lhs->limit = rhs->limit; |
325 |
lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
|
326 |
lhs->present = (flags & DESC_P_MASK) != 0;
|
327 |
lhs->dpl = rhs->selector & 3;
|
328 |
lhs->db = (flags >> DESC_B_SHIFT) & 1;
|
329 |
lhs->s = (flags & DESC_S_MASK) != 0;
|
330 |
lhs->l = (flags >> DESC_L_SHIFT) & 1;
|
331 |
lhs->g = (flags & DESC_G_MASK) != 0;
|
332 |
lhs->avl = (flags & DESC_AVL_MASK) != 0;
|
333 |
lhs->unusable = 0;
|
334 |
} |
335 |
|
336 |
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs) |
337 |
{ |
338 |
lhs->selector = rhs->selector; |
339 |
lhs->base = rhs->base; |
340 |
lhs->limit = rhs->limit; |
341 |
lhs->flags = |
342 |
(rhs->type << DESC_TYPE_SHIFT) |
343 |
| (rhs->present * DESC_P_MASK) |
344 |
| (rhs->dpl << DESC_DPL_SHIFT) |
345 |
| (rhs->db << DESC_B_SHIFT) |
346 |
| (rhs->s * DESC_S_MASK) |
347 |
| (rhs->l << DESC_L_SHIFT) |
348 |
| (rhs->g * DESC_G_MASK) |
349 |
| (rhs->avl * DESC_AVL_MASK); |
350 |
} |
351 |
|
352 |
static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set) |
353 |
{ |
354 |
if (set)
|
355 |
*kvm_reg = *qemu_reg; |
356 |
else
|
357 |
*qemu_reg = *kvm_reg; |
358 |
} |
359 |
|
360 |
static int kvm_getput_regs(CPUState *env, int set) |
361 |
{ |
362 |
struct kvm_regs regs;
|
363 |
int ret = 0; |
364 |
|
365 |
if (!set) {
|
366 |
ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, ®s); |
367 |
if (ret < 0) |
368 |
return ret;
|
369 |
} |
370 |
|
371 |
kvm_getput_reg(®s.rax, &env->regs[R_EAX], set); |
372 |
kvm_getput_reg(®s.rbx, &env->regs[R_EBX], set); |
373 |
kvm_getput_reg(®s.rcx, &env->regs[R_ECX], set); |
374 |
kvm_getput_reg(®s.rdx, &env->regs[R_EDX], set); |
375 |
kvm_getput_reg(®s.rsi, &env->regs[R_ESI], set); |
376 |
kvm_getput_reg(®s.rdi, &env->regs[R_EDI], set); |
377 |
kvm_getput_reg(®s.rsp, &env->regs[R_ESP], set); |
378 |
kvm_getput_reg(®s.rbp, &env->regs[R_EBP], set); |
379 |
#ifdef TARGET_X86_64
|
380 |
kvm_getput_reg(®s.r8, &env->regs[8], set);
|
381 |
kvm_getput_reg(®s.r9, &env->regs[9], set);
|
382 |
kvm_getput_reg(®s.r10, &env->regs[10], set);
|
383 |
kvm_getput_reg(®s.r11, &env->regs[11], set);
|
384 |
kvm_getput_reg(®s.r12, &env->regs[12], set);
|
385 |
kvm_getput_reg(®s.r13, &env->regs[13], set);
|
386 |
kvm_getput_reg(®s.r14, &env->regs[14], set);
|
387 |
kvm_getput_reg(®s.r15, &env->regs[15], set);
|
388 |
#endif
|
389 |
|
390 |
kvm_getput_reg(®s.rflags, &env->eflags, set); |
391 |
kvm_getput_reg(®s.rip, &env->eip, set); |
392 |
|
393 |
if (set)
|
394 |
ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, ®s); |
395 |
|
396 |
return ret;
|
397 |
} |
398 |
|
399 |
static int kvm_put_fpu(CPUState *env) |
400 |
{ |
401 |
struct kvm_fpu fpu;
|
402 |
int i;
|
403 |
|
404 |
memset(&fpu, 0, sizeof fpu); |
405 |
fpu.fsw = env->fpus & ~(7 << 11); |
406 |
fpu.fsw |= (env->fpstt & 7) << 11; |
407 |
fpu.fcw = env->fpuc; |
408 |
for (i = 0; i < 8; ++i) |
409 |
fpu.ftwx |= (!env->fptags[i]) << i; |
