Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 334c0241

History | View | Annotate | Download (91.4 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@end itemize
93

    
94
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
95

    
96
@node Installation
97
@chapter Installation
98

    
99
If you want to compile QEMU yourself, see @ref{compilation}.
100

    
101
@menu
102
* install_linux::   Linux
103
* install_windows:: Windows
104
* install_mac::     Macintosh
105
@end menu
106

    
107
@node install_linux
108
@section Linux
109

    
110
If a precompiled package is available for your distribution - you just
111
have to install it. Otherwise, see @ref{compilation}.
112

    
113
@node install_windows
114
@section Windows
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node install_mac
120
@section Mac OS X
121

    
122
Download the experimental binary installer at
123
@url{http://www.free.oszoo.org/@/download.html}.
124

    
125
@node QEMU PC System emulator
126
@chapter QEMU PC System emulator
127

    
128
@menu
129
* pcsys_introduction:: Introduction
130
* pcsys_quickstart::   Quick Start
131
* sec_invocation::     Invocation
132
* pcsys_keys::         Keys
133
* pcsys_monitor::      QEMU Monitor
134
* disk_images::        Disk Images
135
* pcsys_network::      Network emulation
136
* direct_linux_boot::  Direct Linux Boot
137
* pcsys_usb::          USB emulation
138
* vnc_security::       VNC security
139
* gdb_usage::          GDB usage
140
* pcsys_os_specific::  Target OS specific information
141
@end menu
142

    
143
@node pcsys_introduction
144
@section Introduction
145

    
146
@c man begin DESCRIPTION
147

    
148
The QEMU PC System emulator simulates the
149
following peripherals:
150

    
151
@itemize @minus
152
@item
153
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
154
@item
155
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
156
extensions (hardware level, including all non standard modes).
157
@item
158
PS/2 mouse and keyboard
159
@item
160
2 PCI IDE interfaces with hard disk and CD-ROM support
161
@item
162
Floppy disk
163
@item
164
PCI/ISA PCI network adapters
165
@item
166
Serial ports
167
@item
168
Creative SoundBlaster 16 sound card
169
@item
170
ENSONIQ AudioPCI ES1370 sound card
171
@item
172
Intel 82801AA AC97 Audio compatible sound card
173
@item
174
Adlib(OPL2) - Yamaha YM3812 compatible chip
175
@item
176
Gravis Ultrasound GF1 sound card
177
@item
178
CS4231A compatible sound card
179
@item
180
PCI UHCI USB controller and a virtual USB hub.
181
@end itemize
182

    
183
SMP is supported with up to 255 CPUs.
184

    
185
Note that adlib, ac97, gus and cs4231a are only available when QEMU
186
was configured with --audio-card-list option containing the name(s) of
187
required card(s).
188

    
189
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
190
VGA BIOS.
191

    
192
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
193

    
194
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
195
by Tibor "TS" Sch?tz.
196

    
197
CS4231A is the chip used in Windows Sound System and GUSMAX products
198

    
199
@c man end
200

    
201
@node pcsys_quickstart
202
@section Quick Start
203

    
204
Download and uncompress the linux image (@file{linux.img}) and type:
205

    
206
@example
207
qemu linux.img
208
@end example
209

    
210
Linux should boot and give you a prompt.
211

    
212
@node sec_invocation
213
@section Invocation
214

    
215
@example
216
@c man begin SYNOPSIS
217
usage: qemu [options] [@var{disk_image}]
218
@c man end
219
@end example
220

    
221
@c man begin OPTIONS
222
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
223

    
224
General options:
225
@table @option
226
@item -M @var{machine}
227
Select the emulated @var{machine} (@code{-M ?} for list)
228

    
229
@item -fda @var{file}
230
@item -fdb @var{file}
231
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
232
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
233

    
234
@item -hda @var{file}
235
@item -hdb @var{file}
236
@item -hdc @var{file}
237
@item -hdd @var{file}
238
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
239

    
240
@item -cdrom @var{file}
241
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
242
@option{-cdrom} at the same time). You can use the host CD-ROM by
243
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
244

