Statistics
| Branch: | Revision:

root / vl.c @ 31a60e22

History | View | Annotate | Download (217.9 kB)

1
/*
2
 * QEMU System Emulator
3
 *
4
 * Copyright (c) 2003-2007 Fabrice Bellard
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25

    
26
#include <unistd.h>
27
#include <fcntl.h>
28
#include <signal.h>
29
#include <time.h>
30
#include <errno.h>
31
#include <sys/time.h>
32
#include <zlib.h>
33

    
34
#ifndef _WIN32
35
#include <sys/times.h>
36
#include <sys/wait.h>
37
#include <termios.h>
38
#include <sys/poll.h>
39
#include <sys/mman.h>
40
#include <sys/ioctl.h>
41
#include <sys/socket.h>
42
#include <netinet/in.h>
43
#include <dirent.h>
44
#include <netdb.h>
45
#include <sys/select.h>
46
#include <arpa/inet.h>
47
#ifdef _BSD
48
#include <sys/stat.h>
49
#ifndef __APPLE__
50
#include <libutil.h>
51
#endif
52
#elif defined (__GLIBC__) && defined (__FreeBSD_kernel__)
53
#include <freebsd/stdlib.h>
54
#else
55
#ifndef __sun__
56
#include <linux/if.h>
57
#include <linux/if_tun.h>
58
#include <pty.h>
59
#include <malloc.h>
60
#include <linux/rtc.h>
61

    
62
/* For the benefit of older linux systems which don't supply it,
63
   we use a local copy of hpet.h. */
64
/* #include <linux/hpet.h> */
65
#include "hpet.h"
66

    
67
#include <linux/ppdev.h>
68
#include <linux/parport.h>
69
#else
70
#include <sys/stat.h>
71
#include <sys/ethernet.h>
72
#include <sys/sockio.h>
73
#include <netinet/arp.h>
74
#include <netinet/in.h>
75
#include <netinet/in_systm.h>
76
#include <netinet/ip.h>
77
#include <netinet/ip_icmp.h> // must come after ip.h
78
#include <netinet/udp.h>
79
#include <netinet/tcp.h>
80
#include <net/if.h>
81
#include <syslog.h>
82
#include <stropts.h>
83
#endif
84
#endif
85
#else
86
#include <winsock2.h>
87
int inet_aton(const char *cp, struct in_addr *ia);
88
#endif
89

    
90
#if defined(CONFIG_SLIRP)
91
#include "libslirp.h"
92
#endif
93

    
94
#ifdef _WIN32
95
#include <malloc.h>
96
#include <sys/timeb.h>
97
#include <windows.h>
98
#define getopt_long_only getopt_long
99
#define memalign(align, size) malloc(size)
100
#endif
101

    
102
#include "qemu_socket.h"
103

    
104
#ifdef CONFIG_SDL
105
#ifdef __APPLE__
106
#include <SDL/SDL.h>
107
#endif
108
#endif /* CONFIG_SDL */
109

    
110
#ifdef CONFIG_COCOA
111
#undef main
112
#define main qemu_main
113
#endif /* CONFIG_COCOA */
114

    
115
#include "disas.h"
116

    
117
#include "exec-all.h"
118

    
119
#define DEFAULT_NETWORK_SCRIPT "/etc/qemu-ifup"
120
#define DEFAULT_NETWORK_DOWN_SCRIPT "/etc/qemu-ifdown"
121
#ifdef __sun__
122
#define SMBD_COMMAND "/usr/sfw/sbin/smbd"
123
#else
124
#define SMBD_COMMAND "/usr/sbin/smbd"
125
#endif
126

    
127
//#define DEBUG_UNUSED_IOPORT
128
//#define DEBUG_IOPORT
129

    
130
#define PHYS_RAM_MAX_SIZE (2047 * 1024 * 1024)
131

    
132
#ifdef TARGET_PPC
133
#define DEFAULT_RAM_SIZE 144
134
#else
135
#define DEFAULT_RAM_SIZE 128
136
#endif
137
/* in ms */
138
#define GUI_REFRESH_INTERVAL 30
139

    
140
/* Max number of USB devices that can be specified on the commandline.  */
141
#define MAX_USB_CMDLINE 8
142

    
143
/* XXX: use a two level table to limit memory usage */
144
#define MAX_IOPORTS 65536
145

    
146
const char *bios_dir = CONFIG_QEMU_SHAREDIR;
147
const char *bios_name = NULL;
148
char phys_ram_file[1024];
149
void *ioport_opaque[MAX_IOPORTS];
150
IOPortReadFunc *ioport_read_table[3][MAX_IOPORTS];
151
IOPortWriteFunc *ioport_write_table[3][MAX_IOPORTS];
152
/* Note: bs_table[MAX_DISKS] is a dummy block driver if none available
153
   to store the VM snapshots */
154
BlockDriverState *bs_table[MAX_DISKS + 1], *fd_table[MAX_FD];
155
BlockDriverState *pflash_table[MAX_PFLASH];
156
BlockDriverState *sd_bdrv;
157
BlockDriverState *mtd_bdrv;
158
/* point to the block driver where the snapshots are managed */
159
BlockDriverState *bs_snapshots;
160
int vga_ram_size;
161
static DisplayState display_state;
162
int nographic;
163
const char* keyboard_layout = NULL;
164
int64_t ticks_per_sec;
165
int boot_device = 'c';
166
int ram_size;
167
int pit_min_timer_count = 0;
168
int nb_nics;
169
NICInfo nd_table[MAX_NICS];
170
int vm_running;
171
int rtc_utc = 1;
172
int cirrus_vga_enabled = 1;
173
int vmsvga_enabled = 0;
174
#ifdef TARGET_SPARC
175
int graphic_width = 1024;
176
int graphic_height = 768;
177
int graphic_depth = 8;
178
#else
179
int graphic_width = 800;
180
int graphic_height = 600;
181
int graphic_depth = 15;
182
#endif
183
int full_screen = 0;
184
int no_frame = 0;
185
int no_quit = 0;
186
CharDriverState *serial_hds[MAX_SERIAL_PORTS];
187
CharDriverState *parallel_hds[MAX_PARALLEL_PORTS];
188
#ifdef TARGET_I386
189
int win2k_install_hack = 0;
190
#endif
191
int usb_enabled = 0;
192
static VLANState *first_vlan;
193
int smp_cpus = 1;
194
const char *vnc_display;
195
#if defined(TARGET_SPARC)
196
#define MAX_CPUS 16
197
#elif defined(TARGET_I386)
198
#define MAX_CPUS 255
199
#else
200
#define MAX_CPUS 1
201
#endif
202
int acpi_enabled = 1;
203
int fd_bootchk = 1;
204
int no_reboot = 0;
205
int cursor_hide = 1;
206
int graphic_rotate = 0;
207
int daemonize = 0;
208
const char *option_rom[MAX_OPTION_ROMS];
209
int nb_option_roms;
210
int semihosting_enabled = 0;
211
int autostart = 1;
212
#ifdef TARGET_ARM
213
int old_param = 0;
214
#endif
215
const char *qemu_name;
216
int alt_grab = 0;
217
#ifdef TARGET_SPARC
218
unsigned int nb_prom_envs = 0;
219
const char *prom_envs[MAX_PROM_ENVS];
220
#endif
221

    
222
#define TFR(expr) do { if ((expr) != -1) break; } while (errno == EINTR)
223

    
224
/***********************************************************/
225
/* x86 ISA bus support */
226

    
227
target_phys_addr_t isa_mem_base = 0;
228
PicState2 *isa_pic;
229

    
230
uint32_t default_ioport_readb(void *opaque, uint32_t address)
231
{
232
#ifdef DEBUG_UNUSED_IOPORT
233
    fprintf(stderr, "unused inb: port=0x%04x\n", address);
234
#endif
235
    return 0xff;
236
}
237

    
238
void default_ioport_writeb(void *opaque, uint32_t address, uint32_t data)
239
{
240
#ifdef DEBUG_UNUSED_IOPORT
241
    fprintf(stderr, "unused outb: port=0x%04x data=0x%02x\n", address, data);
242
#endif
243
}
244

    
245
/* default is to make two byte accesses */
246
uint32_t default_ioport_readw(void *opaque, uint32_t address)
247
{
248
    uint32_t data;
249
    data = ioport_read_table[0][address](ioport_opaque[address], address);
250
    address = (address + 1) & (MAX_IOPORTS - 1);
251
    data |= ioport_read_table[0][address](ioport_opaque[address], address) << 8;
252
    return data;
253
}
254

    
255
void default_ioport_writew(void *opaque, uint32_t address, uint32_t data)
256
{
257
    ioport_write_table[0][address](ioport_opaque[address], address, data & 0xff);
258
    address = (address + 1) & (MAX_IOPORTS - 1);
259
    ioport_write_table[0][address](ioport_opaque[address], address, (data >> 8) & 0xff);
260
}
261

    
262
uint32_t default_ioport_readl(void *opaque, uint32_t address)
263
{
264
#ifdef DEBUG_UNUSED_IOPORT
265
    fprintf(stderr, "unused inl: port=0x%04x\n", address);
266
#endif
267
    return 0xffffffff;
268
}
269

    
270
void default_ioport_writel(void *opaque, uint32_t address, uint32_t data)
271
{
272
#ifdef DEBUG_UNUSED_IOPORT
273
    fprintf(stderr, "unused outl: port=0x%04x data=0x%02x\n", address, data);
274
#endif
275
}
276

    
277
void init_ioports(void)
278
{
279
    int i;
280

    
281
    for(i = 0; i < MAX_IOPORTS; i++) {
282
        ioport_read_table[0][i] = default_ioport_readb;
283
        ioport_write_table[0][i] = default_ioport_writeb;
284
        ioport_read_table[1][i] = default_ioport_readw;
285
        ioport_write_table[1][i] = default_ioport_writew;
286
        ioport_read_table[2][i] = default_ioport_readl;
287
        ioport_write_table[2][i] = default_ioport_writel;
288
    }
289
}
290

    
291
/* size is the word size in byte */
292
int register_ioport_read(int start, int length, int size,
293
                         IOPortReadFunc *func, void *opaque)
294
{
295
    int i, bsize;
296

    
297
    if (size == 1) {
298
        bsize = 0;
299
    } else if (size == 2) {
300
        bsize = 1;
301
    } else if (size == 4) {
302
        bsize = 2;
303
    } else {
304
        hw_error("register_ioport_read: invalid size");
305
        return -1;
306
    }
307
    for(i = start; i < start + length; i += size) {
308
        ioport_read_table[bsize][i] = func;
309
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
310
            hw_error("register_ioport_read: invalid opaque");
311
        ioport_opaque[i] = opaque;
312
    }
313
    return 0;
314
}
315

    
316
/* size is the word size in byte */
317
int register_ioport_write(int start, int length, int size,
318
                          IOPortWriteFunc *func, void *opaque)
319
{
320
    int i, bsize;
321

    
322
    if (size == 1) {
323
        bsize = 0;
324
    } else if (size == 2) {
325
        bsize = 1;
326
    } else if (size == 4) {
327
        bsize = 2;
328
    } else {
329
        hw_error("register_ioport_write: invalid size");
330
        return -1;
331
    }
332
    for(i = start; i < start + length; i += size) {
333
        ioport_write_table[bsize][i] = func;
334
        if (ioport_opaque[i] != NULL && ioport_opaque[i] != opaque)
335
            hw_error("register_ioport_write: invalid opaque");
336
        ioport_opaque[i] = opaque;
337
    }
338
    return 0;
339
}
340

    
341
void isa_unassign_ioport(int start, int length)
342
{
343
    int i;
344

    
345
    for(i = start; i < start + length; i++) {
346
        ioport_read_table[0][i] = default_ioport_readb;
347
        ioport_read_table[1][i] = default_ioport_readw;
348
        ioport_read_table[2][i] = default_ioport_readl;
349

    
350
        ioport_write_table[0][i] = default_ioport_writeb;
351
        ioport_write_table[1][i] = default_ioport_writew;
352
        ioport_write_table[2][i] = default_ioport_writel;
353
    }
354
}
355

    
356
/***********************************************************/
357

    
358
void cpu_outb(CPUState *env, int addr, int val)
359
{
360
#ifdef DEBUG_IOPORT
361
    if (loglevel & CPU_LOG_IOPORT)
362
        fprintf(logfile, "outb: %04x %02x\n", addr, val);
363
#endif
364
    ioport_write_table[0][addr](ioport_opaque[addr], addr, val);
365
#ifdef USE_KQEMU
366
    if (env)
367
        env->last_io_time = cpu_get_time_fast();
368
#endif
369
}
370

    
371
void cpu_outw(CPUState *env, int addr, int val)
372
{
373
#ifdef DEBUG_IOPORT
374
    if (loglevel & CPU_LOG_IOPORT)
375
        fprintf(logfile, "outw: %04x %04x\n", addr, val);
376
#endif
377
    ioport_write_table[1][addr](ioport_opaque[addr], addr, val);
378
#ifdef USE_KQEMU
379
    if (env)
380
        env->last_io_time = cpu_get_time_fast();
381
#endif
382
}
383

    
384
void cpu_outl(CPUState *env, int addr, int val)
385
{
386
#ifdef DEBUG_IOPORT
387
    if (loglevel & CPU_LOG_IOPORT)
388
        fprintf(logfile, "outl: %04x %08x\n", addr, val);
389
#endif
390
    ioport_write_table[2][addr](ioport_opaque[addr], addr, val);
391
#ifdef USE_KQEMU
392
    if (env)
393
        env->last_io_time = cpu_get_time_fast();
394
#endif
395
}
396

    
397
int cpu_inb(CPUState *env, int addr)
398
{
399
    int val;
400
    val = ioport_read_table[0][addr](ioport_opaque[addr], addr);
401
#ifdef DEBUG_IOPORT
402
    if (loglevel & CPU_LOG_IOPORT)
403
        fprintf(logfile, "inb : %04x %02x\n", addr, val);
404
#endif
405
#ifdef USE_KQEMU
406
    if (env)
407
        env->last_io_time = cpu_get_time_fast();
408
#endif
409
    return val;
410
}
411

    
412
int cpu_inw(CPUState *env, int addr)
413
{
414
    int val;
415
    val = ioport_read_table[1][addr](ioport_opaque[addr], addr);
416
#ifdef DEBUG_IOPORT
417
    if (loglevel & CPU_LOG_IOPORT)
418
        fprintf(logfile, "inw : %04x %04x\n", addr, val);
419
#endif
420
#ifdef USE_KQEMU
421
    if (env)
422
        env->last_io_time = cpu_get_time_fast();
423
#endif
424
    return val;
425
}
426

    
427
int cpu_inl(CPUState *env, int addr)
428
{
429
    int val;
430
    val = ioport_read_table[2][addr](ioport_opaque[addr], addr);
431
#ifdef DEBUG_IOPORT
432
    if (loglevel & CPU_LOG_IOPORT)
433
        fprintf(logfile, "inl : %04x %08x\n", addr, val);
434
#endif
435
#ifdef USE_KQEMU
436
    if (env)
437
        env->last_io_time = cpu_get_time_fast();
438
#endif
439
    return val;
440
}
441

    
442
/***********************************************************/
443
void hw_error(const char *fmt, ...)
444
{
445
    va_list ap;
446
    CPUState *env;
447

    
448
    va_start(ap, fmt);
449
    fprintf(stderr, "qemu: hardware error: ");
450
    vfprintf(stderr, fmt, ap);
451
    fprintf(stderr, "\n");
452
    for(env = first_cpu; env != NULL; env = env->next_cpu) {
453
        fprintf(stderr, "CPU #%d:\n", env->cpu_index);
454
#ifdef TARGET_I386
455
        cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU);
456
#else
457
        cpu_dump_state(env, stderr, fprintf, 0);
458
#endif
459
    }
460
    va_end(ap);
461
    abort();
462
}
463

    
464
/***********************************************************/
465
/* keyboard/mouse */
466

    
467
static QEMUPutKBDEvent *qemu_put_kbd_event;
468
static void *qemu_put_kbd_event_opaque;
469
static QEMUPutMouseEntry *qemu_put_mouse_event_head;
470
static QEMUPutMouseEntry *qemu_put_mouse_event_current;
471

    
472
void qemu_add_kbd_event_handler(QEMUPutKBDEvent *func, void *opaque)
473
{
474
    qemu_put_kbd_event_opaque = opaque;
475
    qemu_put_kbd_event = func;
476
}
477

    
478
QEMUPutMouseEntry *qemu_add_mouse_event_handler(QEMUPutMouseEvent *func,
479
                                                void *opaque, int absolute,
480
                                                const char *name)
481
{
482
    QEMUPutMouseEntry *s, *cursor;
483

    
484
    s = qemu_mallocz(sizeof(QEMUPutMouseEntry));
485
    if (!s)
486
        return NULL;
487

    
488
    s->qemu_put_mouse_event = func;
489
    s->qemu_put_mouse_event_opaque = opaque;
490
    s->qemu_put_mouse_event_absolute = absolute;
491
    s->qemu_put_mouse_event_name = qemu_strdup(name);
492
    s->next = NULL;
493

    
494
    if (!qemu_put_mouse_event_head) {
495
        qemu_put_mouse_event_head = qemu_put_mouse_event_current = s;
496
        return s;
497
    }
498

    
499
    cursor = qemu_put_mouse_event_head;
500
    while (cursor->next != NULL)
501
        cursor = cursor->next;
502

    
503
    cursor->next = s;
504
    qemu_put_mouse_event_current = s;
505

    
506
    return s;
507
}
508

    
509
void qemu_remove_mouse_event_handler(QEMUPutMouseEntry *entry)
510
{
511
    QEMUPutMouseEntry *prev = NULL, *cursor;
512

    
513
    if (!qemu_put_mouse_event_head || entry == NULL)
514
        return;
515

    
516
    cursor = qemu_put_mouse_event_head;
517
    while (cursor != NULL && cursor != entry) {
518
        prev = cursor;
519
        cursor = cursor->next;
520
    }
521

    
522
    if (cursor == NULL) // does not exist or list empty
523
        return;
524
    else if (prev == NULL) { // entry is head
525
        qemu_put_mouse_event_head = cursor->next;
526
        if (qemu_put_mouse_event_current == entry)
527
            qemu_put_mouse_event_current = cursor->next;
528
        qemu_free(entry->qemu_put_mouse_event_name);
529
        qemu_free(entry);
530
        return;
531
    }
532

    
533
    prev->next = entry->next;
534

    
535
    if (qemu_put_mouse_event_current == entry)
536
        qemu_put_mouse_event_current = prev;
537

    
538
    qemu_free(entry->qemu_put_mouse_event_name);
539
    qemu_free(entry);
540
}
541

    
542
void kbd_put_keycode(int keycode)
543
{
544
    if (qemu_put_kbd_event) {
545
        qemu_put_kbd_event(qemu_put_kbd_event_opaque, keycode);
546
    }
547
}
548

    
549
void kbd_mouse_event(int dx, int dy, int dz, int buttons_state)
550
{
551
    QEMUPutMouseEvent *mouse_event;
552
    void *mouse_event_opaque;
553
    int width;
554

    
555
    if (!qemu_put_mouse_event_current) {
556
        return;
557
    }
558

    
559
    mouse_event =
560
        qemu_put_mouse_event_current->qemu_put_mouse_event;
561
    mouse_event_opaque =
562
        qemu_put_mouse_event_current->qemu_put_mouse_event_opaque;
563

    
564
    if (mouse_event) {
565
        if (graphic_rotate) {
566
            if (qemu_put_mouse_event_current->qemu_put_mouse_event_absolute)
567
                width = 0x7fff;
568
            else
569
                width = graphic_width;
570
            mouse_event(mouse_event_opaque,
571
                                 width - dy, dx, dz, buttons_state);
572
        } else
573
            mouse_event(mouse_event_opaque,
574
                                 dx, dy, dz, buttons_state);
575
    }
576
}
577

    
578
int kbd_mouse_is_absolute(void)
579
{
580
    if (!qemu_put_mouse_event_current)
581
        return 0;
582

    
583
    return qemu_put_mouse_event_current->qemu_put_mouse_event_absolute;
584
}
585

    
586
void do_info_mice(void)
587
{
588
    QEMUPutMouseEntry *cursor;
589
    int index = 0;
590

    
591
    if (!qemu_put_mouse_event_head) {
592
        term_printf("No mouse devices connected\n");
593
        return;
594
    }
595

    
596
    term_printf("Mouse devices available:\n");
597
    cursor = qemu_put_mouse_event_head;
598
    while (cursor != NULL) {
599
        term_printf("%c Mouse #%d: %s\n",
600
                    (cursor == qemu_put_mouse_event_current ? '*' : ' '),
601
                    index, cursor->qemu_put_mouse_event_name);
602
        index++;
603
        cursor = cursor->next;
604
    }
605
}
606

    
607
void do_mouse_set(int index)
608
{
609
    QEMUPutMouseEntry *cursor;
610
    int i = 0;
611

    
612
    if (!qemu_put_mouse_event_head) {
613
        term_printf("No mouse devices connected\n");
614
        return;
615
    }
616

    
617
    cursor = qemu_put_mouse_event_head;
618
    while (cursor != NULL && index != i) {
619
        i++;
620
        cursor = cursor->next;
621
    }
622

    
623
    if (cursor != NULL)
624
        qemu_put_mouse_event_current = cursor;
625
    else
626
        term_printf("Mouse at given index not found\n");
627
}
628

    
629
/* compute with 96 bit intermediate result: (a*b)/c */
630
uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
631
{
632
    union {
633
        uint64_t ll;
634
        struct {
635
#ifdef WORDS_BIGENDIAN
636
            uint32_t high, low;
637
#else
638
            uint32_t low, high;
639
#endif
640
        } l;
641
    } u, res;
642
    uint64_t rl, rh;
643

    
644
    u.ll = a;
645
    rl = (uint64_t)u.l.low * (uint64_t)b;
646
    rh = (uint64_t)u.l.high * (uint64_t)b;
647
    rh += (rl >> 32);
648
    res.l.high = rh / c;
649
    res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
650
    return res.ll;
651
}
652

    
653
/***********************************************************/
654
/* real time host monotonic timer */
655

    
656
#define QEMU_TIMER_BASE 1000000000LL
657

    
658
#ifdef WIN32
659

    
660
static int64_t clock_freq;
661

    
662
static void init_get_clock(void)
663
{
664
    LARGE_INTEGER freq;
665
    int ret;
666
    ret = QueryPerformanceFrequency(&freq);
667
    if (ret == 0) {
668
        fprintf(stderr, "Could not calibrate ticks\n");
669
        exit(1);
670
    }
671
    clock_freq = freq.QuadPart;
672
}
673

    
674
static int64_t get_clock(void)
675
{
676
    LARGE_INTEGER ti;
677
    QueryPerformanceCounter(&ti);
678
    return muldiv64(ti.QuadPart, QEMU_TIMER_BASE, clock_freq);
679
}
680

    
681
#else
682

    
683
static int use_rt_clock;
684

    
685
static void init_get_clock(void)
686
{
687
    use_rt_clock = 0;
688
#if defined(__linux__)
689
    {
690
        struct timespec ts;
691
        if (clock_gettime(CLOCK_MONOTONIC, &ts) == 0) {
692
            use_rt_clock = 1;
693
        }
694
    }
695
#endif
696
}
697

    
698
static int64_t get_clock(void)
699
{
700
#if defined(__linux__)
701
    if (use_rt_clock) {
702
        struct timespec ts;
703
        clock_gettime(CLOCK_MONOTONIC, &ts);
704
        return ts.tv_sec * 1000000000LL + ts.tv_nsec;
705
    } else
706
#endif
707
    {
708
        /* XXX: using gettimeofday leads to problems if the date
709
           changes, so it should be avoided. */
710
        struct timeval tv;
711
        gettimeofday(&tv, NULL);
712
        return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
713
    }
714
}
715

    
716
#endif
717

    
718
/***********************************************************/
719
/* guest cycle counter */
720

    
721
static int64_t cpu_ticks_prev;
722
static int64_t cpu_ticks_offset;
723
static int64_t cpu_clock_offset;
724
static int cpu_ticks_enabled;
725

    
726
/* return the host CPU cycle counter and handle stop/restart */
727
int64_t cpu_get_ticks(void)
728
{
729
    if (!cpu_ticks_enabled) {
730
        return cpu_ticks_offset;
731
    } else {
732
        int64_t ticks;
733
        ticks = cpu_get_real_ticks();
734
        if (cpu_ticks_prev > ticks) {
735
            /* Note: non increasing ticks may happen if the host uses
736
               software suspend */
737
            cpu_ticks_offset += cpu_ticks_prev - ticks;
738
        }
739
        cpu_ticks_prev = ticks;
740
        return ticks + cpu_ticks_offset;
741
    }
742
}
743

    
744
/* return the host CPU monotonic timer and handle stop/restart */
745
static int64_t cpu_get_clock(void)
746
{
747
    int64_t ti;
748
    if (!cpu_ticks_enabled) {
749
        return cpu_clock_offset;
750
    } else {
751
        ti = get_clock();
752
        return ti + cpu_clock_offset;
753
    }
754
}
755

    
756
/* enable cpu_get_ticks() */
757
void cpu_enable_ticks(void)
758
{
759
    if (!cpu_ticks_enabled) {
760
        cpu_ticks_offset -= cpu_get_real_ticks();
761
        cpu_clock_offset -= get_clock();
762
        cpu_ticks_enabled = 1;
763
    }
764
}
765

    
766
/* disable cpu_get_ticks() : the clock is stopped. You must not call
767
   cpu_get_ticks() after that.  */
768
void cpu_disable_ticks(void)
769
{
770
    if (cpu_ticks_enabled) {
771
        cpu_ticks_offset = cpu_get_ticks();
772
        cpu_clock_offset = cpu_get_clock();
773
        cpu_ticks_enabled = 0;
774
    }
775
}
776

    
777
/***********************************************************/
778
/* timers */
779

    
780
#define QEMU_TIMER_REALTIME 0
781
#define QEMU_TIMER_VIRTUAL  1
782

    
783
struct QEMUClock {
784
    int type;
785
    /* XXX: add frequency */
786
};
787

    
788
struct QEMUTimer {
789
    QEMUClock *clock;
790
    int64_t expire_time;
791
    QEMUTimerCB *cb;
792
    void *opaque;
793
    struct QEMUTimer *next;
794
};
795

    
796
struct qemu_alarm_timer {
797
    char const *name;
798
    unsigned int flags;
799

    
800
    int (*start)(struct qemu_alarm_timer *t);
801
    void (*stop)(struct qemu_alarm_timer *t);
802
    void (*rearm)(struct qemu_alarm_timer *t);
803
    void *priv;
804
};
805

    
806
#define ALARM_FLAG_DYNTICKS  0x1
807

    
808
static inline int alarm_has_dynticks(struct qemu_alarm_timer *t)
809
{
810
    return t->flags & ALARM_FLAG_DYNTICKS;
811
}
812

    
813
static void qemu_rearm_alarm_timer(struct qemu_alarm_timer *t)
814
{
815
    if (!alarm_has_dynticks(t))
816
        return;
817

    
818
    t->rearm(t);
819
}
820

    
821
/* TODO: MIN_TIMER_REARM_US should be optimized */
822
#define MIN_TIMER_REARM_US 250
823

    
824
static struct qemu_alarm_timer *alarm_timer;
825

    
826
#ifdef _WIN32
827

    
828
struct qemu_alarm_win32 {
829
    MMRESULT timerId;
830
    HANDLE host_alarm;
831
    unsigned int period;
832
} alarm_win32_data = {0, NULL, -1};
833

    
834
static int win32_start_timer(struct qemu_alarm_timer *t);
835
static void win32_stop_timer(struct qemu_alarm_timer *t);
836
static void win32_rearm_timer(struct qemu_alarm_timer *t);
837

    
838
#else
839

    
840
static int unix_start_timer(struct qemu_alarm_timer *t);
841
static void unix_stop_timer(struct qemu_alarm_timer *t);
842

    
843
#ifdef __linux__
844

    
845
static int dynticks_start_timer(struct qemu_alarm_timer *t);
846
static void dynticks_stop_timer(struct qemu_alarm_timer *t);
847
static void dynticks_rearm_timer(struct qemu_alarm_timer *t);
848

    
849
static int hpet_start_timer(struct qemu_alarm_timer *t);
850
static void hpet_stop_timer(struct qemu_alarm_timer *t);
851

    
852
static int rtc_start_timer(struct qemu_alarm_timer *t);
853
static void rtc_stop_timer(struct qemu_alarm_timer *t);
854

    
855
#endif /* __linux__ */
856

    
857
#endif /* _WIN32 */
858

    
859
static struct qemu_alarm_timer alarm_timers[] = {
860
#ifndef _WIN32
861
#ifdef __linux__
862
    {"dynticks", ALARM_FLAG_DYNTICKS, dynticks_start_timer,
863
     dynticks_stop_timer, dynticks_rearm_timer, NULL},
864
    /* HPET - if available - is preferred */
865
    {"hpet", 0, hpet_start_timer, hpet_stop_timer, NULL, NULL},
866
    /* ...otherwise try RTC */
867
    {"rtc", 0, rtc_start_timer, rtc_stop_timer, NULL, NULL},
868
#endif
869
    {"unix", 0, unix_start_timer, unix_stop_timer, NULL, NULL},
870
#else
871
    {"dynticks", ALARM_FLAG_DYNTICKS, win32_start_timer,
872
     win32_stop_timer, win32_rearm_timer, &alarm_win32_data},
873
    {"win32", 0, win32_start_timer,
874
     win32_stop_timer, NULL, &alarm_win32_data},
875
#endif
876
    {NULL, }
877
};
878

    
879
static void show_available_alarms()
880
{
881
    int i;
882

    
883
    printf("Available alarm timers, in order of precedence:\n");
884
    for (i = 0; alarm_timers[i].name; i++)
885
        printf("%s\n", alarm_timers[i].name);
886
}
887

    
888
static void configure_alarms(char const *opt)
889
{
890
    int i;
891
    int cur = 0;
892
    int count = (sizeof(alarm_timers) / sizeof(*alarm_timers)) - 1;
893
    char *arg;
894
    char *name;
895

    
896
    if (!strcmp(opt, "help")) {
897
        show_available_alarms();
898
        exit(0);
899
    }
900

    
901
    arg = strdup(opt);
902

    
903
    /* Reorder the array */
904
    name = strtok(arg, ",");
905
    while (name) {
906
        struct qemu_alarm_timer tmp;
907

    
908
        for (i = 0; i < count && alarm_timers[i].name; i++) {
909
            if (!strcmp(alarm_timers[i].name, name))
910
                break;
911
        }
912

    
913
        if (i == count) {
914
            fprintf(stderr, "Unknown clock %s\n", name);
915
            goto next;
916
        }
917

    
918
        if (i < cur)
919
            /* Ignore */
920
            goto next;
921

    
922
        /* Swap */
923
        tmp = alarm_timers[i];
924
        alarm_timers[i] = alarm_timers[cur];
925
        alarm_timers[cur] = tmp;
926

    
927
        cur++;
928
next:
929
        name = strtok(NULL, ",");
930
    }
931

    
932
    free(arg);
933

    
934
    if (cur) {
935
        /* Disable remaining timers */
936
        for (i = cur; i < count; i++)
937
            alarm_timers[i].name = NULL;
938
    }
939

    
940
    /* debug */
941
    show_available_alarms();
942
}
943

    
944
QEMUClock *rt_clock;
945
QEMUClock *vm_clock;
946

    
947
static QEMUTimer *active_timers[2];
948

    
949
QEMUClock *qemu_new_clock(int type)
950
{
951
    QEMUClock *clock;
952
    clock = qemu_mallocz(sizeof(QEMUClock));
953
    if (!clock)
954
        return NULL;
955
    clock->type = type;
956
    return clock;
957
}
958

    
959
QEMUTimer *qemu_new_timer(QEMUClock *clock, QEMUTimerCB *cb, void *opaque)
960
{
961
    QEMUTimer *ts;
962

    
963
    ts = qemu_mallocz(sizeof(QEMUTimer));
964
    ts->clock = clock;
965
    ts->cb = cb;
966
    ts->opaque = opaque;
967
    return ts;
968
}
969

    
970
void qemu_free_timer(QEMUTimer *ts)
971
{
972
    qemu_free(ts);
973
}
974

    
975
/* stop a timer, but do not dealloc it */
976
void qemu_del_timer(QEMUTimer *ts)
977
{
978
    QEMUTimer **pt, *t;
979

    
980
    /* NOTE: this code must be signal safe because
981
       qemu_timer_expired() can be called from a signal. */
982
    pt = &active_timers[ts->clock->type];
983
    for(;;) {
984
        t = *pt;
985
        if (!t)
986
            break;
987
        if (t == ts) {
988
            *pt = t->next;
989
            break;
990
        }
991
        pt = &t->next;
992
    }
993
}
994

    
995
/* modify the current timer so that it will be fired when current_time
996
   >= expire_time. The corresponding callback will be called. */
997
void qemu_mod_timer(QEMUTimer *ts, int64_t expire_time)
998
{
999
    QEMUTimer **pt, *t;
1000

    
1001
    qemu_del_timer(ts);
1002

    
1003
    /* add the timer in the sorted list */
1004
    /* NOTE: this code must be signal safe because
1005
       qemu_timer_expired() can be called from a signal. */
1006
    pt = &active_timers[ts->clock->type];
1007
    for(;;) {
1008
        t = *pt;
1009
        if (!t)
1010
            break;
1011
        if (t->expire_time > expire_time)
1012
            break;
1013
        pt = &t->next;
1014
    }
1015
    ts->expire_time = expire_time;
1016
    ts->next = *pt;
1017
    *pt = ts;
1018
}
1019

    
1020
int qemu_timer_pending(QEMUTimer *ts)
1021
{
1022
    QEMUTimer *t;
1023
    for(t = active_timers[ts->clock->type]; t != NULL; t = t->next) {
1024
        if (t == ts)
1025
            return 1;
1026
    }
1027
    return 0;
1028
}
1029

    
1030
static inline int qemu_timer_expired(QEMUTimer *timer_head, int64_t current_time)
1031
{
1032
    if (!timer_head)
1033
        return 0;
1034
    return (timer_head->expire_time <= current_time);
1035
}
1036

    
1037
static void qemu_run_timers(QEMUTimer **ptimer_head, int64_t current_time)
1038
{
1039
    QEMUTimer *ts;
1040

    
1041
    for(;;) {
1042
        ts = *ptimer_head;
1043
        if (!ts || ts->expire_time > current_time)
1044
            break;
1045
        /* remove timer from the list before calling the callback */
1046
        *ptimer_head = ts->next;
1047
        ts->next = NULL;
1048

    
1049
        /* run the callback (the timer list can be modified) */
1050
        ts->cb(ts->opaque);
1051
    }
1052
    qemu_rearm_alarm_timer(alarm_timer);
1053
}
1054

    
1055
int64_t qemu_get_clock(QEMUClock *clock)
1056
{
1057
    switch(clock->type) {
1058
    case QEMU_TIMER_REALTIME:
1059
        return get_clock() / 1000000;
1060
    default:
1061
    case QEMU_TIMER_VIRTUAL:
1062
        return cpu_get_clock();
1063
    }
1064
}
1065

    
1066
static void init_timers(void)
1067
{
1068
    init_get_clock();
1069
    ticks_per_sec = QEMU_TIMER_BASE;
1070
    rt_clock = qemu_new_clock(QEMU_TIMER_REALTIME);
1071
    vm_clock = qemu_new_clock(QEMU_TIMER_VIRTUAL);
1072
}
1073

    
1074
/* save a timer */
1075
void qemu_put_timer(QEMUFile *f, QEMUTimer *ts)
1076
{
1077
    uint64_t expire_time;
1078

    
1079
    if (qemu_timer_pending(ts)) {
1080
        expire_time = ts->expire_time;
1081
    } else {
1082
        expire_time = -1;
1083
    }
1084
    qemu_put_be64(f, expire_time);
1085
}
1086

    
1087
void qemu_get_timer(QEMUFile *f, QEMUTimer *ts)
1088
{
1089
    uint64_t expire_time;
1090

    
1091
    expire_time = qemu_get_be64(f);
1092
    if (expire_time != -1) {
1093
        qemu_mod_timer(ts, expire_time);
1094
    } else {
1095
        qemu_del_timer(ts);
1096
    }
1097
}
1098

    
1099
static void timer_save(QEMUFile *f, void *opaque)
1100
{
1101
    if (cpu_ticks_enabled) {
1102
        hw_error("cannot save state if virtual timers are running");
1103
    }
1104
    qemu_put_be64s(f, &cpu_ticks_offset);
1105
    qemu_put_be64s(f, &ticks_per_sec);
1106
    qemu_put_be64s(f, &cpu_clock_offset);
1107
}
1108

    
1109
static int timer_load(QEMUFile *f, void *opaque, int version_id)
1110
{
1111
    if (version_id != 1 && version_id != 2)
1112
        return -EINVAL;
1113
    if (cpu_ticks_enabled) {
1114
        return -EINVAL;
1115
    }
1116
    qemu_get_be64s(f, &cpu_ticks_offset);
1117
    qemu_get_be64s(f, &ticks_per_sec);
1118
    if (version_id == 2) {
1119
        qemu_get_be64s(f, &cpu_clock_offset);
1120
    }
1121
    return 0;
1122
}
1123

    
1124
#ifdef _WIN32
1125
void CALLBACK host_alarm_handler(UINT uTimerID, UINT uMsg,
1126
                                 DWORD_PTR dwUser, DWORD_PTR dw1, DWORD_PTR dw2)
1127
#else
1128
static void host_alarm_handler(int host_signum)
1129
#endif
1130
{
1131
#if 0
1132
#define DISP_FREQ 1000
1133
    {
1134
        static int64_t delta_min = INT64_MAX;
1135
        static int64_t delta_max, delta_cum, last_clock, delta, ti;
1136
        static int count;
1137
        ti = qemu_get_clock(vm_clock);
1138
        if (last_clock != 0) {
1139
            delta = ti - last_clock;
1140
            if (delta < delta_min)
1141
                delta_min = delta;
1142
            if (delta > delta_max)
1143
                delta_max = delta;
1144
            delta_cum += delta;
1145
            if (++count == DISP_FREQ) {
1146
                printf("timer: min=%" PRId64 " us max=%" PRId64 " us avg=%" PRId64 " us avg_freq=%0.3f Hz\n",
1147
                       muldiv64(delta_min, 1000000, ticks_per_sec),
1148
                       muldiv64(delta_max, 1000000, ticks_per_sec),
1149
                       muldiv64(delta_cum, 1000000 / DISP_FREQ, ticks_per_sec),
1150
                       (double)ticks_per_sec / ((double)delta_cum / DISP_FREQ));
1151
                count = 0;
1152
                delta_min = INT64_MAX;
1153
                delta_max = 0;
1154
                delta_cum = 0;
1155
            }
1156
        }
1157
        last_clock = ti;
1158
    }
1159
#endif
1160
    if (alarm_has_dynticks(alarm_timer) ||
1161
        qemu_timer_expired(active_timers[QEMU_TIMER_VIRTUAL],
1162
                           qemu_get_clock(vm_clock)) ||
1163
        qemu_timer_expired(active_timers[QEMU_TIMER_REALTIME],
1164
                           qemu_get_clock(rt_clock))) {
1165
#ifdef _WIN32
1166
        struct qemu_alarm_win32 *data = ((struct qemu_alarm_timer*)dwUser)->priv;
1167
        SetEvent(data->host_alarm);
1168
#endif
1169
        CPUState *env = cpu_single_env;
1170
        if (env) {
1171
            /* stop the currently executing cpu because a timer occured */
1172
            cpu_interrupt(env, CPU_INTERRUPT_EXIT);
1173
#ifdef USE_KQEMU
1174
            if (env->kqemu_enabled) {
1175
                kqemu_cpu_interrupt(env);
1176
            }
1177
#endif
1178
        }
1179
    }
1180
}
1181