410 |
memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
|
411 |
memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
|
412 |
fpu.mxcsr = env->mxcsr; |
413 |
|
414 |
return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
|
415 |
} |
416 |
|
417 |
static int kvm_put_sregs(CPUState *env) |
418 |
{ |
419 |
struct kvm_sregs sregs;
|
420 |
|
421 |
memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap)); |
422 |
if (env->interrupt_injected >= 0) { |
423 |
sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
|
424 |
(uint64_t)1 << (env->interrupt_injected % 64); |
425 |
} |
426 |
|
427 |
if ((env->eflags & VM_MASK)) {
|
428 |
set_v8086_seg(&sregs.cs, &env->segs[R_CS]); |
429 |
set_v8086_seg(&sregs.ds, &env->segs[R_DS]); |
430 |
set_v8086_seg(&sregs.es, &env->segs[R_ES]); |
431 |
set_v8086_seg(&sregs.fs, &env->segs[R_FS]); |
432 |
set_v8086_seg(&sregs.gs, &env->segs[R_GS]); |
433 |
set_v8086_seg(&sregs.ss, &env->segs[R_SS]); |
434 |
} else {
|
435 |
set_seg(&sregs.cs, &env->segs[R_CS]); |
436 |
set_seg(&sregs.ds, &env->segs[R_DS]); |
437 |
set_seg(&sregs.es, &env->segs[R_ES]); |
438 |
set_seg(&sregs.fs, &env->segs[R_FS]); |
439 |
set_seg(&sregs.gs, &env->segs[R_GS]); |
440 |
set_seg(&sregs.ss, &env->segs[R_SS]); |
441 |
|
442 |
if (env->cr[0] & CR0_PE_MASK) { |
443 |
/* force ss cpl to cs cpl */
|
444 |
sregs.ss.selector = (sregs.ss.selector & ~3) |
|
445 |
(sregs.cs.selector & 3);
|
446 |
sregs.ss.dpl = sregs.ss.selector & 3;
|
447 |
} |
448 |
} |
449 |
|
450 |
set_seg(&sregs.tr, &env->tr); |
451 |
set_seg(&sregs.ldt, &env->ldt); |
452 |
|
453 |
sregs.idt.limit = env->idt.limit; |
454 |
sregs.idt.base = env->idt.base; |
455 |
sregs.gdt.limit = env->gdt.limit; |
456 |
sregs.gdt.base = env->gdt.base; |
457 |
|
458 |
sregs.cr0 = env->cr[0];
|
459 |
sregs.cr2 = env->cr[2];
|
460 |
sregs.cr3 = env->cr[3];
|
461 |
sregs.cr4 = env->cr[4];
|
462 |
|
463 |
sregs.cr8 = cpu_get_apic_tpr(env); |
464 |
sregs.apic_base = cpu_get_apic_base(env); |
465 |
|
466 |
sregs.efer = env->efer; |
467 |
|
468 |
return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
|
469 |
} |
470 |
|
471 |
static void kvm_msr_entry_set(struct kvm_msr_entry *entry, |
472 |
uint32_t index, uint64_t value) |
473 |
{ |
474 |
entry->index = index; |
475 |
entry->data = value; |
476 |
} |
477 |
|
478 |
static int kvm_put_msrs(CPUState *env) |
479 |
{ |
480 |
struct {
|
481 |
struct kvm_msrs info;
|
482 |
struct kvm_msr_entry entries[100]; |
483 |
} msr_data; |
484 |
struct kvm_msr_entry *msrs = msr_data.entries;
|
485 |
int n = 0; |
486 |
|
487 |
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
488 |
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); |
489 |
kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); |
490 |
if (kvm_has_msr_star(env))
|
491 |
kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
492 |
kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
493 |
#ifdef TARGET_X86_64