    
245
@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
246

    
247
Define a new drive. Valid options are:
248

    
249
@table @code
250
@item file=@var{file}
251
This option defines which disk image (@pxref{disk_images}) to use with
252
this drive. If the filename contains comma, you must double it
253
(for instance, "file=my,,file" to use file "my,file").
254
@item if=@var{interface}
255
This option defines on which type on interface the drive is connected.
256
Available types are: ide, scsi, sd, mtd, floppy, pflash.
257
@item bus=@var{bus},unit=@var{unit}
258
These options define where is connected the drive by defining the bus number and
259
the unit id.
260
@item index=@var{index}
261
This option defines where is connected the drive by using an index in the list
262
of available connectors of a given interface type.
263
@item media=@var{media}
264
This option defines the type of the media: disk or cdrom.
265
@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
266
These options have the same definition as they have in @option{-hdachs}.
267
@item snapshot=@var{snapshot}
268
@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
269
@item cache=@var{cache}
270
@var{cache} is "on" or "off" and allows to disable host cache to access data.
271
@item format=@var{format}
272
Specify which disk @var{format} will be used rather than detecting
273
the format.  Can be used to specifiy format=raw to avoid interpreting
274
an untrusted format header.
275
@end table
276

    
277
Instead of @option{-cdrom} you can use:
278
@example
279
qemu -drive file=file,index=2,media=cdrom
280
@end example
281

    
282
Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
283
use:
284
@example
285
qemu -drive file=file,index=0,media=disk
286
qemu -drive file=file,index=1,media=disk
287
qemu -drive file=file,index=2,media=disk
288
qemu -drive file=file,index=3,media=disk
289
@end example
290

    
291
You can connect a CDROM to the slave of ide0:
292
@example
293
qemu -drive file=file,if=ide,index=1,media=cdrom
294
@end example
295

    
296
If you don't specify the "file=" argument, you define an empty drive:
297
@example
298
qemu -drive if=ide,index=1,media=cdrom
299
@end example
300

    
301
You can connect a SCSI disk with unit ID 6 on the bus #0:
302
@example
303
qemu -drive file=file,if=scsi,bus=0,unit=6
304
@end example
305

    
306
Instead of @option{-fda}, @option{-fdb}, you can use:
307
@example
308
qemu -drive file=file,index=0,if=floppy
309
qemu -drive file=file,index=1,if=floppy
310
@end example
311

    
312
By default, @var{interface} is "ide" and @var{index} is automatically
313
incremented:
314
@example
315
qemu -drive file=a -drive file=b"
316
@end example
317
is interpreted like:
318
@example
319
qemu -hda a -hdb b
320
@end example
321

    
322
@item -boot [a|c|d|n]
323
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
324
is the default.
325

    
326
@item -snapshot
327
Write to temporary files instead of disk image files. In this case,
328
the raw disk image you use is not written back. You can however force
329
the write back by pressing @key{C-a s} (@pxref{disk_images}).
330

    
331
@item -no-fd-bootchk
332
Disable boot signature checking for floppy disks in Bochs BIOS. It may
333
be needed to boot from old floppy disks.
334

    
335
@item -m @var{megs}
336
Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
337
a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
338
gigabytes respectively.
339

    
340
@item -smp @var{n}
341
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
342
CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
343
to 4.
344

    
345
@item -audio-help
346

    
347
Will show the audio subsystem help: list of drivers, tunable
348
parameters.
349

    
350
@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
351

    
352
Enable audio and selected sound hardware. Use ? to print all
353
available sound hardware.
354

    
355
@example
356
qemu -soundhw sb16,adlib hda
357
qemu -soundhw es1370 hda
358
qemu -soundhw ac97 hda
359
qemu -soundhw all hda
360
qemu -soundhw ?
361
@end example
362

    
363
Note that Linux's i810_audio OSS kernel (for AC97) module might
364
require manually specifying clocking.
365

    
366
@example
367
modprobe i810_audio clocking=48000
368
@end example
369

    
370
@item -localtime
371
Set the real time clock to local time (the default is to UTC
372
time). This option is needed to have correct date in MS-DOS or
373
Windows.
374

