Statistics
| Branch: | Revision:

root / bsd-user / main.c @ 31fc12df

History | View | Annotate | Download (29.3 kB)

1
/*
2
 *  qemu user main
3
 *
4
 *  Copyright (c) 2003-2008 Fabrice Bellard
5
 *
6
 *  This program is free software; you can redistribute it and/or modify
7
 *  it under the terms of the GNU General Public License as published by
8
 *  the Free Software Foundation; either version 2 of the License, or
9
 *  (at your option) any later version.
10
 *
11
 *  This program is distributed in the hope that it will be useful,
12
 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14
 *  GNU General Public License for more details.
15
 *
16
 *  You should have received a copy of the GNU General Public License
17
 *  along with this program; if not, write to the Free Software
18
 *  Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19
 *  MA 02110-1301, USA.
20
 */
21
#include <stdlib.h>
22
#include <stdio.h>
23
#include <stdarg.h>
24
#include <string.h>
25
#include <errno.h>
26
#include <unistd.h>
27
#include <machine/trap.h>
28
#include <sys/types.h>
29
#include <sys/mman.h>
30

    
31
#include "qemu.h"
32
#include "qemu-common.h"
33
/* For tb_lock */
34
#include "exec-all.h"
35

    
36
#define DEBUG_LOGFILE "/tmp/qemu.log"
37

    
38
int singlestep;
39

    
40
static const char *interp_prefix = CONFIG_QEMU_PREFIX;
41
const char *qemu_uname_release = CONFIG_UNAME_RELEASE;
42
extern char **environ;
43

    
44
/* XXX: on x86 MAP_GROWSDOWN only works if ESP <= address + 32, so
45
   we allocate a bigger stack. Need a better solution, for example
46
   by remapping the process stack directly at the right place */
47
unsigned long x86_stack_size = 512 * 1024;
48

    
49
void gemu_log(const char *fmt, ...)
50
{
51
    va_list ap;
52

    
53
    va_start(ap, fmt);
54
    vfprintf(stderr, fmt, ap);
55
    va_end(ap);
56
}
57

    
58
void cpu_outb(CPUState *env, int addr, int val)
59
{
60
    fprintf(stderr, "outb: port=0x%04x, data=%02x\n", addr, val);
61
}
62

    
63
void cpu_outw(CPUState *env, int addr, int val)
64
{
65
    fprintf(stderr, "outw: port=0x%04x, data=%04x\n", addr, val);
66
}
67

    
68
void cpu_outl(CPUState *env, int addr, int val)
69
{
70
    fprintf(stderr, "outl: port=0x%04x, data=%08x\n", addr, val);
71
}
72

    
73
int cpu_inb(CPUState *env, int addr)
74
{
75
    fprintf(stderr, "inb: port=0x%04x\n", addr);
76
    return 0;
77
}
78

    
79
int cpu_inw(CPUState *env, int addr)
80
{
81
    fprintf(stderr, "inw: port=0x%04x\n", addr);
82
    return 0;
83
}
84

    
85
int cpu_inl(CPUState *env, int addr)
86
{
87
    fprintf(stderr, "inl: port=0x%04x\n", addr);
88
    return 0;
89
}
90

    
91
#if defined(TARGET_I386)
92
int cpu_get_pic_interrupt(CPUState *env)
93
{
94
    return -1;
95
}
96
#endif
97

    
98
/* These are no-ops because we are not threadsafe.  */
99
static inline void cpu_exec_start(CPUState *env)
100
{
101
}
102

    
103
static inline void cpu_exec_end(CPUState *env)
104
{
105
}
106

    
107
static inline void start_exclusive(void)
108
{
109
}
110

    
111
static inline void end_exclusive(void)
112
{
113
}
114

    
115
void fork_start(void)
116
{
117
}
118

    
119
void fork_end(int child)
120
{
121
    if (child) {
122
        gdbserver_fork(thread_env);
123
    }
124
}
125

    
126
void cpu_list_lock(void)
127
{
128
}
129

    
130
void cpu_list_unlock(void)
131
{
132
}
133

    
134
#ifdef TARGET_I386
135
/***********************************************************/
136
/* CPUX86 core interface */
137

    
138
void cpu_smm_update(CPUState *env)
139
{
140
}
141

    
142
uint64_t cpu_get_tsc(CPUX86State *env)
143
{
144
    return cpu_get_real_ticks();
145
}
146

    
147
static void write_dt(void *ptr, unsigned long addr, unsigned long limit,
148
                     int flags)
149
{
150
    unsigned int e1, e2;
151
    uint32_t *p;
152
    e1 = (addr << 16) | (limit & 0xffff);
153
    e2 = ((addr >> 16) & 0xff) | (addr & 0xff000000) | (limit & 0x000f0000);
154
    e2 |= flags;
155
    p = ptr;
156
    p[0] = tswap32(e1);
157
    p[1] = tswap32(e2);
158
}
159