|
494 |
/* FIXME if lm capable */
|
495 |
kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); |
496 |
kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); |
497 |
kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); |
498 |
kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); |
499 |
#endif
|
500 |
kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME, env->system_time_msr); |
501 |
kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr); |
502 |
|
503 |
msr_data.info.nmsrs = n; |
504 |
|
505 |
return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
|
506 |
|
507 |
} |
508 |
|
509 |
|
510 |
static int kvm_get_fpu(CPUState *env) |
511 |
{ |
512 |
struct kvm_fpu fpu;
|
513 |
int i, ret;
|
514 |
|
515 |
ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu); |
516 |
if (ret < 0) |
517 |
return ret;
|
518 |
|
519 |
env->fpstt = (fpu.fsw >> 11) & 7; |
520 |
env->fpus = fpu.fsw; |
521 |
env->fpuc = fpu.fcw; |
522 |
for (i = 0; i < 8; ++i) |
523 |
env->fptags[i] = !((fpu.ftwx >> i) & 1);
|
524 |
memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
|
525 |
memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
|
526 |
env->mxcsr = fpu.mxcsr; |
527 |
|
528 |
return 0; |
529 |
} |
530 |
|
531 |
static int kvm_get_sregs(CPUState *env) |
532 |
{ |
533 |
struct kvm_sregs sregs;
|
534 |
uint32_t hflags; |
535 |
int bit, i, ret;
|
536 |
|
537 |
ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs); |
538 |
if (ret < 0) |
539 |
return ret;
|
540 |
|
541 |
/* There can only be one pending IRQ set in the bitmap at a time, so try
|
542 |
to find it and save its number instead (-1 for none). */
|
543 |
env->interrupt_injected = -1;
|
544 |
for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) { |
545 |
if (sregs.interrupt_bitmap[i]) {
|
546 |
bit = ctz64(sregs.interrupt_bitmap[i]); |
547 |
env->interrupt_injected = i * 64 + bit;
|
548 |
break;
|
549 |
} |
550 |
} |
551 |
|
552 |
get_seg(&env->segs[R_CS], &sregs.cs); |
553 |
get_seg(&env->segs[R_DS], &sregs.ds); |
554 |
get_seg(&env->segs[R_ES], &sregs.es); |
555 |
get_seg(&env->segs[R_FS], &sregs.fs); |
556 |
get_seg(&env->segs[R_GS], &sregs.gs); |
557 |
get_seg(&env->segs[R_SS], &sregs.ss); |
558 |
|
559 |
get_seg(&env->tr, &sregs.tr); |
560 |
get_seg(&env->ldt, &sregs.ldt); |
561 |
|
562 |
env->idt.limit = sregs.idt.limit; |
563 |
env->idt.base = sregs.idt.base; |
564 |
env->gdt.limit = sregs.gdt.limit; |
565 |
env->gdt.base = sregs.gdt.base; |
566 |
|
567 |
env->cr[0] = sregs.cr0;
|
568 |
env->cr[2] = sregs.cr2;
|
569 |
env->cr[3] = sregs.cr3;
|
570 |
env->cr[4] = sregs.cr4;
|
571 |
|
572 |
cpu_set_apic_base(env, sregs.apic_base); |
573 |
|
574 |
env->efer = sregs.efer; |
575 |
//cpu_set_apic_tpr(env, sregs.cr8);
|
576 |
|
577 |
#define HFLAG_COPY_MASK ~( \
|
578 |
HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \ |
579 |
HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \ |
580 |
HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \ |
581 |
HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK) |
582 |
|
583 |
|
584 |
|
585 |
hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK; |
586 |
hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
|
587 |
hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
|
588 |
(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK); |
589 |
hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK)); |
590 |
hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
|
591 |
(HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT); |
592 |
|
593 |
if (env->efer & MSR_EFER_LMA) {
|
594 |
hflags |= HF_LMA_MASK; |
595 |
} |
596 |
|
597 |
if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
|
598 |
hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK; |
599 |
} else {
|
600 |
hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >> |
601 |
(DESC_B_SHIFT - HF_CS32_SHIFT); |
602 |
hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >> |
603 |
(DESC_B_SHIFT - HF_SS32_SHIFT); |
604 |
if (!(env->cr[0] & CR0_PE_MASK) || |
605 |
(env->eflags & VM_MASK) || |
606 |
!(hflags & HF_CS32_MASK)) { |
607 |
hflags |= HF_ADDSEG_MASK; |
608 |
} else {
|
609 |
hflags |= ((env->segs[R_DS].base | |
610 |
env->segs[R_ES].base | |
611 |
env->segs[R_SS].base) != 0) <<
|
612 |
HF_ADDSEG_SHIFT; |
613 |
} |
614 |
} |
615 |
env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags; |
616 |
|
617 |
return 0; |
618 |
} |
619 |
|
620 |
static int kvm_get_msrs(CPUState *env) |
621 |
{ |
622 |
struct {
|
623 |
struct kvm_msrs info;
|
624 |
struct kvm_msr_entry entries[100]; |
625 |
} msr_data; |
626 |
struct kvm_msr_entry *msrs = msr_data.entries;
|
627 |
int ret, i, n;
|
628 |
|
629 |
n = 0;
|
630 |
msrs[n++].index = MSR_IA32_SYSENTER_CS; |
631 |
msrs[n++].index = MSR_IA32_SYSENTER_ESP; |
632 |
msrs[n++].index = MSR_IA32_SYSENTER_EIP; |
633 |
if (kvm_has_msr_star(env))
|
634 |
msrs[n++].index = MSR_STAR; |
635 |
msrs[n++].index = MSR_IA32_TSC; |
636 |
#ifdef TARGET_X86_64
|
637 |
/* FIXME lm_capable_kernel */
|
638 |
msrs[n++].index = MSR_CSTAR; |
639 |
msrs[n++].index = MSR_KERNELGSBASE; |
640 |
msrs[n++].index = MSR_FMASK; |
641 |
msrs[n++].index = MSR_LSTAR; |
642 |
#endif
|
643 |
msrs[n++].index = MSR_KVM_SYSTEM_TIME; |
644 |
msrs[n++].index = MSR_KVM_WALL_CLOCK; |
645 |
|
646 |
msr_data.info.nmsrs = n; |
647 |
ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data); |
648 |
if (ret < 0) |
649 |
return ret;
|
650 |
|
651 |
for (i = 0; i < ret; i++) { |
652 |
switch (msrs[i].index) {
|
653 |
case MSR_IA32_SYSENTER_CS:
|
654 |
env->sysenter_cs = msrs[i].data; |
655 |
break;
|
656 |
case MSR_IA32_SYSENTER_ESP:
|
657 |
env->sysenter_esp = msrs[i].data; |
658 |
break;
|
659 |
case MSR_IA32_SYSENTER_EIP:
|
660 |
env->sysenter_eip = msrs[i].data; |
661 |
break;
|
662 |
case MSR_STAR:
|
663 |
env->star = msrs[i].data; |
664 |
break;
|
665 |