    
1182
static uint64_t qemu_next_deadline(void)
1183
{
1184
    int64_t nearest_delta_us = INT64_MAX;
1185
    int64_t vmdelta_us;
1186

    
1187
    if (active_timers[QEMU_TIMER_REALTIME])
1188
        nearest_delta_us = (active_timers[QEMU_TIMER_REALTIME]->expire_time -
1189
                            qemu_get_clock(rt_clock))*1000;
1190

    
1191
    if (active_timers[QEMU_TIMER_VIRTUAL]) {
1192
        /* round up */
1193
        vmdelta_us = (active_timers[QEMU_TIMER_VIRTUAL]->expire_time -
1194
                      qemu_get_clock(vm_clock)+999)/1000;
1195
        if (vmdelta_us < nearest_delta_us)
1196
            nearest_delta_us = vmdelta_us;
1197
    }
1198

    
1199
    /* Avoid arming the timer to negative, zero, or too low values */
1200
    if (nearest_delta_us <= MIN_TIMER_REARM_US)
1201
        nearest_delta_us = MIN_TIMER_REARM_US;
1202

    
1203
    return nearest_delta_us;
1204
}
1205

    
1206
#ifndef _WIN32
1207

    
1208
#if defined(__linux__)
1209

    
1210
#define RTC_FREQ 1024
1211

    
1212
static void enable_sigio_timer(int fd)
1213
{
1214
    struct sigaction act;
1215

    
1216
    /* timer signal */
1217
    sigfillset(&act.sa_mask);
1218
    act.sa_flags = 0;
1219
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
1220
    act.sa_flags |= SA_ONSTACK;
1221
#endif
1222
    act.sa_handler = host_alarm_handler;
1223

    
1224
    sigaction(SIGIO, &act, NULL);
1225
    fcntl(fd, F_SETFL, O_ASYNC);
1226
    fcntl(fd, F_SETOWN, getpid());
1227
}
1228

    
1229
static int hpet_start_timer(struct qemu_alarm_timer *t)
1230
{
1231
    struct hpet_info info;
1232
    int r, fd;
1233

    
1234
    fd = open("/dev/hpet", O_RDONLY);
1235
    if (fd < 0)
1236
        return -1;
1237

    
1238
    /* Set frequency */
1239
    r = ioctl(fd, HPET_IRQFREQ, RTC_FREQ);
1240
    if (r < 0) {
1241
        fprintf(stderr, "Could not configure '/dev/hpet' to have a 1024Hz timer. This is not a fatal\n"
1242
                "error, but for better emulation accuracy type:\n"
1243
                "'echo 1024 > /proc/sys/dev/hpet/max-user-freq' as root.\n");
1244
        goto fail;
1245
    }
1246

    
1247
    /* Check capabilities */
1248
    r = ioctl(fd, HPET_INFO, &info);
1249
    if (r < 0)
1250
        goto fail;
1251

    
1252
    /* Enable periodic mode */
1253
    r = ioctl(fd, HPET_EPI, 0);
1254
    if (info.hi_flags && (r < 0))
1255
        goto fail;
1256

    
1257
    /* Enable interrupt */
1258
    r = ioctl(fd, HPET_IE_ON, 0);
1259
    if (r < 0)
1260
        goto fail;
1261

    
1262
    enable_sigio_timer(fd);
1263
    t->priv = (void *)(long)fd;
1264

    
1265
    return 0;
1266
fail:
1267
    close(fd);
1268
    return -1;
1269
}
1270

    
1271
static void hpet_stop_timer(struct qemu_alarm_timer *t)
1272
{
1273
    int fd = (long)t->priv;
1274

    
1275
    close(fd);
1276
}
1277

    
1278
static int rtc_start_timer(struct qemu_alarm_timer *t)
1279
{
1280
    int rtc_fd;
1281

    
1282
    TFR(rtc_fd = open("/dev/rtc", O_RDONLY));
1283
    if (rtc_fd < 0)
1284
        return -1;
1285
    if (ioctl(rtc_fd, RTC_IRQP_SET, RTC_FREQ) < 0) {
1286
        fprintf(stderr, "Could not configure '/dev/rtc' to have a 1024 Hz timer. This is not a fatal\n"
1287
                "error, but for better emulation accuracy either use a 2.6 host Linux kernel or\n"
1288
                "type 'echo 1024 > /proc/sys/dev/rtc/max-user-freq' as root.\n");
1289
        goto fail;
1290
    }
1291
    if (ioctl(rtc_fd, RTC_PIE_ON, 0) < 0) {
1292
    fail:
1293
        close(rtc_fd);
1294
        return -1;
1295
    }
1296

    
1297
    enable_sigio_timer(rtc_fd);
1298

    
1299
    t->priv = (void *)(long)rtc_fd;
1300

    
1301
    return 0;
1302
}
1303

    
1304
static void rtc_stop_timer(struct qemu_alarm_timer *t)
1305
{
1306
    int rtc_fd = (long)t->priv;
1307

    
1308
    close(rtc_fd);
1309
}
1310

    
1311
static int dynticks_start_timer(struct qemu_alarm_timer *t)
1312
{
1313
    struct sigevent ev;
1314
    timer_t host_timer;
1315
    struct sigaction act;
1316

    
1317
    sigfillset(&act.sa_mask);
1318
    act.sa_flags = 0;
1319
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1320
    act.sa_flags |= SA_ONSTACK;
1321
#endif
1322
    act.sa_handler = host_alarm_handler;
1323

    
1324
    sigaction(SIGALRM, &act, NULL);
1325

    
1326
    ev.sigev_value.sival_int = 0;
1327
    ev.sigev_notify = SIGEV_SIGNAL;
1328
    ev.sigev_signo = SIGALRM;
1329

    
1330
    if (timer_create(CLOCK_REALTIME, &ev, &host_timer)) {
1331
        perror("timer_create");
1332

    
1333
        /* disable dynticks */
1334
        fprintf(stderr, "Dynamic Ticks disabled\n");
1335

    
1336
        return -1;
1337
    }
1338

    
1339
    t->priv = (void *)host_timer;
1340

    
1341
    return 0;
1342
}
1343

    
1344
static void dynticks_stop_timer(struct qemu_alarm_timer *t)
1345
{
1346
    timer_t host_timer = (timer_t)t->priv;
1347

    
1348
    timer_delete(host_timer);
1349
}
1350

    
1351
static void dynticks_rearm_timer(struct qemu_alarm_timer *t)
1352
{
1353
    timer_t host_timer = (timer_t)t->priv;
1354
    struct itimerspec timeout;
1355
    int64_t nearest_delta_us = INT64_MAX;
1356
    int64_t current_us;
1357

    
1358
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1359
                !active_timers[QEMU_TIMER_VIRTUAL])
1360
            return;
1361

    
1362
    nearest_delta_us = qemu_next_deadline();
1363

    
1364
    /* check whether a timer is already running */
1365
    if (timer_gettime(host_timer, &timeout)) {
1366
        perror("gettime");
1367
        fprintf(stderr, "Internal timer error: aborting\n");
1368
        exit(1);
1369
    }
1370
    current_us = timeout.it_value.tv_sec * 1000000 + timeout.it_value.tv_nsec/1000;
1371
    if (current_us && current_us <= nearest_delta_us)
1372
        return;
1373

    
1374
    timeout.it_interval.tv_sec = 0;
1375
    timeout.it_interval.tv_nsec = 0; /* 0 for one-shot timer */
1376
    timeout.it_value.tv_sec =  nearest_delta_us / 1000000;
1377
    timeout.it_value.tv_nsec = (nearest_delta_us % 1000000) * 1000;
1378
    if (timer_settime(host_timer, 0 /* RELATIVE */, &timeout, NULL)) {
1379
        perror("settime");
1380
        fprintf(stderr, "Internal timer error: aborting\n");
1381
        exit(1);
1382
    }
1383
}
1384

    
1385
#endif /* defined(__linux__) */
1386

    
1387
static int unix_start_timer(struct qemu_alarm_timer *t)
1388
{
1389
    struct sigaction act;
1390
    struct itimerval itv;
1391
    int err;
1392

    
1393
    /* timer signal */
1394
    sigfillset(&act.sa_mask);
1395
    act.sa_flags = 0;
1396
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1397
    act.sa_flags |= SA_ONSTACK;
1398
#endif
1399
    act.sa_handler = host_alarm_handler;
1400

    
1401
    sigaction(SIGALRM, &act, NULL);
1402

    
1403
    itv.it_interval.tv_sec = 0;
1404
    /* for i386 kernel 2.6 to get 1 ms */
1405
    itv.it_interval.tv_usec = 999;
1406
    itv.it_value.tv_sec = 0;
1407
    itv.it_value.tv_usec = 10 * 1000;
1408

    
1409
    err = setitimer(ITIMER_REAL, &itv, NULL);
1410
    if (err)
1411
        return -1;
1412

    
1413
    return 0;
1414
}
1415

    
1416
static void unix_stop_timer(struct qemu_alarm_timer *t)
1417
{
1418
    struct itimerval itv;
1419

    
1420
    memset(&itv, 0, sizeof(itv));
1421
    setitimer(ITIMER_REAL, &itv, NULL);
1422
}
1423

    
1424
#endif /* !defined(_WIN32) */
1425

    
1426
#ifdef _WIN32
1427

    
1428
static int win32_start_timer(struct qemu_alarm_timer *t)
1429
{
1430
    TIMECAPS tc;
1431
    struct qemu_alarm_win32 *data = t->priv;
1432
    UINT flags;
1433

    
1434
    data->host_alarm = CreateEvent(NULL, FALSE, FALSE, NULL);
1435
    if (!data->host_alarm) {
1436
        perror("Failed CreateEvent");
1437
        return -1;
1438
    }
1439

    
1440
    memset(&tc, 0, sizeof(tc));
1441
    timeGetDevCaps(&tc, sizeof(tc));
1442

    
1443
    if (data->period < tc.wPeriodMin)
1444
        data->period = tc.wPeriodMin;
1445

    
1446
    timeBeginPeriod(data->period);
1447

    
1448
    flags = TIME_CALLBACK_FUNCTION;
1449
    if (alarm_has_dynticks(t))
1450
        flags |= TIME_ONESHOT;
1451
    else
1452
        flags |= TIME_PERIODIC;
1453

    
1454
    data->timerId = timeSetEvent(1,         // interval (ms)
1455
                        data->period,       // resolution
1456
                        host_alarm_handler, // function
1457
                        (DWORD)t,           // parameter
1458
                        flags);
1459

    
1460
    if (!data->timerId) {
1461
        perror("Failed to initialize win32 alarm timer");
1462

    
1463
        timeEndPeriod(data->period);
1464
        CloseHandle(data->host_alarm);
1465
        return -1;
1466
    }
1467

    
1468
    qemu_add_wait_object(data->host_alarm, NULL, NULL);
1469

    
1470
    return 0;
1471
}
1472

    
1473
static void win32_stop_timer(struct qemu_alarm_timer *t)
1474
{
1475
    struct qemu_alarm_win32 *data = t->priv;
1476

    
1477
    timeKillEvent(data->timerId);
1478
    timeEndPeriod(data->period);
1479

    
1480
    CloseHandle(data->host_alarm);
1481
}
1482

    
1483
static void win32_rearm_timer(struct qemu_alarm_timer *t)
1484
{
1485
    struct qemu_alarm_win32 *data = t->priv;
1486
    uint64_t nearest_delta_us;
1487

    
1488
    if (!active_timers[QEMU_TIMER_REALTIME] &&
1489
                !active_timers[QEMU_TIMER_VIRTUAL])
1490
            return;
1491

    
1492
    nearest_delta_us = qemu_next_deadline();
1493
    nearest_delta_us /= 1000;
1494

    
1495
    timeKillEvent(data->timerId);
1496

    
1497
    data->timerId = timeSetEvent(1,
1498
                        data->period,
1499
                        host_alarm_handler,
1500
                        (DWORD)t,
1501
                        TIME_ONESHOT | TIME_PERIODIC);
1502

    
1503
    if (!data->timerId) {
1504
        perror("Failed to re-arm win32 alarm timer");
1505

    
1506
        timeEndPeriod(data->period);
1507
        CloseHandle(data->host_alarm);
1508
        exit(1);
1509
    }
1510
}
1511

    
1512
#endif /* _WIN32 */
1513

    
1514
static void init_timer_alarm(void)
1515
{
1516
    struct qemu_alarm_timer *t;
1517
    int i, err = -1;
1518

    
1519
    for (i = 0; alarm_timers[i].name; i++) {
1520
        t = &alarm_timers[i];
1521

    
1522
        err = t->start(t);
1523
        if (!err)
1524
            break;
1525
    }
1526

    
1527
    if (err) {
1528
        fprintf(stderr, "Unable to find any suitable alarm timer.\n");
1529
        fprintf(stderr, "Terminating\n");
1530
        exit(1);
1531
    }
1532

    
1533
    alarm_timer = t;
1534
}
1535

    
1536
void quit_timers(void)
1537
{
1538
    alarm_timer->stop(alarm_timer);
1539
    alarm_timer = NULL;
1540
}
1541

    
1542
/***********************************************************/
1543
/* character device */
1544

    
1545
static void qemu_chr_event(CharDriverState *s, int event)
1546
{
1547
    if (!s->chr_event)
1548
        return;
1549
    s->chr_event(s->handler_opaque, event);
1550
}
1551

    
1552
static void qemu_chr_reset_bh(void *opaque)
1553
{
1554
    CharDriverState *s = opaque;
1555
    qemu_chr_event(s, CHR_EVENT_RESET);
1556
    qemu_bh_delete(s->bh);
1557
    s->bh = NULL;
1558
}
1559

    
1560
void qemu_chr_reset(CharDriverState *s)
1561
{
1562
    if (s->bh == NULL) {
1563
        s->bh = qemu_bh_new(qemu_chr_reset_bh, s);
1564
        qemu_bh_schedule(s->bh);
1565
    }
1566
}
1567

    
1568
int qemu_chr_write(CharDriverState *s, const uint8_t *buf, int len)
1569
{
1570
    return s->chr_write(s, buf, len);
1571
}
1572

    
1573
int qemu_chr_ioctl(CharDriverState *s, int cmd, void *arg)
1574
{
1575
    if (!s->chr_ioctl)
1576
        return -ENOTSUP;
1577
    return s->chr_ioctl(s, cmd, arg);
1578
}
1579

    
1580
int qemu_chr_can_read(CharDriverState *s)
1581
{
1582
    if (!s->chr_can_read)
1583
        return 0;
1584
    return s->chr_can_read(s->handler_opaque);
1585
}
1586

    
1587
void qemu_chr_read(CharDriverState *s, uint8_t *buf, int len)
1588
{
1589
    s->chr_read(s->handler_opaque, buf, len);
1590
}
1591

    
1592

    
1593
void qemu_chr_printf(CharDriverState *s, const char *fmt, ...)
1594
{
1595
    char buf[4096];
1596
    va_list ap;
1597
    va_start(ap, fmt);
1598
    vsnprintf(buf, sizeof(buf), fmt, ap);
1599
    qemu_chr_write(s, buf, strlen(buf));
1600
    va_end(ap);
1601
}
1602

    
1603
void qemu_chr_send_event(CharDriverState *s, int event)
1604
{
1605
    if (s->chr_send_event)
1606
        s->chr_send_event(s, event);
1607
}
1608

    
1609
void qemu_chr_add_handlers(CharDriverState *s,
1610
                           IOCanRWHandler *fd_can_read,
1611
                           IOReadHandler *fd_read,
1612
                           IOEventHandler *fd_event,
1613
                           void *opaque)
1614
{
1615
    s->chr_can_read = fd_can_read;
1616
    s->chr_read = fd_read;
1617
    s->chr_event = fd_event;
1618
    s->handler_opaque = opaque;
1619
    if (s->chr_update_read_handler)
1620
        s->chr_update_read_handler(s);
1621
}
1622

    
1623
static int null_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1624
{
1625
    return len;
1626
}
1627

    
1628
static CharDriverState *qemu_chr_open_null(void)
1629
{
1630
    CharDriverState *chr;
1631

    
1632
    chr = qemu_mallocz(sizeof(CharDriverState));
1633
    if (!chr)
1634
        return NULL;
1635
    chr->chr_write = null_chr_write;
1636
    return chr;
1637
}
1638

    
1639
/* MUX driver for serial I/O splitting */
1640
static int term_timestamps;
1641
static int64_t term_timestamps_start;
1642
#define MAX_MUX 4
1643
typedef struct {
1644
    IOCanRWHandler *chr_can_read[MAX_MUX];
1645
    IOReadHandler *chr_read[MAX_MUX];
1646
    IOEventHandler *chr_event[MAX_MUX];
1647
    void *ext_opaque[MAX_MUX];
1648
    CharDriverState *drv;
1649
    int mux_cnt;
1650
    int term_got_escape;
1651
    int max_size;
1652
} MuxDriver;
1653

    
1654

    
1655
static int mux_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1656
{
1657
    MuxDriver *d = chr->opaque;
1658
    int ret;
1659
    if (!term_timestamps) {
1660
        ret = d->drv->chr_write(d->drv, buf, len);
1661
    } else {
1662
        int i;
1663

    
1664
        ret = 0;
1665
        for(i = 0; i < len; i++) {
1666
            ret += d->drv->chr_write(d->drv, buf+i, 1);
1667
            if (buf[i] == '\n') {
1668
                char buf1[64];
1669
                int64_t ti;
1670
                int secs;
1671

    
1672
                ti = get_clock();
1673
                if (term_timestamps_start == -1)
1674
                    term_timestamps_start = ti;
1675
                ti -= term_timestamps_start;
1676
                secs = ti / 1000000000;
1677
                snprintf(buf1, sizeof(buf1),
1678
                         "[%02d:%02d:%02d.%03d] ",
1679
                         secs / 3600,
1680
                         (secs / 60) % 60,
1681
                         secs % 60,
1682
                         (int)((ti / 1000000) % 1000));
1683
                d->drv->chr_write(d->drv, buf1, strlen(buf1));
1684
            }
1685
        }
1686
    }
1687
    return ret;
1688
}
1689

    
1690
static char *mux_help[] = {
1691
    "% h    print this help\n\r",
1692
    "% x    exit emulator\n\r",
1693
    "% s    save disk data back to file (if -snapshot)\n\r",
1694
    "% t    toggle console timestamps\n\r"
1695
    "% b    send break (magic sysrq)\n\r",
1696
    "% c    switch between console and monitor\n\r",
1697
    "% %  sends %\n\r",
1698
    NULL
1699
};
1700

    
1701
static int term_escape_char = 0x01; /* ctrl-a is used for escape */
1702
static void mux_print_help(CharDriverState *chr)
1703
{
1704
    int i, j;
1705
    char ebuf[15] = "Escape-Char";
1706
    char cbuf[50] = "\n\r";
1707

    
1708
    if (term_escape_char > 0 && term_escape_char < 26) {
1709
        sprintf(cbuf,"\n\r");
1710
        sprintf(ebuf,"C-%c", term_escape_char - 1 + 'a');
1711
    } else {
1712
        sprintf(cbuf,"\n\rEscape-Char set to Ascii: 0x%02x\n\r\n\r", term_escape_char);
1713
    }
1714
    chr->chr_write(chr, cbuf, strlen(cbuf));
1715
    for (i = 0; mux_help[i] != NULL; i++) {
1716
        for (j=0; mux_help[i][j] != '\0'; j++) {
1717
            if (mux_help[i][j] == '%')
1718
                chr->chr_write(chr, ebuf, strlen(ebuf));
1719
            else
1720
                chr->chr_write(chr, &mux_help[i][j], 1);
1721
        }
1722
    }
1723
}
1724

    
1725
static int mux_proc_byte(CharDriverState *chr, MuxDriver *d, int ch)
1726
{
1727
    if (d->term_got_escape) {
1728
        d->term_got_escape = 0;
1729
        if (ch == term_escape_char)
1730
            goto send_char;
1731
        switch(ch) {
1732
        case '?':
1733
        case 'h':
1734
            mux_print_help(chr);
1735
            break;
1736
        case 'x':
1737
            {
1738
                 char *term =  "QEMU: Terminated\n\r";
1739
                 chr->chr_write(chr,term,strlen(term));
1740
                 exit(0);
1741
                 break;
1742
            }
1743
        case 's':
1744
            {
1745
                int i;
1746
                for (i = 0; i < MAX_DISKS; i++) {
1747
                    if (bs_table[i])
1748
                        bdrv_commit(bs_table[i]);
1749
                }
1750
                if (mtd_bdrv)
1751
                    bdrv_commit(mtd_bdrv);
1752
            }
1753
            break;
1754
        case 'b':
1755
            qemu_chr_event(chr, CHR_EVENT_BREAK);
1756
            break;
1757
        case 'c':
1758
            /* Switch to the next registered device */
1759
            chr->focus++;
1760
            if (chr->focus >= d->mux_cnt)
1761
                chr->focus = 0;
1762
            break;
1763
       case 't':
1764
           term_timestamps = !term_timestamps;
1765
           term_timestamps_start = -1;
1766
           break;
1767
        }
1768
    } else if (ch == term_escape_char) {
1769
        d->term_got_escape = 1;
1770
    } else {
1771
    send_char:
1772
        return 1;
1773
    }
1774
    return 0;
1775
}
1776

    
1777
static int mux_chr_can_read(void *opaque)
1778
{
1779
    CharDriverState *chr = opaque;
1780
    MuxDriver *d = chr->opaque;
1781
    if (d->chr_can_read[chr->focus])
1782
       return d->chr_can_read[chr->focus](d->ext_opaque[chr->focus]);
1783
    return 0;
1784
}
1785

    
1786
static void mux_chr_read(void *opaque, const uint8_t *buf, int size)
1787
{
1788
    CharDriverState *chr = opaque;
1789
    MuxDriver *d = chr->opaque;
1790
    int i;
1791
    for(i = 0; i < size; i++)
1792
        if (mux_proc_byte(chr, d, buf[i]))
1793
            d->chr_read[chr->focus](d->ext_opaque[chr->focus], &buf[i], 1);
1794
}
1795

    
1796
static void mux_chr_event(void *opaque, int event)
1797
{
1798
    CharDriverState *chr = opaque;
1799
    MuxDriver *d = chr->opaque;
1800
    int i;
1801

    
1802
    /* Send the event to all registered listeners */
1803
    for (i = 0; i < d->mux_cnt; i++)
1804
        if (d->chr_event[i])
1805
            d->chr_event[i](d->ext_opaque[i], event);
1806
}
1807

    
1808
static void mux_chr_update_read_handler(CharDriverState *chr)
1809
{
1810
    MuxDriver *d = chr->opaque;
1811

    
1812
    if (d->mux_cnt >= MAX_MUX) {
1813
        fprintf(stderr, "Cannot add I/O handlers, MUX array is full\n");
1814
        return;
1815
    }
1816
    d->ext_opaque[d->mux_cnt] = chr->handler_opaque;
1817
    d->chr_can_read[d->mux_cnt] = chr->chr_can_read;
1818
    d->chr_read[d->mux_cnt] = chr->chr_read;
1819
    d->chr_event[d->mux_cnt] = chr->chr_event;
1820
    /* Fix up the real driver with mux routines */
1821
    if (d->mux_cnt == 0) {
1822
        qemu_chr_add_handlers(d->drv, mux_chr_can_read, mux_chr_read,
1823
                              mux_chr_event, chr);
1824
    }
1825
    chr->focus = d->mux_cnt;
1826
    d->mux_cnt++;
1827
}
1828

    
1829
CharDriverState *qemu_chr_open_mux(CharDriverState *drv)
1830
{
1831
    CharDriverState *chr;
1832
    MuxDriver *d;
1833

    
1834
    chr = qemu_mallocz(sizeof(CharDriverState));
1835
    if (!chr)
1836
        return NULL;
1837
    d = qemu_mallocz(sizeof(MuxDriver));
1838
    if (!d) {
1839
        free(chr);
1840
        return NULL;
1841
    }
1842

    
1843
    chr->opaque = d;
1844
    d->drv = drv;
1845
    chr->focus = -1;
1846
    chr->chr_write = mux_chr_write;
1847
    chr->chr_update_read_handler = mux_chr_update_read_handler;
1848
    return chr;
1849
}
1850

    
1851

    
1852
#ifdef _WIN32
1853

    
1854
static void socket_cleanup(void)
1855
{
1856
    WSACleanup();
1857
}
1858

    
1859
static int socket_init(void)
1860
{
1861
    WSADATA Data;
1862
    int ret, err;
1863

    
1864
    ret = WSAStartup(MAKEWORD(2,2), &Data);
1865
    if (ret != 0) {
1866
        err = WSAGetLastError();
1867
        fprintf(stderr, "WSAStartup: %d\n", err);
1868
        return -1;
1869
    }
1870
    atexit(socket_cleanup);
1871
    return 0;
1872
}
1873

    
1874
static int send_all(int fd, const uint8_t *buf, int len1)
1875
{
1876
    int ret, len;
1877

    
1878
    len = len1;
1879
    while (len > 0) {
1880
        ret = send(fd, buf, len, 0);
1881
        if (ret < 0) {
1882
            int errno;
1883
            errno = WSAGetLastError();
1884
            if (errno != WSAEWOULDBLOCK) {
1885
                return -1;
1886
            }
1887
        } else if (ret == 0) {
1888
            break;
1889
        } else {
1890
            buf += ret;
1891
            len -= ret;
1892
        }
1893
    }
1894
    return len1 - len;
1895
}
1896

    
1897
void socket_set_nonblock(int fd)
1898
{
1899
    unsigned long opt = 1;
1900
    ioctlsocket(fd, FIONBIO, &opt);
1901
}
1902

    
1903
#else
1904

    
1905
static int unix_write(int fd, const uint8_t *buf, int len1)
1906
{
1907
    int ret, len;
1908

    
1909
    len = len1;
1910
    while (len > 0) {
1911
        ret = write(fd, buf, len);
1912
        if (ret < 0) {
1913
            if (errno != EINTR && errno != EAGAIN)
1914
                return -1;
1915
        } else if (ret == 0) {
1916
            break;
1917
        } else {
1918
            buf += ret;
1919
            len -= ret;
1920
        }
1921
    }
1922
    return len1 - len;
1923
}
1924

    
1925
static inline int send_all(int fd, const uint8_t *buf, int len1)
1926
{
1927
    return unix_write(fd, buf, len1);
1928
}
1929

    
1930
void socket_set_nonblock(int fd)
1931
{
1932
    fcntl(fd, F_SETFL, O_NONBLOCK);
1933
}
1934
#endif /* !_WIN32 */
1935

    
1936
#ifndef _WIN32
1937

    
1938
typedef struct {
1939
    int fd_in, fd_out;
1940
    int max_size;
1941
} FDCharDriver;
1942

    
1943
#define STDIO_MAX_CLIENTS 1
1944
static int stdio_nb_clients = 0;
1945

    
1946
static int fd_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
1947
{
1948
    FDCharDriver *s = chr->opaque;
1949
    return unix_write(s->fd_out, buf, len);
1950
}
1951

    
1952
static int fd_chr_read_poll(void *opaque)
1953
{
1954
    CharDriverState *chr = opaque;
1955
    FDCharDriver *s = chr->opaque;
1956

    
1957
    s->max_size = qemu_chr_can_read(chr);
1958
    return s->max_size;
1959
}
1960

    
1961
static void fd_chr_read(void *opaque)
1962
{
1963
    CharDriverState *chr = opaque;
1964
    FDCharDriver *s = chr->opaque;
1965
    int size, len;
1966
    uint8_t buf[1024];
1967

    
1968
    len = sizeof(buf);
1969
    if (len > s->max_size)
1970
        len = s->max_size;
1971
    if (len == 0)
1972
        return;
1973
    size = read(s->fd_in, buf, len);
1974
    if (size == 0) {
1975
        /* FD has been closed. Remove it from the active list.  */
1976
        qemu_set_fd_handler2(s->fd_in, NULL, NULL, NULL, NULL);
1977
        return;
1978
    }
1979
    if (size > 0) {
1980
        qemu_chr_read(chr, buf, size);
1981
    }
1982
}
1983

    
1984
static void fd_chr_update_read_handler(CharDriverState *chr)
1985
{
1986
    FDCharDriver *s = chr->opaque;
1987

    
1988
    if (s->fd_in >= 0) {
1989
        if (nographic && s->fd_in == 0) {
1990
        } else {
1991
            qemu_set_fd_handler2(s->fd_in, fd_chr_read_poll,
1992
                                 fd_chr_read, NULL, chr);
1993
        }
1994
    }
1995
}
1996

    
1997
/* open a character device to a unix fd */
1998
static CharDriverState *qemu_chr_open_fd(int fd_in, int fd_out)
1999
{
2000
    CharDriverState *chr;
2001
    FDCharDriver *s;
2002

    
2003
    chr = qemu_mallocz(sizeof(CharDriverState));
2004
    if (!chr)
2005
        return NULL;
2006
    s = qemu_mallocz(sizeof(FDCharDriver));
2007
    if (!s) {
2008
        free(chr);
2009
        return NULL;
2010
    }
2011
    s->fd_in = fd_in;
2012
    s->fd_out = fd_out;
2013
    chr->opaque = s;
2014
    chr->chr_write = fd_chr_write;
2015
    chr->chr_update_read_handler = fd_chr_update_read_handler;
2016

    
2017
    qemu_chr_reset(chr);
2018

    
2019
    return chr;
2020
}
2021

    
2022
static CharDriverState *qemu_chr_open_file_out(const char *file_out)
2023
{
2024
    int fd_out;
2025

    
2026
    TFR(fd_out = open(file_out, O_WRONLY | O_TRUNC | O_CREAT | O_BINARY, 0666));
2027
    if (fd_out < 0)
2028
        return NULL;
2029
    return qemu_chr_open_fd(-1, fd_out);
2030
}
2031

    
2032
static CharDriverState *qemu_chr_open_pipe(const char *filename)
2033
{
2034
    int fd_in, fd_out;
2035
    char filename_in[256], filename_out[256];
2036

    
2037
    snprintf(filename_in, 256, "%s.in", filename);
2038
    snprintf(filename_out, 256, "%s.out", filename);
2039
    TFR(fd_in = open(filename_in, O_RDWR | O_BINARY));
2040
    TFR(fd_out = open(filename_out, O_RDWR | O_BINARY));
2041
    if (fd_in < 0 || fd_out < 0) {
2042
        if (fd_in >= 0)
2043
            close(fd_in);
2044
        if (fd_out >= 0)
2045
            close(fd_out);
2046
        TFR(fd_in = fd_out = open(filename, O_RDWR | O_BINARY));
2047
        if (fd_in < 0)
2048
            return NULL;
2049
    }
2050
    return qemu_chr_open_fd(fd_in, fd_out);
2051
}
2052

    
2053

    
2054
/* for STDIO, we handle the case where several clients use it
2055
   (nographic mode) */
2056

    
2057
#define TERM_FIFO_MAX_SIZE 1
2058

    
2059
static uint8_t term_fifo[TERM_FIFO_MAX_SIZE];
2060
static int term_fifo_size;
2061

    
2062
static int stdio_read_poll(void *opaque)
2063
{
2064
    CharDriverState *chr = opaque;
2065

    
2066
    /* try to flush the queue if needed */
2067
    if (term_fifo_size != 0 && qemu_chr_can_read(chr) > 0) {
2068
        qemu_chr_read(chr, term_fifo, 1);
2069
        term_fifo_size = 0;
2070
    }
2071
    /* see if we can absorb more chars */
2072
    if (term_fifo_size == 0)
2073
        return 1;
2074
    else
2075
        return 0;
2076
}
2077

    
2078
static void stdio_read(void *opaque)
2079
{
2080
    int size;
2081
    uint8_t buf[1];
2082
    CharDriverState *chr = opaque;
2083

    
2084
    size = read(0, buf, 1);
2085
    if (size == 0) {
2086
        /* stdin has been closed. Remove it from the active list.  */
2087
        qemu_set_fd_handler2(0, NULL, NULL, NULL, NULL);
2088
        return;
2089
    }
2090
    if (size > 0) {
2091
        if (qemu_chr_can_read(chr) > 0) {
2092
            qemu_chr_read(chr, buf, 1);
2093
        } else if (term_fifo_size == 0) {
2094
            term_fifo[term_fifo_size++] = buf[0];
2095
        }
2096
    }
2097
}
2098

    
2099
/* init terminal so that we can grab keys */
2100
static struct termios oldtty;
2101
static int old_fd0_flags;
2102

    
2103
static void term_exit(void)
2104
{
2105
    tcsetattr (0, TCSANOW, &oldtty);
2106
    fcntl(0, F_SETFL, old_fd0_flags);
2107
}
2108

    
2109
static void term_init(void)
2110
{
2111
    struct termios tty;
2112

    
2113
    tcgetattr (0, &tty);
2114
    oldtty = tty;
2115
    old_fd0_flags = fcntl(0, F_GETFL);
2116

    
2117
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2118
                          |INLCR|IGNCR|ICRNL|IXON);
2119
    tty.c_oflag |= OPOST;
2120
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN);
2121
    /* if graphical mode, we allow Ctrl-C handling */
2122
    if (nographic)
2123
        tty.c_lflag &= ~ISIG;
2124
    tty.c_cflag &= ~(CSIZE|PARENB);
2125
    tty.c_cflag |= CS8;
2126
    tty.c_cc[VMIN] = 1;
2127
    tty.c_cc[VTIME] = 0;
2128

    
2129
    tcsetattr (0, TCSANOW, &tty);
2130

    
2131
    atexit(term_exit);
2132

    
2133
    fcntl(0, F_SETFL, O_NONBLOCK);
2134
}
2135

    
2136
static CharDriverState *qemu_chr_open_stdio(void)
2137
{
2138
    CharDriverState *chr;
2139

    
2140
    if (stdio_nb_clients >= STDIO_MAX_CLIENTS)
2141
        return NULL;
2142
    chr = qemu_chr_open_fd(0, 1);
2143
    qemu_set_fd_handler2(0, stdio_read_poll, stdio_read, NULL, chr);
2144
    stdio_nb_clients++;
2145
    term_init();
2146

    
2147
    return chr;
2148
}
2149

    
2150
#if defined(__linux__) || defined(__sun__)
2151
static CharDriverState *qemu_chr_open_pty(void)
2152
{
2153
    struct termios tty;
2154
    char slave_name[1024];
2155
    int master_fd, slave_fd;
2156

    
2157
#if defined(__linux__)
2158
    /* Not satisfying */
2159
    if (openpty(&master_fd, &slave_fd, slave_name, NULL, NULL) < 0) {
2160
        return NULL;
2161
    }
2162
#endif
2163

    
2164
    /* Disabling local echo and line-buffered output */
2165
    tcgetattr (master_fd, &tty);
2166
    tty.c_lflag &= ~(ECHO|ICANON|ISIG);
2167
    tty.c_cc[VMIN] = 1;
2168
    tty.c_cc[VTIME] = 0;
2169
    tcsetattr (master_fd, TCSAFLUSH, &tty);
2170

    
2171
    fprintf(stderr, "char device redirected to %s\n", slave_name);
2172
    return qemu_chr_open_fd(master_fd, master_fd);
2173
}
2174

    
2175
static void tty_serial_init(int fd, int speed,
2176
                            int parity, int data_bits, int stop_bits)
2177
{
2178
    struct termios tty;
2179
    speed_t spd;
2180

    
2181
#if 0
2182
    printf("tty_serial_init: speed=%d parity=%c data=%d stop=%d\n",
2183
           speed, parity, data_bits, stop_bits);
2184
#endif
2185
    tcgetattr (fd, &tty);
2186

    
2187
    switch(speed) {
2188
    case 50:
2189
        spd = B50;
2190
        break;
2191
    case 75:
2192
        spd = B75;
2193
        break;
2194
    case 300:
2195
        spd = B300;
2196
        break;
2197
    case 600:
2198
        spd = B600;
2199
        break;
2200
    case 1200:
2201
        spd = B1200;
2202
        break;
2203
    case 2400:
2204
        spd = B2400;
2205
        break;
2206
    case 4800:
2207
        spd = B4800;
2208
        break;
2209
    case 9600:
2210
        spd = B9600;
2211
        break;
2212
    case 19200:
2213
        spd = B19200;
2214
        break;
2215
    case 38400:
2216
        spd = B38400;
2217
        break;
2218
    case 57600:
2219
        spd = B57600;
2220
        break;
2221
    default:
2222
    case 115200:
2223
        spd = B115200;
2224
        break;
2225
    }
2226

    
2227
    cfsetispeed(&tty, spd);
2228
    cfsetospeed(&tty, spd);
2229

    
2230
    tty.c_iflag &= ~(IGNBRK|BRKINT|PARMRK|ISTRIP
2231
                          |INLCR|IGNCR|ICRNL|IXON);
2232
    tty.c_oflag |= OPOST;
2233
    tty.c_lflag &= ~(ECHO|ECHONL|ICANON|IEXTEN|ISIG);
2234
    tty.c_cflag &= ~(CSIZE|PARENB|PARODD|CRTSCTS|CSTOPB);
2235
    switch(data_bits) {
2236
    default:
2237
    case 8:
2238
        tty.c_cflag |= CS8;
2239
        break;
2240
    case 7:
2241
        tty.c_cflag |= CS7;
2242
        break;
2243
    case 6:
2244
        tty.c_cflag |= CS6;
2245
        break;
2246
    case 5:
2247
        tty.c_cflag |= CS5;
2248
        break;
2249
    }
2250
    switch(parity) {
2251
    default:
2252
    case 'N':
2253
        break;
2254
    case 'E':
2255
        tty.c_cflag |= PARENB;
2256
        break;
2257
    case 'O':
2258
        tty.c_cflag |= PARENB | PARODD;
2259
        break;
2260
    }
2261
    if (stop_bits == 2)
2262
        tty.c_cflag |= CSTOPB;
2263