    
160
static uint64_t *idt_table;
161
#ifdef TARGET_X86_64
162
static void set_gate64(void *ptr, unsigned int type, unsigned int dpl,
163
                       uint64_t addr, unsigned int sel)
164
{
165
    uint32_t *p, e1, e2;
166
    e1 = (addr & 0xffff) | (sel << 16);
167
    e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
168
    p = ptr;
169
    p[0] = tswap32(e1);
170
    p[1] = tswap32(e2);
171
    p[2] = tswap32(addr >> 32);
172
    p[3] = 0;
173
}
174
/* only dpl matters as we do only user space emulation */
175
static void set_idt(int n, unsigned int dpl)
176
{
177
    set_gate64(idt_table + n * 2, 0, dpl, 0, 0);
178
}
179
#else
180
static void set_gate(void *ptr, unsigned int type, unsigned int dpl,
181
                     uint32_t addr, unsigned int sel)
182
{
183
    uint32_t *p, e1, e2;
184
    e1 = (addr & 0xffff) | (sel << 16);
185
    e2 = (addr & 0xffff0000) | 0x8000 | (dpl << 13) | (type << 8);
186
    p = ptr;
187
    p[0] = tswap32(e1);
188
    p[1] = tswap32(e2);
189
}
190

    
191
/* only dpl matters as we do only user space emulation */
192
static void set_idt(int n, unsigned int dpl)
193
{
194
    set_gate(idt_table + n, 0, dpl, 0, 0);
195
}
196
#endif
197

    
198
void cpu_loop(CPUX86State *env, enum BSDType bsd_type)
199
{
200
    int trapnr;
201
    abi_ulong pc;
202
    //target_siginfo_t info;
203

    
204
    for(;;) {
205
        trapnr = cpu_x86_exec(env);
206
        switch(trapnr) {
207
        case 0x80:
208
            /* syscall from int $0x80 */
209
            env->regs[R_EAX] = do_openbsd_syscall(env,
210
                                                  env->regs[R_EAX],
211
                                                  env->regs[R_EBX],
212
                                                  env->regs[R_ECX],
213
                                                  env->regs[R_EDX],
214
                                                  env->regs[R_ESI],
215
                                                  env->regs[R_EDI],
216
                                                  env->regs[R_EBP]);
217
            break;
218
#ifndef TARGET_ABI32
219
        case EXCP_SYSCALL:
220
            /* linux syscall from syscall intruction */
221
            env->regs[R_EAX] = do_openbsd_syscall(env,
222
                                                  env->regs[R_EAX],
223
                                                  env->regs[R_EDI],
224
                                                  env->regs[R_ESI],
225
                                                  env->regs[R_EDX],
226
                                                  env->regs[10],
227
                                                  env->regs[8],
228
                                                  env->regs[9]);
229
            env->eip = env->exception_next_eip;
230
            break;
231
#endif
232
#if 0
233
        case EXCP0B_NOSEG:
234
        case EXCP0C_STACK:
235
            info.si_signo = SIGBUS;
236
            info.si_errno = 0;
237
            info.si_code = TARGET_SI_KERNEL;
238
            info._sifields._sigfault._addr = 0;
239
            queue_signal(env, info.si_signo, &info);
240
            break;
241
        case EXCP0D_GPF:
242
            /* XXX: potential problem if ABI32 */
243
#ifndef TARGET_X86_64
244
            if (env->eflags & VM_MASK) {
245
                handle_vm86_fault(env);
246
            } else
247
#endif
248
            {
249
                info.si_signo = SIGSEGV;
250
                info.si_errno = 0;
251
                info.si_code = TARGET_SI_KERNEL;
252
                info._sifields._sigfault._addr = 0;
253
                queue_signal(env, info.si_signo, &info);
254
            }
255
            break;
256
        case EXCP0E_PAGE:
257
            info.si_signo = SIGSEGV;
258
            info.si_errno = 0;
259
            if (!(env->error_code & 1))
260
                info.si_code = TARGET_SEGV_MAPERR;
261
            else
262
                info.si_code = TARGET_SEGV_ACCERR;
263
            info._sifields._sigfault._addr = env->cr[2];
264
            queue_signal(env, info.si_signo, &info);
265
            break;
266
        case EXCP00_DIVZ:
267
#ifndef TARGET_X86_64
268
            if (env->eflags & VM_MASK) {
269
                handle_vm86_trap(env, trapnr);
270
            } else
271
#endif
272
            {
273
                /* division by zero */
274
                info.si_signo = SIGFPE;
275
                info.si_errno = 0;
276
                info.si_code = TARGET_FPE_INTDIV;
277
                info._sifields._sigfault._addr = env->eip;
278
                queue_signal(env, info.si_signo, &info);
279
            }
280
            break;
281
        case EXCP01_DB:
282
        case EXCP03_INT3:
283
#ifndef TARGET_X86_64
284
            if (env->eflags & VM_MASK) {
285
                handle_vm86_trap(env, trapnr);
286
            } else
287
#endif
288
            {
289
                info.si_signo = SIGTRAP;
290
                info.si_errno = 0;
291
                if (trapnr == EXCP01_DB) {
292
                    info.si_code = TARGET_TRAP_BRKPT;
293
                    info._sifields._sigfault._addr = env->eip;
294
                } else {
295
                    info.si_code = TARGET_SI_KERNEL;
296
                    info._sifields._sigfault._addr = 0;
297
                }
298
                queue_signal(env, info.si_signo, &info);
299
            }
300
            break;
301
        case EXCP04_INTO:
302
        case EXCP05_BOUND:
303
#ifndef TARGET_X86_64
304
            if (env->eflags & VM_MASK) {
305
                handle_vm86_trap(env, trapnr);
306
            } else
307
#endif
308
            {
309
                info.si_signo = SIGSEGV;
310
                info.si_errno = 0;
311
                info.si_code = TARGET_SI_KERNEL;
312
                info._sifields._sigfault._addr = 0;
313
                queue_signal(env, info.si_signo, &info);
314
            }
315
            break;
316
        case EXCP06_ILLOP:
317
            info.si_signo = SIGILL;
318
            info.si_errno = 0;
319
            info.si_code = TARGET_ILL_ILLOPN;
320
            info._sifields._sigfault._addr = env->eip;
321
            queue_signal(env, info.si_signo, &info);
322
            break;
323
#endif
324
        case EXCP_INTERRUPT:
325
            /* just indicate that signals should be handled asap */
326
            break;
327
#if 0
328
        case EXCP_DEBUG:
329
            {
330
                int sig;
331