#ifdef TARGET_X86_64
|
666 |
case MSR_CSTAR:
|
667 |
env->cstar = msrs[i].data; |
668 |
break;
|
669 |
case MSR_KERNELGSBASE:
|
670 |
env->kernelgsbase = msrs[i].data; |
671 |
break;
|
672 |
case MSR_FMASK:
|
673 |
env->fmask = msrs[i].data; |
674 |
break;
|
675 |
case MSR_LSTAR:
|
676 |
env->lstar = msrs[i].data; |
677 |
break;
|
678 |
#endif
|
679 |
case MSR_IA32_TSC:
|
680 |
env->tsc = msrs[i].data; |
681 |
break;
|
682 |
case MSR_KVM_SYSTEM_TIME:
|
683 |
env->system_time_msr = msrs[i].data; |
684 |
break;
|
685 |
case MSR_KVM_WALL_CLOCK:
|
686 |
env->wall_clock_msr = msrs[i].data; |
687 |
break;
|
688 |
} |
689 |
} |
690 |
|
691 |
return 0; |
692 |
} |
693 |
|
694 |
static int kvm_put_mp_state(CPUState *env) |
695 |
{ |
696 |
struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
|
697 |
|
698 |
return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
|
699 |
} |
700 |
|
701 |
static int kvm_get_mp_state(CPUState *env) |
702 |
{ |
703 |
struct kvm_mp_state mp_state;
|
704 |
int ret;
|
705 |
|
706 |
ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state); |
707 |
if (ret < 0) { |
708 |
return ret;
|
709 |
} |
710 |
env->mp_state = mp_state.mp_state; |
711 |
return 0; |
712 |
} |
713 |
|
714 |
static int kvm_put_vcpu_events(CPUState *env) |
715 |
{ |
716 |
#ifdef KVM_CAP_VCPU_EVENTS
|
717 |
struct kvm_vcpu_events events;
|
718 |
|
719 |
if (!kvm_has_vcpu_events()) {
|
720 |
return 0; |
721 |
} |
722 |
|
723 |
events.exception.injected = (env->exception_injected >= 0);
|
724 |
events.exception.nr = env->exception_injected; |
725 |
events.exception.has_error_code = env->has_error_code; |
726 |
events.exception.error_code = env->error_code; |
727 |
|
728 |
events.interrupt.injected = (env->interrupt_injected >= 0);
|
729 |
events.interrupt.nr = env->interrupt_injected; |
730 |
events.interrupt.soft = env->soft_interrupt; |
731 |
|
732 |
events.nmi.injected = env->nmi_injected; |
733 |
events.nmi.pending = env->nmi_pending; |
734 |
events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK); |
735 |
|
736 |
events.sipi_vector = env->sipi_vector; |
737 |
|
738 |
return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
|
739 |
#else
|
740 |
return 0; |
741 |
#endif
|
742 |
} |
743 |
|
744 |
static int kvm_get_vcpu_events(CPUState *env) |
745 |
{ |
746 |
#ifdef KVM_CAP_VCPU_EVENTS
|
747 |
struct kvm_vcpu_events events;
|
748 |
int ret;
|
749 |
|
750 |
if (!kvm_has_vcpu_events()) {
|
751 |
return 0; |
752 |
} |
753 |
|
754 |
ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events); |
755 |
if (ret < 0) { |
756 |
return ret;
|
757 |
} |
758 |
env->exception_injected = |
759 |
events.exception.injected ? events.exception.nr : -1;
|
760 |
env->has_error_code = events.exception.has_error_code; |
761 |
env->error_code = events.exception.error_code; |
762 |
|
763 |
env->interrupt_injected = |
764 |
events.interrupt.injected ? events.interrupt.nr : -1;
|
765 |