    
375
@item -startdate @var{date}
376
Set the initial date of the real time clock. Valid format for
377
@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
378
@code{2006-06-17}. The default value is @code{now}.
379

    
380
@item -pidfile @var{file}
381
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
382
from a script.
383

    
384
@item -daemonize
385
Daemonize the QEMU process after initialization.  QEMU will not detach from
386
standard IO until it is ready to receive connections on any of its devices.
387
This option is a useful way for external programs to launch QEMU without having
388
to cope with initialization race conditions.
389

    
390
@item -win2k-hack
391
Use it when installing Windows 2000 to avoid a disk full bug. After
392
Windows 2000 is installed, you no longer need this option (this option
393
slows down the IDE transfers).
394

    
395
@item -option-rom @var{file}
396
Load the contents of @var{file} as an option ROM.
397
This option is useful to load things like EtherBoot.
398

    
399
@item -name @var{name}
400
Sets the @var{name} of the guest.
401
This name will be display in the SDL window caption.
402
The @var{name} will also be used for the VNC server.
403

    
404
@end table
405

    
406
Display options:
407
@table @option
408

    
409
@item -nographic
410

    
411
Normally, QEMU uses SDL to display the VGA output. With this option,
412
you can totally disable graphical output so that QEMU is a simple
413
command line application. The emulated serial port is redirected on
414
the console. Therefore, you can still use QEMU to debug a Linux kernel
415
with a serial console.
416

    
417
@item -curses
418

    
419
Normally, QEMU uses SDL to display the VGA output.  With this option,
420
QEMU can display the VGA output when in text mode using a 
421
curses/ncurses interface.  Nothing is displayed in graphical mode.
422

    
423
@item -no-frame
424

    
425
Do not use decorations for SDL windows and start them using the whole
426
available screen space. This makes the using QEMU in a dedicated desktop
427
workspace more convenient.
428

    
429
@item -no-quit
430

    
431
Disable SDL window close capability.
432

    
433
@item -full-screen
434
Start in full screen.
435

    
436
@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
437

    
438
Normally, QEMU uses SDL to display the VGA output.  With this option,
439
you can have QEMU listen on VNC display @var{display} and redirect the VGA
440
display over the VNC session.  It is very useful to enable the usb
441
tablet device when using this option (option @option{-usbdevice
442
tablet}). When using the VNC display, you must use the @option{-k}
443
parameter to set the keyboard layout if you are not using en-us. Valid
444
syntax for the @var{display} is
445

    
446
@table @code
447

    
448
@item @var{host}:@var{d}
449

    
450
TCP connections will only be allowed from @var{host} on display @var{d}.
451
By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
452
be omitted in which case the server will accept connections from any host.
453

    
454
@item @code{unix}:@var{path}
455

    
456
Connections will be allowed over UNIX domain sockets where @var{path} is the
457
location of a unix socket to listen for connections on.
458

    
459
@item none
460

    
461
VNC is initialized but not started. The monitor @code{change} command
462
can be used to later start the VNC server.
463

    
464
@end table
465

    
466
Following the @var{display} value there may be one or more @var{option} flags
467
separated by commas. Valid options are
468

    
469
@table @code
470

    
471
@item reverse
472

    
473
Connect to a listening VNC client via a ``reverse'' connection. The
474
client is specified by the @var{display}. For reverse network
475
connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
476
is a TCP port number, not a display number.
477

    
478
@item password
479

    
480
Require that password based authentication is used for client connections.
481
The password must be set separately using the @code{change} command in the
482
@ref{pcsys_monitor}
483

    
484
@item tls
485

    
486
Require that client use TLS when communicating with the VNC server. This
487
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
488
attack. It is recommended that this option be combined with either the
489
@var{x509} or @var{x509verify} options.
490