332
                sig = gdb_handlesig (env, TARGET_SIGTRAP);
333
                if (sig)
334
                  {
335
                    info.si_signo = sig;
336
                    info.si_errno = 0;
337
                    info.si_code = TARGET_TRAP_BRKPT;
338
                    queue_signal(env, info.si_signo, &info);
339
                  }
340
            }
341
            break;
342
#endif
343
        default:
344
            pc = env->segs[R_CS].base + env->eip;
345
            fprintf(stderr, "qemu: 0x%08lx: unhandled CPU exception 0x%x - aborting\n",
346
                    (long)pc, trapnr);
347
            abort();
348
        }
349
        process_pending_signals(env);
350
    }
351
}
352
#endif
353

    
354
#ifdef TARGET_SPARC
355
#define SPARC64_STACK_BIAS 2047
356

    
357
//#define DEBUG_WIN
358
/* WARNING: dealing with register windows _is_ complicated. More info
359
   can be found at http://www.sics.se/~psm/sparcstack.html */
360
static inline int get_reg_index(CPUSPARCState *env, int cwp, int index)
361
{
362
    index = (index + cwp * 16) % (16 * env->nwindows);
363
    /* wrap handling : if cwp is on the last window, then we use the
364
       registers 'after' the end */
365
    if (index < 8 && env->cwp == env->nwindows - 1)
366
        index += 16 * env->nwindows;
367
    return index;
368
}
369

    
370
/* save the register window 'cwp1' */
371
static inline void save_window_offset(CPUSPARCState *env, int cwp1)
372
{
373
    unsigned int i;
374
    abi_ulong sp_ptr;
375

    
376
    sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
377
#ifdef TARGET_SPARC64
378
    if (sp_ptr & 3)
379
        sp_ptr += SPARC64_STACK_BIAS;
380
#endif
381
#if defined(DEBUG_WIN)
382
    printf("win_overflow: sp_ptr=0x" TARGET_ABI_FMT_lx " save_cwp=%d\n",
383
           sp_ptr, cwp1);
384
#endif
385
    for(i = 0; i < 16; i++) {
386
        /* FIXME - what to do if put_user() fails? */
387
        put_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
388
        sp_ptr += sizeof(abi_ulong);
389
    }
390
}
391

    
392
static void save_window(CPUSPARCState *env)
393
{
394
#ifndef TARGET_SPARC64
395
    unsigned int new_wim;
396
    new_wim = ((env->wim >> 1) | (env->wim << (env->nwindows - 1))) &
397
        ((1LL << env->nwindows) - 1);
398
    save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
399
    env->wim = new_wim;
400
#else
401
    save_window_offset(env, cpu_cwp_dec(env, env->cwp - 2));
402
    env->cansave++;
403
    env->canrestore--;
404
#endif
405
}
406