    
2264
    tcsetattr (fd, TCSANOW, &tty);
2265
}
2266

    
2267
static int tty_serial_ioctl(CharDriverState *chr, int cmd, void *arg)
2268
{
2269
    FDCharDriver *s = chr->opaque;
2270

    
2271
    switch(cmd) {
2272
    case CHR_IOCTL_SERIAL_SET_PARAMS:
2273
        {
2274
            QEMUSerialSetParams *ssp = arg;
2275
            tty_serial_init(s->fd_in, ssp->speed, ssp->parity,
2276
                            ssp->data_bits, ssp->stop_bits);
2277
        }
2278
        break;
2279
    case CHR_IOCTL_SERIAL_SET_BREAK:
2280
        {
2281
            int enable = *(int *)arg;
2282
            if (enable)
2283
                tcsendbreak(s->fd_in, 1);
2284
        }
2285
        break;
2286
    default:
2287
        return -ENOTSUP;
2288
    }
2289
    return 0;
2290
}
2291

    
2292
static CharDriverState *qemu_chr_open_tty(const char *filename)
2293
{
2294
    CharDriverState *chr;
2295
    int fd;
2296

    
2297
    TFR(fd = open(filename, O_RDWR | O_NONBLOCK));
2298
    fcntl(fd, F_SETFL, O_NONBLOCK);
2299
    tty_serial_init(fd, 115200, 'N', 8, 1);
2300
    chr = qemu_chr_open_fd(fd, fd);
2301
    if (!chr) {
2302
        close(fd);
2303
        return NULL;
2304
    }
2305
    chr->chr_ioctl = tty_serial_ioctl;
2306
    qemu_chr_reset(chr);
2307
    return chr;
2308
}
2309
#else  /* ! __linux__ && ! __sun__ */
2310
static CharDriverState *qemu_chr_open_pty(void)
2311
{
2312
    return NULL;
2313
}
2314
#endif /* __linux__ || __sun__ */
2315

    
2316
#if defined(__linux__)
2317
typedef struct {
2318
    int fd;
2319
    int mode;
2320
} ParallelCharDriver;
2321

    
2322
static int pp_hw_mode(ParallelCharDriver *s, uint16_t mode)
2323
{
2324
    if (s->mode != mode) {
2325
        int m = mode;
2326
        if (ioctl(s->fd, PPSETMODE, &m) < 0)
2327
            return 0;
2328
        s->mode = mode;
2329
    }
2330
    return 1;
2331
}
2332

    
2333
static int pp_ioctl(CharDriverState *chr, int cmd, void *arg)
2334
{
2335
    ParallelCharDriver *drv = chr->opaque;
2336
    int fd = drv->fd;
2337
    uint8_t b;
2338

    
2339
    switch(cmd) {
2340
    case CHR_IOCTL_PP_READ_DATA:
2341
        if (ioctl(fd, PPRDATA, &b) < 0)
2342
            return -ENOTSUP;
2343
        *(uint8_t *)arg = b;
2344
        break;
2345
    case CHR_IOCTL_PP_WRITE_DATA:
2346
        b = *(uint8_t *)arg;
2347
        if (ioctl(fd, PPWDATA, &b) < 0)
2348
            return -ENOTSUP;
2349
        break;
2350
    case CHR_IOCTL_PP_READ_CONTROL:
2351
        if (ioctl(fd, PPRCONTROL, &b) < 0)
2352
            return -ENOTSUP;
2353
        /* Linux gives only the lowest bits, and no way to know data
2354
           direction! For better compatibility set the fixed upper
2355
           bits. */
2356
        *(uint8_t *)arg = b | 0xc0;
2357
        break;
2358
    case CHR_IOCTL_PP_WRITE_CONTROL:
2359
        b = *(uint8_t *)arg;
2360
        if (ioctl(fd, PPWCONTROL, &b) < 0)
2361
            return -ENOTSUP;
2362
        break;
2363
    case CHR_IOCTL_PP_READ_STATUS:
2364
        if (ioctl(fd, PPRSTATUS, &b) < 0)
2365
            return -ENOTSUP;
2366
        *(uint8_t *)arg = b;
2367
        break;
2368
    case CHR_IOCTL_PP_EPP_READ_ADDR:
2369
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2370
            struct ParallelIOArg *parg = arg;
2371
            int n = read(fd, parg->buffer, parg->count);
2372
            if (n != parg->count) {
2373
                return -EIO;
2374
            }
2375
        }
2376
        break;
2377
    case CHR_IOCTL_PP_EPP_READ:
2378
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2379
            struct ParallelIOArg *parg = arg;
2380
            int n = read(fd, parg->buffer, parg->count);
2381
            if (n != parg->count) {
2382
                return -EIO;
2383
            }
2384
        }
2385
        break;
2386
    case CHR_IOCTL_PP_EPP_WRITE_ADDR:
2387
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP|IEEE1284_ADDR)) {
2388
            struct ParallelIOArg *parg = arg;
2389
            int n = write(fd, parg->buffer, parg->count);
2390
            if (n != parg->count) {
2391
                return -EIO;
2392
            }
2393
        }
2394
        break;
2395
    case CHR_IOCTL_PP_EPP_WRITE:
2396
        if (pp_hw_mode(drv, IEEE1284_MODE_EPP)) {
2397
            struct ParallelIOArg *parg = arg;
2398
            int n = write(fd, parg->buffer, parg->count);
2399
            if (n != parg->count) {
2400
                return -EIO;
2401
            }
2402
        }
2403
        break;
2404
    default:
2405
        return -ENOTSUP;
2406
    }
2407
    return 0;
2408
}
2409

    
2410
static void pp_close(CharDriverState *chr)
2411
{
2412
    ParallelCharDriver *drv = chr->opaque;
2413
    int fd = drv->fd;
2414

    
2415
    pp_hw_mode(drv, IEEE1284_MODE_COMPAT);
2416
    ioctl(fd, PPRELEASE);
2417
    close(fd);
2418
    qemu_free(drv);
2419
}
2420

    
2421
static CharDriverState *qemu_chr_open_pp(const char *filename)
2422
{
2423
    CharDriverState *chr;
2424
    ParallelCharDriver *drv;
2425
    int fd;
2426

    
2427
    TFR(fd = open(filename, O_RDWR));
2428
    if (fd < 0)
2429
        return NULL;
2430

    
2431
    if (ioctl(fd, PPCLAIM) < 0) {
2432
        close(fd);
2433
        return NULL;
2434
    }
2435

    
2436
    drv = qemu_mallocz(sizeof(ParallelCharDriver));
2437
    if (!drv) {
2438
        close(fd);
2439
        return NULL;
2440
    }
2441
    drv->fd = fd;
2442
    drv->mode = IEEE1284_MODE_COMPAT;
2443

    
2444
    chr = qemu_mallocz(sizeof(CharDriverState));
2445
    if (!chr) {
2446
        qemu_free(drv);
2447
        close(fd);
2448
        return NULL;
2449
    }
2450
    chr->chr_write = null_chr_write;
2451
    chr->chr_ioctl = pp_ioctl;
2452
    chr->chr_close = pp_close;
2453
    chr->opaque = drv;
2454

    
2455
    qemu_chr_reset(chr);
2456

    
2457
    return chr;
2458
}
2459
#endif /* __linux__ */
2460

    
2461
#else /* _WIN32 */
2462

    
2463
typedef struct {
2464
    int max_size;
2465
    HANDLE hcom, hrecv, hsend;
2466
    OVERLAPPED orecv, osend;
2467
    BOOL fpipe;
2468
    DWORD len;
2469
} WinCharState;
2470

    
2471
#define NSENDBUF 2048
2472
#define NRECVBUF 2048
2473
#define MAXCONNECT 1
2474
#define NTIMEOUT 5000
2475

    
2476
static int win_chr_poll(void *opaque);
2477
static int win_chr_pipe_poll(void *opaque);
2478

    
2479
static void win_chr_close(CharDriverState *chr)
2480
{
2481
    WinCharState *s = chr->opaque;
2482

    
2483
    if (s->hsend) {
2484
        CloseHandle(s->hsend);
2485
        s->hsend = NULL;
2486
    }
2487
    if (s->hrecv) {
2488
        CloseHandle(s->hrecv);
2489
        s->hrecv = NULL;
2490
    }
2491
    if (s->hcom) {
2492
        CloseHandle(s->hcom);
2493
        s->hcom = NULL;
2494
    }
2495
    if (s->fpipe)
2496
        qemu_del_polling_cb(win_chr_pipe_poll, chr);
2497
    else
2498
        qemu_del_polling_cb(win_chr_poll, chr);
2499
}
2500

    
2501
static int win_chr_init(CharDriverState *chr, const char *filename)
2502
{
2503
    WinCharState *s = chr->opaque;
2504
    COMMCONFIG comcfg;
2505
    COMMTIMEOUTS cto = { 0, 0, 0, 0, 0};
2506
    COMSTAT comstat;
2507
    DWORD size;
2508
    DWORD err;
2509

    
2510
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2511
    if (!s->hsend) {
2512
        fprintf(stderr, "Failed CreateEvent\n");
2513
        goto fail;
2514
    }
2515
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2516
    if (!s->hrecv) {
2517
        fprintf(stderr, "Failed CreateEvent\n");
2518
        goto fail;
2519
    }
2520

    
2521
    s->hcom = CreateFile(filename, GENERIC_READ|GENERIC_WRITE, 0, NULL,
2522
                      OPEN_EXISTING, FILE_FLAG_OVERLAPPED, 0);
2523
    if (s->hcom == INVALID_HANDLE_VALUE) {
2524
        fprintf(stderr, "Failed CreateFile (%lu)\n", GetLastError());
2525
        s->hcom = NULL;
2526
        goto fail;
2527
    }
2528

    
2529
    if (!SetupComm(s->hcom, NRECVBUF, NSENDBUF)) {
2530
        fprintf(stderr, "Failed SetupComm\n");
2531
        goto fail;
2532
    }
2533

    
2534
    ZeroMemory(&comcfg, sizeof(COMMCONFIG));
2535
    size = sizeof(COMMCONFIG);
2536
    GetDefaultCommConfig(filename, &comcfg, &size);
2537
    comcfg.dcb.DCBlength = sizeof(DCB);
2538
    CommConfigDialog(filename, NULL, &comcfg);
2539

    
2540
    if (!SetCommState(s->hcom, &comcfg.dcb)) {
2541
        fprintf(stderr, "Failed SetCommState\n");
2542
        goto fail;
2543
    }
2544

    
2545
    if (!SetCommMask(s->hcom, EV_ERR)) {
2546
        fprintf(stderr, "Failed SetCommMask\n");
2547
        goto fail;
2548
    }
2549

    
2550
    cto.ReadIntervalTimeout = MAXDWORD;
2551
    if (!SetCommTimeouts(s->hcom, &cto)) {
2552
        fprintf(stderr, "Failed SetCommTimeouts\n");
2553
        goto fail;
2554
    }
2555

    
2556
    if (!ClearCommError(s->hcom, &err, &comstat)) {
2557
        fprintf(stderr, "Failed ClearCommError\n");
2558
        goto fail;
2559
    }
2560
    qemu_add_polling_cb(win_chr_poll, chr);
2561
    return 0;
2562

    
2563
 fail:
2564
    win_chr_close(chr);
2565
    return -1;
2566
}
2567

    
2568
static int win_chr_write(CharDriverState *chr, const uint8_t *buf, int len1)
2569
{
2570
    WinCharState *s = chr->opaque;
2571
    DWORD len, ret, size, err;
2572

    
2573
    len = len1;
2574
    ZeroMemory(&s->osend, sizeof(s->osend));
2575
    s->osend.hEvent = s->hsend;
2576
    while (len > 0) {
2577
        if (s->hsend)
2578
            ret = WriteFile(s->hcom, buf, len, &size, &s->osend);
2579
        else
2580
            ret = WriteFile(s->hcom, buf, len, &size, NULL);
2581
        if (!ret) {
2582
            err = GetLastError();
2583
            if (err == ERROR_IO_PENDING) {
2584
                ret = GetOverlappedResult(s->hcom, &s->osend, &size, TRUE);
2585
                if (ret) {
2586
                    buf += size;
2587
                    len -= size;
2588
                } else {
2589
                    break;
2590
                }
2591
            } else {
2592
                break;
2593
            }
2594
        } else {
2595
            buf += size;
2596
            len -= size;
2597
        }
2598
    }
2599
    return len1 - len;
2600
}
2601

    
2602
static int win_chr_read_poll(CharDriverState *chr)
2603
{
2604
    WinCharState *s = chr->opaque;
2605

    
2606
    s->max_size = qemu_chr_can_read(chr);
2607
    return s->max_size;
2608
}
2609

    
2610
static void win_chr_readfile(CharDriverState *chr)
2611
{
2612
    WinCharState *s = chr->opaque;
2613
    int ret, err;
2614
    uint8_t buf[1024];
2615
    DWORD size;
2616

    
2617
    ZeroMemory(&s->orecv, sizeof(s->orecv));
2618
    s->orecv.hEvent = s->hrecv;
2619
    ret = ReadFile(s->hcom, buf, s->len, &size, &s->orecv);
2620
    if (!ret) {
2621
        err = GetLastError();
2622
        if (err == ERROR_IO_PENDING) {
2623
            ret = GetOverlappedResult(s->hcom, &s->orecv, &size, TRUE);
2624
        }
2625
    }
2626

    
2627
    if (size > 0) {
2628
        qemu_chr_read(chr, buf, size);
2629
    }
2630
}
2631

    
2632
static void win_chr_read(CharDriverState *chr)
2633
{
2634
    WinCharState *s = chr->opaque;
2635

    
2636
    if (s->len > s->max_size)
2637
        s->len = s->max_size;
2638
    if (s->len == 0)
2639
        return;
2640

    
2641
    win_chr_readfile(chr);
2642
}
2643

    
2644
static int win_chr_poll(void *opaque)
2645
{
2646
    CharDriverState *chr = opaque;
2647
    WinCharState *s = chr->opaque;
2648
    COMSTAT status;
2649
    DWORD comerr;
2650

    
2651
    ClearCommError(s->hcom, &comerr, &status);
2652
    if (status.cbInQue > 0) {
2653
        s->len = status.cbInQue;
2654
        win_chr_read_poll(chr);
2655
        win_chr_read(chr);
2656
        return 1;
2657
    }
2658
    return 0;
2659
}
2660

    
2661
static CharDriverState *qemu_chr_open_win(const char *filename)
2662
{
2663
    CharDriverState *chr;
2664
    WinCharState *s;
2665

    
2666
    chr = qemu_mallocz(sizeof(CharDriverState));
2667
    if (!chr)
2668
        return NULL;
2669
    s = qemu_mallocz(sizeof(WinCharState));
2670
    if (!s) {
2671
        free(chr);
2672
        return NULL;
2673
    }
2674
    chr->opaque = s;
2675
    chr->chr_write = win_chr_write;
2676
    chr->chr_close = win_chr_close;
2677

    
2678
    if (win_chr_init(chr, filename) < 0) {
2679
        free(s);
2680
        free(chr);
2681
        return NULL;
2682
    }
2683
    qemu_chr_reset(chr);
2684
    return chr;
2685
}
2686

    
2687
static int win_chr_pipe_poll(void *opaque)
2688
{
2689
    CharDriverState *chr = opaque;
2690
    WinCharState *s = chr->opaque;
2691
    DWORD size;
2692

    
2693
    PeekNamedPipe(s->hcom, NULL, 0, NULL, &size, NULL);
2694
    if (size > 0) {
2695
        s->len = size;
2696
        win_chr_read_poll(chr);
2697
        win_chr_read(chr);
2698
        return 1;
2699
    }
2700
    return 0;
2701
}
2702

    
2703
static int win_chr_pipe_init(CharDriverState *chr, const char *filename)
2704
{
2705
    WinCharState *s = chr->opaque;
2706
    OVERLAPPED ov;
2707
    int ret;
2708
    DWORD size;
2709
    char openname[256];
2710

    
2711
    s->fpipe = TRUE;
2712

    
2713
    s->hsend = CreateEvent(NULL, TRUE, FALSE, NULL);
2714
    if (!s->hsend) {
2715
        fprintf(stderr, "Failed CreateEvent\n");
2716
        goto fail;
2717
    }
2718
    s->hrecv = CreateEvent(NULL, TRUE, FALSE, NULL);
2719
    if (!s->hrecv) {
2720
        fprintf(stderr, "Failed CreateEvent\n");
2721
        goto fail;
2722
    }
2723

    
2724
    snprintf(openname, sizeof(openname), "\\\\.\\pipe\\%s", filename);
2725
    s->hcom = CreateNamedPipe(openname, PIPE_ACCESS_DUPLEX | FILE_FLAG_OVERLAPPED,
2726
                              PIPE_TYPE_BYTE | PIPE_READMODE_BYTE |
2727
                              PIPE_WAIT,
2728
                              MAXCONNECT, NSENDBUF, NRECVBUF, NTIMEOUT, NULL);
2729
    if (s->hcom == INVALID_HANDLE_VALUE) {
2730
        fprintf(stderr, "Failed CreateNamedPipe (%lu)\n", GetLastError());
2731
        s->hcom = NULL;
2732
        goto fail;
2733
    }
2734

    
2735
    ZeroMemory(&ov, sizeof(ov));
2736
    ov.hEvent = CreateEvent(NULL, TRUE, FALSE, NULL);
2737
    ret = ConnectNamedPipe(s->hcom, &ov);
2738
    if (ret) {
2739
        fprintf(stderr, "Failed ConnectNamedPipe\n");
2740
        goto fail;
2741
    }
2742

    
2743
    ret = GetOverlappedResult(s->hcom, &ov, &size, TRUE);
2744
    if (!ret) {
2745
        fprintf(stderr, "Failed GetOverlappedResult\n");
2746
        if (ov.hEvent) {
2747
            CloseHandle(ov.hEvent);
2748
            ov.hEvent = NULL;
2749
        }
2750
        goto fail;
2751
    }
2752

    
2753
    if (ov.hEvent) {
2754
        CloseHandle(ov.hEvent);
2755
        ov.hEvent = NULL;
2756
    }
2757
    qemu_add_polling_cb(win_chr_pipe_poll, chr);
2758
    return 0;
2759

    
2760
 fail:
2761
    win_chr_close(chr);
2762
    return -1;
2763
}
2764

    
2765

    
2766
static CharDriverState *qemu_chr_open_win_pipe(const char *filename)
2767
{
2768
    CharDriverState *chr;
2769
    WinCharState *s;
2770

    
2771
    chr = qemu_mallocz(sizeof(CharDriverState));
2772
    if (!chr)
2773
        return NULL;
2774
    s = qemu_mallocz(sizeof(WinCharState));
2775
    if (!s) {
2776
        free(chr);
2777
        return NULL;
2778
    }
2779
    chr->opaque = s;
2780
    chr->chr_write = win_chr_write;
2781
    chr->chr_close = win_chr_close;
2782

    
2783
    if (win_chr_pipe_init(chr, filename) < 0) {
2784
        free(s);
2785
        free(chr);
2786
        return NULL;
2787
    }
2788
    qemu_chr_reset(chr);
2789
    return chr;
2790
}
2791

    
2792
static CharDriverState *qemu_chr_open_win_file(HANDLE fd_out)
2793
{
2794
    CharDriverState *chr;
2795
    WinCharState *s;
2796

    
2797
    chr = qemu_mallocz(sizeof(CharDriverState));
2798
    if (!chr)
2799
        return NULL;
2800
    s = qemu_mallocz(sizeof(WinCharState));
2801
    if (!s) {
2802
        free(chr);
2803
        return NULL;
2804
    }
2805
    s->hcom = fd_out;
2806
    chr->opaque = s;
2807
    chr->chr_write = win_chr_write;
2808
    qemu_chr_reset(chr);
2809
    return chr;
2810
}
2811

    
2812
static CharDriverState *qemu_chr_open_win_con(const char *filename)
2813
{
2814
    return qemu_chr_open_win_file(GetStdHandle(STD_OUTPUT_HANDLE));
2815
}
2816

    
2817
static CharDriverState *qemu_chr_open_win_file_out(const char *file_out)
2818
{
2819
    HANDLE fd_out;
2820

    
2821
    fd_out = CreateFile(file_out, GENERIC_WRITE, FILE_SHARE_READ, NULL,
2822
                        OPEN_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
2823
    if (fd_out == INVALID_HANDLE_VALUE)
2824
        return NULL;
2825

    
2826
    return qemu_chr_open_win_file(fd_out);
2827
}
2828
#endif /* !_WIN32 */
2829

    
2830
/***********************************************************/
2831
/* UDP Net console */
2832

    
2833
typedef struct {
2834
    int fd;
2835
    struct sockaddr_in daddr;
2836
    char buf[1024];
2837
    int bufcnt;
2838
    int bufptr;
2839
    int max_size;
2840
} NetCharDriver;
2841

    
2842
static int udp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2843
{
2844
    NetCharDriver *s = chr->opaque;
2845

    
2846
    return sendto(s->fd, buf, len, 0,
2847
                  (struct sockaddr *)&s->daddr, sizeof(struct sockaddr_in));
2848
}
2849

    
2850
static int udp_chr_read_poll(void *opaque)
2851
{
2852
    CharDriverState *chr = opaque;
2853
    NetCharDriver *s = chr->opaque;
2854

    
2855
    s->max_size = qemu_chr_can_read(chr);
2856

    
2857
    /* If there were any stray characters in the queue process them
2858
     * first
2859
     */
2860
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2861
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2862
        s->bufptr++;
2863
        s->max_size = qemu_chr_can_read(chr);
2864
    }
2865
    return s->max_size;
2866
}
2867

    
2868
static void udp_chr_read(void *opaque)
2869
{
2870
    CharDriverState *chr = opaque;
2871
    NetCharDriver *s = chr->opaque;
2872

    
2873
    if (s->max_size == 0)
2874
        return;
2875
    s->bufcnt = recv(s->fd, s->buf, sizeof(s->buf), 0);
2876
    s->bufptr = s->bufcnt;
2877
    if (s->bufcnt <= 0)
2878
        return;
2879

    
2880
    s->bufptr = 0;
2881
    while (s->max_size > 0 && s->bufptr < s->bufcnt) {
2882
        qemu_chr_read(chr, &s->buf[s->bufptr], 1);
2883
        s->bufptr++;
2884
        s->max_size = qemu_chr_can_read(chr);
2885
    }
2886
}
2887

    
2888
static void udp_chr_update_read_handler(CharDriverState *chr)
2889
{
2890
    NetCharDriver *s = chr->opaque;
2891

    
2892
    if (s->fd >= 0) {
2893
        qemu_set_fd_handler2(s->fd, udp_chr_read_poll,
2894
                             udp_chr_read, NULL, chr);
2895
    }
2896
}
2897

    
2898
int parse_host_port(struct sockaddr_in *saddr, const char *str);
2899
#ifndef _WIN32
2900
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str);
2901
#endif
2902
int parse_host_src_port(struct sockaddr_in *haddr,
2903
                        struct sockaddr_in *saddr,
2904
                        const char *str);
2905

    
2906
static CharDriverState *qemu_chr_open_udp(const char *def)
2907
{
2908
    CharDriverState *chr = NULL;
2909
    NetCharDriver *s = NULL;
2910
    int fd = -1;
2911
    struct sockaddr_in saddr;
2912

    
2913
    chr = qemu_mallocz(sizeof(CharDriverState));
2914
    if (!chr)
2915
        goto return_err;
2916
    s = qemu_mallocz(sizeof(NetCharDriver));
2917
    if (!s)
2918
        goto return_err;
2919

    
2920
    fd = socket(PF_INET, SOCK_DGRAM, 0);
2921
    if (fd < 0) {
2922
        perror("socket(PF_INET, SOCK_DGRAM)");
2923
        goto return_err;
2924
    }
2925

    
2926
    if (parse_host_src_port(&s->daddr, &saddr, def) < 0) {
2927
        printf("Could not parse: %s\n", def);
2928
        goto return_err;
2929
    }
2930

    
2931
    if (bind(fd, (struct sockaddr *)&saddr, sizeof(saddr)) < 0)
2932
    {
2933
        perror("bind");
2934
        goto return_err;
2935
    }
2936

    
2937
    s->fd = fd;
2938
    s->bufcnt = 0;
2939
    s->bufptr = 0;
2940
    chr->opaque = s;
2941
    chr->chr_write = udp_chr_write;
2942
    chr->chr_update_read_handler = udp_chr_update_read_handler;
2943
    return chr;
2944

    
2945
return_err:
2946
    if (chr)
2947
        free(chr);
2948
    if (s)
2949
        free(s);
2950
    if (fd >= 0)
2951
        closesocket(fd);
2952
    return NULL;
2953
}
2954

    
2955
/***********************************************************/
2956
/* TCP Net console */
2957

    
2958
typedef struct {
2959
    int fd, listen_fd;
2960
    int connected;
2961
    int max_size;
2962
    int do_telnetopt;
2963
    int do_nodelay;
2964
    int is_unix;
2965
} TCPCharDriver;
2966

    
2967
static void tcp_chr_accept(void *opaque);
2968

    
2969
static int tcp_chr_write(CharDriverState *chr, const uint8_t *buf, int len)
2970
{
2971
    TCPCharDriver *s = chr->opaque;
2972
    if (s->connected) {
2973
        return send_all(s->fd, buf, len);
2974
    } else {
2975
        /* XXX: indicate an error ? */
2976
        return len;
2977
    }
2978
}
2979

    
2980
static int tcp_chr_read_poll(void *opaque)
2981
{
2982
    CharDriverState *chr = opaque;
2983
    TCPCharDriver *s = chr->opaque;
2984
    if (!s->connected)
2985
        return 0;
2986
    s->max_size = qemu_chr_can_read(chr);
2987
    return s->max_size;
2988
}
2989

    
2990
#define IAC 255
2991
#define IAC_BREAK 243
2992
static void tcp_chr_process_IAC_bytes(CharDriverState *chr,
2993
                                      TCPCharDriver *s,
2994
                                      char *buf, int *size)
2995
{
2996
    /* Handle any telnet client's basic IAC options to satisfy char by
2997
     * char mode with no echo.  All IAC options will be removed from
2998
     * the buf and the do_telnetopt variable will be used to track the
2999
     * state of the width of the IAC information.
3000
     *
3001
     * IAC commands come in sets of 3 bytes with the exception of the
3002
     * "IAC BREAK" command and the double IAC.
3003
     */
3004

    
3005
    int i;
3006
    int j = 0;
3007

    
3008
    for (i = 0; i < *size; i++) {
3009
        if (s->do_telnetopt > 1) {
3010
            if ((unsigned char)buf[i] == IAC && s->do_telnetopt == 2) {
3011
                /* Double IAC means send an IAC */
3012
                if (j != i)
3013
                    buf[j] = buf[i];
3014
                j++;
3015
                s->do_telnetopt = 1;
3016
            } else {
3017
                if ((unsigned char)buf[i] == IAC_BREAK && s->do_telnetopt == 2) {
3018
                    /* Handle IAC break commands by sending a serial break */
3019
                    qemu_chr_event(chr, CHR_EVENT_BREAK);
3020
                    s->do_telnetopt++;
3021
                }
3022
                s->do_telnetopt++;
3023
            }
3024
            if (s->do_telnetopt >= 4) {
3025
                s->do_telnetopt = 1;
3026
            }
3027
        } else {
3028
            if ((unsigned char)buf[i] == IAC) {
3029
                s->do_telnetopt = 2;
3030
            } else {
3031
                if (j != i)
3032
                    buf[j] = buf[i];
3033
                j++;
3034
            }
3035
        }
3036
    }
3037
    *size = j;
3038
}
3039

    
3040
static void tcp_chr_read(void *opaque)
3041
{
3042
    CharDriverState *chr = opaque;
3043
    TCPCharDriver *s = chr->opaque;
3044
    uint8_t buf[1024];
3045
    int len, size;
3046

    
3047
    if (!s->connected || s->max_size <= 0)
3048
        return;
3049
    len = sizeof(buf);
3050
    if (len > s->max_size)
3051
        len = s->max_size;
3052
    size = recv(s->fd, buf, len, 0);
3053
    if (size == 0) {
3054
        /* connection closed */
3055
        s->connected = 0;
3056
        if (s->listen_fd >= 0) {
3057
            qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3058
        }
3059
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
3060
        closesocket(s->fd);
3061
        s->fd = -1;
3062
    } else if (size > 0) {
3063
        if (s->do_telnetopt)
3064
            tcp_chr_process_IAC_bytes(chr, s, buf, &size);
3065
        if (size > 0)
3066
            qemu_chr_read(chr, buf, size);
3067
    }
3068
}
3069

    
3070
static void tcp_chr_connect(void *opaque)
3071
{
3072
    CharDriverState *chr = opaque;
3073
    TCPCharDriver *s = chr->opaque;
3074

    
3075
    s->connected = 1;
3076
    qemu_set_fd_handler2(s->fd, tcp_chr_read_poll,
3077
                         tcp_chr_read, NULL, chr);
3078
    qemu_chr_reset(chr);
3079
}
3080

    
3081
#define IACSET(x,a,b,c) x[0] = a; x[1] = b; x[2] = c;
3082
static void tcp_chr_telnet_init(int fd)
3083
{
3084
    char buf[3];
3085
    /* Send the telnet negotion to put telnet in binary, no echo, single char mode */
3086
    IACSET(buf, 0xff, 0xfb, 0x01);  /* IAC WILL ECHO */
3087
    send(fd, (char *)buf, 3, 0);
3088
    IACSET(buf, 0xff, 0xfb, 0x03);  /* IAC WILL Suppress go ahead */
3089
    send(fd, (char *)buf, 3, 0);
3090
    IACSET(buf, 0xff, 0xfb, 0x00);  /* IAC WILL Binary */
3091
    send(fd, (char *)buf, 3, 0);
3092
    IACSET(buf, 0xff, 0xfd, 0x00);  /* IAC DO Binary */
3093
    send(fd, (char *)buf, 3, 0);
3094
}
3095

    
3096
static void socket_set_nodelay(int fd)
3097
{
3098
    int val = 1;
3099
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
3100
}
3101

    
3102
static void tcp_chr_accept(void *opaque)
3103
{
3104
    CharDriverState *chr = opaque;
3105
    TCPCharDriver *s = chr->opaque;
3106
    struct sockaddr_in saddr;
3107
#ifndef _WIN32
3108
    struct sockaddr_un uaddr;
3109
#endif
3110
    struct sockaddr *addr;
3111
    socklen_t len;
3112
    int fd;
3113

    
3114
    for(;;) {
3115
#ifndef _WIN32
3116
        if (s->is_unix) {
3117
            len = sizeof(uaddr);
3118
            addr = (struct sockaddr *)&uaddr;
3119
        } else
3120
#endif
3121
        {
3122
            len = sizeof(saddr);
3123
            addr = (struct sockaddr *)&saddr;
3124
        }
3125
        fd = accept(s->listen_fd, addr, &len);
3126
        if (fd < 0 && errno != EINTR) {
3127
            return;
3128
        } else if (fd >= 0) {
3129
            if (s->do_telnetopt)
3130
                tcp_chr_telnet_init(fd);
3131
            break;
3132
        }
3133
    }
3134
    socket_set_nonblock(fd);
3135
    if (s->do_nodelay)
3136
        socket_set_nodelay(fd);
3137
    s->fd = fd;
3138
    qemu_set_fd_handler(s->listen_fd, NULL, NULL, NULL);
3139
    tcp_chr_connect(chr);
3140
}
3141

    
3142
static void tcp_chr_close(CharDriverState *chr)
3143
{
3144
    TCPCharDriver *s = chr->opaque;
3145
    if (s->fd >= 0)
3146
        closesocket(s->fd);
3147
    if (s->listen_fd >= 0)
3148
        closesocket(s->listen_fd);
3149
    qemu_free(s);
3150
}
3151

    
3152
static CharDriverState *qemu_chr_open_tcp(const char *host_str,
3153
                                          int is_telnet,
3154
                                          int is_unix)
3155
{
3156
    CharDriverState *chr = NULL;
3157
    TCPCharDriver *s = NULL;
3158
    int fd = -1, ret, err, val;
3159
    int is_listen = 0;
3160
    int is_waitconnect = 1;
3161
    int do_nodelay = 0;
3162
    const char *ptr;
3163
    struct sockaddr_in saddr;
3164
#ifndef _WIN32
3165
    struct sockaddr_un uaddr;
3166
#endif
3167
    struct sockaddr *addr;
3168
    socklen_t addrlen;
3169

    
3170
#ifndef _WIN32
3171
    if (is_unix) {
3172
        addr = (struct sockaddr *)&uaddr;
3173
        addrlen = sizeof(uaddr);
3174
        if (parse_unix_path(&uaddr, host_str) < 0)
3175
            goto fail;
3176
    } else
3177
#endif
3178
    {
3179
        addr = (struct sockaddr *)&saddr;
3180
        addrlen = sizeof(saddr);
3181
        if (parse_host_port(&saddr, host_str) < 0)
3182
            goto fail;
3183
    }
3184

    
3185
    ptr = host_str;
3186
    while((ptr = strchr(ptr,','))) {
3187
        ptr++;
3188
        if (!strncmp(ptr,"server",6)) {
3189
            is_listen = 1;
3190
        } else if (!strncmp(ptr,"nowait",6)) {
3191
            is_waitconnect = 0;
3192
        } else if (!strncmp(ptr,"nodelay",6)) {
3193
            do_nodelay = 1;
3194
        } else {
3195
            printf("Unknown option: %s\n", ptr);
3196
            goto fail;
3197
        }
3198
    }
3199
    if (!is_listen)
3200
        is_waitconnect = 0;
3201

    
3202
    chr = qemu_mallocz(sizeof(CharDriverState));
3203
    if (!chr)
3204
        goto fail;
3205
    s = qemu_mallocz(sizeof(TCPCharDriver));
3206
    if (!s)
3207
        goto fail;
3208

    
3209
#ifndef _WIN32
3210
    if (is_unix)
3211
        fd = socket(PF_UNIX, SOCK_STREAM, 0);
3212
    else
3213
#endif
3214
        fd = socket(PF_INET, SOCK_STREAM, 0);
3215

    
3216
    if (fd < 0)
3217
        goto fail;
3218

    
3219
    if (!is_waitconnect)
3220
        socket_set_nonblock(fd);
3221

    
3222
    s->connected = 0;
3223
    s->fd = -1;
3224
    s->listen_fd = -1;
3225
    s->is_unix = is_unix;
3226
    s->do_nodelay = do_nodelay && !is_unix;
3227

    
3228
    chr->opaque = s;
3229
    chr->chr_write = tcp_chr_write;
3230
    chr->chr_close = tcp_chr_close;
3231

    
3232
    if (is_listen) {
3233
        /* allow fast reuse */
3234
#ifndef _WIN32
3235
        if (is_unix) {
3236
            char path[109];
3237
            strncpy(path, uaddr.sun_path, 108);
3238
            path[108] = 0;
3239
            unlink(path);
3240
        } else
3241
#endif
3242
        {
3243
            val = 1;
3244
            setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
3245
        }
3246

    
3247
        ret = bind(fd, addr, addrlen);
3248
        if (ret < 0)
3249
            goto fail;
3250

    
3251
        ret = listen(fd, 0);
3252
        if (ret < 0)
3253
            goto fail;
3254

    
3255
        s->listen_fd = fd;
3256
        qemu_set_fd_handler(s->listen_fd, tcp_chr_accept, NULL, chr);
3257
        if (is_telnet)
3258
            s->do_telnetopt = 1;
3259
    } else {
3260
        for(;;) {
3261
            ret = connect(fd, addr, addrlen);
3262
            if (ret < 0) {
3263
                err = socket_error();
3264
                if (err == EINTR || err == EWOULDBLOCK) {
3265
                } else if (err == EINPROGRESS) {
3266
                    break;
3267
#ifdef _WIN32
3268
                } else if (err == WSAEALREADY) {
3269
                    break;
3270
#endif
3271
                } else {
3272
                    goto fail;
3273
                }
3274
            } else {
3275
                s->connected = 1;
3276
                break;
3277
            }
3278
        }
3279
        s->fd = fd;
3280
        socket_set_nodelay(fd);
3281
        if (s->connected)
3282
            tcp_chr_connect(chr);
3283
        else
3284
            qemu_set_fd_handler(s->fd, NULL, tcp_chr_connect, chr);
3285
    }
3286

    
3287
    if (is_listen && is_waitconnect) {
3288
        printf("QEMU waiting for connection on: %s\n", host_str);
3289
        tcp_chr_accept(chr);
3290
        socket_set_nonblock(s->listen_fd);
3291
    }
3292

    
3293
    return chr;
3294
 fail:
3295
    if (fd >= 0)
3296
        closesocket(fd);
3297
    qemu_free(s);
3298
    qemu_free(chr);
3299
    return NULL;
3300
}
3301