env->soft_interrupt = events.interrupt.soft; |
766 |
|
767 |
env->nmi_injected = events.nmi.injected; |
768 |
env->nmi_pending = events.nmi.pending; |
769 |
if (events.nmi.masked) {
|
770 |
env->hflags2 |= HF2_NMI_MASK; |
771 |
} else {
|
772 |
env->hflags2 &= ~HF2_NMI_MASK; |
773 |
} |
774 |
|
775 |
env->sipi_vector = events.sipi_vector; |
776 |
#endif
|
777 |
|
778 |
return 0; |
779 |
} |
780 |
|
781 |
int kvm_arch_put_registers(CPUState *env)
|
782 |
{ |
783 |
int ret;
|
784 |
|
785 |
ret = kvm_getput_regs(env, 1);
|
786 |
if (ret < 0) |
787 |
return ret;
|
788 |
|
789 |
ret = kvm_put_fpu(env); |
790 |
if (ret < 0) |
791 |
return ret;
|
792 |
|
793 |
ret = kvm_put_sregs(env); |
794 |
if (ret < 0) |
795 |
return ret;
|
796 |
|
797 |
ret = kvm_put_msrs(env); |
798 |
if (ret < 0) |
799 |
return ret;
|
800 |
|
801 |
ret = kvm_put_mp_state(env); |
802 |
if (ret < 0) |
803 |
return ret;
|
804 |
|
805 |
ret = kvm_put_vcpu_events(env); |
806 |
if (ret < 0) |
807 |
return ret;
|
808 |
|
809 |
return 0; |
810 |
} |
811 |
|
812 |
int kvm_arch_get_registers(CPUState *env)
|
813 |
{ |
814 |
int ret;
|
815 |
|
816 |
ret = kvm_getput_regs(env, 0);
|
817 |
if (ret < 0) |
818 |
return ret;
|
819 |
|
820 |
ret = kvm_get_fpu(env); |
821 |
if (ret < 0) |
822 |
return ret;
|
823 |
|
824 |
ret = kvm_get_sregs(env); |
825 |
if (ret < 0) |
826 |
return ret;
|
827 |
|
828 |
ret = kvm_get_msrs(env); |
829 |
if (ret < 0) |
830 |
return ret;
|
831 |
|
832 |
ret = kvm_get_mp_state(env); |
833 |
if (ret < 0) |
834 |
return ret;
|
835 |
|
836 |
ret = kvm_get_vcpu_events(env); |
837 |
if (ret < 0) |
838 |
return ret;
|
839 |
|
840 |
return 0; |
841 |
} |
842 |
|
843 |
int kvm_arch_pre_run(CPUState *env, struct kvm_run *run) |
844 |
{ |
845 |
/* Try to inject an interrupt if the guest can accept it */
|
846 |
if (run->ready_for_interrupt_injection &&
|
847 |
(env->interrupt_request & CPU_INTERRUPT_HARD) && |
848 |
(env->eflags & IF_MASK)) { |
849 |
int irq;
|
850 |
|
851 |
env->interrupt_request &= ~CPU_INTERRUPT_HARD; |
852 |
irq = cpu_get_pic_interrupt(env); |
853 |
if (irq >= 0) { |
854 |
struct kvm_interrupt intr;
|
855 |
intr.irq = irq; |
856 |
/* FIXME: errors */
|
857 |
dprintf("injected interrupt %d\n", irq);
|
858 |
kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr); |
859 |
} |
860 |
} |
861 |
|
862 |
/* If we have an interrupt but the guest is not ready to receive an
|
863 |
* interrupt, request an interrupt window exit. This will
|
864 |
* cause a return to userspace as soon as the guest is ready to
|
865 |
* receive interrupts. */
|
866 |
if ((env->interrupt_request & CPU_INTERRUPT_HARD))
|
867 |
run->request_interrupt_window = 1;
|
868 |
else
|
869 |
run->request_interrupt_window = 0;
|
870 |
|
871 |
dprintf("setting tpr\n");
|
872 |
run->cr8 = cpu_get_apic_tpr(env); |
873 |
|
874 |
return 0; |
875 |
} |
876 |
|
877 |
int kvm_arch_post_run(CPUState *env, struct kvm_run *run) |
878 |
{ |
879 |