    
407
static void restore_window(CPUSPARCState *env)
408
{
409
#ifndef TARGET_SPARC64
410
    unsigned int new_wim;
411
#endif
412
    unsigned int i, cwp1;
413
    abi_ulong sp_ptr;
414

    
415
#ifndef TARGET_SPARC64
416
    new_wim = ((env->wim << 1) | (env->wim >> (env->nwindows - 1))) &
417
        ((1LL << env->nwindows) - 1);
418
#endif
419

    
420
    /* restore the invalid window */
421
    cwp1 = cpu_cwp_inc(env, env->cwp + 1);
422
    sp_ptr = env->regbase[get_reg_index(env, cwp1, 6)];
423
#ifdef TARGET_SPARC64
424
    if (sp_ptr & 3)
425
        sp_ptr += SPARC64_STACK_BIAS;
426
#endif
427
#if defined(DEBUG_WIN)
428
    printf("win_underflow: sp_ptr=0x" TARGET_ABI_FMT_lx " load_cwp=%d\n",
429
           sp_ptr, cwp1);
430
#endif
431
    for(i = 0; i < 16; i++) {
432
        /* FIXME - what to do if get_user() fails? */
433
        get_user_ual(env->regbase[get_reg_index(env, cwp1, 8 + i)], sp_ptr);
434
        sp_ptr += sizeof(abi_ulong);
435
    }
436
#ifdef TARGET_SPARC64
437
    env->canrestore++;
438
    if (env->cleanwin < env->nwindows - 1)
439
        env->cleanwin++;
440
    env->cansave--;
441
#else
442
    env->wim = new_wim;
443
#endif
444
}
445

    
446
static void flush_windows(CPUSPARCState *env)
447
{
448
    int offset, cwp1;
449

    
450
    offset = 1;
451
    for(;;) {
452
        /* if restore would invoke restore_window(), then we can stop */
453
        cwp1 = cpu_cwp_inc(env, env->cwp + offset);
454
#ifndef TARGET_SPARC64
455
        if (env->wim & (1 << cwp1))
456
            break;
457
#else
458
        if (env->canrestore == 0)
459
            break;
460
        env->cansave++;
461
        env->canrestore--;
462
#endif
463
        save_window_offset(env, cwp1);
464
        offset++;
465
    }
466
    cwp1 = cpu_cwp_inc(env, env->cwp + 1);
467
#ifndef TARGET_SPARC64
468
    /* set wim so that restore will reload the registers */
469
    env->wim = 1 << cwp1;
470
#endif
471
#if defined(DEBUG_WIN)
472
    printf("flush_windows: nb=%d\n", offset - 1);
473
#endif
474
}
475

    
476
void cpu_loop(CPUSPARCState *env, enum BSDType bsd_type)
477
{
478
    int trapnr, ret, syscall_nr;
479
    //target_siginfo_t info;
480