    
3302
CharDriverState *qemu_chr_open(const char *filename)
3303
{
3304
    const char *p;
3305

    
3306
    if (!strcmp(filename, "vc")) {
3307
        return text_console_init(&display_state, 0);
3308
    } else if (strstart(filename, "vc:", &p)) {
3309
        return text_console_init(&display_state, p);
3310
    } else if (!strcmp(filename, "null")) {
3311
        return qemu_chr_open_null();
3312
    } else
3313
    if (strstart(filename, "tcp:", &p)) {
3314
        return qemu_chr_open_tcp(p, 0, 0);
3315
    } else
3316
    if (strstart(filename, "telnet:", &p)) {
3317
        return qemu_chr_open_tcp(p, 1, 0);
3318
    } else
3319
    if (strstart(filename, "udp:", &p)) {
3320
        return qemu_chr_open_udp(p);
3321
    } else
3322
    if (strstart(filename, "mon:", &p)) {
3323
        CharDriverState *drv = qemu_chr_open(p);
3324
        if (drv) {
3325
            drv = qemu_chr_open_mux(drv);
3326
            monitor_init(drv, !nographic);
3327
            return drv;
3328
        }
3329
        printf("Unable to open driver: %s\n", p);
3330
        return 0;
3331
    } else
3332
#ifndef _WIN32
3333
    if (strstart(filename, "unix:", &p)) {
3334
        return qemu_chr_open_tcp(p, 0, 1);
3335
    } else if (strstart(filename, "file:", &p)) {
3336
        return qemu_chr_open_file_out(p);
3337
    } else if (strstart(filename, "pipe:", &p)) {
3338
        return qemu_chr_open_pipe(p);
3339
    } else if (!strcmp(filename, "pty")) {
3340
        return qemu_chr_open_pty();
3341
    } else if (!strcmp(filename, "stdio")) {
3342
        return qemu_chr_open_stdio();
3343
    } else
3344
#if defined(__linux__)
3345
    if (strstart(filename, "/dev/parport", NULL)) {
3346
        return qemu_chr_open_pp(filename);
3347
    } else
3348
#endif
3349
#if defined(__linux__) || defined(__sun__)
3350
    if (strstart(filename, "/dev/", NULL)) {
3351
        return qemu_chr_open_tty(filename);
3352
    } else
3353
#endif
3354
#else /* !_WIN32 */
3355
    if (strstart(filename, "COM", NULL)) {
3356
        return qemu_chr_open_win(filename);
3357
    } else
3358
    if (strstart(filename, "pipe:", &p)) {
3359
        return qemu_chr_open_win_pipe(p);
3360
    } else
3361
    if (strstart(filename, "con:", NULL)) {
3362
        return qemu_chr_open_win_con(filename);
3363
    } else
3364
    if (strstart(filename, "file:", &p)) {
3365
        return qemu_chr_open_win_file_out(p);
3366
    }
3367
#endif
3368
    {
3369
        return NULL;
3370
    }
3371
}
3372

    
3373
void qemu_chr_close(CharDriverState *chr)
3374
{
3375
    if (chr->chr_close)
3376
        chr->chr_close(chr);
3377
}
3378

    
3379
/***********************************************************/
3380
/* network device redirectors */
3381

    
3382
void hex_dump(FILE *f, const uint8_t *buf, int size)
3383
{
3384
    int len, i, j, c;
3385

    
3386
    for(i=0;i<size;i+=16) {
3387
        len = size - i;
3388
        if (len > 16)
3389
            len = 16;
3390
        fprintf(f, "%08x ", i);
3391
        for(j=0;j<16;j++) {
3392
            if (j < len)
3393
                fprintf(f, " %02x", buf[i+j]);
3394
            else
3395
                fprintf(f, "   ");
3396
        }
3397
        fprintf(f, " ");
3398
        for(j=0;j<len;j++) {
3399
            c = buf[i+j];
3400
            if (c < ' ' || c > '~')
3401
                c = '.';
3402
            fprintf(f, "%c", c);
3403
        }
3404
        fprintf(f, "\n");
3405
    }
3406
}
3407

    
3408
static int parse_macaddr(uint8_t *macaddr, const char *p)
3409
{
3410
    int i;
3411
    for(i = 0; i < 6; i++) {
3412
        macaddr[i] = strtol(p, (char **)&p, 16);
3413
        if (i == 5) {
3414
            if (*p != '\0')
3415
                return -1;
3416
        } else {
3417
            if (*p != ':')
3418
                return -1;
3419
            p++;
3420
        }
3421
    }
3422
    return 0;
3423
}
3424

    
3425
static int get_str_sep(char *buf, int buf_size, const char **pp, int sep)
3426
{
3427
    const char *p, *p1;
3428
    int len;
3429
    p = *pp;
3430
    p1 = strchr(p, sep);
3431
    if (!p1)
3432
        return -1;
3433
    len = p1 - p;
3434
    p1++;
3435
    if (buf_size > 0) {
3436
        if (len > buf_size - 1)
3437
            len = buf_size - 1;
3438
        memcpy(buf, p, len);
3439
        buf[len] = '\0';
3440
    }
3441
    *pp = p1;
3442
    return 0;
3443
}
3444

    
3445
int parse_host_src_port(struct sockaddr_in *haddr,
3446
                        struct sockaddr_in *saddr,
3447
                        const char *input_str)
3448
{
3449
    char *str = strdup(input_str);
3450
    char *host_str = str;
3451
    char *src_str;
3452
    char *ptr;
3453

    
3454
    /*
3455
     * Chop off any extra arguments at the end of the string which
3456
     * would start with a comma, then fill in the src port information
3457
     * if it was provided else use the "any address" and "any port".
3458
     */
3459
    if ((ptr = strchr(str,',')))
3460
        *ptr = '\0';
3461

    
3462
    if ((src_str = strchr(input_str,'@'))) {
3463
        *src_str = '\0';
3464
        src_str++;
3465
    }
3466

    
3467
    if (parse_host_port(haddr, host_str) < 0)
3468
        goto fail;
3469

    
3470
    if (!src_str || *src_str == '\0')
3471
        src_str = ":0";
3472

    
3473
    if (parse_host_port(saddr, src_str) < 0)
3474
        goto fail;
3475

    
3476
    free(str);
3477
    return(0);
3478

    
3479
fail:
3480
    free(str);
3481
    return -1;
3482
}
3483

    
3484
int parse_host_port(struct sockaddr_in *saddr, const char *str)
3485
{
3486
    char buf[512];
3487
    struct hostent *he;
3488
    const char *p, *r;
3489
    int port;
3490

    
3491
    p = str;
3492
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3493
        return -1;
3494
    saddr->sin_family = AF_INET;
3495
    if (buf[0] == '\0') {
3496
        saddr->sin_addr.s_addr = 0;
3497
    } else {
3498
        if (isdigit(buf[0])) {
3499
            if (!inet_aton(buf, &saddr->sin_addr))
3500
                return -1;
3501
        } else {
3502
            if ((he = gethostbyname(buf)) == NULL)
3503
                return - 1;
3504
            saddr->sin_addr = *(struct in_addr *)he->h_addr;
3505
        }
3506
    }
3507
    port = strtol(p, (char **)&r, 0);
3508
    if (r == p)
3509
        return -1;
3510
    saddr->sin_port = htons(port);
3511
    return 0;
3512
}
3513

    
3514
#ifndef _WIN32
3515
static int parse_unix_path(struct sockaddr_un *uaddr, const char *str)
3516
{
3517
    const char *p;
3518
    int len;
3519

    
3520
    len = MIN(108, strlen(str));
3521
    p = strchr(str, ',');
3522
    if (p)
3523
        len = MIN(len, p - str);
3524

    
3525
    memset(uaddr, 0, sizeof(*uaddr));
3526

    
3527
    uaddr->sun_family = AF_UNIX;
3528
    memcpy(uaddr->sun_path, str, len);
3529

    
3530
    return 0;
3531
}
3532
#endif
3533

    
3534
/* find or alloc a new VLAN */
3535
VLANState *qemu_find_vlan(int id)
3536
{
3537
    VLANState **pvlan, *vlan;
3538
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
3539
        if (vlan->id == id)
3540
            return vlan;
3541
    }
3542
    vlan = qemu_mallocz(sizeof(VLANState));
3543
    if (!vlan)
3544
        return NULL;
3545
    vlan->id = id;
3546
    vlan->next = NULL;
3547
    pvlan = &first_vlan;
3548
    while (*pvlan != NULL)
3549
        pvlan = &(*pvlan)->next;
3550
    *pvlan = vlan;
3551
    return vlan;
3552
}
3553

    
3554
VLANClientState *qemu_new_vlan_client(VLANState *vlan,
3555
                                      IOReadHandler *fd_read,
3556
                                      IOCanRWHandler *fd_can_read,
3557
                                      void *opaque)
3558
{
3559
    VLANClientState *vc, **pvc;
3560
    vc = qemu_mallocz(sizeof(VLANClientState));
3561
    if (!vc)
3562
        return NULL;
3563
    vc->fd_read = fd_read;
3564
    vc->fd_can_read = fd_can_read;
3565
    vc->opaque = opaque;
3566
    vc->vlan = vlan;
3567

    
3568
    vc->next = NULL;
3569
    pvc = &vlan->first_client;
3570
    while (*pvc != NULL)
3571
        pvc = &(*pvc)->next;
3572
    *pvc = vc;
3573
    return vc;
3574
}
3575

    
3576
int qemu_can_send_packet(VLANClientState *vc1)
3577
{
3578
    VLANState *vlan = vc1->vlan;
3579
    VLANClientState *vc;
3580

    
3581
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3582
        if (vc != vc1) {
3583
            if (vc->fd_can_read && vc->fd_can_read(vc->opaque))
3584
                return 1;
3585
        }
3586
    }
3587
    return 0;
3588
}
3589

    
3590
void qemu_send_packet(VLANClientState *vc1, const uint8_t *buf, int size)
3591
{
3592
    VLANState *vlan = vc1->vlan;
3593
    VLANClientState *vc;
3594

    
3595
#if 0
3596
    printf("vlan %d send:\n", vlan->id);
3597
    hex_dump(stdout, buf, size);
3598
#endif
3599
    for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
3600
        if (vc != vc1) {
3601
            vc->fd_read(vc->opaque, buf, size);
3602
        }
3603
    }
3604
}
3605

    
3606
#if defined(CONFIG_SLIRP)
3607

    
3608
/* slirp network adapter */
3609

    
3610
static int slirp_inited;
3611
static VLANClientState *slirp_vc;
3612

    
3613
int slirp_can_output(void)
3614
{
3615
    return !slirp_vc || qemu_can_send_packet(slirp_vc);
3616
}
3617

    
3618
void slirp_output(const uint8_t *pkt, int pkt_len)
3619
{
3620
#if 0
3621
    printf("slirp output:\n");
3622
    hex_dump(stdout, pkt, pkt_len);
3623
#endif
3624
    if (!slirp_vc)
3625
        return;
3626
    qemu_send_packet(slirp_vc, pkt, pkt_len);
3627
}
3628

    
3629
static void slirp_receive(void *opaque, const uint8_t *buf, int size)
3630
{
3631
#if 0
3632
    printf("slirp input:\n");
3633
    hex_dump(stdout, buf, size);
3634
#endif
3635
    slirp_input(buf, size);
3636
}
3637

    
3638
static int net_slirp_init(VLANState *vlan)
3639
{
3640
    if (!slirp_inited) {
3641
        slirp_inited = 1;
3642
        slirp_init();
3643
    }
3644
    slirp_vc = qemu_new_vlan_client(vlan,
3645
                                    slirp_receive, NULL, NULL);
3646
    snprintf(slirp_vc->info_str, sizeof(slirp_vc->info_str), "user redirector");
3647
    return 0;
3648
}
3649

    
3650
static void net_slirp_redir(const char *redir_str)
3651
{
3652
    int is_udp;
3653
    char buf[256], *r;
3654
    const char *p;
3655
    struct in_addr guest_addr;
3656
    int host_port, guest_port;
3657

    
3658
    if (!slirp_inited) {
3659
        slirp_inited = 1;
3660
        slirp_init();
3661
    }
3662

    
3663
    p = redir_str;
3664
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3665
        goto fail;
3666
    if (!strcmp(buf, "tcp")) {
3667
        is_udp = 0;
3668
    } else if (!strcmp(buf, "udp")) {
3669
        is_udp = 1;
3670
    } else {
3671
        goto fail;
3672
    }
3673

    
3674
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3675
        goto fail;
3676
    host_port = strtol(buf, &r, 0);
3677
    if (r == buf)
3678
        goto fail;
3679

    
3680
    if (get_str_sep(buf, sizeof(buf), &p, ':') < 0)
3681
        goto fail;
3682
    if (buf[0] == '\0') {
3683
        pstrcpy(buf, sizeof(buf), "10.0.2.15");
3684
    }
3685
    if (!inet_aton(buf, &guest_addr))
3686
        goto fail;
3687

    
3688
    guest_port = strtol(p, &r, 0);
3689
    if (r == p)
3690
        goto fail;
3691

    
3692
    if (slirp_redir(is_udp, host_port, guest_addr, guest_port) < 0) {
3693
        fprintf(stderr, "qemu: could not set up redirection\n");
3694
        exit(1);
3695
    }
3696
    return;
3697
 fail:
3698
    fprintf(stderr, "qemu: syntax: -redir [tcp|udp]:host-port:[guest-host]:guest-port\n");
3699
    exit(1);
3700
}
3701

    
3702
#ifndef _WIN32
3703

    
3704
char smb_dir[1024];
3705

    
3706
static void smb_exit(void)
3707
{
3708
    DIR *d;
3709
    struct dirent *de;
3710
    char filename[1024];
3711

    
3712
    /* erase all the files in the directory */
3713
    d = opendir(smb_dir);
3714
    for(;;) {
3715
        de = readdir(d);
3716
        if (!de)
3717
            break;
3718
        if (strcmp(de->d_name, ".") != 0 &&
3719
            strcmp(de->d_name, "..") != 0) {
3720
            snprintf(filename, sizeof(filename), "%s/%s",
3721
                     smb_dir, de->d_name);
3722
            unlink(filename);
3723
        }
3724
    }
3725
    closedir(d);
3726
    rmdir(smb_dir);
3727
}
3728

    
3729
/* automatic user mode samba server configuration */
3730
void net_slirp_smb(const char *exported_dir)
3731
{
3732
    char smb_conf[1024];
3733
    char smb_cmdline[1024];
3734
    FILE *f;
3735

    
3736
    if (!slirp_inited) {
3737
        slirp_inited = 1;
3738
        slirp_init();
3739
    }
3740

    
3741
    /* XXX: better tmp dir construction */
3742
    snprintf(smb_dir, sizeof(smb_dir), "/tmp/qemu-smb.%d", getpid());
3743
    if (mkdir(smb_dir, 0700) < 0) {
3744
        fprintf(stderr, "qemu: could not create samba server dir '%s'\n", smb_dir);
3745
        exit(1);
3746
    }
3747
    snprintf(smb_conf, sizeof(smb_conf), "%s/%s", smb_dir, "smb.conf");
3748

    
3749
    f = fopen(smb_conf, "w");
3750
    if (!f) {
3751
        fprintf(stderr, "qemu: could not create samba server configuration file '%s'\n", smb_conf);
3752
        exit(1);
3753
    }
3754
    fprintf(f,
3755
            "[global]\n"
3756
            "private dir=%s\n"
3757
            "smb ports=0\n"
3758
            "socket address=127.0.0.1\n"
3759
            "pid directory=%s\n"
3760
            "lock directory=%s\n"
3761
            "log file=%s/log.smbd\n"
3762
            "smb passwd file=%s/smbpasswd\n"
3763
            "security = share\n"
3764
            "[qemu]\n"
3765
            "path=%s\n"
3766
            "read only=no\n"
3767
            "guest ok=yes\n",
3768
            smb_dir,
3769
            smb_dir,
3770
            smb_dir,
3771
            smb_dir,
3772
            smb_dir,
3773
            exported_dir
3774
            );
3775
    fclose(f);
3776
    atexit(smb_exit);
3777

    
3778
    snprintf(smb_cmdline, sizeof(smb_cmdline), "%s -s %s",
3779
             SMBD_COMMAND, smb_conf);
3780

    
3781
    slirp_add_exec(0, smb_cmdline, 4, 139);
3782
}
3783

    
3784
#endif /* !defined(_WIN32) */
3785
void do_info_slirp(void)
3786
{
3787
    slirp_stats();
3788
}
3789

    
3790
#endif /* CONFIG_SLIRP */
3791

    
3792
#if !defined(_WIN32)
3793

    
3794
typedef struct TAPState {
3795
    VLANClientState *vc;
3796
    int fd;
3797
    char down_script[1024];
3798
} TAPState;
3799

    
3800
static void tap_receive(void *opaque, const uint8_t *buf, int size)
3801
{
3802
    TAPState *s = opaque;
3803
    int ret;
3804
    for(;;) {
3805
        ret = write(s->fd, buf, size);
3806
        if (ret < 0 && (errno == EINTR || errno == EAGAIN)) {
3807
        } else {
3808
            break;
3809
        }
3810
    }
3811
}
3812

    
3813
static void tap_send(void *opaque)
3814
{
3815
    TAPState *s = opaque;
3816
    uint8_t buf[4096];
3817
    int size;
3818

    
3819
#ifdef __sun__
3820
    struct strbuf sbuf;
3821
    int f = 0;
3822
    sbuf.maxlen = sizeof(buf);
3823
    sbuf.buf = buf;
3824
    size = getmsg(s->fd, NULL, &sbuf, &f) >=0 ? sbuf.len : -1;
3825
#else
3826
    size = read(s->fd, buf, sizeof(buf));
3827
#endif
3828
    if (size > 0) {
3829
        qemu_send_packet(s->vc, buf, size);
3830
    }
3831
}
3832

    
3833
/* fd support */
3834

    
3835
static TAPState *net_tap_fd_init(VLANState *vlan, int fd)
3836
{
3837
    TAPState *s;
3838

    
3839
    s = qemu_mallocz(sizeof(TAPState));
3840
    if (!s)
3841
        return NULL;
3842
    s->fd = fd;
3843
    s->vc = qemu_new_vlan_client(vlan, tap_receive, NULL, s);
3844
    qemu_set_fd_handler(s->fd, tap_send, NULL, s);
3845
    snprintf(s->vc->info_str, sizeof(s->vc->info_str), "tap: fd=%d", fd);
3846
    return s;
3847
}
3848

    
3849
#if defined (_BSD) || defined (__FreeBSD_kernel__)
3850
static int tap_open(char *ifname, int ifname_size)
3851
{
3852
    int fd;
3853
    char *dev;
3854
    struct stat s;
3855

    
3856
    TFR(fd = open("/dev/tap", O_RDWR));
3857
    if (fd < 0) {
3858
        fprintf(stderr, "warning: could not open /dev/tap: no virtual network emulation\n");
3859
        return -1;
3860
    }
3861

    
3862
    fstat(fd, &s);
3863
    dev = devname(s.st_rdev, S_IFCHR);
3864
    pstrcpy(ifname, ifname_size, dev);
3865

    
3866
    fcntl(fd, F_SETFL, O_NONBLOCK);
3867
    return fd;
3868
}
3869
#elif defined(__sun__)
3870
#define TUNNEWPPA       (('T'<<16) | 0x0001)
3871
/*
3872
 * Allocate TAP device, returns opened fd.
3873
 * Stores dev name in the first arg(must be large enough).
3874
 */
3875
int tap_alloc(char *dev)
3876
{
3877
    int tap_fd, if_fd, ppa = -1;
3878
    static int ip_fd = 0;
3879
    char *ptr;
3880

    
3881
    static int arp_fd = 0;
3882
    int ip_muxid, arp_muxid;
3883
    struct strioctl  strioc_if, strioc_ppa;
3884
    int link_type = I_PLINK;;
3885
    struct lifreq ifr;
3886
    char actual_name[32] = "";
3887

    
3888
    memset(&ifr, 0x0, sizeof(ifr));
3889

    
3890
    if( *dev ){
3891
       ptr = dev;
3892
       while( *ptr && !isdigit((int)*ptr) ) ptr++;
3893
       ppa = atoi(ptr);
3894
    }
3895

    
3896
    /* Check if IP device was opened */
3897
    if( ip_fd )
3898
       close(ip_fd);
3899

    
3900
    TFR(ip_fd = open("/dev/udp", O_RDWR, 0));
3901
    if (ip_fd < 0) {
3902
       syslog(LOG_ERR, "Can't open /dev/ip (actually /dev/udp)");
3903
       return -1;
3904
    }
3905

    
3906
    TFR(tap_fd = open("/dev/tap", O_RDWR, 0));
3907
    if (tap_fd < 0) {
3908
       syslog(LOG_ERR, "Can't open /dev/tap");
3909
       return -1;
3910
    }
3911

    
3912
    /* Assign a new PPA and get its unit number. */
3913
    strioc_ppa.ic_cmd = TUNNEWPPA;
3914
    strioc_ppa.ic_timout = 0;
3915
    strioc_ppa.ic_len = sizeof(ppa);
3916
    strioc_ppa.ic_dp = (char *)&ppa;
3917
    if ((ppa = ioctl (tap_fd, I_STR, &strioc_ppa)) < 0)
3918
       syslog (LOG_ERR, "Can't assign new interface");
3919

    
3920
    TFR(if_fd = open("/dev/tap", O_RDWR, 0));
3921
    if (if_fd < 0) {
3922
       syslog(LOG_ERR, "Can't open /dev/tap (2)");
3923
       return -1;
3924
    }
3925
    if(ioctl(if_fd, I_PUSH, "ip") < 0){
3926
       syslog(LOG_ERR, "Can't push IP module");
3927
       return -1;
3928
    }
3929

    
3930
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) < 0)
3931
        syslog(LOG_ERR, "Can't get flags\n");
3932

    
3933
    snprintf (actual_name, 32, "tap%d", ppa);
3934
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3935

    
3936
    ifr.lifr_ppa = ppa;
3937
    /* Assign ppa according to the unit number returned by tun device */
3938

    
3939
    if (ioctl (if_fd, SIOCSLIFNAME, &ifr) < 0)
3940
        syslog (LOG_ERR, "Can't set PPA %d", ppa);
3941
    if (ioctl(if_fd, SIOCGLIFFLAGS, &ifr) <0)
3942
        syslog (LOG_ERR, "Can't get flags\n");
3943
    /* Push arp module to if_fd */
3944
    if (ioctl (if_fd, I_PUSH, "arp") < 0)
3945
        syslog (LOG_ERR, "Can't push ARP module (2)");
3946

    
3947
    /* Push arp module to ip_fd */
3948
    if (ioctl (ip_fd, I_POP, NULL) < 0)
3949
        syslog (LOG_ERR, "I_POP failed\n");
3950
    if (ioctl (ip_fd, I_PUSH, "arp") < 0)
3951
        syslog (LOG_ERR, "Can't push ARP module (3)\n");
3952
    /* Open arp_fd */
3953
    TFR(arp_fd = open ("/dev/tap", O_RDWR, 0));
3954
    if (arp_fd < 0)
3955
       syslog (LOG_ERR, "Can't open %s\n", "/dev/tap");
3956

    
3957
    /* Set ifname to arp */
3958
    strioc_if.ic_cmd = SIOCSLIFNAME;
3959
    strioc_if.ic_timout = 0;
3960
    strioc_if.ic_len = sizeof(ifr);
3961
    strioc_if.ic_dp = (char *)&ifr;
3962
    if (ioctl(arp_fd, I_STR, &strioc_if) < 0){
3963
        syslog (LOG_ERR, "Can't set ifname to arp\n");
3964
    }
3965

    
3966
    if((ip_muxid = ioctl(ip_fd, I_LINK, if_fd)) < 0){
3967
       syslog(LOG_ERR, "Can't link TAP device to IP");
3968
       return -1;
3969
    }
3970

    
3971
    if ((arp_muxid = ioctl (ip_fd, link_type, arp_fd)) < 0)
3972
        syslog (LOG_ERR, "Can't link TAP device to ARP");
3973

    
3974
    close (if_fd);
3975

    
3976
    memset(&ifr, 0x0, sizeof(ifr));
3977
    strncpy (ifr.lifr_name, actual_name, sizeof (ifr.lifr_name));
3978
    ifr.lifr_ip_muxid  = ip_muxid;
3979
    ifr.lifr_arp_muxid = arp_muxid;
3980

    
3981
    if (ioctl (ip_fd, SIOCSLIFMUXID, &ifr) < 0)
3982
    {
3983
      ioctl (ip_fd, I_PUNLINK , arp_muxid);
3984
      ioctl (ip_fd, I_PUNLINK, ip_muxid);
3985
      syslog (LOG_ERR, "Can't set multiplexor id");
3986
    }
3987

    
3988
    sprintf(dev, "tap%d", ppa);
3989
    return tap_fd;
3990
}
3991

    
3992
static int tap_open(char *ifname, int ifname_size)
3993
{
3994
    char  dev[10]="";
3995
    int fd;
3996
    if( (fd = tap_alloc(dev)) < 0 ){
3997
       fprintf(stderr, "Cannot allocate TAP device\n");
3998
       return -1;
3999
    }
4000
    pstrcpy(ifname, ifname_size, dev);
4001
    fcntl(fd, F_SETFL, O_NONBLOCK);
4002
    return fd;
4003
}
4004
#else
4005
static int tap_open(char *ifname, int ifname_size)
4006
{
4007
    struct ifreq ifr;
4008
    int fd, ret;
4009

    
4010
    TFR(fd = open("/dev/net/tun", O_RDWR));
4011
    if (fd < 0) {
4012
        fprintf(stderr, "warning: could not open /dev/net/tun: no virtual network emulation\n");
4013
        return -1;
4014
    }
4015
    memset(&ifr, 0, sizeof(ifr));
4016
    ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
4017
    if (ifname[0] != '\0')
4018
        pstrcpy(ifr.ifr_name, IFNAMSIZ, ifname);
4019
    else
4020
        pstrcpy(ifr.ifr_name, IFNAMSIZ, "tap%d");
4021
    ret = ioctl(fd, TUNSETIFF, (void *) &ifr);
4022
    if (ret != 0) {
4023
        fprintf(stderr, "warning: could not configure /dev/net/tun: no virtual network emulation\n");
4024
        close(fd);
4025
        return -1;
4026
    }
4027
    pstrcpy(ifname, ifname_size, ifr.ifr_name);
4028
    fcntl(fd, F_SETFL, O_NONBLOCK);
4029
    return fd;
4030
}
4031
#endif
4032

    
4033
static int launch_script(const char *setup_script, const char *ifname, int fd)
4034
{
4035
    int pid, status;
4036
    char *args[3];
4037
    char **parg;
4038

    
4039
        /* try to launch network script */
4040
        pid = fork();
4041
        if (pid >= 0) {
4042
            if (pid == 0) {
4043
                int open_max = sysconf (_SC_OPEN_MAX), i;
4044
                for (i = 0; i < open_max; i++)
4045
                    if (i != STDIN_FILENO &&
4046
                        i != STDOUT_FILENO &&
4047
                        i != STDERR_FILENO &&
4048
                        i != fd)
4049
                        close(i);
4050

    
4051
                parg = args;
4052
                *parg++ = (char *)setup_script;
4053
                *parg++ = (char *)ifname;
4054
                *parg++ = NULL;
4055
                execv(setup_script, args);
4056
                _exit(1);
4057
            }
4058
            while (waitpid(pid, &status, 0) != pid);
4059
            if (!WIFEXITED(status) ||
4060
                WEXITSTATUS(status) != 0) {
4061
                fprintf(stderr, "%s: could not launch network script\n",
4062
                        setup_script);
4063
                return -1;
4064
            }
4065
        }
4066
    return 0;
4067
}
4068

    
4069
static int net_tap_init(VLANState *vlan, const char *ifname1,
4070
                        const char *setup_script, const char *down_script)
4071
{
4072
    TAPState *s;
4073
    int fd;
4074
    char ifname[128];
4075

    
4076
    if (ifname1 != NULL)
4077
        pstrcpy(ifname, sizeof(ifname), ifname1);
4078
    else
4079
        ifname[0] = '\0';
4080
    TFR(fd = tap_open(ifname, sizeof(ifname)));
4081
    if (fd < 0)
4082
        return -1;
4083

    
4084
    if (!setup_script || !strcmp(setup_script, "no"))
4085
        setup_script = "";
4086
    if (setup_script[0] != '\0') {
4087
        if (launch_script(setup_script, ifname, fd))
4088
            return -1;
4089
    }
4090
    s = net_tap_fd_init(vlan, fd);
4091
    if (!s)
4092
        return -1;
4093
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4094
             "tap: ifname=%s setup_script=%s", ifname, setup_script);
4095
    if (down_script && strcmp(down_script, "no"))
4096
        snprintf(s->down_script, sizeof(s->down_script), "%s", down_script);
4097
    return 0;
4098
}
4099

    
4100
#endif /* !_WIN32 */
4101

    
4102
/* network connection */
4103
typedef struct NetSocketState {
4104
    VLANClientState *vc;
4105
    int fd;
4106
    int state; /* 0 = getting length, 1 = getting data */
4107
    int index;
4108
    int packet_len;
4109
    uint8_t buf[4096];
4110
    struct sockaddr_in dgram_dst; /* contains inet host and port destination iff connectionless (SOCK_DGRAM) */
4111
} NetSocketState;
4112

    
4113
typedef struct NetSocketListenState {
4114
    VLANState *vlan;
4115
    int fd;
4116
} NetSocketListenState;
4117

    
4118
/* XXX: we consider we can send the whole packet without blocking */
4119
static void net_socket_receive(void *opaque, const uint8_t *buf, int size)
4120
{
4121
    NetSocketState *s = opaque;
4122
    uint32_t len;
4123
    len = htonl(size);
4124

    
4125
    send_all(s->fd, (const uint8_t *)&len, sizeof(len));
4126
    send_all(s->fd, buf, size);
4127
}
4128

    
4129
static void net_socket_receive_dgram(void *opaque, const uint8_t *buf, int size)
4130
{
4131
    NetSocketState *s = opaque;
4132
    sendto(s->fd, buf, size, 0,
4133
           (struct sockaddr *)&s->dgram_dst, sizeof(s->dgram_dst));
4134
}
4135

    
4136
static void net_socket_send(void *opaque)
4137
{
4138
    NetSocketState *s = opaque;
4139
    int l, size, err;
4140
    uint8_t buf1[4096];
4141
    const uint8_t *buf;
4142

    
4143
    size = recv(s->fd, buf1, sizeof(buf1), 0);
4144
    if (size < 0) {
4145
        err = socket_error();
4146
        if (err != EWOULDBLOCK)
4147
            goto eoc;
4148
    } else if (size == 0) {
4149
        /* end of connection */
4150
    eoc:
4151
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4152
        closesocket(s->fd);
4153
        return;
4154
    }
4155
    buf = buf1;
4156
    while (size > 0) {
4157
        /* reassemble a packet from the network */
4158
        switch(s->state) {
4159
        case 0:
4160
            l = 4 - s->index;
4161
            if (l > size)
4162
                l = size;
4163
            memcpy(s->buf + s->index, buf, l);
4164
            buf += l;
4165
            size -= l;
4166
            s->index += l;
4167
            if (s->index == 4) {
4168
                /* got length */
4169
                s->packet_len = ntohl(*(uint32_t *)s->buf);
4170
                s->index = 0;
4171
                s->state = 1;
4172
            }
4173
            break;
4174
        case 1:
4175
            l = s->packet_len - s->index;
4176
            if (l > size)
4177
                l = size;
4178
            memcpy(s->buf + s->index, buf, l);
4179
            s->index += l;
4180
            buf += l;
4181
            size -= l;
4182
            if (s->index >= s->packet_len) {
4183
                qemu_send_packet(s->vc, s->buf, s->packet_len);
4184
                s->index = 0;
4185
                s->state = 0;
4186
            }
4187
            break;
4188
        }
4189
    }
4190
}
4191

    
4192
static void net_socket_send_dgram(void *opaque)
4193
{
4194
    NetSocketState *s = opaque;
4195
    int size;
4196

    
4197
    size = recv(s->fd, s->buf, sizeof(s->buf), 0);
4198
    if (size < 0)
4199
        return;
4200
    if (size == 0) {
4201
        /* end of connection */
4202
        qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
4203
        return;
4204
    }
4205
    qemu_send_packet(s->vc, s->buf, size);
4206
}
4207

    
4208
static int net_socket_mcast_create(struct sockaddr_in *mcastaddr)
4209
{
4210
    struct ip_mreq imr;
4211
    int fd;
4212
    int val, ret;
4213
    if (!IN_MULTICAST(ntohl(mcastaddr->sin_addr.s_addr))) {
4214
        fprintf(stderr, "qemu: error: specified mcastaddr \"%s\" (0x%08x) does not contain a multicast address\n",
4215
                inet_ntoa(mcastaddr->sin_addr),
4216
                (int)ntohl(mcastaddr->sin_addr.s_addr));
4217
        return -1;
4218

    
4219
    }
4220
    fd = socket(PF_INET, SOCK_DGRAM, 0);
4221
    if (fd < 0) {
4222
        perror("socket(PF_INET, SOCK_DGRAM)");
4223
        return -1;
4224
    }
4225

    
4226
    val = 1;
4227
    ret=setsockopt(fd, SOL_SOCKET, SO_REUSEADDR,
4228
                   (const char *)&val, sizeof(val));
4229
    if (ret < 0) {
4230
        perror("setsockopt(SOL_SOCKET, SO_REUSEADDR)");
4231
        goto fail;
4232
    }
4233

    
4234
    ret = bind(fd, (struct sockaddr *)mcastaddr, sizeof(*mcastaddr));
4235
    if (ret < 0) {
4236
        perror("bind");
4237
        goto fail;
4238
    }
4239

    
4240
    /* Add host to multicast group */
4241
    imr.imr_multiaddr = mcastaddr->sin_addr;
4242
    imr.imr_interface.s_addr = htonl(INADDR_ANY);
4243

    
4244
    ret = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP,
4245
                     (const char *)&imr, sizeof(struct ip_mreq));
4246
    if (ret < 0) {
4247
        perror("setsockopt(IP_ADD_MEMBERSHIP)");
4248
        goto fail;
4249
    }
4250

    
4251
    /* Force mcast msgs to loopback (eg. several QEMUs in same host */
4252
    val = 1;
4253
    ret=setsockopt(fd, IPPROTO_IP, IP_MULTICAST_LOOP,
4254
                   (const char *)&val, sizeof(val));
4255
    if (ret < 0) {
4256
        perror("setsockopt(SOL_IP, IP_MULTICAST_LOOP)");
4257
        goto fail;
4258
    }
4259

    
4260
    socket_set_nonblock(fd);
4261
    return fd;
4262
fail:
4263
    if (fd >= 0)
4264
        closesocket(fd);
4265
    return -1;
4266
}
4267

    
4268
static NetSocketState *net_socket_fd_init_dgram(VLANState *vlan, int fd,
4269
                                          int is_connected)
4270
{
4271
    struct sockaddr_in saddr;
4272
    int newfd;
4273
    socklen_t saddr_len;
4274
    NetSocketState *s;
4275

    
4276
    /* fd passed: multicast: "learn" dgram_dst address from bound address and save it
4277
     * Because this may be "shared" socket from a "master" process, datagrams would be recv()
4278
     * by ONLY ONE process: we must "clone" this dgram socket --jjo
4279
     */
4280

    
4281
    if (is_connected) {
4282
        if (getsockname(fd, (struct sockaddr *) &saddr, &saddr_len) == 0) {
4283
            /* must be bound */
4284
            if (saddr.sin_addr.s_addr==0) {
4285
                fprintf(stderr, "qemu: error: init_dgram: fd=%d unbound, cannot setup multicast dst addr\n",
4286
                        fd);
4287
                return NULL;
4288
            }
4289
            /* clone dgram socket */
4290
            newfd = net_socket_mcast_create(&saddr);
4291
            if (newfd < 0) {
4292
                /* error already reported by net_socket_mcast_create() */
4293
                close(fd);
4294
                return NULL;
4295
            }
4296
            /* clone newfd to fd, close newfd */
4297
            dup2(newfd, fd);
4298
            close(newfd);
4299

    
4300
        } else {
4301
            fprintf(stderr, "qemu: error: init_dgram: fd=%d failed getsockname(): %s\n",
4302
                    fd, strerror(errno));
4303
            return NULL;
4304
        }
4305
    }
4306

    
4307
    s = qemu_mallocz(sizeof(NetSocketState));
4308
    if (!s)
4309
        return NULL;
4310
    s->fd = fd;
4311

    
4312
    s->vc = qemu_new_vlan_client(vlan, net_socket_receive_dgram, NULL, s);
4313
    qemu_set_fd_handler(s->fd, net_socket_send_dgram, NULL, s);
4314

    
4315
    /* mcast: save bound address as dst */
4316
    if (is_connected) s->dgram_dst=saddr;
4317

    
4318
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4319
            "socket: fd=%d (%s mcast=%s:%d)",
4320
            fd, is_connected? "cloned" : "",
4321
            inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4322
    return s;
4323
}
4324

    
4325
static void net_socket_connect(void *opaque)
4326
{
4327
    NetSocketState *s = opaque;
4328
    qemu_set_fd_handler(s->fd, net_socket_send, NULL, s);
4329
}
4330

    
4331
static NetSocketState *net_socket_fd_init_stream(VLANState *vlan, int fd,
4332
                                          int is_connected)
4333
{
4334
    NetSocketState *s;
4335
    s = qemu_mallocz(sizeof(NetSocketState));
4336
    if (!s)
4337
        return NULL;
4338
    s->fd = fd;
4339
    s->vc = qemu_new_vlan_client(vlan,
4340
                                 net_socket_receive, NULL, s);
4341
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4342
             "socket: fd=%d", fd);
4343
    if (is_connected) {
4344
        net_socket_connect(s);
4345
    } else {
4346
        qemu_set_fd_handler(s->fd, NULL, net_socket_connect, s);
4347
    }
4348
    return s;
4349
}
4350

    
4351
static NetSocketState *net_socket_fd_init(VLANState *vlan, int fd,
4352
                                          int is_connected)
4353
{
4354
    int so_type=-1, optlen=sizeof(so_type);
4355

    
4356
    if(getsockopt(fd, SOL_SOCKET, SO_TYPE, (char *)&so_type, &optlen)< 0) {
4357
        fprintf(stderr, "qemu: error: getsockopt(SO_TYPE) for fd=%d failed\n", fd);
4358
        return NULL;
4359
    }
4360
    switch(so_type) {
4361
    case SOCK_DGRAM:
4362
        return net_socket_fd_init_dgram(vlan, fd, is_connected);
4363
    case SOCK_STREAM:
4364
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4365
    default:
4366
        /* who knows ... this could be a eg. a pty, do warn and continue as stream */
4367
        fprintf(stderr, "qemu: warning: socket type=%d for fd=%d is not SOCK_DGRAM or SOCK_STREAM\n", so_type, fd);
4368
        return net_socket_fd_init_stream(vlan, fd, is_connected);
4369
    }
4370
    return NULL;
4371
}
4372

    
4373
static void net_socket_accept(void *opaque)
4374
{
4375
    NetSocketListenState *s = opaque;
4376
    NetSocketState *s1;
4377
    struct sockaddr_in saddr;
4378
    socklen_t len;
4379
    int fd;
4380

    
4381
    for(;;) {
4382
        len = sizeof(saddr);
4383
        fd = accept(s->fd, (struct sockaddr *)&saddr, &len);
4384
        if (fd < 0 && errno != EINTR) {
4385
            return;
4386
        } else if (fd >= 0) {
4387
            break;
4388
        }
4389
    }
4390
    s1 = net_socket_fd_init(s->vlan, fd, 1);
4391
    if (!s1) {
4392
        closesocket(fd);
4393
    } else {
4394
        snprintf(s1->vc->info_str, sizeof(s1->vc->info_str),
4395
                 "socket: connection from %s:%d",
4396
                 inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4397
    }
4398
}
4399