    
491
@item x509=@var{/path/to/certificate/dir}
492

    
493
Valid if @option{tls} is specified. Require that x509 credentials are used
494
for negotiating the TLS session. The server will send its x509 certificate
495
to the client. It is recommended that a password be set on the VNC server
496
to provide authentication of the client when this is used. The path following
497
this option specifies where the x509 certificates are to be loaded from.
498
See the @ref{vnc_security} section for details on generating certificates.
499

    
500
@item x509verify=@var{/path/to/certificate/dir}
501

    
502
Valid if @option{tls} is specified. Require that x509 credentials are used
503
for negotiating the TLS session. The server will send its x509 certificate
504
to the client, and request that the client send its own x509 certificate.
505
The server will validate the client's certificate against the CA certificate,
506
and reject clients when validation fails. If the certificate authority is
507
trusted, this is a sufficient authentication mechanism. You may still wish
508
to set a password on the VNC server as a second authentication layer. The
509
path following this option specifies where the x509 certificates are to
510
be loaded from. See the @ref{vnc_security} section for details on generating
511
certificates.
512

    
513
@end table
514

    
515
@item -k @var{language}
516

    
517
Use keyboard layout @var{language} (for example @code{fr} for
518
French). This option is only needed where it is not easy to get raw PC
519
keycodes (e.g. on Macs, with some X11 servers or with a VNC
520
display). You don't normally need to use it on PC/Linux or PC/Windows
521
hosts.
522

    
523
The available layouts are:
524
@example
525
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
526
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
527
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
528
@end example
529

    
530
The default is @code{en-us}.
531

    
532
@end table
533

    
534
USB options:
535
@table @option
536

    
537
@item -usb
538
Enable the USB driver (will be the default soon)
539

    
540
@item -usbdevice @var{devname}
541
Add the USB device @var{devname}. @xref{usb_devices}.
542

    
543
@table @code
544

    
545
@item mouse
546
Virtual Mouse. This will override the PS/2 mouse emulation when activated.
547

    
548
@item tablet
549
Pointer device that uses absolute coordinates (like a touchscreen). This
550
means qemu is able to report the mouse position without having to grab the
551
mouse. Also overrides the PS/2 mouse emulation when activated.
552

    
553
@item disk:[format=@var{format}]:file
554
Mass storage device based on file. The optional @var{format} argument
555
will be used rather than detecting the format. Can be used to specifiy
556
format=raw to avoid interpreting an untrusted format header.
557

    
558
@item host:bus.addr
559
Pass through the host device identified by bus.addr (Linux only).
560

    
561
@item host:vendor_id:product_id
562
Pass through the host device identified by vendor_id:product_id (Linux only).
563

    
564
@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
565
Serial converter to host character device @var{dev}, see @code{-serial} for the
566
available devices.
567

    
568
@item braille
569
Braille device.  This will use BrlAPI to display the braille output on a real
570
or fake device.
571

    
572
@item net:options
573
Network adapter that supports CDC ethernet and RNDIS protocols.
574

    
575
@end table
576

    
577
@end table
578

    
579
Network options:
580

    
581
@table @option
582

    
583
@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
584
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
585
= 0 is the default). The NIC is an ne2k_pci by default on the PC
586
target. Optionally, the MAC address can be changed. If no
587
@option{-net} option is specified, a single NIC is created.
588
Qemu can emulate several different models of network card.
589
Valid values for @var{type} are
590
@code{i82551}, @code{i82557b}, @code{i82559er},
591
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
592
@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
593
Not all devices are supported on all targets.  Use -net nic,model=?
594
for a list of available devices for your target.
595

    
596
@item -net user[,vlan=@var{n}][,hostname=@var{name}]
597
Use the user mode network stack which requires no administrator
598
privilege to run.  @option{hostname=name} can be used to specify the client
599
hostname reported by the builtin DHCP server.
600

    
601
@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
602
Connect the host TAP network interface @var{name} to VLAN @var{n} and
603
use the network script @var{file} to configure it. The default
604
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
605
disable script execution. If @var{name} is not
606
provided, the OS automatically provides one. @option{fd}=@var{h} can be
607
used to specify the handle of an already opened host TAP interface. Example:
608