    
481
    while (1) {
482
        trapnr = cpu_sparc_exec (env);
483

    
484
        switch (trapnr) {
485
#ifndef TARGET_SPARC64
486
        case 0x80:
487
#else
488
        case 0x100:
489
#endif
490
            syscall_nr = env->gregs[1];
491
            if (bsd_type == target_freebsd)
492
                ret = do_freebsd_syscall(env, syscall_nr,
493
                                         env->regwptr[0], env->regwptr[1],
494
                                         env->regwptr[2], env->regwptr[3],
495
                                         env->regwptr[4], env->regwptr[5]);
496
            else if (bsd_type == target_netbsd)
497
                ret = do_netbsd_syscall(env, syscall_nr,
498
                                        env->regwptr[0], env->regwptr[1],
499
                                        env->regwptr[2], env->regwptr[3],
500
                                        env->regwptr[4], env->regwptr[5]);
501
            else { //if (bsd_type == target_openbsd)
502
#if defined(TARGET_SPARC64)
503
                syscall_nr &= ~(TARGET_OPENBSD_SYSCALL_G7RFLAG |
504
                                TARGET_OPENBSD_SYSCALL_G2RFLAG);
505
#endif
506
                ret = do_openbsd_syscall(env, syscall_nr,
507
                                         env->regwptr[0], env->regwptr[1],
508
                                         env->regwptr[2], env->regwptr[3],
509
                                         env->regwptr[4], env->regwptr[5]);
510
            }
511
            if ((unsigned int)ret >= (unsigned int)(-515)) {
512
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
513
                env->xcc |= PSR_CARRY;
514
#else
515
                env->psr |= PSR_CARRY;
516
#endif
517
            } else {
518
#if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
519
                env->xcc &= ~PSR_CARRY;
520
#else
521
                env->psr &= ~PSR_CARRY;
522
#endif
523
            }
524
            env->regwptr[0] = ret;
525
            /* next instruction */
526
#if defined(TARGET_SPARC64)
527
            if (bsd_type == target_openbsd &&
528
                env->gregs[1] & TARGET_OPENBSD_SYSCALL_G2RFLAG) {
529
                env->pc = env->gregs[2];
530
                env->npc = env->pc + 4;
531
            } else if (bsd_type == target_openbsd &&
532
                       env->gregs[1] & TARGET_OPENBSD_SYSCALL_G7RFLAG) {
533
                env->pc = env->gregs[7];
534
                env->npc = env->pc + 4;
535
            } else {
536
                env->pc = env->npc;
537
                env->npc = env->npc + 4;
538
            }
539
#else
540
            env->pc = env->npc;
541
            env->npc = env->npc + 4;
542
#endif
543
            break;
544
        case 0x83: /* flush windows */
545
#ifdef TARGET_ABI32
546
        case 0x103:
547
#endif
548
            flush_windows(env);
549
            /* next instruction */
550
            env->pc = env->npc;
551
            env->npc = env->npc + 4;
552
            break;
553
#ifndef TARGET_SPARC64
554
        case TT_WIN_OVF: /* window overflow */
555
            save_window(env);
556
            break;
557
        case TT_WIN_UNF: /* window underflow */
558
            restore_window(env);
559
            break;
560
        case TT_TFAULT:
561
        case TT_DFAULT:
562
#if 0
563
            {
564
                info.si_signo = SIGSEGV;
565
                info.si_errno = 0;
566
                /* XXX: check env->error_code */
567
                info.si_code = TARGET_SEGV_MAPERR;
568
                info._sifields._sigfault._addr = env->mmuregs[4];
569
                queue_signal(env, info.si_signo, &info);
570
            }
571
#endif
572
            break;
573
#else
574
        case TT_SPILL: /* window overflow */
575
            save_window(env);
576
            break;
577
        case TT_FILL: /* window underflow */
578
            restore_window(env);
579
            break;
580
        case TT_TFAULT:
581
        case TT_DFAULT:
582
#if 0
583
            {
584
                info.si_signo = SIGSEGV;
585
                info.si_errno = 0;
586
                /* XXX: check env->error_code */
587
                info.si_code = TARGET_SEGV_MAPERR;
588
                if (trapnr == TT_DFAULT)
589
                    info._sifields._sigfault._addr = env->dmmuregs[4];
590
                else
591
                    info._sifields._sigfault._addr = env->tsptr->tpc;
592
                //queue_signal(env, info.si_signo, &info);
593
            }
594
#endif
595
            break;
596
#endif
597
        case EXCP_INTERRUPT:
598
            /* just indicate that signals should be handled asap */
599
            break;
600
        case EXCP_DEBUG:
601
            {
602
                int sig;
603

    
604
                sig = gdb_handlesig (env, TARGET_SIGTRAP);
605
#if 0
606
                if (sig)
607
                  {
608
                    info.si_signo = sig;
609
                    info.si_errno = 0;
610
                    info.si_code = TARGET_TRAP_BRKPT;
611
                    //queue_signal(env, info.si_signo, &info);
612
                  }
613
#endif
614
            }
615
            break;
616
        default:
617
            printf ("Unhandled trap: 0x%x\n", trapnr);
618
            cpu_dump_state(env, stderr, fprintf, 0);
619
            exit (1);
620
        }
621
        process_pending_signals (env);
622
    }
623
}
624

    
625
#endif
626

    
627
static void usage(void)
628
{
629
    printf("qemu-" TARGET_ARCH " version " QEMU_VERSION ", Copyright (c) 2003-2008 Fabrice Bellard\n"
630
           "usage: qemu-" TARGET_ARCH " [options] program [arguments...]\n"
631
           "BSD CPU emulator (compiled for %s emulation)\n"
632
           "\n"
633
           "Standard options:\n"
634
           "-h                print this help\n"
635
           "-g port           wait gdb connection to port\n"
636
           "-L path           set the elf interpreter prefix (default=%s)\n"
637
           "-s size           set the stack size in bytes (default=%ld)\n"
638
           "-cpu model        select CPU (-cpu ? for list)\n"
639
           "-drop-ld-preload  drop LD_PRELOAD for target process\n"
640
           "-bsd type         select emulated BSD type FreeBSD/NetBSD/OpenBSD (default)\n"
641
           "\n"
642
           "Debug options:\n"
643
           "-d options   activate log (logfile=%s)\n"
644
           "-p pagesize  set the host page size to 'pagesize'\n"
645
           "-singlestep  always run in singlestep mode\n"
646
           "-strace      log system calls\n"
647
           "\n"
648
           "Environment variables:\n"
649
           "QEMU_STRACE       Print system calls and arguments similar to the\n"
650
           "                  'strace' program.  Enable by setting to any value.\n"
651
           ,
652
           TARGET_ARCH,
653
           interp_prefix,
654
           x86_stack_size,
655
           DEBUG_LOGFILE);
656
    exit(1);
657
}
658