if (run->if_flag)
|
880 |
env->eflags |= IF_MASK; |
881 |
else
|
882 |
env->eflags &= ~IF_MASK; |
883 |
|
884 |
cpu_set_apic_tpr(env, run->cr8); |
885 |
cpu_set_apic_base(env, run->apic_base); |
886 |
|
887 |
return 0; |
888 |
} |
889 |
|
890 |
static int kvm_handle_halt(CPUState *env) |
891 |
{ |
892 |
if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
|
893 |
(env->eflags & IF_MASK)) && |
894 |
!(env->interrupt_request & CPU_INTERRUPT_NMI)) { |
895 |
env->halted = 1;
|
896 |
env->exception_index = EXCP_HLT; |
897 |
return 0; |
898 |
} |
899 |
|
900 |
return 1; |
901 |
} |
902 |
|
903 |
int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run) |
904 |
{ |
905 |
int ret = 0; |
906 |
|
907 |
switch (run->exit_reason) {
|
908 |
case KVM_EXIT_HLT:
|
909 |
dprintf("handle_hlt\n");
|
910 |
ret = kvm_handle_halt(env); |
911 |
break;
|
912 |
} |
913 |
|
914 |
return ret;
|
915 |
} |
916 |
|
917 |
#ifdef KVM_CAP_SET_GUEST_DEBUG
|
918 |
int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
919 |
{ |
920 |
static const uint8_t int3 = 0xcc; |
921 |
|
922 |
if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) || |
923 |
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) |
924 |
return -EINVAL;
|
925 |
return 0; |
926 |
} |
927 |
|
928 |
int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp) |
929 |
{ |
930 |
uint8_t int3; |
931 |
|
932 |
if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc || |
933 |
cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) |
934 |
return -EINVAL;
|
935 |
return 0; |
936 |
} |
937 |
|
938 |
static struct { |
939 |
target_ulong addr; |
940 |
int len;
|
941 |
int type;
|
942 |
} hw_breakpoint[4];
|
943 |
|
944 |
static int nb_hw_breakpoint; |
945 |
|
946 |
static int find_hw_breakpoint(target_ulong addr, int len, int type) |
947 |
{ |
948 |
int n;
|
949 |
|
950 |
for (n = 0; n < nb_hw_breakpoint; n++) |
951 |
if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
|
952 |
(hw_breakpoint[n].len == len || len == -1))
|
953 |
return n;
|
954 |
return -1; |
955 |
} |
956 |
|
957 |
int kvm_arch_insert_hw_breakpoint(target_ulong addr,
|
958 |
target_ulong len, int type)
|
959 |
{ |
960 |
switch (type) {
|
961 |
case GDB_BREAKPOINT_HW:
|
962 |
len = 1;
|
963 |
break;
|
964 |
case GDB_WATCHPOINT_WRITE:
|
965 |
case GDB_WATCHPOINT_ACCESS:
|
966 |
switch (len) {
|
967 |
case 1: |
968 |
break;
|
969 |
case 2: |
970 |
case 4: |
971 |
case 8: |
972 |
if (addr & (len - 1)) |
973 |
return -EINVAL;
|
974 |
break;
|
975 |
default:
|
976 |
return -EINVAL;
|
977 |
} |
978 |
break;
|
979 |
default:
|
980 |
return -ENOSYS;
|
981 |
} |
982 |
|
983 |
if (nb_hw_breakpoint == 4) |
984 |
return -ENOBUFS;
|
985 |
|
986 |
if (find_hw_breakpoint(addr, len, type) >= 0) |
987 |
return -EEXIST;
|
988 |
|
989 |
hw_breakpoint[nb_hw_breakpoint].addr = addr; |
990 |
hw_breakpoint[nb_hw_breakpoint].len = len; |
991 |
hw_breakpoint[nb_hw_breakpoint].type = type; |
992 |