    
4400
static int net_socket_listen_init(VLANState *vlan, const char *host_str)
4401
{
4402
    NetSocketListenState *s;
4403
    int fd, val, ret;
4404
    struct sockaddr_in saddr;
4405

    
4406
    if (parse_host_port(&saddr, host_str) < 0)
4407
        return -1;
4408

    
4409
    s = qemu_mallocz(sizeof(NetSocketListenState));
4410
    if (!s)
4411
        return -1;
4412

    
4413
    fd = socket(PF_INET, SOCK_STREAM, 0);
4414
    if (fd < 0) {
4415
        perror("socket");
4416
        return -1;
4417
    }
4418
    socket_set_nonblock(fd);
4419

    
4420
    /* allow fast reuse */
4421
    val = 1;
4422
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (const char *)&val, sizeof(val));
4423

    
4424
    ret = bind(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4425
    if (ret < 0) {
4426
        perror("bind");
4427
        return -1;
4428
    }
4429
    ret = listen(fd, 0);
4430
    if (ret < 0) {
4431
        perror("listen");
4432
        return -1;
4433
    }
4434
    s->vlan = vlan;
4435
    s->fd = fd;
4436
    qemu_set_fd_handler(fd, net_socket_accept, NULL, s);
4437
    return 0;
4438
}
4439

    
4440
static int net_socket_connect_init(VLANState *vlan, const char *host_str)
4441
{
4442
    NetSocketState *s;
4443
    int fd, connected, ret, err;
4444
    struct sockaddr_in saddr;
4445

    
4446
    if (parse_host_port(&saddr, host_str) < 0)
4447
        return -1;
4448

    
4449
    fd = socket(PF_INET, SOCK_STREAM, 0);
4450
    if (fd < 0) {
4451
        perror("socket");
4452
        return -1;
4453
    }
4454
    socket_set_nonblock(fd);
4455

    
4456
    connected = 0;
4457
    for(;;) {
4458
        ret = connect(fd, (struct sockaddr *)&saddr, sizeof(saddr));
4459
        if (ret < 0) {
4460
            err = socket_error();
4461
            if (err == EINTR || err == EWOULDBLOCK) {
4462
            } else if (err == EINPROGRESS) {
4463
                break;
4464
#ifdef _WIN32
4465
            } else if (err == WSAEALREADY) {
4466
                break;
4467
#endif
4468
            } else {
4469
                perror("connect");
4470
                closesocket(fd);
4471
                return -1;
4472
            }
4473
        } else {
4474
            connected = 1;
4475
            break;
4476
        }
4477
    }
4478
    s = net_socket_fd_init(vlan, fd, connected);
4479
    if (!s)
4480
        return -1;
4481
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4482
             "socket: connect to %s:%d",
4483
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4484
    return 0;
4485
}
4486

    
4487
static int net_socket_mcast_init(VLANState *vlan, const char *host_str)
4488
{
4489
    NetSocketState *s;
4490
    int fd;
4491
    struct sockaddr_in saddr;
4492

    
4493
    if (parse_host_port(&saddr, host_str) < 0)
4494
        return -1;
4495

    
4496

    
4497
    fd = net_socket_mcast_create(&saddr);
4498
    if (fd < 0)
4499
        return -1;
4500

    
4501
    s = net_socket_fd_init(vlan, fd, 0);
4502
    if (!s)
4503
        return -1;
4504

    
4505
    s->dgram_dst = saddr;
4506

    
4507
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
4508
             "socket: mcast=%s:%d",
4509
             inet_ntoa(saddr.sin_addr), ntohs(saddr.sin_port));
4510
    return 0;
4511

    
4512
}
4513

    
4514
static int get_param_value(char *buf, int buf_size,
4515
                           const char *tag, const char *str)
4516
{
4517
    const char *p;
4518
    char *q;
4519
    char option[128];
4520

    
4521
    p = str;
4522
    for(;;) {
4523
        q = option;
4524
        while (*p != '\0' && *p != '=') {
4525
            if ((q - option) < sizeof(option) - 1)
4526
                *q++ = *p;
4527
            p++;
4528
        }
4529
        *q = '\0';
4530
        if (*p != '=')
4531
            break;
4532
        p++;
4533
        if (!strcmp(tag, option)) {
4534
            q = buf;
4535
            while (*p != '\0' && *p != ',') {
4536
                if ((q - buf) < buf_size - 1)
4537
                    *q++ = *p;
4538
                p++;
4539
            }
4540
            *q = '\0';
4541
            return q - buf;
4542
        } else {
4543
            while (*p != '\0' && *p != ',') {
4544
                p++;
4545
            }
4546
        }
4547
        if (*p != ',')
4548
            break;
4549
        p++;
4550
    }
4551
    return 0;
4552
}
4553

    
4554
static int net_client_init(const char *str)
4555
{
4556
    const char *p;
4557
    char *q;
4558
    char device[64];
4559
    char buf[1024];
4560
    int vlan_id, ret;
4561
    VLANState *vlan;
4562

    
4563
    p = str;
4564
    q = device;
4565
    while (*p != '\0' && *p != ',') {
4566
        if ((q - device) < sizeof(device) - 1)
4567
            *q++ = *p;
4568
        p++;
4569
    }
4570
    *q = '\0';
4571
    if (*p == ',')
4572
        p++;
4573
    vlan_id = 0;
4574
    if (get_param_value(buf, sizeof(buf), "vlan", p)) {
4575
        vlan_id = strtol(buf, NULL, 0);
4576
    }
4577
    vlan = qemu_find_vlan(vlan_id);
4578
    if (!vlan) {
4579
        fprintf(stderr, "Could not create vlan %d\n", vlan_id);
4580
        return -1;
4581
    }
4582
    if (!strcmp(device, "nic")) {
4583
        NICInfo *nd;
4584
        uint8_t *macaddr;
4585

    
4586
        if (nb_nics >= MAX_NICS) {
4587
            fprintf(stderr, "Too Many NICs\n");
4588
            return -1;
4589
        }
4590
        nd = &nd_table[nb_nics];
4591
        macaddr = nd->macaddr;
4592
        macaddr[0] = 0x52;
4593
        macaddr[1] = 0x54;
4594
        macaddr[2] = 0x00;
4595
        macaddr[3] = 0x12;
4596
        macaddr[4] = 0x34;
4597
        macaddr[5] = 0x56 + nb_nics;
4598

    
4599
        if (get_param_value(buf, sizeof(buf), "macaddr", p)) {
4600
            if (parse_macaddr(macaddr, buf) < 0) {
4601
                fprintf(stderr, "invalid syntax for ethernet address\n");
4602
                return -1;
4603
            }
4604
        }
4605
        if (get_param_value(buf, sizeof(buf), "model", p)) {
4606
            nd->model = strdup(buf);
4607
        }
4608
        nd->vlan = vlan;
4609
        nb_nics++;
4610
        vlan->nb_guest_devs++;
4611
        ret = 0;
4612
    } else
4613
    if (!strcmp(device, "none")) {
4614
        /* does nothing. It is needed to signal that no network cards
4615
           are wanted */
4616
        ret = 0;
4617
    } else
4618
#ifdef CONFIG_SLIRP
4619
    if (!strcmp(device, "user")) {
4620
        if (get_param_value(buf, sizeof(buf), "hostname", p)) {
4621
            pstrcpy(slirp_hostname, sizeof(slirp_hostname), buf);
4622
        }
4623
        vlan->nb_host_devs++;
4624
        ret = net_slirp_init(vlan);
4625
    } else
4626
#endif
4627
#ifdef _WIN32
4628
    if (!strcmp(device, "tap")) {
4629
        char ifname[64];
4630
        if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4631
            fprintf(stderr, "tap: no interface name\n");
4632
            return -1;
4633
        }
4634
        vlan->nb_host_devs++;
4635
        ret = tap_win32_init(vlan, ifname);
4636
    } else
4637
#else
4638
    if (!strcmp(device, "tap")) {
4639
        char ifname[64];
4640
        char setup_script[1024], down_script[1024];
4641
        int fd;
4642
        vlan->nb_host_devs++;
4643
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4644
            fd = strtol(buf, NULL, 0);
4645
            ret = -1;
4646
            if (net_tap_fd_init(vlan, fd))
4647
                ret = 0;
4648
        } else {
4649
            if (get_param_value(ifname, sizeof(ifname), "ifname", p) <= 0) {
4650
                ifname[0] = '\0';
4651
            }
4652
            if (get_param_value(setup_script, sizeof(setup_script), "script", p) == 0) {
4653
                pstrcpy(setup_script, sizeof(setup_script), DEFAULT_NETWORK_SCRIPT);
4654
            }
4655
            if (get_param_value(down_script, sizeof(down_script), "downscript", p) == 0) {
4656
                pstrcpy(down_script, sizeof(down_script), DEFAULT_NETWORK_DOWN_SCRIPT);
4657
            }
4658
            ret = net_tap_init(vlan, ifname, setup_script, down_script);
4659
        }
4660
    } else
4661
#endif
4662
    if (!strcmp(device, "socket")) {
4663
        if (get_param_value(buf, sizeof(buf), "fd", p) > 0) {
4664
            int fd;
4665
            fd = strtol(buf, NULL, 0);
4666
            ret = -1;
4667
            if (net_socket_fd_init(vlan, fd, 1))
4668
                ret = 0;
4669
        } else if (get_param_value(buf, sizeof(buf), "listen", p) > 0) {
4670
            ret = net_socket_listen_init(vlan, buf);
4671
        } else if (get_param_value(buf, sizeof(buf), "connect", p) > 0) {
4672
            ret = net_socket_connect_init(vlan, buf);
4673
        } else if (get_param_value(buf, sizeof(buf), "mcast", p) > 0) {
4674
            ret = net_socket_mcast_init(vlan, buf);
4675
        } else {
4676
            fprintf(stderr, "Unknown socket options: %s\n", p);
4677
            return -1;
4678
        }
4679
        vlan->nb_host_devs++;
4680
    } else
4681
    {
4682
        fprintf(stderr, "Unknown network device: %s\n", device);
4683
        return -1;
4684
    }
4685
    if (ret < 0) {
4686
        fprintf(stderr, "Could not initialize device '%s'\n", device);
4687
    }
4688

    
4689
    return ret;
4690
}
4691

    
4692
void do_info_network(void)
4693
{
4694
    VLANState *vlan;
4695
    VLANClientState *vc;
4696

    
4697
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
4698
        term_printf("VLAN %d devices:\n", vlan->id);
4699
        for(vc = vlan->first_client; vc != NULL; vc = vc->next)
4700
            term_printf("  %s\n", vc->info_str);
4701
    }
4702
}
4703

    
4704
/***********************************************************/
4705
/* USB devices */
4706

    
4707
static USBPort *used_usb_ports;
4708
static USBPort *free_usb_ports;
4709

    
4710
/* ??? Maybe change this to register a hub to keep track of the topology.  */
4711
void qemu_register_usb_port(USBPort *port, void *opaque, int index,
4712
                            usb_attachfn attach)
4713
{
4714
    port->opaque = opaque;
4715
    port->index = index;
4716
    port->attach = attach;
4717
    port->next = free_usb_ports;
4718
    free_usb_ports = port;
4719
}
4720

    
4721
static int usb_device_add(const char *devname)
4722
{
4723
    const char *p;
4724
    USBDevice *dev;
4725
    USBPort *port;
4726

    
4727
    if (!free_usb_ports)
4728
        return -1;
4729

    
4730
    if (strstart(devname, "host:", &p)) {
4731
        dev = usb_host_device_open(p);
4732
    } else if (!strcmp(devname, "mouse")) {
4733
        dev = usb_mouse_init();
4734
    } else if (!strcmp(devname, "tablet")) {
4735
        dev = usb_tablet_init();
4736
    } else if (!strcmp(devname, "keyboard")) {
4737
        dev = usb_keyboard_init();
4738
    } else if (strstart(devname, "disk:", &p)) {
4739
        dev = usb_msd_init(p);
4740
    } else if (!strcmp(devname, "wacom-tablet")) {
4741
        dev = usb_wacom_init();
4742
    } else {
4743
        return -1;
4744
    }
4745
    if (!dev)
4746
        return -1;
4747

    
4748
    /* Find a USB port to add the device to.  */
4749
    port = free_usb_ports;
4750
    if (!port->next) {
4751
        USBDevice *hub;
4752

    
4753
        /* Create a new hub and chain it on.  */
4754
        free_usb_ports = NULL;
4755
        port->next = used_usb_ports;
4756
        used_usb_ports = port;
4757

    
4758
        hub = usb_hub_init(VM_USB_HUB_SIZE);
4759
        usb_attach(port, hub);
4760
        port = free_usb_ports;
4761
    }
4762

    
4763
    free_usb_ports = port->next;
4764
    port->next = used_usb_ports;
4765
    used_usb_ports = port;
4766
    usb_attach(port, dev);
4767
    return 0;
4768
}
4769

    
4770
static int usb_device_del(const char *devname)
4771
{
4772
    USBPort *port;
4773
    USBPort **lastp;
4774
    USBDevice *dev;
4775
    int bus_num, addr;
4776
    const char *p;
4777

    
4778
    if (!used_usb_ports)
4779
        return -1;
4780

    
4781
    p = strchr(devname, '.');
4782
    if (!p)
4783
        return -1;
4784
    bus_num = strtoul(devname, NULL, 0);
4785
    addr = strtoul(p + 1, NULL, 0);
4786
    if (bus_num != 0)
4787
        return -1;
4788

    
4789
    lastp = &used_usb_ports;
4790
    port = used_usb_ports;
4791
    while (port && port->dev->addr != addr) {
4792
        lastp = &port->next;
4793
        port = port->next;
4794
    }
4795

    
4796
    if (!port)
4797
        return -1;
4798

    
4799
    dev = port->dev;
4800
    *lastp = port->next;
4801
    usb_attach(port, NULL);
4802
    dev->handle_destroy(dev);
4803
    port->next = free_usb_ports;
4804
    free_usb_ports = port;
4805
    return 0;
4806
}
4807

    
4808
void do_usb_add(const char *devname)
4809
{
4810
    int ret;
4811
    ret = usb_device_add(devname);
4812
    if (ret < 0)
4813
        term_printf("Could not add USB device '%s'\n", devname);
4814
}
4815

    
4816
void do_usb_del(const char *devname)
4817
{
4818
    int ret;
4819
    ret = usb_device_del(devname);
4820
    if (ret < 0)
4821
        term_printf("Could not remove USB device '%s'\n", devname);
4822
}
4823

    
4824
void usb_info(void)
4825
{
4826
    USBDevice *dev;
4827
    USBPort *port;
4828
    const char *speed_str;
4829

    
4830
    if (!usb_enabled) {
4831
        term_printf("USB support not enabled\n");
4832
        return;
4833
    }
4834

    
4835
    for (port = used_usb_ports; port; port = port->next) {
4836
        dev = port->dev;
4837
        if (!dev)
4838
            continue;
4839
        switch(dev->speed) {
4840
        case USB_SPEED_LOW:
4841
            speed_str = "1.5";
4842
            break;
4843
        case USB_SPEED_FULL:
4844
            speed_str = "12";
4845
            break;
4846
        case USB_SPEED_HIGH:
4847
            speed_str = "480";
4848
            break;
4849
        default:
4850
            speed_str = "?";
4851
            break;
4852
        }
4853
        term_printf("  Device %d.%d, Speed %s Mb/s, Product %s\n",
4854
                    0, dev->addr, speed_str, dev->devname);
4855
    }
4856
}
4857

    
4858
/***********************************************************/
4859
/* PCMCIA/Cardbus */
4860

    
4861
static struct pcmcia_socket_entry_s {
4862
    struct pcmcia_socket_s *socket;
4863
    struct pcmcia_socket_entry_s *next;
4864
} *pcmcia_sockets = 0;
4865

    
4866
void pcmcia_socket_register(struct pcmcia_socket_s *socket)
4867
{
4868
    struct pcmcia_socket_entry_s *entry;
4869

    
4870
    entry = qemu_malloc(sizeof(struct pcmcia_socket_entry_s));
4871
    entry->socket = socket;
4872
    entry->next = pcmcia_sockets;
4873
    pcmcia_sockets = entry;
4874
}
4875

    
4876
void pcmcia_socket_unregister(struct pcmcia_socket_s *socket)
4877
{
4878
    struct pcmcia_socket_entry_s *entry, **ptr;
4879

    
4880
    ptr = &pcmcia_sockets;
4881
    for (entry = *ptr; entry; ptr = &entry->next, entry = *ptr)
4882
        if (entry->socket == socket) {
4883
            *ptr = entry->next;
4884
            qemu_free(entry);
4885
        }
4886
}
4887

    
4888
void pcmcia_info(void)
4889
{
4890
    struct pcmcia_socket_entry_s *iter;
4891
    if (!pcmcia_sockets)
4892
        term_printf("No PCMCIA sockets\n");
4893

    
4894
    for (iter = pcmcia_sockets; iter; iter = iter->next)
4895
        term_printf("%s: %s\n", iter->socket->slot_string,
4896
                    iter->socket->attached ? iter->socket->card_string :
4897
                    "Empty");
4898
}
4899

    
4900
/***********************************************************/
4901
/* dumb display */
4902

    
4903
static void dumb_update(DisplayState *ds, int x, int y, int w, int h)
4904
{
4905
}
4906

    
4907
static void dumb_resize(DisplayState *ds, int w, int h)
4908
{
4909
}
4910

    
4911
static void dumb_refresh(DisplayState *ds)
4912
{
4913
#if defined(CONFIG_SDL)
4914
    vga_hw_update();
4915
#endif
4916
}
4917

    
4918
static void dumb_display_init(DisplayState *ds)
4919
{
4920
    ds->data = NULL;
4921
    ds->linesize = 0;
4922
    ds->depth = 0;
4923
    ds->dpy_update = dumb_update;
4924
    ds->dpy_resize = dumb_resize;
4925
    ds->dpy_refresh = dumb_refresh;
4926
}
4927

    
4928
/***********************************************************/
4929
/* I/O handling */
4930

    
4931
#define MAX_IO_HANDLERS 64
4932

    
4933
typedef struct IOHandlerRecord {
4934
    int fd;
4935
    IOCanRWHandler *fd_read_poll;
4936
    IOHandler *fd_read;
4937
    IOHandler *fd_write;
4938
    int deleted;
4939
    void *opaque;
4940
    /* temporary data */
4941
    struct pollfd *ufd;
4942
    struct IOHandlerRecord *next;
4943
} IOHandlerRecord;
4944

    
4945
static IOHandlerRecord *first_io_handler;
4946

    
4947
/* XXX: fd_read_poll should be suppressed, but an API change is
4948
   necessary in the character devices to suppress fd_can_read(). */
4949
int qemu_set_fd_handler2(int fd,
4950
                         IOCanRWHandler *fd_read_poll,
4951
                         IOHandler *fd_read,
4952
                         IOHandler *fd_write,
4953
                         void *opaque)
4954
{
4955
    IOHandlerRecord **pioh, *ioh;
4956

    
4957
    if (!fd_read && !fd_write) {
4958
        pioh = &first_io_handler;
4959
        for(;;) {
4960
            ioh = *pioh;
4961
            if (ioh == NULL)
4962
                break;
4963
            if (ioh->fd == fd) {
4964
                ioh->deleted = 1;
4965
                break;
4966
            }
4967
            pioh = &ioh->next;
4968
        }
4969
    } else {
4970
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
4971
            if (ioh->fd == fd)
4972
                goto found;
4973
        }
4974
        ioh = qemu_mallocz(sizeof(IOHandlerRecord));
4975
        if (!ioh)
4976
            return -1;
4977
        ioh->next = first_io_handler;
4978
        first_io_handler = ioh;
4979
    found:
4980
        ioh->fd = fd;
4981
        ioh->fd_read_poll = fd_read_poll;
4982
        ioh->fd_read = fd_read;
4983
        ioh->fd_write = fd_write;
4984
        ioh->opaque = opaque;
4985
        ioh->deleted = 0;
4986
    }
4987
    return 0;
4988
}
4989

    
4990
int qemu_set_fd_handler(int fd,
4991
                        IOHandler *fd_read,
4992
                        IOHandler *fd_write,
4993
                        void *opaque)
4994
{
4995
    return qemu_set_fd_handler2(fd, NULL, fd_read, fd_write, opaque);
4996
}
4997

    
4998
/***********************************************************/
4999
/* Polling handling */
5000

    
5001
typedef struct PollingEntry {
5002
    PollingFunc *func;
5003
    void *opaque;
5004
    struct PollingEntry *next;
5005
} PollingEntry;
5006

    
5007
static PollingEntry *first_polling_entry;
5008

    
5009
int qemu_add_polling_cb(PollingFunc *func, void *opaque)
5010
{
5011
    PollingEntry **ppe, *pe;
5012
    pe = qemu_mallocz(sizeof(PollingEntry));
5013
    if (!pe)
5014
        return -1;
5015
    pe->func = func;
5016
    pe->opaque = opaque;
5017
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next);
5018
    *ppe = pe;
5019
    return 0;
5020
}
5021

    
5022
void qemu_del_polling_cb(PollingFunc *func, void *opaque)
5023
{
5024
    PollingEntry **ppe, *pe;
5025
    for(ppe = &first_polling_entry; *ppe != NULL; ppe = &(*ppe)->next) {
5026
        pe = *ppe;
5027
        if (pe->func == func && pe->opaque == opaque) {
5028
            *ppe = pe->next;
5029
            qemu_free(pe);
5030
            break;
5031
        }
5032
    }
5033
}
5034

    
5035
#ifdef _WIN32
5036
/***********************************************************/
5037
/* Wait objects support */
5038
typedef struct WaitObjects {
5039
    int num;
5040
    HANDLE events[MAXIMUM_WAIT_OBJECTS + 1];
5041
    WaitObjectFunc *func[MAXIMUM_WAIT_OBJECTS + 1];
5042
    void *opaque[MAXIMUM_WAIT_OBJECTS + 1];
5043
} WaitObjects;
5044

    
5045
static WaitObjects wait_objects = {0};
5046

    
5047
int qemu_add_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5048
{
5049
    WaitObjects *w = &wait_objects;
5050

    
5051
    if (w->num >= MAXIMUM_WAIT_OBJECTS)
5052
        return -1;
5053
    w->events[w->num] = handle;
5054
    w->func[w->num] = func;
5055
    w->opaque[w->num] = opaque;
5056
    w->num++;
5057
    return 0;
5058
}
5059

    
5060
void qemu_del_wait_object(HANDLE handle, WaitObjectFunc *func, void *opaque)
5061
{
5062
    int i, found;
5063
    WaitObjects *w = &wait_objects;
5064

    
5065
    found = 0;
5066
    for (i = 0; i < w->num; i++) {
5067
        if (w->events[i] == handle)
5068
            found = 1;
5069
        if (found) {
5070
            w->events[i] = w->events[i + 1];
5071
            w->func[i] = w->func[i + 1];
5072
            w->opaque[i] = w->opaque[i + 1];
5073
        }
5074
    }
5075
    if (found)
5076
        w->num--;
5077
}
5078
#endif
5079

    
5080
/***********************************************************/
5081
/* savevm/loadvm support */
5082

    
5083
#define IO_BUF_SIZE 32768
5084

    
5085
struct QEMUFile {
5086
    FILE *outfile;
5087
    BlockDriverState *bs;
5088
    int is_file;
5089
    int is_writable;
5090
    int64_t base_offset;
5091
    int64_t buf_offset; /* start of buffer when writing, end of buffer
5092
                           when reading */
5093
    int buf_index;
5094
    int buf_size; /* 0 when writing */
5095
    uint8_t buf[IO_BUF_SIZE];
5096
};
5097

    
5098
QEMUFile *qemu_fopen(const char *filename, const char *mode)
5099
{
5100
    QEMUFile *f;
5101

    
5102
    f = qemu_mallocz(sizeof(QEMUFile));
5103
    if (!f)
5104
        return NULL;
5105
    if (!strcmp(mode, "wb")) {
5106
        f->is_writable = 1;
5107
    } else if (!strcmp(mode, "rb")) {
5108
        f->is_writable = 0;
5109
    } else {
5110
        goto fail;
5111
    }
5112
    f->outfile = fopen(filename, mode);
5113
    if (!f->outfile)
5114
        goto fail;
5115
    f->is_file = 1;
5116
    return f;
5117
 fail:
5118
    if (f->outfile)
5119
        fclose(f->outfile);
5120
    qemu_free(f);
5121
    return NULL;
5122
}
5123

    
5124
QEMUFile *qemu_fopen_bdrv(BlockDriverState *bs, int64_t offset, int is_writable)
5125
{
5126
    QEMUFile *f;
5127

    
5128
    f = qemu_mallocz(sizeof(QEMUFile));
5129
    if (!f)
5130
        return NULL;
5131
    f->is_file = 0;
5132
    f->bs = bs;
5133
    f->is_writable = is_writable;
5134
    f->base_offset = offset;
5135
    return f;
5136
}
5137

    
5138
void qemu_fflush(QEMUFile *f)
5139
{
5140
    if (!f->is_writable)
5141
        return;
5142
    if (f->buf_index > 0) {
5143
        if (f->is_file) {
5144
            fseek(f->outfile, f->buf_offset, SEEK_SET);
5145
            fwrite(f->buf, 1, f->buf_index, f->outfile);
5146
        } else {
5147
            bdrv_pwrite(f->bs, f->base_offset + f->buf_offset,
5148
                        f->buf, f->buf_index);
5149
        }
5150
        f->buf_offset += f->buf_index;
5151
        f->buf_index = 0;
5152
    }
5153
}
5154

    
5155
static void qemu_fill_buffer(QEMUFile *f)
5156
{
5157
    int len;
5158

    
5159
    if (f->is_writable)
5160
        return;
5161
    if (f->is_file) {
5162
        fseek(f->outfile, f->buf_offset, SEEK_SET);
5163
        len = fread(f->buf, 1, IO_BUF_SIZE, f->outfile);
5164
        if (len < 0)
5165
            len = 0;
5166
    } else {
5167
        len = bdrv_pread(f->bs, f->base_offset + f->buf_offset,
5168
                         f->buf, IO_BUF_SIZE);
5169
        if (len < 0)
5170
            len = 0;
5171
    }
5172
    f->buf_index = 0;
5173
    f->buf_size = len;
5174
    f->buf_offset += len;
5175
}
5176

    
5177
void qemu_fclose(QEMUFile *f)
5178
{
5179
    if (f->is_writable)
5180
        qemu_fflush(f);
5181
    if (f->is_file) {
5182
        fclose(f->outfile);
5183
    }
5184
    qemu_free(f);
5185
}
5186

    
5187
void qemu_put_buffer(QEMUFile *f, const uint8_t *buf, int size)
5188
{
5189
    int l;
5190
    while (size > 0) {
5191
        l = IO_BUF_SIZE - f->buf_index;
5192
        if (l > size)
5193
            l = size;
5194
        memcpy(f->buf + f->buf_index, buf, l);
5195
        f->buf_index += l;
5196
        buf += l;
5197
        size -= l;
5198
        if (f->buf_index >= IO_BUF_SIZE)
5199
            qemu_fflush(f);
5200
    }
5201
}
5202

    
5203
void qemu_put_byte(QEMUFile *f, int v)
5204
{
5205
    f->buf[f->buf_index++] = v;
5206
    if (f->buf_index >= IO_BUF_SIZE)
5207
        qemu_fflush(f);
5208
}
5209

    
5210
int qemu_get_buffer(QEMUFile *f, uint8_t *buf, int size1)
5211
{
5212
    int size, l;
5213

    
5214
    size = size1;
5215
    while (size > 0) {
5216
        l = f->buf_size - f->buf_index;
5217
        if (l == 0) {
5218
            qemu_fill_buffer(f);
5219
            l = f->buf_size - f->buf_index;
5220
            if (l == 0)
5221
                break;
5222
        }
5223
        if (l > size)
5224
            l = size;
5225
        memcpy(buf, f->buf + f->buf_index, l);
5226
        f->buf_index += l;
5227
        buf += l;
5228
        size -= l;
5229
    }
5230
    return size1 - size;
5231
}
5232

    
5233
int qemu_get_byte(QEMUFile *f)
5234
{
5235
    if (f->buf_index >= f->buf_size) {
5236
        qemu_fill_buffer(f);
5237
        if (f->buf_index >= f->buf_size)
5238
            return 0;
5239
    }
5240
    return f->buf[f->buf_index++];
5241
}
5242

    
5243
int64_t qemu_ftell(QEMUFile *f)
5244
{
5245
    return f->buf_offset - f->buf_size + f->buf_index;
5246
}
5247

    
5248
int64_t qemu_fseek(QEMUFile *f, int64_t pos, int whence)
5249
{
5250
    if (whence == SEEK_SET) {
5251
        /* nothing to do */
5252
    } else if (whence == SEEK_CUR) {
5253
        pos += qemu_ftell(f);
5254
    } else {
5255
        /* SEEK_END not supported */
5256
        return -1;
5257
    }
5258
    if (f->is_writable) {
5259
        qemu_fflush(f);
5260
        f->buf_offset = pos;
5261
    } else {
5262
        f->buf_offset = pos;
5263
        f->buf_index = 0;
5264
        f->buf_size = 0;
5265
    }
5266
    return pos;
5267
}
5268

    
5269
void qemu_put_be16(QEMUFile *f, unsigned int v)
5270
{
5271
    qemu_put_byte(f, v >> 8);
5272
    qemu_put_byte(f, v);
5273
}
5274

    
5275
void qemu_put_be32(QEMUFile *f, unsigned int v)
5276
{
5277
    qemu_put_byte(f, v >> 24);
5278
    qemu_put_byte(f, v >> 16);
5279
    qemu_put_byte(f, v >> 8);
5280
    qemu_put_byte(f, v);
5281
}
5282

    
5283
void qemu_put_be64(QEMUFile *f, uint64_t v)
5284
{
5285
    qemu_put_be32(f, v >> 32);
5286
    qemu_put_be32(f, v);
5287
}
5288

    
5289
unsigned int qemu_get_be16(QEMUFile *f)
5290
{
5291
    unsigned int v;
5292
    v = qemu_get_byte(f) << 8;
5293
    v |= qemu_get_byte(f);
5294
    return v;
5295
}
5296

    
5297
unsigned int qemu_get_be32(QEMUFile *f)
5298
{
5299
    unsigned int v;
5300
    v = qemu_get_byte(f) << 24;
5301
    v |= qemu_get_byte(f) << 16;
5302
    v |= qemu_get_byte(f) << 8;
5303
    v |= qemu_get_byte(f);
5304
    return v;
5305
}
5306

    
5307
uint64_t qemu_get_be64(QEMUFile *f)
5308
{
5309
    uint64_t v;
5310
    v = (uint64_t)qemu_get_be32(f) << 32;
5311
    v |= qemu_get_be32(f);
5312
    return v;
5313
}
5314

    
5315
typedef struct SaveStateEntry {
5316
    char idstr[256];
5317
    int instance_id;
5318
    int version_id;
5319
    SaveStateHandler *save_state;
5320
    LoadStateHandler *load_state;
5321
    void *opaque;
5322
    struct SaveStateEntry *next;
5323
} SaveStateEntry;
5324

    
5325
static SaveStateEntry *first_se;
5326

    
5327
int register_savevm(const char *idstr,
5328
                    int instance_id,
5329
                    int version_id,
5330
                    SaveStateHandler *save_state,
5331
                    LoadStateHandler *load_state,
5332
                    void *opaque)
5333
{
5334
    SaveStateEntry *se, **pse;
5335

    
5336
    se = qemu_malloc(sizeof(SaveStateEntry));
5337
    if (!se)
5338
        return -1;
5339
    pstrcpy(se->idstr, sizeof(se->idstr), idstr);
5340
    se->instance_id = instance_id;
5341
    se->version_id = version_id;
5342
    se->save_state = save_state;
5343
    se->load_state = load_state;
5344
    se->opaque = opaque;
5345
    se->next = NULL;
5346

    
5347
    /* add at the end of list */
5348
    pse = &first_se;
5349
    while (*pse != NULL)
5350
        pse = &(*pse)->next;
5351
    *pse = se;
5352
    return 0;
5353
}
5354

    
5355
#define QEMU_VM_FILE_MAGIC   0x5145564d
5356
#define QEMU_VM_FILE_VERSION 0x00000002
5357

    
5358
int qemu_savevm_state(QEMUFile *f)
5359
{
5360
    SaveStateEntry *se;
5361
    int len, ret;
5362
    int64_t cur_pos, len_pos, total_len_pos;
5363

    
5364
    qemu_put_be32(f, QEMU_VM_FILE_MAGIC);
5365
    qemu_put_be32(f, QEMU_VM_FILE_VERSION);
5366
    total_len_pos = qemu_ftell(f);
5367
    qemu_put_be64(f, 0); /* total size */
5368

    
5369
    for(se = first_se; se != NULL; se = se->next) {
5370
        /* ID string */
5371
        len = strlen(se->idstr);
5372
        qemu_put_byte(f, len);
5373
        qemu_put_buffer(f, se->idstr, len);
5374

    
5375
        qemu_put_be32(f, se->instance_id);
5376
        qemu_put_be32(f, se->version_id);
5377

    
5378
        /* record size: filled later */
5379
        len_pos = qemu_ftell(f);
5380
        qemu_put_be32(f, 0);
5381

    
5382
        se->save_state(f, se->opaque);
5383

    
5384
        /* fill record size */
5385
        cur_pos = qemu_ftell(f);
5386
        len = cur_pos - len_pos - 4;
5387
        qemu_fseek(f, len_pos, SEEK_SET);
5388
        qemu_put_be32(f, len);
5389
        qemu_fseek(f, cur_pos, SEEK_SET);
5390
    }
5391
    cur_pos = qemu_ftell(f);
5392
    qemu_fseek(f, total_len_pos, SEEK_SET);
5393
    qemu_put_be64(f, cur_pos - total_len_pos - 8);
5394
    qemu_fseek(f, cur_pos, SEEK_SET);
5395

    
5396
    ret = 0;
5397
    return ret;
5398
}
5399

    
5400
static SaveStateEntry *find_se(const char *idstr, int instance_id)
5401
{
5402
    SaveStateEntry *se;
5403

    
5404
    for(se = first_se; se != NULL; se = se->next) {
5405
        if (!strcmp(se->idstr, idstr) &&
5406
            instance_id == se->instance_id)
5407
            return se;
5408
    }
5409
    return NULL;
5410
}
5411

    
5412
int qemu_loadvm_state(QEMUFile *f)
5413
{
5414
    SaveStateEntry *se;
5415
    int len, ret, instance_id, record_len, version_id;
5416
    int64_t total_len, end_pos, cur_pos;
5417
    unsigned int v;
5418
    char idstr[256];
5419

    
5420
    v = qemu_get_be32(f);
5421
    if (v != QEMU_VM_FILE_MAGIC)
5422
        goto fail;
5423
    v = qemu_get_be32(f);
5424
    if (v != QEMU_VM_FILE_VERSION) {
5425
    fail:
5426
        ret = -1;
5427
        goto the_end;
5428
    }
5429
    total_len = qemu_get_be64(f);
5430
    end_pos = total_len + qemu_ftell(f);
5431
    for(;;) {
5432
        if (qemu_ftell(f) >= end_pos)
5433
            break;
5434
        len = qemu_get_byte(f);
5435
        qemu_get_buffer(f, idstr, len);
5436
        idstr[len] = '\0';
5437
        instance_id = qemu_get_be32(f);
5438
        version_id = qemu_get_be32(f);
5439
        record_len = qemu_get_be32(f);
5440
#if 0
5441
        printf("idstr=%s instance=0x%x version=%d len=%d\n",
5442
               idstr, instance_id, version_id, record_len);
5443
#endif
5444
        cur_pos = qemu_ftell(f);
5445
        se = find_se(idstr, instance_id);
5446
        if (!se) {
5447
            fprintf(stderr, "qemu: warning: instance 0x%x of device '%s' not present in current VM\n",
5448
                    instance_id, idstr);
5449
        } else {
5450
            ret = se->load_state(f, se->opaque, version_id);
5451
            if (ret < 0) {
5452
                fprintf(stderr, "qemu: warning: error while loading state for instance 0x%x of device '%s'\n",
5453
                        instance_id, idstr);
5454
            }
5455
        }
5456
        /* always seek to exact end of record */
5457
        qemu_fseek(f, cur_pos + record_len, SEEK_SET);
5458
    }
5459
    ret = 0;
5460
 the_end:
5461
    return ret;
5462
}
5463

    
5464
/* device can contain snapshots */
5465
static int bdrv_can_snapshot(BlockDriverState *bs)
5466
{
5467
    return (bs &&
5468
            !bdrv_is_removable(bs) &&
5469
            !bdrv_is_read_only(bs));
5470
}
5471

    
5472
/* device must be snapshots in order to have a reliable snapshot */
5473
static int bdrv_has_snapshot(BlockDriverState *bs)
5474
{
5475
    return (bs &&
5476
            !bdrv_is_removable(bs) &&
5477
            !bdrv_is_read_only(bs));
5478
}
5479

    
5480
static BlockDriverState *get_bs_snapshots(void)
5481
{
5482
    BlockDriverState *bs;
5483
    int i;
5484

    
5485
    if (bs_snapshots)
5486
        return bs_snapshots;
5487
    for(i = 0; i <= MAX_DISKS; i++) {
5488
        bs = bs_table[i];
5489
        if (bdrv_can_snapshot(bs))
5490
            goto ok;
5491
    }
5492
    return NULL;
5493
 ok:
5494
    bs_snapshots = bs;
5495
    return bs;
5496
}
5497

    
5498
static int bdrv_snapshot_find(BlockDriverState *bs, QEMUSnapshotInfo *sn_info,
5499
                              const char *name)
5500
{
5501
    QEMUSnapshotInfo *sn_tab, *sn;
5502
    int nb_sns, i, ret;
5503

    
5504
    ret = -ENOENT;
5505
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5506
    if (nb_sns < 0)
5507
        return ret;
5508
    for(i = 0; i < nb_sns; i++) {
5509
        sn = &sn_tab[i];
5510
        if (!strcmp(sn->id_str, name) || !strcmp(sn->name, name)) {
5511
            *sn_info = *sn;
5512
            ret = 0;
5513
            break;
5514
        }
5515
    }
5516
    qemu_free(sn_tab);
5517
    return ret;
5518
}
5519

    
5520
void do_savevm(const char *name)
5521
{
5522
    BlockDriverState *bs, *bs1;
5523
    QEMUSnapshotInfo sn1, *sn = &sn1, old_sn1, *old_sn = &old_sn1;
5524
    int must_delete, ret, i;
5525
    BlockDriverInfo bdi1, *bdi = &bdi1;
5526
    QEMUFile *f;
5527
    int saved_vm_running;
5528
#ifdef _WIN32
5529
    struct _timeb tb;
5530
#else
5531
    struct timeval tv;
5532
#endif
5533