    
659
THREAD CPUState *thread_env;
660

    
661
/* Assumes contents are already zeroed.  */
662
void init_task_state(TaskState *ts)
663
{
664
    int i;
665

    
666
    ts->used = 1;
667
    ts->first_free = ts->sigqueue_table;
668
    for (i = 0; i < MAX_SIGQUEUE_SIZE - 1; i++) {
669
        ts->sigqueue_table[i].next = &ts->sigqueue_table[i + 1];
670
    }
671
    ts->sigqueue_table[i].next = NULL;
672
}
673

    
674
int main(int argc, char **argv)
675
{
676
    const char *filename;
677
    const char *cpu_model;
678
    struct target_pt_regs regs1, *regs = &regs1;
679
    struct image_info info1, *info = &info1;
680
    TaskState ts1, *ts = &ts1;
681
    CPUState *env;
682
    int optind;
683
    const char *r;
684
    int gdbstub_port = 0;
685
    int drop_ld_preload = 0, environ_count = 0;
686
    char **target_environ, **wrk, **dst;
687
    enum BSDType bsd_type = target_openbsd;
688

    
689
    if (argc <= 1)
690
        usage();
691

    
692
    /* init debug */
693
    cpu_set_log_filename(DEBUG_LOGFILE);
694

    
695
    cpu_model = NULL;
696
    optind = 1;
697
    for(;;) {
698
        if (optind >= argc)
699
            break;
700
        r = argv[optind];
701
        if (r[0] != '-')
702
            break;
703
        optind++;
704
        r++;
705
        if (!strcmp(r, "-")) {
706
            break;
707
        } else if (!strcmp(r, "d")) {
708
            int mask;
709
            const CPULogItem *item;
710

    
711
            if (optind >= argc)
712
                break;
713

    
714
            r = argv[optind++];
715
            mask = cpu_str_to_log_mask(r);
716
            if (!mask) {
717
                printf("Log items (comma separated):\n");
718
                for(item = cpu_log_items; item->mask != 0; item++) {
719
                    printf("%-10s %s\n", item->name, item->help);
720
                }
721
                exit(1);
722
            }
723
            cpu_set_log(mask);
724
        } else if (!strcmp(r, "s")) {
725
            r = argv[optind++];
726
            x86_stack_size = strtol(r, (char **)&r, 0);
727
            if (x86_stack_size <= 0)
728
                usage();
729
            if (*r == 'M')
730
                x86_stack_size *= 1024 * 1024;
731
            else if (*r == 'k' || *r == 'K')
732
                x86_stack_size *= 1024;
733
        } else if (!strcmp(r, "L")) {
734
            interp_prefix = argv[optind++];
735
        } else if (!strcmp(r, "p")) {
736
            qemu_host_page_size = atoi(argv[optind++]);
737
            if (qemu_host_page_size == 0 ||
738
                (qemu_host_page_size & (qemu_host_page_size - 1)) != 0) {
739
                fprintf(stderr, "page size must be a power of two\n");
740
                exit(1);
741
            }
742
        } else if (!strcmp(r, "g")) {
743
            gdbstub_port = atoi(argv[optind++]);
744
        } else if (!strcmp(r, "r")) {
745
            qemu_uname_release = argv[optind++];
746
        } else if (!strcmp(r, "cpu")) {
747
            cpu_model = argv[optind++];
748
            if (strcmp(cpu_model, "?") == 0) {
749
/* XXX: implement xxx_cpu_list for targets that still miss it */
750
#if defined(cpu_list)
751
                    cpu_list(stdout, &fprintf);
752
#endif
753
                exit(1);
754
            }
755
        } else if (!strcmp(r, "drop-ld-preload")) {
756
            drop_ld_preload = 1;
757
        } else if (!strcmp(r, "bsd")) {
758
            if (!strcasecmp(argv[optind], "freebsd")) {
759
                bsd_type = target_freebsd;
760
            } else if (!strcasecmp(argv[optind], "netbsd")) {
761
                bsd_type = target_netbsd;
762
            } else if (!strcasecmp(argv[optind], "openbsd")) {
763
                bsd_type = target_openbsd;
764
            } else {
765
                usage();
766
            }
767
            optind++;
768
        } else if (!strcmp(r, "singlestep")) {
769
            singlestep = 1;
770
        } else if (!strcmp(r, "strace")) {
771
            do_strace = 1;
772
        } else
773
        {
774
            usage();
775
        }
776
    }
777
    if (optind >= argc)
778
        usage();
779
    filename = argv[optind];
780

    
781
    /* Zero out regs */
782
    memset(regs, 0, sizeof(struct target_pt_regs));
783