nb_hw_breakpoint++; |
993 |
|
994 |
return 0; |
995 |
} |
996 |
|
997 |
int kvm_arch_remove_hw_breakpoint(target_ulong addr,
|
998 |
target_ulong len, int type)
|
999 |
{ |
1000 |
int n;
|
1001 |
|
1002 |
n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
|
1003 |
if (n < 0) |
1004 |
return -ENOENT;
|
1005 |
|
1006 |
nb_hw_breakpoint--; |
1007 |
hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint]; |
1008 |
|
1009 |
return 0; |
1010 |
} |
1011 |
|
1012 |
void kvm_arch_remove_all_hw_breakpoints(void) |
1013 |
{ |
1014 |
nb_hw_breakpoint = 0;
|
1015 |
} |
1016 |
|
1017 |
static CPUWatchpoint hw_watchpoint;
|
1018 |
|
1019 |
int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info) |
1020 |
{ |
1021 |
int handle = 0; |
1022 |
int n;
|
1023 |
|
1024 |
if (arch_info->exception == 1) { |
1025 |
if (arch_info->dr6 & (1 << 14)) { |
1026 |
if (cpu_single_env->singlestep_enabled)
|
1027 |
handle = 1;
|
1028 |
} else {
|
1029 |
for (n = 0; n < 4; n++) |
1030 |
if (arch_info->dr6 & (1 << n)) |
1031 |
switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) { |
1032 |
case 0x0: |
1033 |
handle = 1;
|
1034 |
break;
|
1035 |
case 0x1: |
1036 |
handle = 1;
|
1037 |
cpu_single_env->watchpoint_hit = &hw_watchpoint; |
1038 |
hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
1039 |
hw_watchpoint.flags = BP_MEM_WRITE; |
1040 |
break;
|
1041 |
case 0x3: |
1042 |
handle = 1;
|
1043 |
cpu_single_env->watchpoint_hit = &hw_watchpoint; |
1044 |
hw_watchpoint.vaddr = hw_breakpoint[n].addr; |
1045 |
hw_watchpoint.flags = BP_MEM_ACCESS; |
1046 |
break;
|
1047 |
} |
1048 |
} |
1049 |
} else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) |
1050 |
handle = 1;
|
1051 |
|
1052 |
if (!handle)
|
1053 |
kvm_update_guest_debug(cpu_single_env, |
1054 |
(arch_info->exception == 1) ?
|
1055 |
KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP); |
1056 |
|
1057 |
return handle;
|
1058 |
} |
1059 |
|
1060 |
void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg) |
1061 |
{ |
1062 |
const uint8_t type_code[] = {
|
1063 |
[GDB_BREAKPOINT_HW] = 0x0,
|
1064 |
[GDB_WATCHPOINT_WRITE] = 0x1,
|
1065 |
[GDB_WATCHPOINT_ACCESS] = 0x3
|
1066 |
}; |
1067 |
const uint8_t len_code[] = {
|
1068 |
[1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2 |
1069 |
}; |
1070 |
int n;
|
1071 |
|
1072 |
if (kvm_sw_breakpoints_active(env))
|
1073 |
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP; |
1074 |
|
1075 |
if (nb_hw_breakpoint > 0) { |
1076 |
dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; |
1077 |
dbg->arch.debugreg[7] = 0x0600; |
1078 |
for (n = 0; n < nb_hw_breakpoint; n++) { |
1079 |
dbg->arch.debugreg[n] = hw_breakpoint[n].addr; |
1080 |
dbg->arch.debugreg[7] |= (2 << (n * 2)) | |
1081 |
(type_code[hw_breakpoint[n].type] << (16 + n*4)) | |
1082 |
(len_code[hw_breakpoint[n].len] << (18 + n*4)); |
1083 |
} |
1084 |
} |
1085 |
} |
1086 |
#endif /* KVM_CAP_SET_GUEST_DEBUG */ |