    
5534
    bs = get_bs_snapshots();
5535
    if (!bs) {
5536
        term_printf("No block device can accept snapshots\n");
5537
        return;
5538
    }
5539

    
5540
    /* ??? Should this occur after vm_stop?  */
5541
    qemu_aio_flush();
5542

    
5543
    saved_vm_running = vm_running;
5544
    vm_stop(0);
5545

    
5546
    must_delete = 0;
5547
    if (name) {
5548
        ret = bdrv_snapshot_find(bs, old_sn, name);
5549
        if (ret >= 0) {
5550
            must_delete = 1;
5551
        }
5552
    }
5553
    memset(sn, 0, sizeof(*sn));
5554
    if (must_delete) {
5555
        pstrcpy(sn->name, sizeof(sn->name), old_sn->name);
5556
        pstrcpy(sn->id_str, sizeof(sn->id_str), old_sn->id_str);
5557
    } else {
5558
        if (name)
5559
            pstrcpy(sn->name, sizeof(sn->name), name);
5560
    }
5561

    
5562
    /* fill auxiliary fields */
5563
#ifdef _WIN32
5564
    _ftime(&tb);
5565
    sn->date_sec = tb.time;
5566
    sn->date_nsec = tb.millitm * 1000000;
5567
#else
5568
    gettimeofday(&tv, NULL);
5569
    sn->date_sec = tv.tv_sec;
5570
    sn->date_nsec = tv.tv_usec * 1000;
5571
#endif
5572
    sn->vm_clock_nsec = qemu_get_clock(vm_clock);
5573

    
5574
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5575
        term_printf("Device %s does not support VM state snapshots\n",
5576
                    bdrv_get_device_name(bs));
5577
        goto the_end;
5578
    }
5579

    
5580
    /* save the VM state */
5581
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 1);
5582
    if (!f) {
5583
        term_printf("Could not open VM state file\n");
5584
        goto the_end;
5585
    }
5586
    ret = qemu_savevm_state(f);
5587
    sn->vm_state_size = qemu_ftell(f);
5588
    qemu_fclose(f);
5589
    if (ret < 0) {
5590
        term_printf("Error %d while writing VM\n", ret);
5591
        goto the_end;
5592
    }
5593

    
5594
    /* create the snapshots */
5595

    
5596
    for(i = 0; i < MAX_DISKS; i++) {
5597
        bs1 = bs_table[i];
5598
        if (bdrv_has_snapshot(bs1)) {
5599
            if (must_delete) {
5600
                ret = bdrv_snapshot_delete(bs1, old_sn->id_str);
5601
                if (ret < 0) {
5602
                    term_printf("Error while deleting snapshot on '%s'\n",
5603
                                bdrv_get_device_name(bs1));
5604
                }
5605
            }
5606
            ret = bdrv_snapshot_create(bs1, sn);
5607
            if (ret < 0) {
5608
                term_printf("Error while creating snapshot on '%s'\n",
5609
                            bdrv_get_device_name(bs1));
5610
            }
5611
        }
5612
    }
5613

    
5614
 the_end:
5615
    if (saved_vm_running)
5616
        vm_start();
5617
}
5618

    
5619
void do_loadvm(const char *name)
5620
{
5621
    BlockDriverState *bs, *bs1;
5622
    BlockDriverInfo bdi1, *bdi = &bdi1;
5623
    QEMUFile *f;
5624
    int i, ret;
5625
    int saved_vm_running;
5626

    
5627
    bs = get_bs_snapshots();
5628
    if (!bs) {
5629
        term_printf("No block device supports snapshots\n");
5630
        return;
5631
    }
5632

    
5633
    /* Flush all IO requests so they don't interfere with the new state.  */
5634
    qemu_aio_flush();
5635

    
5636
    saved_vm_running = vm_running;
5637
    vm_stop(0);
5638

    
5639
    for(i = 0; i <= MAX_DISKS; i++) {
5640
        bs1 = bs_table[i];
5641
        if (bdrv_has_snapshot(bs1)) {
5642
            ret = bdrv_snapshot_goto(bs1, name);
5643
            if (ret < 0) {
5644
                if (bs != bs1)
5645
                    term_printf("Warning: ");
5646
                switch(ret) {
5647
                case -ENOTSUP:
5648
                    term_printf("Snapshots not supported on device '%s'\n",
5649
                                bdrv_get_device_name(bs1));
5650
                    break;
5651
                case -ENOENT:
5652
                    term_printf("Could not find snapshot '%s' on device '%s'\n",
5653
                                name, bdrv_get_device_name(bs1));
5654
                    break;
5655
                default:
5656
                    term_printf("Error %d while activating snapshot on '%s'\n",
5657
                                ret, bdrv_get_device_name(bs1));
5658
                    break;
5659
                }
5660
                /* fatal on snapshot block device */
5661
                if (bs == bs1)
5662
                    goto the_end;
5663
            }
5664
        }
5665
    }
5666

    
5667
    if (bdrv_get_info(bs, bdi) < 0 || bdi->vm_state_offset <= 0) {
5668
        term_printf("Device %s does not support VM state snapshots\n",
5669
                    bdrv_get_device_name(bs));
5670
        return;
5671
    }
5672

    
5673
    /* restore the VM state */
5674
    f = qemu_fopen_bdrv(bs, bdi->vm_state_offset, 0);
5675
    if (!f) {
5676
        term_printf("Could not open VM state file\n");
5677
        goto the_end;
5678
    }
5679
    ret = qemu_loadvm_state(f);
5680
    qemu_fclose(f);
5681
    if (ret < 0) {
5682
        term_printf("Error %d while loading VM state\n", ret);
5683
    }
5684
 the_end:
5685
    if (saved_vm_running)
5686
        vm_start();
5687
}
5688

    
5689
void do_delvm(const char *name)
5690
{
5691
    BlockDriverState *bs, *bs1;
5692
    int i, ret;
5693

    
5694
    bs = get_bs_snapshots();
5695
    if (!bs) {
5696
        term_printf("No block device supports snapshots\n");
5697
        return;
5698
    }
5699

    
5700
    for(i = 0; i <= MAX_DISKS; i++) {
5701
        bs1 = bs_table[i];
5702
        if (bdrv_has_snapshot(bs1)) {
5703
            ret = bdrv_snapshot_delete(bs1, name);
5704
            if (ret < 0) {
5705
                if (ret == -ENOTSUP)
5706
                    term_printf("Snapshots not supported on device '%s'\n",
5707
                                bdrv_get_device_name(bs1));
5708
                else
5709
                    term_printf("Error %d while deleting snapshot on '%s'\n",
5710
                                ret, bdrv_get_device_name(bs1));
5711
            }
5712
        }
5713
    }
5714
}
5715

    
5716
void do_info_snapshots(void)
5717
{
5718
    BlockDriverState *bs, *bs1;
5719
    QEMUSnapshotInfo *sn_tab, *sn;
5720
    int nb_sns, i;
5721
    char buf[256];
5722

    
5723
    bs = get_bs_snapshots();
5724
    if (!bs) {
5725
        term_printf("No available block device supports snapshots\n");
5726
        return;
5727
    }
5728
    term_printf("Snapshot devices:");
5729
    for(i = 0; i <= MAX_DISKS; i++) {
5730
        bs1 = bs_table[i];
5731
        if (bdrv_has_snapshot(bs1)) {
5732
            if (bs == bs1)
5733
                term_printf(" %s", bdrv_get_device_name(bs1));
5734
        }
5735
    }
5736
    term_printf("\n");
5737

    
5738
    nb_sns = bdrv_snapshot_list(bs, &sn_tab);
5739
    if (nb_sns < 0) {
5740
        term_printf("bdrv_snapshot_list: error %d\n", nb_sns);
5741
        return;
5742
    }
5743
    term_printf("Snapshot list (from %s):\n", bdrv_get_device_name(bs));
5744
    term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), NULL));
5745
    for(i = 0; i < nb_sns; i++) {
5746
        sn = &sn_tab[i];
5747
        term_printf("%s\n", bdrv_snapshot_dump(buf, sizeof(buf), sn));
5748
    }
5749
    qemu_free(sn_tab);
5750
}
5751

    
5752
/***********************************************************/
5753
/* cpu save/restore */
5754

    
5755
#if defined(TARGET_I386)
5756

    
5757
static void cpu_put_seg(QEMUFile *f, SegmentCache *dt)
5758
{
5759
    qemu_put_be32(f, dt->selector);
5760
    qemu_put_betl(f, dt->base);
5761
    qemu_put_be32(f, dt->limit);
5762
    qemu_put_be32(f, dt->flags);
5763
}
5764

    
5765
static void cpu_get_seg(QEMUFile *f, SegmentCache *dt)
5766
{
5767
    dt->selector = qemu_get_be32(f);
5768
    dt->base = qemu_get_betl(f);
5769
    dt->limit = qemu_get_be32(f);
5770
    dt->flags = qemu_get_be32(f);
5771
}
5772

    
5773
void cpu_save(QEMUFile *f, void *opaque)
5774
{
5775
    CPUState *env = opaque;
5776
    uint16_t fptag, fpus, fpuc, fpregs_format;
5777
    uint32_t hflags;
5778
    int i;
5779

    
5780
    for(i = 0; i < CPU_NB_REGS; i++)
5781
        qemu_put_betls(f, &env->regs[i]);
5782
    qemu_put_betls(f, &env->eip);
5783
    qemu_put_betls(f, &env->eflags);
5784
    hflags = env->hflags; /* XXX: suppress most of the redundant hflags */
5785
    qemu_put_be32s(f, &hflags);
5786

    
5787
    /* FPU */
5788
    fpuc = env->fpuc;
5789
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
5790
    fptag = 0;
5791
    for(i = 0; i < 8; i++) {
5792
        fptag |= ((!env->fptags[i]) << i);
5793
    }
5794

    
5795
    qemu_put_be16s(f, &fpuc);
5796
    qemu_put_be16s(f, &fpus);
5797
    qemu_put_be16s(f, &fptag);
5798

    
5799
#ifdef USE_X86LDOUBLE
5800
    fpregs_format = 0;
5801
#else
5802
    fpregs_format = 1;
5803
#endif
5804
    qemu_put_be16s(f, &fpregs_format);
5805

    
5806
    for(i = 0; i < 8; i++) {
5807
#ifdef USE_X86LDOUBLE
5808
        {
5809
            uint64_t mant;
5810
            uint16_t exp;
5811
            /* we save the real CPU data (in case of MMX usage only 'mant'
5812
               contains the MMX register */
5813
            cpu_get_fp80(&mant, &exp, env->fpregs[i].d);
5814
            qemu_put_be64(f, mant);
5815
            qemu_put_be16(f, exp);
5816
        }
5817
#else
5818
        /* if we use doubles for float emulation, we save the doubles to
5819
           avoid losing information in case of MMX usage. It can give
5820
           problems if the image is restored on a CPU where long
5821
           doubles are used instead. */
5822
        qemu_put_be64(f, env->fpregs[i].mmx.MMX_Q(0));
5823
#endif
5824
    }
5825

    
5826
    for(i = 0; i < 6; i++)
5827
        cpu_put_seg(f, &env->segs[i]);
5828
    cpu_put_seg(f, &env->ldt);
5829
    cpu_put_seg(f, &env->tr);
5830
    cpu_put_seg(f, &env->gdt);
5831
    cpu_put_seg(f, &env->idt);
5832

    
5833
    qemu_put_be32s(f, &env->sysenter_cs);
5834
    qemu_put_be32s(f, &env->sysenter_esp);
5835
    qemu_put_be32s(f, &env->sysenter_eip);
5836

    
5837
    qemu_put_betls(f, &env->cr[0]);
5838
    qemu_put_betls(f, &env->cr[2]);
5839
    qemu_put_betls(f, &env->cr[3]);
5840
    qemu_put_betls(f, &env->cr[4]);
5841

    
5842
    for(i = 0; i < 8; i++)
5843
        qemu_put_betls(f, &env->dr[i]);
5844

    
5845
    /* MMU */
5846
    qemu_put_be32s(f, &env->a20_mask);
5847

    
5848
    /* XMM */
5849
    qemu_put_be32s(f, &env->mxcsr);
5850
    for(i = 0; i < CPU_NB_REGS; i++) {
5851
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5852
        qemu_put_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5853
    }
5854

    
5855
#ifdef TARGET_X86_64
5856
    qemu_put_be64s(f, &env->efer);
5857
    qemu_put_be64s(f, &env->star);
5858
    qemu_put_be64s(f, &env->lstar);
5859
    qemu_put_be64s(f, &env->cstar);
5860
    qemu_put_be64s(f, &env->fmask);
5861
    qemu_put_be64s(f, &env->kernelgsbase);
5862
#endif
5863
    qemu_put_be32s(f, &env->smbase);
5864
}
5865

    
5866
#ifdef USE_X86LDOUBLE
5867
/* XXX: add that in a FPU generic layer */
5868
union x86_longdouble {
5869
    uint64_t mant;
5870
    uint16_t exp;
5871
};
5872

    
5873
#define MANTD1(fp)        (fp & ((1LL << 52) - 1))
5874
#define EXPBIAS1 1023
5875
#define EXPD1(fp)        ((fp >> 52) & 0x7FF)
5876
#define SIGND1(fp)        ((fp >> 32) & 0x80000000)
5877

    
5878
static void fp64_to_fp80(union x86_longdouble *p, uint64_t temp)
5879
{
5880
    int e;
5881
    /* mantissa */
5882
    p->mant = (MANTD1(temp) << 11) | (1LL << 63);
5883
    /* exponent + sign */
5884
    e = EXPD1(temp) - EXPBIAS1 + 16383;
5885
    e |= SIGND1(temp) >> 16;
5886
    p->exp = e;
5887
}
5888
#endif
5889

    
5890
int cpu_load(QEMUFile *f, void *opaque, int version_id)
5891
{
5892
    CPUState *env = opaque;
5893
    int i, guess_mmx;
5894
    uint32_t hflags;
5895
    uint16_t fpus, fpuc, fptag, fpregs_format;
5896

    
5897
    if (version_id != 3 && version_id != 4)
5898
        return -EINVAL;
5899
    for(i = 0; i < CPU_NB_REGS; i++)
5900
        qemu_get_betls(f, &env->regs[i]);
5901
    qemu_get_betls(f, &env->eip);
5902
    qemu_get_betls(f, &env->eflags);
5903
    qemu_get_be32s(f, &hflags);
5904

    
5905
    qemu_get_be16s(f, &fpuc);
5906
    qemu_get_be16s(f, &fpus);
5907
    qemu_get_be16s(f, &fptag);
5908
    qemu_get_be16s(f, &fpregs_format);
5909

    
5910
    /* NOTE: we cannot always restore the FPU state if the image come
5911
       from a host with a different 'USE_X86LDOUBLE' define. We guess
5912
       if we are in an MMX state to restore correctly in that case. */
5913
    guess_mmx = ((fptag == 0xff) && (fpus & 0x3800) == 0);
5914
    for(i = 0; i < 8; i++) {
5915
        uint64_t mant;
5916
        uint16_t exp;
5917

    
5918
        switch(fpregs_format) {
5919
        case 0:
5920
            mant = qemu_get_be64(f);
5921
            exp = qemu_get_be16(f);
5922
#ifdef USE_X86LDOUBLE
5923
            env->fpregs[i].d = cpu_set_fp80(mant, exp);
5924
#else
5925
            /* difficult case */
5926
            if (guess_mmx)
5927
                env->fpregs[i].mmx.MMX_Q(0) = mant;
5928
            else
5929
                env->fpregs[i].d = cpu_set_fp80(mant, exp);
5930
#endif
5931
            break;
5932
        case 1:
5933
            mant = qemu_get_be64(f);
5934
#ifdef USE_X86LDOUBLE
5935
            {
5936
                union x86_longdouble *p;
5937
                /* difficult case */
5938
                p = (void *)&env->fpregs[i];
5939
                if (guess_mmx) {
5940
                    p->mant = mant;
5941
                    p->exp = 0xffff;
5942
                } else {
5943
                    fp64_to_fp80(p, mant);
5944
                }
5945
            }
5946
#else
5947
            env->fpregs[i].mmx.MMX_Q(0) = mant;
5948
#endif
5949
            break;
5950
        default:
5951
            return -EINVAL;
5952
        }
5953
    }
5954

    
5955
    env->fpuc = fpuc;
5956
    /* XXX: restore FPU round state */
5957
    env->fpstt = (fpus >> 11) & 7;
5958
    env->fpus = fpus & ~0x3800;
5959
    fptag ^= 0xff;
5960
    for(i = 0; i < 8; i++) {
5961
        env->fptags[i] = (fptag >> i) & 1;
5962
    }
5963

    
5964
    for(i = 0; i < 6; i++)
5965
        cpu_get_seg(f, &env->segs[i]);
5966
    cpu_get_seg(f, &env->ldt);
5967
    cpu_get_seg(f, &env->tr);
5968
    cpu_get_seg(f, &env->gdt);
5969
    cpu_get_seg(f, &env->idt);
5970

    
5971
    qemu_get_be32s(f, &env->sysenter_cs);
5972
    qemu_get_be32s(f, &env->sysenter_esp);
5973
    qemu_get_be32s(f, &env->sysenter_eip);
5974

    
5975
    qemu_get_betls(f, &env->cr[0]);
5976
    qemu_get_betls(f, &env->cr[2]);
5977
    qemu_get_betls(f, &env->cr[3]);
5978
    qemu_get_betls(f, &env->cr[4]);
5979

    
5980
    for(i = 0; i < 8; i++)
5981
        qemu_get_betls(f, &env->dr[i]);
5982

    
5983
    /* MMU */
5984
    qemu_get_be32s(f, &env->a20_mask);
5985

    
5986
    qemu_get_be32s(f, &env->mxcsr);
5987
    for(i = 0; i < CPU_NB_REGS; i++) {
5988
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(0));
5989
        qemu_get_be64s(f, &env->xmm_regs[i].XMM_Q(1));
5990
    }
5991

    
5992
#ifdef TARGET_X86_64
5993
    qemu_get_be64s(f, &env->efer);
5994
    qemu_get_be64s(f, &env->star);
5995
    qemu_get_be64s(f, &env->lstar);
5996
    qemu_get_be64s(f, &env->cstar);
5997
    qemu_get_be64s(f, &env->fmask);
5998
    qemu_get_be64s(f, &env->kernelgsbase);
5999
#endif
6000
    if (version_id >= 4)
6001
        qemu_get_be32s(f, &env->smbase);
6002

    
6003
    /* XXX: compute hflags from scratch, except for CPL and IIF */
6004
    env->hflags = hflags;
6005
    tlb_flush(env, 1);
6006
    return 0;
6007
}
6008

    
6009
#elif defined(TARGET_PPC)
6010
void cpu_save(QEMUFile *f, void *opaque)
6011
{
6012
}
6013

    
6014
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6015
{
6016
    return 0;
6017
}
6018

    
6019
#elif defined(TARGET_MIPS)
6020
void cpu_save(QEMUFile *f, void *opaque)
6021
{
6022
}
6023

    
6024
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6025
{
6026
    return 0;
6027
}
6028

    
6029
#elif defined(TARGET_SPARC)
6030
void cpu_save(QEMUFile *f, void *opaque)
6031
{
6032
    CPUState *env = opaque;
6033
    int i;
6034
    uint32_t tmp;
6035

    
6036
    for(i = 0; i < 8; i++)
6037
        qemu_put_betls(f, &env->gregs[i]);
6038
    for(i = 0; i < NWINDOWS * 16; i++)
6039
        qemu_put_betls(f, &env->regbase[i]);
6040

    
6041
    /* FPU */
6042
    for(i = 0; i < TARGET_FPREGS; i++) {
6043
        union {
6044
            float32 f;
6045
            uint32_t i;
6046
        } u;
6047
        u.f = env->fpr[i];
6048
        qemu_put_be32(f, u.i);
6049
    }
6050

    
6051
    qemu_put_betls(f, &env->pc);
6052
    qemu_put_betls(f, &env->npc);
6053
    qemu_put_betls(f, &env->y);
6054
    tmp = GET_PSR(env);
6055
    qemu_put_be32(f, tmp);
6056
    qemu_put_betls(f, &env->fsr);
6057
    qemu_put_betls(f, &env->tbr);
6058
#ifndef TARGET_SPARC64
6059
    qemu_put_be32s(f, &env->wim);
6060
    /* MMU */
6061
    for(i = 0; i < 16; i++)
6062
        qemu_put_be32s(f, &env->mmuregs[i]);
6063
#endif
6064
}
6065

    
6066
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6067
{
6068
    CPUState *env = opaque;
6069
    int i;
6070
    uint32_t tmp;
6071

    
6072
    for(i = 0; i < 8; i++)
6073
        qemu_get_betls(f, &env->gregs[i]);
6074
    for(i = 0; i < NWINDOWS * 16; i++)
6075
        qemu_get_betls(f, &env->regbase[i]);
6076

    
6077
    /* FPU */
6078
    for(i = 0; i < TARGET_FPREGS; i++) {
6079
        union {
6080
            float32 f;
6081
            uint32_t i;
6082
        } u;
6083
        u.i = qemu_get_be32(f);
6084
        env->fpr[i] = u.f;
6085
    }
6086

    
6087
    qemu_get_betls(f, &env->pc);
6088
    qemu_get_betls(f, &env->npc);
6089
    qemu_get_betls(f, &env->y);
6090
    tmp = qemu_get_be32(f);
6091
    env->cwp = 0; /* needed to ensure that the wrapping registers are
6092
                     correctly updated */
6093
    PUT_PSR(env, tmp);
6094
    qemu_get_betls(f, &env->fsr);
6095
    qemu_get_betls(f, &env->tbr);
6096
#ifndef TARGET_SPARC64
6097
    qemu_get_be32s(f, &env->wim);
6098
    /* MMU */
6099
    for(i = 0; i < 16; i++)
6100
        qemu_get_be32s(f, &env->mmuregs[i]);
6101
#endif
6102
    tlb_flush(env, 1);
6103
    return 0;
6104
}
6105

    
6106
#elif defined(TARGET_ARM)
6107

    
6108
void cpu_save(QEMUFile *f, void *opaque)
6109
{
6110
    int i;
6111
    CPUARMState *env = (CPUARMState *)opaque;
6112

    
6113
    for (i = 0; i < 16; i++) {
6114
        qemu_put_be32(f, env->regs[i]);
6115
    }
6116
    qemu_put_be32(f, cpsr_read(env));
6117
    qemu_put_be32(f, env->spsr);
6118
    for (i = 0; i < 6; i++) {
6119
        qemu_put_be32(f, env->banked_spsr[i]);
6120
        qemu_put_be32(f, env->banked_r13[i]);
6121
        qemu_put_be32(f, env->banked_r14[i]);
6122
    }
6123
    for (i = 0; i < 5; i++) {
6124
        qemu_put_be32(f, env->usr_regs[i]);
6125
        qemu_put_be32(f, env->fiq_regs[i]);
6126
    }
6127
    qemu_put_be32(f, env->cp15.c0_cpuid);
6128
    qemu_put_be32(f, env->cp15.c0_cachetype);
6129
    qemu_put_be32(f, env->cp15.c1_sys);
6130
    qemu_put_be32(f, env->cp15.c1_coproc);
6131
    qemu_put_be32(f, env->cp15.c1_xscaleauxcr);
6132
    qemu_put_be32(f, env->cp15.c2_base);
6133
    qemu_put_be32(f, env->cp15.c2_data);
6134
    qemu_put_be32(f, env->cp15.c2_insn);
6135
    qemu_put_be32(f, env->cp15.c3);
6136
    qemu_put_be32(f, env->cp15.c5_insn);
6137
    qemu_put_be32(f, env->cp15.c5_data);
6138
    for (i = 0; i < 8; i++) {
6139
        qemu_put_be32(f, env->cp15.c6_region[i]);
6140
    }
6141
    qemu_put_be32(f, env->cp15.c6_insn);
6142
    qemu_put_be32(f, env->cp15.c6_data);
6143
    qemu_put_be32(f, env->cp15.c9_insn);
6144
    qemu_put_be32(f, env->cp15.c9_data);
6145
    qemu_put_be32(f, env->cp15.c13_fcse);
6146
    qemu_put_be32(f, env->cp15.c13_context);
6147
    qemu_put_be32(f, env->cp15.c15_cpar);
6148

    
6149
    qemu_put_be32(f, env->features);
6150

    
6151
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6152
        for (i = 0;  i < 16; i++) {
6153
            CPU_DoubleU u;
6154
            u.d = env->vfp.regs[i];
6155
            qemu_put_be32(f, u.l.upper);
6156
            qemu_put_be32(f, u.l.lower);
6157
        }
6158
        for (i = 0; i < 16; i++) {
6159
            qemu_put_be32(f, env->vfp.xregs[i]);
6160
        }
6161

    
6162
        /* TODO: Should use proper FPSCR access functions.  */
6163
        qemu_put_be32(f, env->vfp.vec_len);
6164
        qemu_put_be32(f, env->vfp.vec_stride);
6165
    }
6166

    
6167
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6168
        for (i = 0; i < 16; i++) {
6169
            qemu_put_be64(f, env->iwmmxt.regs[i]);
6170
        }
6171
        for (i = 0; i < 16; i++) {
6172
            qemu_put_be32(f, env->iwmmxt.cregs[i]);
6173
        }
6174
    }
6175
}
6176

    
6177
int cpu_load(QEMUFile *f, void *opaque, int version_id)
6178
{
6179
    CPUARMState *env = (CPUARMState *)opaque;
6180
    int i;
6181

    
6182
    if (version_id != 0)
6183
        return -EINVAL;
6184

    
6185
    for (i = 0; i < 16; i++) {
6186
        env->regs[i] = qemu_get_be32(f);
6187
    }
6188
    cpsr_write(env, qemu_get_be32(f), 0xffffffff);
6189
    env->spsr = qemu_get_be32(f);
6190
    for (i = 0; i < 6; i++) {
6191
        env->banked_spsr[i] = qemu_get_be32(f);
6192
        env->banked_r13[i] = qemu_get_be32(f);
6193
        env->banked_r14[i] = qemu_get_be32(f);
6194
    }
6195
    for (i = 0; i < 5; i++) {
6196
        env->usr_regs[i] = qemu_get_be32(f);
6197
        env->fiq_regs[i] = qemu_get_be32(f);
6198
    }
6199
    env->cp15.c0_cpuid = qemu_get_be32(f);
6200
    env->cp15.c0_cachetype = qemu_get_be32(f);
6201
    env->cp15.c1_sys = qemu_get_be32(f);
6202
    env->cp15.c1_coproc = qemu_get_be32(f);
6203
    env->cp15.c1_xscaleauxcr = qemu_get_be32(f);
6204
    env->cp15.c2_base = qemu_get_be32(f);
6205
    env->cp15.c2_data = qemu_get_be32(f);
6206
    env->cp15.c2_insn = qemu_get_be32(f);
6207
    env->cp15.c3 = qemu_get_be32(f);
6208
    env->cp15.c5_insn = qemu_get_be32(f);
6209
    env->cp15.c5_data = qemu_get_be32(f);
6210
    for (i = 0; i < 8; i++) {
6211
        env->cp15.c6_region[i] = qemu_get_be32(f);
6212
    }
6213
    env->cp15.c6_insn = qemu_get_be32(f);
6214
    env->cp15.c6_data = qemu_get_be32(f);
6215
    env->cp15.c9_insn = qemu_get_be32(f);
6216
    env->cp15.c9_data = qemu_get_be32(f);
6217
    env->cp15.c13_fcse = qemu_get_be32(f);
6218
    env->cp15.c13_context = qemu_get_be32(f);
6219
    env->cp15.c15_cpar = qemu_get_be32(f);
6220

    
6221
    env->features = qemu_get_be32(f);
6222

    
6223
    if (arm_feature(env, ARM_FEATURE_VFP)) {
6224
        for (i = 0;  i < 16; i++) {
6225
            CPU_DoubleU u;
6226
            u.l.upper = qemu_get_be32(f);
6227
            u.l.lower = qemu_get_be32(f);
6228
            env->vfp.regs[i] = u.d;
6229
        }
6230
        for (i = 0; i < 16; i++) {
6231
            env->vfp.xregs[i] = qemu_get_be32(f);
6232
        }
6233

    
6234
        /* TODO: Should use proper FPSCR access functions.  */
6235
        env->vfp.vec_len = qemu_get_be32(f);
6236
        env->vfp.vec_stride = qemu_get_be32(f);
6237
    }
6238

    
6239
    if (arm_feature(env, ARM_FEATURE_IWMMXT)) {
6240
        for (i = 0; i < 16; i++) {
6241
            env->iwmmxt.regs[i] = qemu_get_be64(f);
6242
        }
6243
        for (i = 0; i < 16; i++) {
6244
            env->iwmmxt.cregs[i] = qemu_get_be32(f);
6245
        }
6246
    }
6247

    
6248
    return 0;
6249
}
6250

    
6251
#else
6252

    
6253
#warning No CPU save/restore functions
6254

    
6255
#endif
6256

    
6257
/***********************************************************/
6258
/* ram save/restore */
6259

    
6260
static int ram_get_page(QEMUFile *f, uint8_t *buf, int len)
6261
{
6262
    int v;
6263

    
6264
    v = qemu_get_byte(f);
6265
    switch(v) {
6266
    case 0:
6267
        if (qemu_get_buffer(f, buf, len) != len)
6268
            return -EIO;
6269
        break;
6270
    case 1:
6271
        v = qemu_get_byte(f);
6272
        memset(buf, v, len);
6273
        break;
6274
    default:
6275
        return -EINVAL;
6276
    }
6277
    return 0;
6278
}
6279

    
6280
static int ram_load_v1(QEMUFile *f, void *opaque)
6281
{
6282
    int i, ret;
6283

    
6284
    if (qemu_get_be32(f) != phys_ram_size)
6285
        return -EINVAL;
6286
    for(i = 0; i < phys_ram_size; i+= TARGET_PAGE_SIZE) {
6287
        ret = ram_get_page(f, phys_ram_base + i, TARGET_PAGE_SIZE);
6288
        if (ret)
6289
            return ret;
6290
    }
6291
    return 0;
6292
}
6293

    
6294
#define BDRV_HASH_BLOCK_SIZE 1024
6295
#define IOBUF_SIZE 4096
6296
#define RAM_CBLOCK_MAGIC 0xfabe
6297

    
6298
typedef struct RamCompressState {
6299
    z_stream zstream;
6300
    QEMUFile *f;
6301
    uint8_t buf[IOBUF_SIZE];
6302
} RamCompressState;
6303

    
6304
static int ram_compress_open(RamCompressState *s, QEMUFile *f)
6305
{
6306
    int ret;
6307
    memset(s, 0, sizeof(*s));
6308
    s->f = f;
6309
    ret = deflateInit2(&s->zstream, 1,
6310
                       Z_DEFLATED, 15,
6311
                       9, Z_DEFAULT_STRATEGY);
6312
    if (ret != Z_OK)
6313
        return -1;
6314
    s->zstream.avail_out = IOBUF_SIZE;
6315
    s->zstream.next_out = s->buf;
6316
    return 0;
6317
}
6318

    
6319
static void ram_put_cblock(RamCompressState *s, const uint8_t *buf, int len)
6320
{
6321
    qemu_put_be16(s->f, RAM_CBLOCK_MAGIC);
6322
    qemu_put_be16(s->f, len);
6323
    qemu_put_buffer(s->f, buf, len);
6324
}
6325

    
6326
static int ram_compress_buf(RamCompressState *s, const uint8_t *buf, int len)
6327
{
6328
    int ret;
6329

    
6330
    s->zstream.avail_in = len;
6331
    s->zstream.next_in = (uint8_t *)buf;
6332
    while (s->zstream.avail_in > 0) {
6333
        ret = deflate(&s->zstream, Z_NO_FLUSH);
6334
        if (ret != Z_OK)
6335
            return -1;
6336
        if (s->zstream.avail_out == 0) {
6337
            ram_put_cblock(s, s->buf, IOBUF_SIZE);
6338
            s->zstream.avail_out = IOBUF_SIZE;
6339
            s->zstream.next_out = s->buf;
6340
        }
6341
    }
6342
    return 0;
6343
}
6344

    
6345
static void ram_compress_close(RamCompressState *s)
6346
{
6347
    int len, ret;
6348

    
6349
    /* compress last bytes */
6350
    for(;;) {
6351
        ret = deflate(&s->zstream, Z_FINISH);
6352
        if (ret == Z_OK || ret == Z_STREAM_END) {
6353
            len = IOBUF_SIZE - s->zstream.avail_out;
6354
            if (len > 0) {
6355
                ram_put_cblock(s, s->buf, len);
6356
            }
6357
            s->zstream.avail_out = IOBUF_SIZE;
6358
            s->zstream.next_out = s->buf;
6359
            if (ret == Z_STREAM_END)
6360
                break;
6361
        } else {
6362
            goto fail;
6363
        }
6364
    }
6365
fail:
6366
    deflateEnd(&s->zstream);
6367
}
6368

    
6369
typedef struct RamDecompressState {
6370
    z_stream zstream;
6371
    QEMUFile *f;
6372
    uint8_t buf[IOBUF_SIZE];
6373
} RamDecompressState;
6374

    
6375
static int ram_decompress_open(RamDecompressState *s, QEMUFile *f)
6376
{
6377
    int ret;
6378
    memset(s, 0, sizeof(*s));
6379
    s->f = f;
6380
    ret = inflateInit(&s->zstream);
6381
    if (ret != Z_OK)
6382
        return -1;
6383
    return 0;
6384
}
6385

    
6386
static int ram_decompress_buf(RamDecompressState *s, uint8_t *buf, int len)
6387
{
6388
    int ret, clen;
6389

    
6390
    s->zstream.avail_out = len;
6391
    s->zstream.next_out = buf;
6392
    while (s->zstream.avail_out > 0) {
6393
        if (s->zstream.avail_in == 0) {
6394
            if (qemu_get_be16(s->f) != RAM_CBLOCK_MAGIC)
6395
                return -1;
6396
            clen = qemu_get_be16(s->f);
6397
            if (clen > IOBUF_SIZE)
6398
                return -1;
6399
            qemu_get_buffer(s->f, s->buf, clen);
6400
            s->zstream.avail_in = clen;
6401
            s->zstream.next_in = s->buf;
6402
        }
6403
        ret = inflate(&s->zstream, Z_PARTIAL_FLUSH);
6404
        if (ret != Z_OK && ret != Z_STREAM_END) {
6405
            return -1;
6406
        }
6407
    }
6408
    return 0;
6409
}
6410

    
6411
static void ram_decompress_close(RamDecompressState *s)
6412
{
6413
    inflateEnd(&s->zstream);
6414
}
6415

    
6416
static void ram_save(QEMUFile *f, void *opaque)
6417
{
6418
    int i;
6419
    RamCompressState s1, *s = &s1;
6420
    uint8_t buf[10];
6421

    
6422
    qemu_put_be32(f, phys_ram_size);
6423
    if (ram_compress_open(s, f) < 0)
6424
        return;
6425
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6426
#if 0
6427
        if (tight_savevm_enabled) {
6428
            int64_t sector_num;
6429
            int j;
6430

6431
            /* find if the memory block is available on a virtual
6432
               block device */
6433
            sector_num = -1;
6434
            for(j = 0; j < MAX_DISKS; j++) {
6435
                if (bs_table[j]) {
6436
                    sector_num = bdrv_hash_find(bs_table[j],
6437
                                                phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6438
                    if (sector_num >= 0)
6439
                        break;
6440
                }
6441
            }
6442
            if (j == MAX_DISKS)
6443
                goto normal_compress;
6444
            buf[0] = 1;
6445
            buf[1] = j;
6446
            cpu_to_be64wu((uint64_t *)(buf + 2), sector_num);
6447
            ram_compress_buf(s, buf, 10);
6448
        } else
6449
#endif
6450
        {
6451
            //        normal_compress:
6452
            buf[0] = 0;
6453
            ram_compress_buf(s, buf, 1);
6454
            ram_compress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE);
6455
        }
6456
    }
6457
    ram_compress_close(s);
6458
}
6459

    
6460
static int ram_load(QEMUFile *f, void *opaque, int version_id)
6461
{
6462
    RamDecompressState s1, *s = &s1;
6463
    uint8_t buf[10];
6464
    int i;
6465

    
6466
    if (version_id == 1)
6467
        return ram_load_v1(f, opaque);
6468
    if (version_id != 2)
6469
        return -EINVAL;
6470
    if (qemu_get_be32(f) != phys_ram_size)
6471
        return -EINVAL;
6472
    if (ram_decompress_open(s, f) < 0)
6473
        return -EINVAL;
6474
    for(i = 0; i < phys_ram_size; i+= BDRV_HASH_BLOCK_SIZE) {
6475
        if (ram_decompress_buf(s, buf, 1) < 0) {
6476
            fprintf(stderr, "Error while reading ram block header\n");
6477
            goto error;
6478
        }
6479
        if (buf[0] == 0) {
6480
            if (ram_decompress_buf(s, phys_ram_base + i, BDRV_HASH_BLOCK_SIZE) < 0) {
6481
                fprintf(stderr, "Error while reading ram block address=0x%08x", i);
6482
                goto error;
6483
            }
6484
        } else
6485
#if 0
6486
        if (buf[0] == 1) {
6487
            int bs_index;
6488
            int64_t sector_num;
6489

6490
            ram_decompress_buf(s, buf + 1, 9);
6491
            bs_index = buf[1];
6492
            sector_num = be64_to_cpupu((const uint64_t *)(buf + 2));
6493
            if (bs_index >= MAX_DISKS || bs_table[bs_index] == NULL) {
6494
                fprintf(stderr, "Invalid block device index %d\n", bs_index);
6495
                goto error;
6496
            }
6497
            if (bdrv_read(bs_table[bs_index], sector_num, phys_ram_base + i,
6498
                          BDRV_HASH_BLOCK_SIZE / 512) < 0) {
6499
                fprintf(stderr, "Error while reading sector %d:%" PRId64 "\n",
6500
                        bs_index, sector_num);
6501
                goto error;
6502
            }
6503
        } else
6504
#endif
6505
        {
6506
        error:
6507
            printf("Error block header\n");
6508
            return -EINVAL;
6509
        }
6510
    }
6511
    ram_decompress_close(s);
6512
    return 0;
6513
}
6514

    
6515
/***********************************************************/
6516
/* bottom halves (can be seen as timers which expire ASAP) */
6517