    
784
    /* Zero out image_info */
785
    memset(info, 0, sizeof(struct image_info));
786

    
787
    /* Scan interp_prefix dir for replacement files. */
788
    init_paths(interp_prefix);
789

    
790
    if (cpu_model == NULL) {
791
#if defined(TARGET_I386)
792
#ifdef TARGET_X86_64
793
        cpu_model = "qemu64";
794
#else
795
        cpu_model = "qemu32";
796
#endif
797
#elif defined(TARGET_SPARC)
798
#ifdef TARGET_SPARC64
799
        cpu_model = "TI UltraSparc II";
800
#else
801
        cpu_model = "Fujitsu MB86904";
802
#endif
803
#else
804
        cpu_model = "any";
805
#endif
806
    }
807
    cpu_exec_init_all(0);
808
    /* NOTE: we need to init the CPU at this stage to get
809
       qemu_host_page_size */
810
    env = cpu_init(cpu_model);
811
    if (!env) {
812
        fprintf(stderr, "Unable to find CPU definition\n");
813
        exit(1);
814
    }
815
    thread_env = env;
816

    
817
    if (getenv("QEMU_STRACE")) {
818
        do_strace = 1;
819
    }
820

    
821
    wrk = environ;
822
    while (*(wrk++))
823
        environ_count++;
824

    
825
    target_environ = malloc((environ_count + 1) * sizeof(char *));
826
    if (!target_environ)
827
        abort();
828
    for (wrk = environ, dst = target_environ; *wrk; wrk++) {
829
        if (drop_ld_preload && !strncmp(*wrk, "LD_PRELOAD=", 11))
830
            continue;
831
        *(dst++) = strdup(*wrk);
832
    }
833
    *dst = NULL; /* NULL terminate target_environ */
834

    
835
    if (loader_exec(filename, argv+optind, target_environ, regs, info) != 0) {
836
        printf("Error loading %s\n", filename);
837
        _exit(1);
838
    }
839

    
840
    for (wrk = target_environ; *wrk; wrk++) {
841
        free(*wrk);
842
    }
843

    
844
    free(target_environ);
845

    
846
    if (qemu_log_enabled()) {
847
        log_page_dump();
848

    
849
        qemu_log("start_brk   0x" TARGET_ABI_FMT_lx "\n", info->start_brk);
850
        qemu_log("end_code    0x" TARGET_ABI_FMT_lx "\n", info->end_code);
851
        qemu_log("start_code  0x" TARGET_ABI_FMT_lx "\n",
852
                 info->start_code);
853
        qemu_log("start_data  0x" TARGET_ABI_FMT_lx "\n",
854
                 info->start_data);
855
        qemu_log("end_data    0x" TARGET_ABI_FMT_lx "\n", info->end_data);
856
        qemu_log("start_stack 0x" TARGET_ABI_FMT_lx "\n",
857
                 info->start_stack);
858
        qemu_log("brk         0x" TARGET_ABI_FMT_lx "\n", info->brk);
859
        qemu_log("entry       0x" TARGET_ABI_FMT_lx "\n", info->entry);
860
    }
861

    
862
    target_set_brk(info->brk);
863
    syscall_init();
864
    signal_init();
865

    
866
    /* build Task State */
867
    memset(ts, 0, sizeof(TaskState));
868
    init_task_state(ts);
869
    ts->info = info;
870
    env->opaque = ts;
871

    
872
#if defined(TARGET_I386)
873
    cpu_x86_set_cpl(env, 3);
874

    
875
    env->cr[0] = CR0_PG_MASK | CR0_WP_MASK | CR0_PE_MASK;
876
    env->hflags |= HF_PE_MASK;
877
    if (env->cpuid_features & CPUID_SSE) {
878
        env->cr[4] |= CR4_OSFXSR_MASK;
879
        env->hflags |= HF_OSFXSR_MASK;
880
    }
881
#ifndef TARGET_ABI32
882
    /* enable 64 bit mode if possible */
883
    if (!(env->cpuid_ext2_features & CPUID_EXT2_LM)) {
884
        fprintf(stderr, "The selected x86 CPU does not support 64 bit mode\n");
885
        exit(1);
886
    }
887
    env->cr[4] |= CR4_PAE_MASK;
888
    env->efer |= MSR_EFER_LMA | MSR_EFER_LME;
889
    env->hflags |= HF_LMA_MASK;
890
#endif
891

    
892
    /* flags setup : we activate the IRQs by default as in user mode */
893
    env->eflags |= IF_MASK;
894

    
895
    /* linux register setup */
896
#ifndef TARGET_ABI32
897
    env->regs[R_EAX] = regs->rax;
898
    env->regs[R_EBX] = regs->rbx;
899
    env->regs[R_ECX] = regs->rcx;
900
    env->regs[R_EDX] = regs->rdx;
901
    env->regs[R_ESI] = regs->rsi;
902
    env->regs[R_EDI] = regs->rdi;
903
    env->regs[R_EBP] = regs->rbp;
904
    env->regs[R_ESP] = regs->rsp;
905
    env->eip = regs->rip;
906
#else
907
    env->regs[R_EAX] = regs->eax;
908
    env->regs[R_EBX] = regs->ebx;
909
    env->regs[R_ECX] = regs->ecx;
910
    env->regs[R_EDX] = regs->edx;
911
    env->regs[R_ESI] = regs->esi;
912
    env->regs[R_EDI] = regs->edi;
913
    env->regs[R_EBP] = regs->ebp;
914
    env->regs[R_ESP] = regs->esp;
915
    env->eip = regs->eip;
916
#endif
917

    
918
    /* linux interrupt setup */
919
#ifndef TARGET_ABI32
920
    env->idt.limit = 511;
921
#else
922
    env->idt.limit = 255;
923
#endif
924
    env->idt.base = target_mmap(0, sizeof(uint64_t) * (env->idt.limit + 1),
925
                                PROT_READ|PROT_WRITE,
926
                                MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
927
    idt_table = g2h(env->idt.base);
928
    set_idt(0, 0);
929
    set_idt(1, 0);
930
    set_idt(2, 0);
931
    set_idt(3, 3);
932
    set_idt(4, 3);
933
    set_idt(5, 0);
934
    set_idt(6, 0);
935
    set_idt(7, 0);
936
    set_idt(8, 0);
937
    set_idt(9, 0);
938
    set_idt(10, 0);
939
    set_idt(11, 0);
940
    set_idt(12, 0);
941
    set_idt(13, 0);
942
    set_idt(14, 0);
943
    set_idt(15, 0);
944
    set_idt(16, 0);
945
    set_idt(17, 0);
946
    set_idt(18, 0);
947
    set_idt(19, 0);
948
    set_idt(0x80, 3);
949

    
950
    /* linux segment setup */
951
    {
952
        uint64_t *gdt_table;
953
        env->gdt.base = target_mmap(0, sizeof(uint64_t) * TARGET_GDT_ENTRIES,
954
                                    PROT_READ|PROT_WRITE,
955
                                    MAP_ANONYMOUS|MAP_PRIVATE, -1, 0);
956
        env->gdt.limit = sizeof(uint64_t) * TARGET_GDT_ENTRIES - 1;
957
        gdt_table = g2h(env->gdt.base);
958
#ifdef TARGET_ABI32
959
        write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
960
                 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
961
                 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
962
#else
963
        /* 64 bit code segment */
964
        write_dt(&gdt_table[__USER_CS >> 3], 0, 0xfffff,
965
                 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
966
                 DESC_L_MASK |
967
                 (3 << DESC_DPL_SHIFT) | (0xa << DESC_TYPE_SHIFT));
968
#endif
969
        write_dt(&gdt_table[__USER_DS >> 3], 0, 0xfffff,
970
                 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK | DESC_S_MASK |
971
                 (3 << DESC_DPL_SHIFT) | (0x2 << DESC_TYPE_SHIFT));
972
    }
973

    
974
    cpu_x86_load_seg(env, R_CS, __USER_CS);
975
    cpu_x86_load_seg(env, R_SS, __USER_DS);
976
#ifdef TARGET_ABI32
977
    cpu_x86_load_seg(env, R_DS, __USER_DS);
978
    cpu_x86_load_seg(env, R_ES, __USER_DS);
979
    cpu_x86_load_seg(env, R_FS, __USER_DS);
980
    cpu_x86_load_seg(env, R_GS, __USER_DS);
981
    /* This hack makes Wine work... */
982
    env->segs[R_FS].selector = 0;
983
#else
984
    cpu_x86_load_seg(env, R_DS, 0);
985
    cpu_x86_load_seg(env, R_ES, 0);
986
    cpu_x86_load_seg(env, R_FS, 0);
987
    cpu_x86_load_seg(env, R_GS, 0);
988
#endif
989
#elif defined(TARGET_SPARC)
990
    {
991
        int i;
992
        env->pc = regs->pc;
993
        env->npc = regs->npc;
994
        env->y = regs->y;
995
        for(i = 0; i < 8; i++)
996
            env->gregs[i] = regs->u_regs[i];
997
        for(i = 0; i < 8; i++)
998
            env->regwptr[i] = regs->u_regs[i + 8];
999
    }
1000
#else
1001
#error unsupported target CPU
1002
#endif
1003

    
1004
    if (gdbstub_port) {
1005
        gdbserver_start (gdbstub_port);
1006
        gdb_handlesig(env, 0);
1007
    }
1008
    cpu_loop(env, bsd_type);
1009
    /* never exits */
1010
    return 0;
1011
}