    
6518
struct QEMUBH {
6519
    QEMUBHFunc *cb;
6520
    void *opaque;
6521
    int scheduled;
6522
    QEMUBH *next;
6523
};
6524

    
6525
static QEMUBH *first_bh = NULL;
6526

    
6527
QEMUBH *qemu_bh_new(QEMUBHFunc *cb, void *opaque)
6528
{
6529
    QEMUBH *bh;
6530
    bh = qemu_mallocz(sizeof(QEMUBH));
6531
    if (!bh)
6532
        return NULL;
6533
    bh->cb = cb;
6534
    bh->opaque = opaque;
6535
    return bh;
6536
}
6537

    
6538
int qemu_bh_poll(void)
6539
{
6540
    QEMUBH *bh, **pbh;
6541
    int ret;
6542

    
6543
    ret = 0;
6544
    for(;;) {
6545
        pbh = &first_bh;
6546
        bh = *pbh;
6547
        if (!bh)
6548
            break;
6549
        ret = 1;
6550
        *pbh = bh->next;
6551
        bh->scheduled = 0;
6552
        bh->cb(bh->opaque);
6553
    }
6554
    return ret;
6555
}
6556

    
6557
void qemu_bh_schedule(QEMUBH *bh)
6558
{
6559
    CPUState *env = cpu_single_env;
6560
    if (bh->scheduled)
6561
        return;
6562
    bh->scheduled = 1;
6563
    bh->next = first_bh;
6564
    first_bh = bh;
6565

    
6566
    /* stop the currently executing CPU to execute the BH ASAP */
6567
    if (env) {
6568
        cpu_interrupt(env, CPU_INTERRUPT_EXIT);
6569
    }
6570
}
6571

    
6572
void qemu_bh_cancel(QEMUBH *bh)
6573
{
6574
    QEMUBH **pbh;
6575
    if (bh->scheduled) {
6576
        pbh = &first_bh;
6577
        while (*pbh != bh)
6578
            pbh = &(*pbh)->next;
6579
        *pbh = bh->next;
6580
        bh->scheduled = 0;
6581
    }
6582
}
6583

    
6584
void qemu_bh_delete(QEMUBH *bh)
6585
{
6586
    qemu_bh_cancel(bh);
6587
    qemu_free(bh);
6588
}
6589

    
6590
/***********************************************************/
6591
/* machine registration */
6592

    
6593
QEMUMachine *first_machine = NULL;
6594

    
6595
int qemu_register_machine(QEMUMachine *m)
6596
{
6597
    QEMUMachine **pm;
6598
    pm = &first_machine;
6599
    while (*pm != NULL)
6600
        pm = &(*pm)->next;
6601
    m->next = NULL;
6602
    *pm = m;
6603
    return 0;
6604
}
6605

    
6606
QEMUMachine *find_machine(const char *name)
6607
{
6608
    QEMUMachine *m;
6609

    
6610
    for(m = first_machine; m != NULL; m = m->next) {
6611
        if (!strcmp(m->name, name))
6612
            return m;
6613
    }
6614
    return NULL;
6615
}
6616

    
6617
/***********************************************************/
6618
/* main execution loop */
6619

    
6620
void gui_update(void *opaque)
6621
{
6622
    DisplayState *ds = opaque;
6623
    ds->dpy_refresh(ds);
6624
    qemu_mod_timer(ds->gui_timer, GUI_REFRESH_INTERVAL + qemu_get_clock(rt_clock));
6625
}
6626

    
6627
struct vm_change_state_entry {
6628
    VMChangeStateHandler *cb;
6629
    void *opaque;
6630
    LIST_ENTRY (vm_change_state_entry) entries;
6631
};
6632

    
6633
static LIST_HEAD(vm_change_state_head, vm_change_state_entry) vm_change_state_head;
6634

    
6635
VMChangeStateEntry *qemu_add_vm_change_state_handler(VMChangeStateHandler *cb,
6636
                                                     void *opaque)
6637
{
6638
    VMChangeStateEntry *e;
6639

    
6640
    e = qemu_mallocz(sizeof (*e));
6641
    if (!e)
6642
        return NULL;
6643

    
6644
    e->cb = cb;
6645
    e->opaque = opaque;
6646
    LIST_INSERT_HEAD(&vm_change_state_head, e, entries);
6647
    return e;
6648
}
6649

    
6650
void qemu_del_vm_change_state_handler(VMChangeStateEntry *e)
6651
{
6652
    LIST_REMOVE (e, entries);
6653
    qemu_free (e);
6654
}
6655

    
6656
static void vm_state_notify(int running)
6657
{
6658
    VMChangeStateEntry *e;
6659

    
6660
    for (e = vm_change_state_head.lh_first; e; e = e->entries.le_next) {
6661
        e->cb(e->opaque, running);
6662
    }
6663
}
6664

    
6665
/* XXX: support several handlers */
6666
static VMStopHandler *vm_stop_cb;
6667
static void *vm_stop_opaque;
6668

    
6669
int qemu_add_vm_stop_handler(VMStopHandler *cb, void *opaque)
6670
{
6671
    vm_stop_cb = cb;
6672
    vm_stop_opaque = opaque;
6673
    return 0;
6674
}
6675

    
6676
void qemu_del_vm_stop_handler(VMStopHandler *cb, void *opaque)
6677
{
6678
    vm_stop_cb = NULL;
6679
}
6680

    
6681
void vm_start(void)
6682
{
6683
    if (!vm_running) {
6684
        cpu_enable_ticks();
6685
        vm_running = 1;
6686
        vm_state_notify(1);
6687
        qemu_rearm_alarm_timer(alarm_timer);
6688
    }
6689
}
6690

    
6691
void vm_stop(int reason)
6692
{
6693
    if (vm_running) {
6694
        cpu_disable_ticks();
6695
        vm_running = 0;
6696
        if (reason != 0) {
6697
            if (vm_stop_cb) {
6698
                vm_stop_cb(vm_stop_opaque, reason);
6699
            }
6700
        }
6701
        vm_state_notify(0);
6702
    }
6703
}
6704

    
6705
/* reset/shutdown handler */
6706

    
6707
typedef struct QEMUResetEntry {
6708
    QEMUResetHandler *func;
6709
    void *opaque;
6710
    struct QEMUResetEntry *next;
6711
} QEMUResetEntry;
6712

    
6713
static QEMUResetEntry *first_reset_entry;
6714
static int reset_requested;
6715
static int shutdown_requested;
6716
static int powerdown_requested;
6717

    
6718
void qemu_register_reset(QEMUResetHandler *func, void *opaque)
6719
{
6720
    QEMUResetEntry **pre, *re;
6721

    
6722
    pre = &first_reset_entry;
6723
    while (*pre != NULL)
6724
        pre = &(*pre)->next;
6725
    re = qemu_mallocz(sizeof(QEMUResetEntry));
6726
    re->func = func;
6727
    re->opaque = opaque;
6728
    re->next = NULL;
6729
    *pre = re;
6730
}
6731

    
6732
static void qemu_system_reset(void)
6733
{
6734
    QEMUResetEntry *re;
6735

    
6736
    /* reset all devices */
6737
    for(re = first_reset_entry; re != NULL; re = re->next) {
6738
        re->func(re->opaque);
6739
    }
6740
}
6741

    
6742
void qemu_system_reset_request(void)
6743
{
6744
    if (no_reboot) {
6745
        shutdown_requested = 1;
6746
    } else {
6747
        reset_requested = 1;
6748
    }
6749
    if (cpu_single_env)
6750
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6751
}
6752

    
6753
void qemu_system_shutdown_request(void)
6754
{
6755
    shutdown_requested = 1;
6756
    if (cpu_single_env)
6757
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6758
}
6759

    
6760
void qemu_system_powerdown_request(void)
6761
{
6762
    powerdown_requested = 1;
6763
    if (cpu_single_env)
6764
        cpu_interrupt(cpu_single_env, CPU_INTERRUPT_EXIT);
6765
}
6766

    
6767
void main_loop_wait(int timeout)
6768
{
6769
    IOHandlerRecord *ioh;
6770
    fd_set rfds, wfds, xfds;
6771
    int ret, nfds;
6772
#ifdef _WIN32
6773
    int ret2, i;
6774
#endif
6775
    struct timeval tv;
6776
    PollingEntry *pe;
6777

    
6778

    
6779
    /* XXX: need to suppress polling by better using win32 events */
6780
    ret = 0;
6781
    for(pe = first_polling_entry; pe != NULL; pe = pe->next) {
6782
        ret |= pe->func(pe->opaque);
6783
    }
6784
#ifdef _WIN32
6785
    if (ret == 0) {
6786
        int err;
6787
        WaitObjects *w = &wait_objects;
6788

    
6789
        ret = WaitForMultipleObjects(w->num, w->events, FALSE, timeout);
6790
        if (WAIT_OBJECT_0 + 0 <= ret && ret <= WAIT_OBJECT_0 + w->num - 1) {
6791
            if (w->func[ret - WAIT_OBJECT_0])
6792
                w->func[ret - WAIT_OBJECT_0](w->opaque[ret - WAIT_OBJECT_0]);
6793

    
6794
            /* Check for additional signaled events */
6795
            for(i = (ret - WAIT_OBJECT_0 + 1); i < w->num; i++) {
6796

    
6797
                /* Check if event is signaled */
6798
                ret2 = WaitForSingleObject(w->events[i], 0);
6799
                if(ret2 == WAIT_OBJECT_0) {
6800
                    if (w->func[i])
6801
                        w->func[i](w->opaque[i]);
6802
                } else if (ret2 == WAIT_TIMEOUT) {
6803
                } else {
6804
                    err = GetLastError();
6805
                    fprintf(stderr, "WaitForSingleObject error %d %d\n", i, err);
6806
                }
6807
            }
6808
        } else if (ret == WAIT_TIMEOUT) {
6809
        } else {
6810
            err = GetLastError();
6811
            fprintf(stderr, "WaitForMultipleObjects error %d %d\n", ret, err);
6812
        }
6813
    }
6814
#endif
6815
    /* poll any events */
6816
    /* XXX: separate device handlers from system ones */
6817
    nfds = -1;
6818
    FD_ZERO(&rfds);
6819
    FD_ZERO(&wfds);
6820
    FD_ZERO(&xfds);
6821
    for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6822
        if (ioh->deleted)
6823
            continue;
6824
        if (ioh->fd_read &&
6825
            (!ioh->fd_read_poll ||
6826
             ioh->fd_read_poll(ioh->opaque) != 0)) {
6827
            FD_SET(ioh->fd, &rfds);
6828
            if (ioh->fd > nfds)
6829
                nfds = ioh->fd;
6830
        }
6831
        if (ioh->fd_write) {
6832
            FD_SET(ioh->fd, &wfds);
6833
            if (ioh->fd > nfds)
6834
                nfds = ioh->fd;
6835
        }
6836
    }
6837

    
6838
    tv.tv_sec = 0;
6839
#ifdef _WIN32
6840
    tv.tv_usec = 0;
6841
#else
6842
    tv.tv_usec = timeout * 1000;
6843
#endif
6844
#if defined(CONFIG_SLIRP)
6845
    if (slirp_inited) {
6846
        slirp_select_fill(&nfds, &rfds, &wfds, &xfds);
6847
    }
6848
#endif
6849
    ret = select(nfds + 1, &rfds, &wfds, &xfds, &tv);
6850
    if (ret > 0) {
6851
        IOHandlerRecord **pioh;
6852

    
6853
        for(ioh = first_io_handler; ioh != NULL; ioh = ioh->next) {
6854
            if (!ioh->deleted && ioh->fd_read && FD_ISSET(ioh->fd, &rfds)) {
6855
                ioh->fd_read(ioh->opaque);
6856
            }
6857
            if (!ioh->deleted && ioh->fd_write && FD_ISSET(ioh->fd, &wfds)) {
6858
                ioh->fd_write(ioh->opaque);
6859
            }
6860
        }
6861

    
6862
        /* remove deleted IO handlers */
6863
        pioh = &first_io_handler;
6864
        while (*pioh) {
6865
            ioh = *pioh;
6866
            if (ioh->deleted) {
6867
                *pioh = ioh->next;
6868
                qemu_free(ioh);
6869
            } else
6870
                pioh = &ioh->next;
6871
        }
6872
    }
6873
#if defined(CONFIG_SLIRP)
6874
    if (slirp_inited) {
6875
        if (ret < 0) {
6876
            FD_ZERO(&rfds);
6877
            FD_ZERO(&wfds);
6878
            FD_ZERO(&xfds);
6879
        }
6880
        slirp_select_poll(&rfds, &wfds, &xfds);
6881
    }
6882
#endif
6883
    qemu_aio_poll();
6884

    
6885
    if (vm_running) {
6886
        qemu_run_timers(&active_timers[QEMU_TIMER_VIRTUAL],
6887
                        qemu_get_clock(vm_clock));
6888
        /* run dma transfers, if any */
6889
        DMA_run();
6890
    }
6891

    
6892
    /* real time timers */
6893
    qemu_run_timers(&active_timers[QEMU_TIMER_REALTIME],
6894
                    qemu_get_clock(rt_clock));
6895

    
6896
    /* Check bottom-halves last in case any of the earlier events triggered
6897
       them.  */
6898
    qemu_bh_poll();
6899

    
6900
}
6901

    
6902
static CPUState *cur_cpu;
6903

    
6904
int main_loop(void)
6905
{
6906
    int ret, timeout;
6907
#ifdef CONFIG_PROFILER
6908
    int64_t ti;
6909
#endif
6910
    CPUState *env;
6911

    
6912
    cur_cpu = first_cpu;
6913
    for(;;) {
6914
        if (vm_running) {
6915

    
6916
            env = cur_cpu;
6917
            for(;;) {
6918
                /* get next cpu */
6919
                env = env->next_cpu;
6920
                if (!env)
6921
                    env = first_cpu;
6922
#ifdef CONFIG_PROFILER
6923
                ti = profile_getclock();
6924
#endif
6925
                ret = cpu_exec(env);
6926
#ifdef CONFIG_PROFILER
6927
                qemu_time += profile_getclock() - ti;
6928
#endif
6929
                if (ret == EXCP_HLT) {
6930
                    /* Give the next CPU a chance to run.  */
6931
                    cur_cpu = env;
6932
                    continue;
6933
                }
6934
                if (ret != EXCP_HALTED)
6935
                    break;
6936
                /* all CPUs are halted ? */
6937
                if (env == cur_cpu)
6938
                    break;
6939
            }
6940
            cur_cpu = env;
6941

    
6942
            if (shutdown_requested) {
6943
                ret = EXCP_INTERRUPT;
6944
                break;
6945
            }
6946
            if (reset_requested) {
6947
                reset_requested = 0;
6948
                qemu_system_reset();
6949
                ret = EXCP_INTERRUPT;
6950
            }
6951
            if (powerdown_requested) {
6952
                powerdown_requested = 0;
6953
                qemu_system_powerdown();
6954
                ret = EXCP_INTERRUPT;
6955
            }
6956
            if (ret == EXCP_DEBUG) {
6957
                vm_stop(EXCP_DEBUG);
6958
            }
6959
            /* If all cpus are halted then wait until the next IRQ */
6960
            /* XXX: use timeout computed from timers */
6961
            if (ret == EXCP_HALTED)
6962
                timeout = 10;
6963
            else
6964
                timeout = 0;
6965
        } else {
6966
            timeout = 10;
6967
        }
6968
#ifdef CONFIG_PROFILER
6969
        ti = profile_getclock();
6970
#endif
6971
        main_loop_wait(timeout);
6972
#ifdef CONFIG_PROFILER
6973
        dev_time += profile_getclock() - ti;
6974
#endif
6975
    }
6976
    cpu_disable_ticks();
6977
    return ret;
6978
}
6979

    
6980
static void help(int exitcode)
6981
{
6982
    printf("QEMU PC emulator version " QEMU_VERSION ", Copyright (c) 2003-2007 Fabrice Bellard\n"
6983
           "usage: %s [options] [disk_image]\n"
6984
           "\n"
6985
           "'disk_image' is a raw hard image image for IDE hard disk 0\n"
6986
           "\n"
6987
           "Standard options:\n"
6988
           "-M machine      select emulated machine (-M ? for list)\n"
6989
           "-cpu cpu        select CPU (-cpu ? for list)\n"
6990
           "-fda/-fdb file  use 'file' as floppy disk 0/1 image\n"
6991
           "-hda/-hdb file  use 'file' as IDE hard disk 0/1 image\n"
6992
           "-hdc/-hdd file  use 'file' as IDE hard disk 2/3 image\n"
6993
           "-cdrom file     use 'file' as IDE cdrom image (cdrom is ide1 master)\n"
6994
           "-mtdblock file  use 'file' as on-board Flash memory image\n"
6995
           "-sd file        use 'file' as SecureDigital card image\n"
6996
           "-pflash file    use 'file' as a parallel flash image\n"
6997
           "-boot [a|c|d|n] boot on floppy (a), hard disk (c), CD-ROM (d), or network (n)\n"
6998
           "-snapshot       write to temporary files instead of disk image files\n"
6999
#ifdef CONFIG_SDL
7000
           "-no-frame       open SDL window without a frame and window decorations\n"
7001
           "-alt-grab       use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt)\n"
7002
           "-no-quit        disable SDL window close capability\n"
7003
#endif
7004
#ifdef TARGET_I386
7005
           "-no-fd-bootchk  disable boot signature checking for floppy disks\n"
7006
#endif
7007
           "-m megs         set virtual RAM size to megs MB [default=%d]\n"
7008
           "-smp n          set the number of CPUs to 'n' [default=1]\n"
7009
           "-nographic      disable graphical output and redirect serial I/Os to console\n"
7010
           "-portrait       rotate graphical output 90 deg left (only PXA LCD)\n"
7011
#ifndef _WIN32
7012
           "-k language     use keyboard layout (for example \"fr\" for French)\n"
7013
#endif
7014
#ifdef HAS_AUDIO
7015
           "-audio-help     print list of audio drivers and their options\n"
7016
           "-soundhw c1,... enable audio support\n"
7017
           "                and only specified sound cards (comma separated list)\n"
7018
           "                use -soundhw ? to get the list of supported cards\n"
7019
           "                use -soundhw all to enable all of them\n"
7020
#endif
7021
           "-localtime      set the real time clock to local time [default=utc]\n"
7022
           "-full-screen    start in full screen\n"
7023
#ifdef TARGET_I386
7024
           "-win2k-hack     use it when installing Windows 2000 to avoid a disk full bug\n"
7025
#endif
7026
           "-usb            enable the USB driver (will be the default soon)\n"
7027
           "-usbdevice name add the host or guest USB device 'name'\n"
7028
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7029
           "-g WxH[xDEPTH]  Set the initial graphical resolution and depth\n"
7030
#endif
7031
           "-name string    set the name of the guest\n"
7032
           "\n"
7033
           "Network options:\n"
7034
           "-net nic[,vlan=n][,macaddr=addr][,model=type]\n"
7035
           "                create a new Network Interface Card and connect it to VLAN 'n'\n"
7036
#ifdef CONFIG_SLIRP
7037
           "-net user[,vlan=n][,hostname=host]\n"
7038
           "                connect the user mode network stack to VLAN 'n' and send\n"
7039
           "                hostname 'host' to DHCP clients\n"
7040
#endif
7041
#ifdef _WIN32
7042
           "-net tap[,vlan=n],ifname=name\n"
7043
           "                connect the host TAP network interface to VLAN 'n'\n"
7044
#else
7045
           "-net tap[,vlan=n][,fd=h][,ifname=name][,script=file][,downscript=dfile]\n"
7046
           "                connect the host TAP network interface to VLAN 'n' and use the\n"
7047
           "                network scripts 'file' (default=%s)\n"
7048
           "                and 'dfile' (default=%s);\n"
7049
           "                use '[down]script=no' to disable script execution;\n"
7050
           "                use 'fd=h' to connect to an already opened TAP interface\n"
7051
#endif
7052
           "-net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]\n"
7053
           "                connect the vlan 'n' to another VLAN using a socket connection\n"
7054
           "-net socket[,vlan=n][,fd=h][,mcast=maddr:port]\n"
7055
           "                connect the vlan 'n' to multicast maddr and port\n"
7056
           "-net none       use it alone to have zero network devices; if no -net option\n"
7057
           "                is provided, the default is '-net nic -net user'\n"
7058
           "\n"
7059
#ifdef CONFIG_SLIRP
7060
           "-tftp dir       allow tftp access to files in dir [-net user]\n"
7061
           "-bootp file     advertise file in BOOTP replies\n"
7062
#ifndef _WIN32
7063
           "-smb dir        allow SMB access to files in 'dir' [-net user]\n"
7064
#endif
7065
           "-redir [tcp|udp]:host-port:[guest-host]:guest-port\n"
7066
           "                redirect TCP or UDP connections from host to guest [-net user]\n"
7067
#endif
7068
           "\n"
7069
           "Linux boot specific:\n"
7070
           "-kernel bzImage use 'bzImage' as kernel image\n"
7071
           "-append cmdline use 'cmdline' as kernel command line\n"
7072
           "-initrd file    use 'file' as initial ram disk\n"
7073
           "\n"
7074
           "Debug/Expert options:\n"
7075
           "-monitor dev    redirect the monitor to char device 'dev'\n"
7076
           "-serial dev     redirect the serial port to char device 'dev'\n"
7077
           "-parallel dev   redirect the parallel port to char device 'dev'\n"
7078
           "-pidfile file   Write PID to 'file'\n"
7079
           "-S              freeze CPU at startup (use 'c' to start execution)\n"
7080
           "-s              wait gdb connection to port\n"
7081
           "-p port         set gdb connection port [default=%s]\n"
7082
           "-d item1,...    output log to %s (use -d ? for a list of log items)\n"
7083
           "-hdachs c,h,s[,t]  force hard disk 0 physical geometry and the optional BIOS\n"
7084
           "                translation (t=none or lba) (usually qemu can guess them)\n"
7085
           "-L path         set the directory for the BIOS, VGA BIOS and keymaps\n"
7086
#ifdef USE_KQEMU
7087
           "-kernel-kqemu   enable KQEMU full virtualization (default is user mode only)\n"
7088
           "-no-kqemu       disable KQEMU kernel module usage\n"
7089
#endif
7090
#ifdef USE_CODE_COPY
7091
           "-no-code-copy   disable code copy acceleration\n"
7092
#endif
7093
#ifdef TARGET_I386
7094
           "-std-vga        simulate a standard VGA card with VESA Bochs Extensions\n"
7095
           "                (default is CL-GD5446 PCI VGA)\n"
7096
           "-no-acpi        disable ACPI\n"
7097
#endif
7098
           "-no-reboot      exit instead of rebooting\n"
7099
           "-loadvm file    start right away with a saved state (loadvm in monitor)\n"
7100
           "-vnc display    start a VNC server on display\n"
7101
#ifndef _WIN32
7102
           "-daemonize      daemonize QEMU after initializing\n"
7103
#endif
7104
           "-option-rom rom load a file, rom, into the option ROM space\n"
7105
#ifdef TARGET_SPARC
7106
           "-prom-env variable=value  set OpenBIOS nvram variables\n"
7107
#endif
7108
           "-clock          force the use of the given methods for timer alarm.\n"
7109
           "                To see what timers are available use -clock help\n"
7110
           "\n"
7111
           "During emulation, the following keys are useful:\n"
7112
           "ctrl-alt-f      toggle full screen\n"
7113
           "ctrl-alt-n      switch to virtual console 'n'\n"
7114
           "ctrl-alt        toggle mouse and keyboard grab\n"
7115
           "\n"
7116
           "When using -nographic, press 'ctrl-a h' to get some help.\n"
7117
           ,
7118
           "qemu",
7119
           DEFAULT_RAM_SIZE,
7120
#ifndef _WIN32
7121
           DEFAULT_NETWORK_SCRIPT,
7122
           DEFAULT_NETWORK_DOWN_SCRIPT,
7123
#endif
7124
           DEFAULT_GDBSTUB_PORT,
7125
           "/tmp/qemu.log");
7126
    exit(exitcode);
7127
}
7128

    
7129
#define HAS_ARG 0x0001
7130

    
7131
enum {
7132
    QEMU_OPTION_h,
7133

    
7134
    QEMU_OPTION_M,
7135
    QEMU_OPTION_cpu,
7136
    QEMU_OPTION_fda,
7137
    QEMU_OPTION_fdb,
7138
    QEMU_OPTION_hda,
7139
    QEMU_OPTION_hdb,
7140
    QEMU_OPTION_hdc,
7141
    QEMU_OPTION_hdd,
7142
    QEMU_OPTION_cdrom,
7143
    QEMU_OPTION_mtdblock,
7144
    QEMU_OPTION_sd,
7145
    QEMU_OPTION_pflash,
7146
    QEMU_OPTION_boot,
7147
    QEMU_OPTION_snapshot,
7148
#ifdef TARGET_I386
7149
    QEMU_OPTION_no_fd_bootchk,
7150
#endif
7151
    QEMU_OPTION_m,
7152
    QEMU_OPTION_nographic,
7153
    QEMU_OPTION_portrait,
7154
#ifdef HAS_AUDIO
7155
    QEMU_OPTION_audio_help,
7156
    QEMU_OPTION_soundhw,
7157
#endif
7158

    
7159
    QEMU_OPTION_net,
7160
    QEMU_OPTION_tftp,
7161
    QEMU_OPTION_bootp,
7162
    QEMU_OPTION_smb,
7163
    QEMU_OPTION_redir,
7164

    
7165
    QEMU_OPTION_kernel,
7166
    QEMU_OPTION_append,
7167
    QEMU_OPTION_initrd,
7168

    
7169
    QEMU_OPTION_S,
7170
    QEMU_OPTION_s,
7171
    QEMU_OPTION_p,
7172
    QEMU_OPTION_d,
7173
    QEMU_OPTION_hdachs,
7174
    QEMU_OPTION_L,
7175
    QEMU_OPTION_bios,
7176
    QEMU_OPTION_no_code_copy,
7177
    QEMU_OPTION_k,
7178
    QEMU_OPTION_localtime,
7179
    QEMU_OPTION_cirrusvga,
7180
    QEMU_OPTION_vmsvga,
7181
    QEMU_OPTION_g,
7182
    QEMU_OPTION_std_vga,
7183
    QEMU_OPTION_echr,
7184
    QEMU_OPTION_monitor,
7185
    QEMU_OPTION_serial,
7186
    QEMU_OPTION_parallel,
7187
    QEMU_OPTION_loadvm,
7188
    QEMU_OPTION_full_screen,
7189
    QEMU_OPTION_no_frame,
7190
    QEMU_OPTION_alt_grab,
7191
    QEMU_OPTION_no_quit,
7192
    QEMU_OPTION_pidfile,
7193
    QEMU_OPTION_no_kqemu,
7194
    QEMU_OPTION_kernel_kqemu,
7195
    QEMU_OPTION_win2k_hack,
7196
    QEMU_OPTION_usb,
7197
    QEMU_OPTION_usbdevice,
7198
    QEMU_OPTION_smp,
7199
    QEMU_OPTION_vnc,
7200
    QEMU_OPTION_no_acpi,
7201
    QEMU_OPTION_no_reboot,
7202
    QEMU_OPTION_show_cursor,
7203
    QEMU_OPTION_daemonize,
7204
    QEMU_OPTION_option_rom,
7205
    QEMU_OPTION_semihosting,
7206
    QEMU_OPTION_name,
7207
    QEMU_OPTION_prom_env,
7208
    QEMU_OPTION_old_param,
7209
    QEMU_OPTION_clock,
7210
};
7211

    
7212
typedef struct QEMUOption {
7213
    const char *name;
7214
    int flags;
7215
    int index;
7216
} QEMUOption;
7217

    
7218
const QEMUOption qemu_options[] = {
7219
    { "h", 0, QEMU_OPTION_h },
7220
    { "help", 0, QEMU_OPTION_h },
7221

    
7222
    { "M", HAS_ARG, QEMU_OPTION_M },
7223
    { "cpu", HAS_ARG, QEMU_OPTION_cpu },
7224
    { "fda", HAS_ARG, QEMU_OPTION_fda },
7225
    { "fdb", HAS_ARG, QEMU_OPTION_fdb },
7226
    { "hda", HAS_ARG, QEMU_OPTION_hda },
7227
    { "hdb", HAS_ARG, QEMU_OPTION_hdb },
7228
    { "hdc", HAS_ARG, QEMU_OPTION_hdc },
7229
    { "hdd", HAS_ARG, QEMU_OPTION_hdd },
7230
    { "cdrom", HAS_ARG, QEMU_OPTION_cdrom },
7231
    { "mtdblock", HAS_ARG, QEMU_OPTION_mtdblock },
7232
    { "sd", HAS_ARG, QEMU_OPTION_sd },
7233
    { "pflash", HAS_ARG, QEMU_OPTION_pflash },
7234
    { "boot", HAS_ARG, QEMU_OPTION_boot },
7235
    { "snapshot", 0, QEMU_OPTION_snapshot },
7236
#ifdef TARGET_I386
7237
    { "no-fd-bootchk", 0, QEMU_OPTION_no_fd_bootchk },
7238
#endif
7239
    { "m", HAS_ARG, QEMU_OPTION_m },
7240
    { "nographic", 0, QEMU_OPTION_nographic },
7241
    { "portrait", 0, QEMU_OPTION_portrait },
7242
    { "k", HAS_ARG, QEMU_OPTION_k },
7243
#ifdef HAS_AUDIO
7244
    { "audio-help", 0, QEMU_OPTION_audio_help },
7245
    { "soundhw", HAS_ARG, QEMU_OPTION_soundhw },
7246
#endif
7247

    
7248
    { "net", HAS_ARG, QEMU_OPTION_net},
7249
#ifdef CONFIG_SLIRP
7250
    { "tftp", HAS_ARG, QEMU_OPTION_tftp },
7251
    { "bootp", HAS_ARG, QEMU_OPTION_bootp },
7252
#ifndef _WIN32
7253
    { "smb", HAS_ARG, QEMU_OPTION_smb },
7254
#endif
7255
    { "redir", HAS_ARG, QEMU_OPTION_redir },
7256
#endif
7257

    
7258
    { "kernel", HAS_ARG, QEMU_OPTION_kernel },
7259
    { "append", HAS_ARG, QEMU_OPTION_append },
7260
    { "initrd", HAS_ARG, QEMU_OPTION_initrd },
7261

    
7262
    { "S", 0, QEMU_OPTION_S },
7263
    { "s", 0, QEMU_OPTION_s },
7264
    { "p", HAS_ARG, QEMU_OPTION_p },
7265
    { "d", HAS_ARG, QEMU_OPTION_d },
7266
    { "hdachs", HAS_ARG, QEMU_OPTION_hdachs },
7267
    { "L", HAS_ARG, QEMU_OPTION_L },
7268
    { "bios", HAS_ARG, QEMU_OPTION_bios },
7269
    { "no-code-copy", 0, QEMU_OPTION_no_code_copy },
7270
#ifdef USE_KQEMU
7271
    { "no-kqemu", 0, QEMU_OPTION_no_kqemu },
7272
    { "kernel-kqemu", 0, QEMU_OPTION_kernel_kqemu },
7273
#endif
7274
#if defined(TARGET_PPC) || defined(TARGET_SPARC)
7275
    { "g", 1, QEMU_OPTION_g },
7276
#endif
7277
    { "localtime", 0, QEMU_OPTION_localtime },
7278
    { "std-vga", 0, QEMU_OPTION_std_vga },
7279
    { "echr", HAS_ARG, QEMU_OPTION_echr },
7280
    { "monitor", HAS_ARG, QEMU_OPTION_monitor },
7281
    { "serial", HAS_ARG, QEMU_OPTION_serial },
7282
    { "parallel", HAS_ARG, QEMU_OPTION_parallel },
7283
    { "loadvm", HAS_ARG, QEMU_OPTION_loadvm },
7284
    { "full-screen", 0, QEMU_OPTION_full_screen },
7285
#ifdef CONFIG_SDL
7286
    { "no-frame", 0, QEMU_OPTION_no_frame },
7287
    { "alt-grab", 0, QEMU_OPTION_alt_grab },
7288
    { "no-quit", 0, QEMU_OPTION_no_quit },
7289
#endif
7290
    { "pidfile", HAS_ARG, QEMU_OPTION_pidfile },
7291
    { "win2k-hack", 0, QEMU_OPTION_win2k_hack },
7292
    { "usbdevice", HAS_ARG, QEMU_OPTION_usbdevice },
7293
    { "smp", HAS_ARG, QEMU_OPTION_smp },
7294
    { "vnc", HAS_ARG, QEMU_OPTION_vnc },
7295

    
7296
    /* temporary options */
7297
    { "usb", 0, QEMU_OPTION_usb },
7298
    { "cirrusvga", 0, QEMU_OPTION_cirrusvga },
7299
    { "vmwarevga", 0, QEMU_OPTION_vmsvga },
7300
    { "no-acpi", 0, QEMU_OPTION_no_acpi },
7301
    { "no-reboot", 0, QEMU_OPTION_no_reboot },
7302
    { "show-cursor", 0, QEMU_OPTION_show_cursor },
7303
    { "daemonize", 0, QEMU_OPTION_daemonize },
7304
    { "option-rom", HAS_ARG, QEMU_OPTION_option_rom },
7305
#if defined(TARGET_ARM) || defined(TARGET_M68K)
7306
    { "semihosting", 0, QEMU_OPTION_semihosting },
7307
#endif
7308
    { "name", HAS_ARG, QEMU_OPTION_name },
7309
#if defined(TARGET_SPARC)
7310
    { "prom-env", HAS_ARG, QEMU_OPTION_prom_env },
7311
#endif
7312
#if defined(TARGET_ARM)
7313
    { "old-param", 0, QEMU_OPTION_old_param },
7314
#endif
7315
    { "clock", HAS_ARG, QEMU_OPTION_clock },
7316
    { NULL },
7317
};
7318

    
7319
#if defined (TARGET_I386) && defined(USE_CODE_COPY)
7320

    
7321
/* this stack is only used during signal handling */
7322
#define SIGNAL_STACK_SIZE 32768
7323

    
7324
static uint8_t *signal_stack;
7325

    
7326
#endif
7327

    
7328
/* password input */
7329

    
7330
int qemu_key_check(BlockDriverState *bs, const char *name)
7331
{
7332
    char password[256];
7333
    int i;
7334

    
7335
    if (!bdrv_is_encrypted(bs))
7336
        return 0;
7337

    
7338
    term_printf("%s is encrypted.\n", name);
7339
    for(i = 0; i < 3; i++) {
7340
        monitor_readline("Password: ", 1, password, sizeof(password));
7341
        if (bdrv_set_key(bs, password) == 0)
7342
            return 0;
7343
        term_printf("invalid password\n");
7344
    }
7345
    return -EPERM;
7346
}
7347

    
7348
static BlockDriverState *get_bdrv(int index)
7349
{
7350
    BlockDriverState *bs;
7351

    
7352
    if (index < 4) {
7353
        bs = bs_table[index];
7354
    } else if (index < 6) {
7355
        bs = fd_table[index - 4];
7356
    } else {
7357
        bs = NULL;
7358
    }
7359
    return bs;
7360
}
7361

    
7362
static void read_passwords(void)
7363
{
7364
    BlockDriverState *bs;
7365
    int i;
7366

    
7367
    for(i = 0; i < 6; i++) {
7368
        bs = get_bdrv(i);
7369
        if (bs)
7370
            qemu_key_check(bs, bdrv_get_device_name(bs));
7371
    }
7372
}
7373

    
7374
/* XXX: currently we cannot use simultaneously different CPUs */
7375
void register_machines(void)
7376
{
7377
#if defined(TARGET_I386)
7378
    qemu_register_machine(&pc_machine);
7379
    qemu_register_machine(&isapc_machine);
7380
#elif defined(TARGET_PPC)
7381
    qemu_register_machine(&heathrow_machine);
7382
    qemu_register_machine(&core99_machine);
7383
    qemu_register_machine(&prep_machine);
7384
    qemu_register_machine(&ref405ep_machine);
7385
    qemu_register_machine(&taihu_machine);
7386
#elif defined(TARGET_MIPS)
7387
    qemu_register_machine(&mips_machine);
7388
    qemu_register_machine(&mips_malta_machine);
7389
    qemu_register_machine(&mips_pica61_machine);
7390
    qemu_register_machine(&mips_mipssim_machine);
7391
#elif defined(TARGET_SPARC)
7392
#ifdef TARGET_SPARC64
7393
    qemu_register_machine(&sun4u_machine);
7394
#else
7395
    qemu_register_machine(&ss5_machine);
7396
    qemu_register_machine(&ss10_machine);
7397
#endif
7398
#elif defined(TARGET_ARM)
7399
    qemu_register_machine(&integratorcp_machine);
7400
    qemu_register_machine(&versatilepb_machine);
7401
    qemu_register_machine(&versatileab_machine);
7402
    qemu_register_machine(&realview_machine);
7403
    qemu_register_machine(&akitapda_machine);
7404
    qemu_register_machine(&spitzpda_machine);
7405
    qemu_register_machine(&borzoipda_machine);
7406
    qemu_register_machine(&terrierpda_machine);
7407
    qemu_register_machine(&palmte_machine);
7408
#elif defined(TARGET_SH4)
7409
    qemu_register_machine(&shix_machine);
7410
    qemu_register_machine(&r2d_machine);
7411
#elif defined(TARGET_ALPHA)
7412
    /* XXX: TODO */
7413
#elif defined(TARGET_M68K)
7414
    qemu_register_machine(&mcf5208evb_machine);
7415
    qemu_register_machine(&an5206_machine);
7416
#elif defined(TARGET_CRIS)
7417
    qemu_register_machine(&bareetraxfs_machine);
7418
#else
7419
#error unsupported CPU
7420
#endif
7421
}
7422

    
7423
#ifdef HAS_AUDIO
7424
struct soundhw soundhw[] = {
7425
#ifdef HAS_AUDIO_CHOICE
7426
#ifdef TARGET_I386
7427
    {
7428
        "pcspk",
7429
        "PC speaker",
7430
        0,
7431
        1,
7432
        { .init_isa = pcspk_audio_init }
7433
    },
7434
#endif
7435
    {
7436
        "sb16",
7437
        "Creative Sound Blaster 16",
7438
        0,
7439
        1,
7440
        { .init_isa = SB16_init }
7441
    },
7442

    
7443
#ifdef CONFIG_ADLIB
7444
    {
7445
        "adlib",
7446
#ifdef HAS_YMF262
7447
        "Yamaha YMF262 (OPL3)",
7448
#else
7449
        "Yamaha YM3812 (OPL2)",
7450
#endif
7451
        0,
7452
        1,
7453
        { .init_isa = Adlib_init }
7454
    },
7455
#endif
7456

    
7457
#ifdef CONFIG_GUS
7458
    {
7459
        "gus",
7460
        "Gravis Ultrasound GF1",
7461
        0,
7462
        1,
7463
        { .init_isa = GUS_init }
7464
    },
7465
#endif
7466

    
7467
    {
7468
        "es1370",
7469
        "ENSONIQ AudioPCI ES1370",
7470
        0,
7471
        0,
7472
        { .init_pci = es1370_init }
7473
    },
7474
#endif
7475

    
7476
    { NULL, NULL, 0, 0, { NULL } }
7477
};
7478

    
7479
static void select_soundhw (const char *optarg)
7480
{
7481
    struct soundhw *c;
7482

    
7483
    if (*optarg == '?') {
7484
    show_valid_cards:
7485

    
7486
        printf ("Valid sound card names (comma separated):\n");
7487
        for (c = soundhw; c->name; ++c) {
7488
            printf ("%-11s %s\n", c->name, c->descr);
7489
        }
7490
        printf ("\n-soundhw all will enable all of the above\n");
7491
        exit (*optarg != '?');
7492
    }
7493
    else {
7494
        size_t l;
7495
        const char *p;
7496
        char *e;
7497
        int bad_card = 0;
7498

    
7499
        if (!strcmp (optarg, "all")) {
7500
            for (c = soundhw; c->name; ++c) {
7501
                c->enabled = 1;
7502
            }
7503
            return;
7504
        }
7505

    
7506
        p = optarg;
7507
        while (*p) {
7508
            e = strchr (p, ',');
7509
            l = !e ? strlen (p) : (size_t) (e - p);
7510

    
7511
            for (c = soundhw; c->name; ++c) {
7512
                if (!strncmp (c->name, p, l)) {
7513
                    c->enabled = 1;
7514
                    break;
7515
                }
7516
            }
7517

    
7518
            if (!c->name) {
7519
                if (l > 80) {
7520
                    fprintf (stderr,
7521
                             "Unknown sound card name (too big to show)\n");
7522
                }
7523
                else {
7524
                    fprintf (stderr, "Unknown sound card name `%.*s'\n",
7525
                             (int) l, p);
7526
                }
7527
                bad_card = 1;
7528
            }
7529
            p += l + (e != NULL);
7530
        }
7531

    
7532
        if (bad_card)
7533
            goto show_valid_cards;
7534
    }
7535
}
7536
#endif
7537

    
7538
#ifdef _WIN32
7539
static BOOL WINAPI qemu_ctrl_handler(DWORD type)
7540
{
7541
    exit(STATUS_CONTROL_C_EXIT);
7542
    return TRUE;
7543
}
7544
#endif
7545

    
7546
#define MAX_NET_CLIENTS 32
7547

    
7548
int main(int argc, char **argv)
7549
{
7550
#ifdef CONFIG_GDBSTUB
7551
    int use_gdbstub;
7552
    const char *gdbstub_port;
7553
#endif
7554
    int i, cdrom_index, pflash_index;
7555
    int snapshot, linux_boot;
7556
    const char *initrd_filename;
7557
    const char *hd_filename[MAX_DISKS], *fd_filename[MAX_FD];
7558
    const char *pflash_filename[MAX_PFLASH];
7559
    const char *sd_filename;
7560
    const char *mtd_filename;
7561
    const char *kernel_filename, *kernel_cmdline;
7562
    DisplayState *ds = &display_state;
7563
    int cyls, heads, secs, translation;
7564
    char net_clients[MAX_NET_CLIENTS][256];
7565
    int nb_net_clients;
7566
    int optind;
7567
    const char *r, *optarg;
7568
    CharDriverState *monitor_hd;
7569
    char monitor_device[128];
7570
    char serial_devices[MAX_SERIAL_PORTS][128];
7571
    int serial_device_index;
7572
    char parallel_devices[MAX_PARALLEL_PORTS][128];
7573
    int parallel_device_index;
7574
    const char *loadvm = NULL;
7575
    QEMUMachine *machine;
7576
    const char *cpu_model;
7577
    char usb_devices[MAX_USB_CMDLINE][128];
7578
    int usb_devices_index;
7579
    int fds[2];
7580
    const char *pid_file = NULL;
7581
    VLANState *vlan;
7582

    
7583
    LIST_INIT (&vm_change_state_head);
7584
#ifndef _WIN32
7585
    {
7586
        struct sigaction act;
7587
        sigfillset(&act.sa_mask);
7588
        act.sa_flags = 0;
7589
        act.sa_handler = SIG_IGN;
7590
        sigaction(SIGPIPE, &act, NULL);
7591
    }
7592
#else
7593
    SetConsoleCtrlHandler(qemu_ctrl_handler, TRUE);
7594
    /* Note: cpu_interrupt() is currently not SMP safe, so we force
7595
       QEMU to run on a single CPU */
7596
    {
7597
        HANDLE h;
7598
        DWORD mask, smask;
7599
        int i;
7600
        h = GetCurrentProcess();
7601
        if (GetProcessAffinityMask(h, &mask, &smask)) {
7602
            for(i = 0; i < 32; i++) {
7603
                if (mask & (1 << i))
7604
                    break;
7605
            }
7606
            if (i != 32) {
7607
                mask = 1 << i;
7608
                SetProcessAffinityMask(h, mask);
7609
            }
7610
        }
7611
    }
7612
#endif
7613

    
7614
    register_machines();
7615
    machine = first_machine;
7616
    cpu_model = NULL;
7617
    initrd_filename = NULL;
7618
    for(i = 0; i < MAX_FD; i++)
7619
        fd_filename[i] = NULL;
7620
    for(i = 0; i < MAX_DISKS; i++)
7621
        hd_filename[i] = NULL;
7622
    for(i = 0; i < MAX_PFLASH; i++)
7623
        pflash_filename[i] = NULL;
7624
    pflash_index = 0;
7625
    sd_filename = NULL;
7626
    mtd_filename = NULL;
7627
    ram_size = DEFAULT_RAM_SIZE * 1024 * 1024;
7628
    vga_ram_size = VGA_RAM_SIZE;
7629
#ifdef CONFIG_GDBSTUB
7630
    use_gdbstub = 0;
7631
    gdbstub_port = DEFAULT_GDBSTUB_PORT;
7632
#endif
7633
    snapshot = 0;
7634
    nographic = 0;
7635
    kernel_filename = NULL;
7636
    kernel_cmdline = "";
7637
#ifdef TARGET_PPC
7638
    cdrom_index = 1;
7639
#else
7640
    cdrom_index = 2;
7641
#endif
7642
    cyls = heads = secs = 0;
7643
    translation = BIOS_ATA_TRANSLATION_AUTO;
7644
    pstrcpy(monitor_device, sizeof(monitor_device), "vc");
7645

    
7646
    pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "vc");
7647
    for(i = 1; i < MAX_SERIAL_PORTS; i++)
7648
        serial_devices[i][0] = '\0';
7649
    serial_device_index = 0;
7650

    
7651
    pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "vc");
7652
    for(i = 1; i < MAX_PARALLEL_PORTS; i++)
7653
        parallel_devices[i][0] = '\0';
7654
    parallel_device_index = 0;
7655

    
7656
    usb_devices_index = 0;
7657

    
7658
    nb_net_clients = 0;
7659

    
7660
    nb_nics = 0;
7661
    /* default mac address of the first network interface */
7662

    
7663
    optind = 1;
7664
    for(;;) {
7665
        if (optind >= argc)
7666
            break;
7667
        r = argv[optind];
7668
        if (r[0] != '-') {
7669
            hd_filename[0] = argv[optind++];
7670
        } else {
7671
            const QEMUOption *popt;
7672

    
7673
            optind++;
7674
            /* Treat --foo the same as -foo.  */
7675
            if (r[1] == '-')
7676
                r++;
7677
            popt = qemu_options;
7678
            for(;;) {
7679
                if (!popt->name) {
7680
                    fprintf(stderr, "%s: invalid option -- '%s'\n",
7681
                            argv[0], r);
7682
                    exit(1);
7683
                }
7684
                if (!strcmp(popt->name, r + 1))
7685
                    break;
7686
                popt++;
7687
            }
7688
            if (popt->flags & HAS_ARG) {
7689
                if (optind >= argc) {
7690
                    fprintf(stderr, "%s: option '%s' requires an argument\n",
7691
                            argv[0], r);
7692
                    exit(1);
7693
                }
7694
                optarg = argv[optind++];
7695
            } else {
7696
                optarg = NULL;
7697
            }
7698

    
7699
            switch(popt->index) {
7700
            case QEMU_OPTION_M:
7701
                machine = find_machine(optarg);
7702
                if (!machine) {
7703
                    QEMUMachine *m;
7704
                    printf("Supported machines are:\n");
7705
                    for(m = first_machine; m != NULL; m = m->next) {
7706
                        printf("%-10s %s%s\n",
7707
                               m->name, m->desc,
7708
                               m == first_machine ? " (default)" : "");
7709
                    }
7710
                    exit(*optarg != '?');
7711
                }
7712
                break;
7713
            case QEMU_OPTION_cpu:
7714
                /* hw initialization will check this */
7715
                if (*optarg == '?') {
7716
/* XXX: implement xxx_cpu_list for targets that still miss it */
7717
#if defined(cpu_list)
7718
                    cpu_list(stdout, &fprintf);
7719
#endif
7720
                    exit(0);
7721
                } else {
7722
                    cpu_model = optarg;
7723
                }
7724
                break;
7725
            case QEMU_OPTION_initrd:
7726
                initrd_filename = optarg;
7727
                break;
7728
            case QEMU_OPTION_hda:
7729
            case QEMU_OPTION_hdb:
7730
            case QEMU_OPTION_hdc:
7731
            case QEMU_OPTION_hdd:
7732
                {
7733
                    int hd_index;
7734
                    hd_index = popt->index - QEMU_OPTION_hda;
7735
                    hd_filename[hd_index] = optarg;
7736
                    if (hd_index == cdrom_index)
7737
                        cdrom_index = -1;
7738
                }
7739
                break;
7740
            case QEMU_OPTION_mtdblock:
7741
                mtd_filename = optarg;
7742
                break;
7743
            case QEMU_OPTION_sd:
7744
                sd_filename = optarg;
7745
                break;
7746
            case QEMU_OPTION_pflash:
7747
                if (pflash_index >= MAX_PFLASH) {
7748
                    fprintf(stderr, "qemu: too many parallel flash images\n");
7749
                    exit(1);
7750
                }
7751
                pflash_filename[pflash_index++] = optarg;
7752
                break;
7753
            case QEMU_OPTION_snapshot:
7754
                snapshot = 1;
7755
                break;
7756
            case QEMU_OPTION_hdachs:
7757
                {
7758
                    const char *p;
7759
                    p = optarg;
7760
                    cyls = strtol(p, (char **)&p, 0);
7761
                    if (cyls < 1 || cyls > 16383)
7762
                        goto chs_fail;
7763
                    if (*p != ',')
7764
                        goto chs_fail;
7765
                    p++;
7766
                    heads = strtol(p, (char **)&p, 0);
7767
                    if (heads < 1 || heads > 16)
7768
                        goto chs_fail;
7769
                    if (*p != ',')
7770
                        goto chs_fail;
7771
                    p++;
7772
                    secs = strtol(p, (char **)&p, 0);
7773
                    if (secs < 1 || secs > 63)
7774
                        goto chs_fail;
7775
                    if (*p == ',') {
7776
                        p++;
7777
                        if (!strcmp(p, "none"))
7778
                            translation = BIOS_ATA_TRANSLATION_NONE;
7779
                        else if (!strcmp(p, "lba"))
7780
                            translation = BIOS_ATA_TRANSLATION_LBA;
7781
                        else if (!strcmp(p, "auto"))
7782
                            translation = BIOS_ATA_TRANSLATION_AUTO;
7783
                        else
7784
                            goto chs_fail;
7785
                    } else if (*p != '\0') {
7786
                    chs_fail:
7787
                        fprintf(stderr, "qemu: invalid physical CHS format\n");
7788
                        exit(1);
7789
                    }
7790
                }
7791
                break;
7792
            case QEMU_OPTION_nographic:
7793
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "stdio");
7794
                pstrcpy(parallel_devices[0], sizeof(parallel_devices[0]), "null");
7795
                pstrcpy(monitor_device, sizeof(monitor_device), "stdio");
7796
                nographic = 1;
7797
                break;
7798
            case QEMU_OPTION_portrait:
7799
                graphic_rotate = 1;
7800
                break;
7801
            case QEMU_OPTION_kernel:
7802
                kernel_filename = optarg;
7803
                break;
7804
            case QEMU_OPTION_append:
7805
                kernel_cmdline = optarg;
7806
                break;
7807
            case QEMU_OPTION_cdrom:
7808
                if (cdrom_index >= 0) {
7809
                    hd_filename[cdrom_index] = optarg;
7810
                }
7811
                break;
7812
            case QEMU_OPTION_boot:
7813
                boot_device = optarg[0];
7814
                if (boot_device != 'a' &&
7815
#if defined(TARGET_SPARC) || defined(TARGET_I386)
7816
                    // Network boot
7817
                    boot_device != 'n' &&
7818
#endif
7819
                    boot_device != 'c' && boot_device != 'd') {
7820
                    fprintf(stderr, "qemu: invalid boot device '%c'\n", boot_device);
7821
                    exit(1);
7822
                }
7823
                break;
7824
            case QEMU_OPTION_fda:
7825
                fd_filename[0] = optarg;
7826
                break;
7827
            case QEMU_OPTION_fdb:
7828
                fd_filename[1] = optarg;
7829
                break;
7830
#ifdef TARGET_I386
7831
            case QEMU_OPTION_no_fd_bootchk:
7832
                fd_bootchk = 0;
7833
                break;
7834
#endif
7835
            case QEMU_OPTION_no_code_copy:
7836
                code_copy_enabled = 0;
7837
                break;
7838
            case QEMU_OPTION_net:
7839
                if (nb_net_clients >= MAX_NET_CLIENTS) {
7840
                    fprintf(stderr, "qemu: too many network clients\n");
7841
                    exit(1);
7842
                }
7843
                pstrcpy(net_clients[nb_net_clients],
7844
                        sizeof(net_clients[0]),
7845
                        optarg);
7846
                nb_net_clients++;
7847
                break;
7848
#ifdef CONFIG_SLIRP
7849
            case QEMU_OPTION_tftp:
7850
                tftp_prefix = optarg;
7851
                break;
7852
            case QEMU_OPTION_bootp:
7853
                bootp_filename = optarg;
7854
                break;
7855
#ifndef _WIN32
7856
            case QEMU_OPTION_smb:
7857
                net_slirp_smb(optarg);
7858
                break;
7859
#endif
7860
            case QEMU_OPTION_redir:
7861
                net_slirp_redir(optarg);
7862
                break;
7863
#endif
7864
#ifdef HAS_AUDIO
7865
            case QEMU_OPTION_audio_help:
7866
                AUD_help ();
7867
                exit (0);
7868
                break;
7869
            case QEMU_OPTION_soundhw:
7870
                select_soundhw (optarg);
7871
                break;
7872
#endif
7873
            case QEMU_OPTION_h:
7874
                help(0);
7875
                break;
7876
            case QEMU_OPTION_m:
7877
                ram_size = atoi(optarg) * 1024 * 1024;
7878
                if (ram_size <= 0)
7879
                    help(1);
7880
                if (ram_size > PHYS_RAM_MAX_SIZE) {
7881
                    fprintf(stderr, "qemu: at most %d MB RAM can be simulated\n",
7882
                            PHYS_RAM_MAX_SIZE / (1024 * 1024));
7883
                    exit(1);
7884
                }
7885
                break;
7886
            case QEMU_OPTION_d:
7887
                {
7888
                    int mask;
7889
                    CPULogItem *item;
7890

    
7891
                    mask = cpu_str_to_log_mask(optarg);
7892
                    if (!mask) {
7893
                        printf("Log items (comma separated):\n");
7894
                    for(item = cpu_log_items; item->mask != 0; item++) {
7895
                        printf("%-10s %s\n", item->name, item->help);
7896
                    }
7897
                    exit(1);
7898
                    }
7899
                    cpu_set_log(mask);
7900
                }
7901
                break;
7902
#ifdef CONFIG_GDBSTUB
7903
            case QEMU_OPTION_s:
7904
                use_gdbstub = 1;
7905
                break;
7906
            case QEMU_OPTION_p:
7907
                gdbstub_port = optarg;
7908
                break;
7909
#endif
7910
            case QEMU_OPTION_L:
7911
                bios_dir = optarg;
7912
                break;
7913
            case QEMU_OPTION_bios:
7914
                bios_name = optarg;
7915
                break;
7916
            case QEMU_OPTION_S:
7917
                autostart = 0;
7918
                break;
7919
            case QEMU_OPTION_k:
7920
                keyboard_layout = optarg;
7921
                break;
7922
            case QEMU_OPTION_localtime:
7923
                rtc_utc = 0;
7924
                break;
7925
            case QEMU_OPTION_cirrusvga:
7926
                cirrus_vga_enabled = 1;
7927
                vmsvga_enabled = 0;
7928
                break;
7929
            case QEMU_OPTION_vmsvga:
7930
                cirrus_vga_enabled = 0;
7931
                vmsvga_enabled = 1;
7932
                break;
7933
            case QEMU_OPTION_std_vga:
7934
                cirrus_vga_enabled = 0;
7935
                vmsvga_enabled = 0;
7936
                break;
7937
            case QEMU_OPTION_g:
7938
                {
7939
                    const char *p;
7940
                    int w, h, depth;
7941
                    p = optarg;
7942
                    w = strtol(p, (char **)&p, 10);
7943
                    if (w <= 0) {
7944
                    graphic_error:
7945
                        fprintf(stderr, "qemu: invalid resolution or depth\n");
7946
                        exit(1);
7947
                    }
7948
                    if (*p != 'x')
7949
                        goto graphic_error;
7950
                    p++;
7951
                    h = strtol(p, (char **)&p, 10);
7952
                    if (h <= 0)
7953
                        goto graphic_error;
7954
                    if (*p == 'x') {
7955
                        p++;
7956
                        depth = strtol(p, (char **)&p, 10);
7957
                        if (depth != 8 && depth != 15 && depth != 16 &&
7958
                            depth != 24 && depth != 32)
7959
                            goto graphic_error;
7960
                    } else if (*p == '\0') {
7961
                        depth = graphic_depth;
7962
                    } else {
7963
                        goto graphic_error;
7964
                    }
7965

    
7966
                    graphic_width = w;
7967
                    graphic_height = h;
7968
                    graphic_depth = depth;
7969
                }
7970
                break;
7971
            case QEMU_OPTION_echr:
7972
                {
7973
                    char *r;
7974
                    term_escape_char = strtol(optarg, &r, 0);
7975
                    if (r == optarg)
7976
                        printf("Bad argument to echr\n");
7977
                    break;
7978
                }
7979
            case QEMU_OPTION_monitor:
7980
                pstrcpy(monitor_device, sizeof(monitor_device), optarg);
7981
                break;
7982
            case QEMU_OPTION_serial:
7983
                if (serial_device_index >= MAX_SERIAL_PORTS) {
7984
                    fprintf(stderr, "qemu: too many serial ports\n");
7985
                    exit(1);
7986
                }
7987
                pstrcpy(serial_devices[serial_device_index],
7988
                        sizeof(serial_devices[0]), optarg);
7989
                serial_device_index++;
7990
                break;
7991
            case QEMU_OPTION_parallel:
7992
                if (parallel_device_index >= MAX_PARALLEL_PORTS) {
7993
                    fprintf(stderr, "qemu: too many parallel ports\n");
7994
                    exit(1);
7995
                }
7996
                pstrcpy(parallel_devices[parallel_device_index],
7997
                        sizeof(parallel_devices[0]), optarg);
7998
                parallel_device_index++;
7999
                break;
8000
            case QEMU_OPTION_loadvm:
8001
                loadvm = optarg;
8002
                break;
8003
            case QEMU_OPTION_full_screen:
8004
                full_screen = 1;
8005
                break;
8006
#ifdef CONFIG_SDL
8007
            case QEMU_OPTION_no_frame:
8008
                no_frame = 1;
8009
                break;
8010
            case QEMU_OPTION_alt_grab:
8011
                alt_grab = 1;
8012
                break;
8013
            case QEMU_OPTION_no_quit:
8014
                no_quit = 1;
8015
                break;
8016
#endif
8017
            case QEMU_OPTION_pidfile:
8018
                pid_file = optarg;
8019
                break;
8020
#ifdef TARGET_I386
8021
            case QEMU_OPTION_win2k_hack:
8022
                win2k_install_hack = 1;
8023
                break;
8024
#endif
8025
#ifdef USE_KQEMU
8026
            case QEMU_OPTION_no_kqemu:
8027
                kqemu_allowed = 0;
8028
                break;
8029
            case QEMU_OPTION_kernel_kqemu:
8030
                kqemu_allowed = 2;
8031
                break;
8032
#endif
8033
            case QEMU_OPTION_usb:
8034
                usb_enabled = 1;
8035
                break;
8036
            case QEMU_OPTION_usbdevice:
8037
                usb_enabled = 1;
8038
                if (usb_devices_index >= MAX_USB_CMDLINE) {
8039
                    fprintf(stderr, "Too many USB devices\n");
8040
                    exit(1);
8041
                }
8042
                pstrcpy(usb_devices[usb_devices_index],
8043
                        sizeof(usb_devices[usb_devices_index]),
8044
                        optarg);
8045
                usb_devices_index++;
8046
                break;
8047
            case QEMU_OPTION_smp:
8048
                smp_cpus = atoi(optarg);
8049
                if (smp_cpus < 1 || smp_cpus > MAX_CPUS) {
8050
                    fprintf(stderr, "Invalid number of CPUs\n");
8051
                    exit(1);
8052
                }
8053
                break;
8054
            case QEMU_OPTION_vnc:
8055
                vnc_display = optarg;
8056
                break;
8057
            case QEMU_OPTION_no_acpi:
8058
                acpi_enabled = 0;
8059
                break;
8060
            case QEMU_OPTION_no_reboot:
8061
                no_reboot = 1;
8062
                break;
8063
            case QEMU_OPTION_show_cursor:
8064
                cursor_hide = 0;
8065
                break;
8066
            case QEMU_OPTION_daemonize:
8067
                daemonize = 1;
8068
                break;
8069
            case QEMU_OPTION_option_rom:
8070
                if (nb_option_roms >= MAX_OPTION_ROMS) {
8071
                    fprintf(stderr, "Too many option ROMs\n");
8072
                    exit(1);
8073
                }
8074
                option_rom[nb_option_roms] = optarg;
8075
                nb_option_roms++;
8076
                break;
8077
            case QEMU_OPTION_semihosting:
8078
                semihosting_enabled = 1;
8079
                break;
8080
            case QEMU_OPTION_name:
8081
                qemu_name = optarg;
8082
                break;
8083
#ifdef TARGET_SPARC
8084
            case QEMU_OPTION_prom_env:
8085
                if (nb_prom_envs >= MAX_PROM_ENVS) {
8086
                    fprintf(stderr, "Too many prom variables\n");
8087
                    exit(1);
8088
                }
8089
                prom_envs[nb_prom_envs] = optarg;
8090
                nb_prom_envs++;
8091
                break;
8092
#endif
8093
#ifdef TARGET_ARM
8094
            case QEMU_OPTION_old_param:
8095
                old_param = 1;
8096
#endif
8097
            case QEMU_OPTION_clock:
8098
                configure_alarms(optarg);
8099
                break;
8100
            }
8101
        }
8102
    }
8103

    
8104
#ifndef _WIN32
8105
    if (daemonize && !nographic && vnc_display == NULL) {
8106
        fprintf(stderr, "Can only daemonize if using -nographic or -vnc\n");
8107
        daemonize = 0;
8108
    }
8109

    
8110
    if (daemonize) {
8111
        pid_t pid;
8112

    
8113
        if (pipe(fds) == -1)
8114
            exit(1);
8115

    
8116
        pid = fork();
8117
        if (pid > 0) {
8118
            uint8_t status;
8119
            ssize_t len;
8120

    
8121
            close(fds[1]);
8122

    
8123
        again:
8124
            len = read(fds[0], &status, 1);
8125
            if (len == -1 && (errno == EINTR))
8126
                goto again;
8127

    
8128
            if (len != 1)
8129
                exit(1);
8130
            else if (status == 1) {
8131
                fprintf(stderr, "Could not acquire pidfile\n");
8132
                exit(1);
8133
            } else
8134
                exit(0);
8135
        } else if (pid < 0)
8136
            exit(1);
8137

    
8138
        setsid();
8139

    
8140
        pid = fork();
8141
        if (pid > 0)
8142
            exit(0);
8143
        else if (pid < 0)
8144
            exit(1);
8145

    
8146
        umask(027);
8147
        chdir("/");
8148

    
8149
        signal(SIGTSTP, SIG_IGN);
8150
        signal(SIGTTOU, SIG_IGN);
8151
        signal(SIGTTIN, SIG_IGN);
8152
    }
8153
#endif
8154

    
8155
    if (pid_file && qemu_create_pidfile(pid_file) != 0) {
8156
        if (daemonize) {
8157
            uint8_t status = 1;
8158
            write(fds[1], &status, 1);
8159
        } else
8160
            fprintf(stderr, "Could not acquire pid file\n");
8161
        exit(1);
8162
    }
8163

    
8164
#ifdef USE_KQEMU
8165
    if (smp_cpus > 1)
8166
        kqemu_allowed = 0;
8167
#endif
8168
    linux_boot = (kernel_filename != NULL);
8169

    
8170
    if (!linux_boot &&
8171
        boot_device != 'n' &&
8172
        hd_filename[0] == '\0' &&
8173
        (cdrom_index >= 0 && hd_filename[cdrom_index] == '\0') &&
8174
        fd_filename[0] == '\0')
8175
        help(1);
8176

    
8177
    /* boot to floppy or the default cd if no hard disk defined yet */
8178
    if (hd_filename[0] == '\0' && boot_device == 'c') {
8179
        if (fd_filename[0] != '\0')
8180
            boot_device = 'a';
8181
        else
8182
            boot_device = 'd';
8183
    }
8184

    
8185
    setvbuf(stdout, NULL, _IOLBF, 0);
8186

    
8187
    init_timers();
8188
    init_timer_alarm();
8189
    qemu_aio_init();
8190

    
8191
#ifdef _WIN32
8192
    socket_init();
8193
#endif
8194

    
8195
    /* init network clients */
8196
    if (nb_net_clients == 0) {
8197
        /* if no clients, we use a default config */
8198
        pstrcpy(net_clients[0], sizeof(net_clients[0]),
8199
                "nic");
8200
        pstrcpy(net_clients[1], sizeof(net_clients[0]),
8201
                "user");
8202
        nb_net_clients = 2;
8203
    }
8204

    
8205
    for(i = 0;i < nb_net_clients; i++) {
8206
        if (net_client_init(net_clients[i]) < 0)
8207
            exit(1);
8208
    }
8209
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8210
        if (vlan->nb_guest_devs == 0 && vlan->nb_host_devs == 0)
8211
            continue;
8212
        if (vlan->nb_guest_devs == 0) {
8213
            fprintf(stderr, "Invalid vlan (%d) with no nics\n", vlan->id);
8214
            exit(1);
8215
        }
8216
        if (vlan->nb_host_devs == 0)
8217
            fprintf(stderr,
8218
                    "Warning: vlan %d is not connected to host network\n",
8219
                    vlan->id);
8220
    }
8221

    
8222
#ifdef TARGET_I386
8223
    if (boot_device == 'n') {
8224
        for (i = 0; i < nb_nics; i++) {
8225
            const char *model = nd_table[i].model;
8226
            char buf[1024];
8227
            if (model == NULL)
8228
                model = "ne2k_pci";
8229
            snprintf(buf, sizeof(buf), "%s/pxe-%s.bin", bios_dir, model);
8230
            if (get_image_size(buf) > 0) {
8231
                option_rom[nb_option_roms] = strdup(buf);
8232
                nb_option_roms++;
8233
                break;
8234
            }
8235
        }
8236
        if (i == nb_nics) {
8237
            fprintf(stderr, "No valid PXE rom found for network device\n");
8238
            exit(1);
8239
        }
8240
    }
8241
#endif
8242

    
8243
    /* init the memory */
8244
    phys_ram_size = ram_size + vga_ram_size + MAX_BIOS_SIZE;
8245

    
8246
    phys_ram_base = qemu_vmalloc(phys_ram_size);
8247
    if (!phys_ram_base) {
8248
        fprintf(stderr, "Could not allocate physical memory\n");
8249
        exit(1);
8250
    }
8251

    
8252
    /* we always create the cdrom drive, even if no disk is there */
8253
    bdrv_init();
8254
    if (cdrom_index >= 0) {
8255
        bs_table[cdrom_index] = bdrv_new("cdrom");
8256
        bdrv_set_type_hint(bs_table[cdrom_index], BDRV_TYPE_CDROM);
8257
    }
8258

    
8259
    /* open the virtual block devices */
8260
    for(i = 0; i < MAX_DISKS; i++) {
8261
        if (hd_filename[i]) {
8262
            if (!bs_table[i]) {
8263
                char buf[64];
8264
                snprintf(buf, sizeof(buf), "hd%c", i + 'a');
8265
                bs_table[i] = bdrv_new(buf);
8266
            }
8267
            if (bdrv_open(bs_table[i], hd_filename[i], snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8268
                fprintf(stderr, "qemu: could not open hard disk image '%s'\n",
8269
                        hd_filename[i]);
8270
                exit(1);
8271
            }
8272
            if (i == 0 && cyls != 0) {
8273
                bdrv_set_geometry_hint(bs_table[i], cyls, heads, secs);
8274
                bdrv_set_translation_hint(bs_table[i], translation);
8275
            }
8276
        }
8277
    }
8278

    
8279
    /* we always create at least one floppy disk */
8280
    fd_table[0] = bdrv_new("fda");
8281
    bdrv_set_type_hint(fd_table[0], BDRV_TYPE_FLOPPY);
8282

    
8283
    for(i = 0; i < MAX_FD; i++) {
8284
        if (fd_filename[i]) {
8285
            if (!fd_table[i]) {
8286
                char buf[64];
8287
                snprintf(buf, sizeof(buf), "fd%c", i + 'a');
8288
                fd_table[i] = bdrv_new(buf);
8289
                bdrv_set_type_hint(fd_table[i], BDRV_TYPE_FLOPPY);
8290
            }
8291
            if (fd_filename[i][0] != '\0') {
8292
                if (bdrv_open(fd_table[i], fd_filename[i],
8293
                              snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8294
                    fprintf(stderr, "qemu: could not open floppy disk image '%s'\n",
8295
                            fd_filename[i]);
8296
                    exit(1);
8297
                }
8298
            }
8299
        }
8300
    }
8301

    
8302
    /* Open the virtual parallel flash block devices */
8303
    for(i = 0; i < MAX_PFLASH; i++) {
8304
        if (pflash_filename[i]) {
8305
            if (!pflash_table[i]) {
8306
                char buf[64];
8307
                snprintf(buf, sizeof(buf), "fl%c", i + 'a');
8308
                pflash_table[i] = bdrv_new(buf);
8309
            }
8310
            if (bdrv_open(pflash_table[i], pflash_filename[i],
8311
                          snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8312
                fprintf(stderr, "qemu: could not open flash image '%s'\n",
8313
                        pflash_filename[i]);
8314
                exit(1);
8315
            }
8316
        }
8317
    }
8318

    
8319
    sd_bdrv = bdrv_new ("sd");
8320
    /* FIXME: This isn't really a floppy, but it's a reasonable
8321
       approximation.  */
8322
    bdrv_set_type_hint(sd_bdrv, BDRV_TYPE_FLOPPY);
8323
    if (sd_filename) {
8324
        if (bdrv_open(sd_bdrv, sd_filename,
8325
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0) {
8326
            fprintf(stderr, "qemu: could not open SD card image %s\n",
8327
                    sd_filename);
8328
        } else
8329
            qemu_key_check(sd_bdrv, sd_filename);
8330
    }
8331

    
8332
    if (mtd_filename) {
8333
        mtd_bdrv = bdrv_new ("mtd");
8334
        if (bdrv_open(mtd_bdrv, mtd_filename,
8335
                      snapshot ? BDRV_O_SNAPSHOT : 0) < 0 ||
8336
            qemu_key_check(mtd_bdrv, mtd_filename)) {
8337
            fprintf(stderr, "qemu: could not open Flash image %s\n",
8338
                    mtd_filename);
8339
            bdrv_delete(mtd_bdrv);
8340
            mtd_bdrv = 0;
8341
        }
8342
    }
8343

    
8344
    register_savevm("timer", 0, 2, timer_save, timer_load, NULL);
8345
    register_savevm("ram", 0, 2, ram_save, ram_load, NULL);
8346

    
8347
    init_ioports();
8348

    
8349
    /* terminal init */
8350
    memset(&display_state, 0, sizeof(display_state));
8351
    if (nographic) {
8352
        /* nearly nothing to do */
8353
        dumb_display_init(ds);
8354
    } else if (vnc_display != NULL) {
8355
        vnc_display_init(ds);
8356
        if (vnc_display_open(ds, vnc_display) < 0)
8357
            exit(1);
8358
    } else {
8359
#if defined(CONFIG_SDL)
8360
        sdl_display_init(ds, full_screen, no_frame);
8361
#elif defined(CONFIG_COCOA)
8362
        cocoa_display_init(ds, full_screen);
8363
#endif
8364
    }
8365

    
8366
    /* Maintain compatibility with multiple stdio monitors */
8367
    if (!strcmp(monitor_device,"stdio")) {
8368
        for (i = 0; i < MAX_SERIAL_PORTS; i++) {
8369
            if (!strcmp(serial_devices[i],"mon:stdio")) {
8370
                monitor_device[0] = '\0';
8371
                break;
8372
            } else if (!strcmp(serial_devices[i],"stdio")) {
8373
                monitor_device[0] = '\0';
8374
                pstrcpy(serial_devices[0], sizeof(serial_devices[0]), "mon:stdio");
8375
                break;
8376
            }
8377
        }
8378
    }
8379
    if (monitor_device[0] != '\0') {
8380
        monitor_hd = qemu_chr_open(monitor_device);
8381
        if (!monitor_hd) {
8382
            fprintf(stderr, "qemu: could not open monitor device '%s'\n", monitor_device);
8383
            exit(1);
8384
        }
8385
        monitor_init(monitor_hd, !nographic);
8386
    }
8387

    
8388
    for(i = 0; i < MAX_SERIAL_PORTS; i++) {
8389
        const char *devname = serial_devices[i];
8390
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8391
            serial_hds[i] = qemu_chr_open(devname);
8392
            if (!serial_hds[i]) {
8393
                fprintf(stderr, "qemu: could not open serial device '%s'\n",
8394
                        devname);
8395
                exit(1);
8396
            }
8397
            if (strstart(devname, "vc", 0))
8398
                qemu_chr_printf(serial_hds[i], "serial%d console\r\n", i);
8399
        }
8400
    }
8401

    
8402
    for(i = 0; i < MAX_PARALLEL_PORTS; i++) {
8403
        const char *devname = parallel_devices[i];
8404
        if (devname[0] != '\0' && strcmp(devname, "none")) {
8405
            parallel_hds[i] = qemu_chr_open(devname);
8406
            if (!parallel_hds[i]) {
8407
                fprintf(stderr, "qemu: could not open parallel device '%s'\n",
8408
                        devname);
8409
                exit(1);
8410
            }
8411
            if (strstart(devname, "vc", 0))
8412
                qemu_chr_printf(parallel_hds[i], "parallel%d console\r\n", i);
8413
        }
8414
    }
8415

    
8416
    machine->init(ram_size, vga_ram_size, boot_device,
8417
                  ds, fd_filename, snapshot,
8418
                  kernel_filename, kernel_cmdline, initrd_filename, cpu_model);
8419

    
8420
    /* init USB devices */
8421
    if (usb_enabled) {
8422
        for(i = 0; i < usb_devices_index; i++) {
8423
            if (usb_device_add(usb_devices[i]) < 0) {
8424
                fprintf(stderr, "Warning: could not add USB device %s\n",
8425
                        usb_devices[i]);
8426
            }
8427
        }
8428
    }
8429

    
8430
    if (display_state.dpy_refresh) {
8431
        display_state.gui_timer = qemu_new_timer(rt_clock, gui_update, &display_state);
8432
        qemu_mod_timer(display_state.gui_timer, qemu_get_clock(rt_clock));
8433
    }
8434

    
8435
#ifdef CONFIG_GDBSTUB
8436
    if (use_gdbstub) {
8437
        /* XXX: use standard host:port notation and modify options
8438
           accordingly. */
8439
        if (gdbserver_start(gdbstub_port) < 0) {
8440
            fprintf(stderr, "qemu: could not open gdbstub device on port '%s'\n",
8441
                    gdbstub_port);
8442
            exit(1);
8443
        }
8444
    }
8445
#endif
8446

    
8447
    if (loadvm)
8448
        do_loadvm(loadvm);
8449

    
8450
    {
8451
        /* XXX: simplify init */
8452
        read_passwords();
8453
        if (autostart) {
8454
            vm_start();
8455
        }
8456
    }
8457

    
8458
    if (daemonize) {
8459
        uint8_t status = 0;
8460
        ssize_t len;
8461
        int fd;
8462

    
8463
    again1:
8464
        len = write(fds[1], &status, 1);
8465
        if (len == -1 && (errno == EINTR))
8466
            goto again1;
8467

    
8468
        if (len != 1)
8469
            exit(1);
8470

    
8471
        TFR(fd = open("/dev/null", O_RDWR));
8472
        if (fd == -1)
8473
            exit(1);
8474

    
8475
        dup2(fd, 0);
8476
        dup2(fd, 1);
8477
        dup2(fd, 2);
8478

    
8479
        close(fd);
8480
    }
8481

    
8482
    main_loop();
8483
    quit_timers();
8484

    
8485
#if !defined(_WIN32)
8486
    /* close network clients */
8487
    for(vlan = first_vlan; vlan != NULL; vlan = vlan->next) {
8488
        VLANClientState *vc;
8489

    
8490
        for(vc = vlan->first_client; vc != NULL; vc = vc->next) {
8491
            if (vc->fd_read == tap_receive) {
8492
                char ifname[64];
8493
                TAPState *s = vc->opaque;
8494

    
8495
                if (sscanf(vc->info_str, "tap: ifname=%63s ", ifname) == 1 &&
8496
                    s->down_script[0])
8497
                    launch_script(s->down_script, ifname, s->fd);
8498
            }
8499
    }
8500
    }
8501
#endif
8502
    return 0;
8503
}