    
609
@example
610
qemu linux.img -net nic -net tap
611
@end example
612

    
613
More complicated example (two NICs, each one connected to a TAP device)
614
@example
615
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
616
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
617
@end example
618

    
619

    
620
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
621

    
622
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
623
machine using a TCP socket connection. If @option{listen} is
624
specified, QEMU waits for incoming connections on @var{port}
625
(@var{host} is optional). @option{connect} is used to connect to
626
another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
627
specifies an already opened TCP socket.
628

    
629
Example:
630
@example
631
# launch a first QEMU instance
632
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
633
               -net socket,listen=:1234
634
# connect the VLAN 0 of this instance to the VLAN 0
635
# of the first instance
636
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
637
               -net socket,connect=127.0.0.1:1234
638
@end example
639

    
640
@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
641

    
642
Create a VLAN @var{n} shared with another QEMU virtual
643
machines using a UDP multicast socket, effectively making a bus for
644
every QEMU with same multicast address @var{maddr} and @var{port}.
645
NOTES:
646
@enumerate
647
@item
648
Several QEMU can be running on different hosts and share same bus (assuming
649
correct multicast setup for these hosts).
650
@item
651
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
652
@url{http://user-mode-linux.sf.net}.
653
@item
654
Use @option{fd=h} to specify an already opened UDP multicast socket.
655
@end enumerate
656

    
657
Example:
658
@example
659
# launch one QEMU instance
660
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
661
               -net socket,mcast=230.0.0.1:1234
662
# launch another QEMU instance on same "bus"
663
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
664
               -net socket,mcast=230.0.0.1:1234
665
# launch yet another QEMU instance on same "bus"
666
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
667
               -net socket,mcast=230.0.0.1:1234
668
@end example
669

    
670
Example (User Mode Linux compat.):
671
@example
672
# launch QEMU instance (note mcast address selected
673
# is UML's default)
674
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
675
               -net socket,mcast=239.192.168.1:1102
676
# launch UML
677
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
678
@end example
679

    
680
@item -net vde[,vlan=@var{n}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
681
Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
682
listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
683
and MODE @var{octalmode} to change default ownership and permissions for
684
communication port. This option is available only if QEMU has been compiled
685
with vde support enabled.
686

    
687
Example:
688
@example
689
# launch vde switch
690
vde_switch -F -sock /tmp/myswitch
691
# launch QEMU instance
692
qemu linux.img -net nic -net vde,sock=/tmp/myswitch
693
@end example
694

    
695
@item -net none
696
Indicate that no network devices should be configured. It is used to
697
override the default configuration (@option{-net nic -net user}) which
698
is activated if no @option{-net} options are provided.
699

    
700
@item -tftp @var{dir}
701
When using the user mode network stack, activate a built-in TFTP
702
server. The files in @var{dir} will be exposed as the root of a TFTP server.
703
The TFTP client on the guest must be configured in binary mode (use the command
704
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
705
usual 10.0.2.2.
706

    
707
@item -bootp @var{file}
708
When using the user mode network stack, broadcast @var{file} as the BOOTP
709
filename.  In conjunction with @option{-tftp}, this can be used to network boot
710
a guest from a local directory.
711

    
712
Example (using pxelinux):
713
@example
714
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
715
@end example
716

    
717
@item -smb @var{dir}
718
When using the user mode network stack, activate a built-in SMB
719
server so that Windows OSes can access to the host files in @file{@var{dir}}
720
transparently.
721

    
722
In the guest Windows OS, the line:
723
@example
724
10.0.2.4 smbserver
725
@end example
726
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
727
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
728

    
729
Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
730

    
731
Note that a SAMBA server must be installed on the host OS in
732
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
733
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
734

    
735
@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
736

    
737
When using the user mode network stack, redirect incoming TCP or UDP
738
connections to the host port @var{host-port} to the guest
739
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
740
is not specified, its value is 10.0.2.15 (default address given by the
741
built-in DHCP server).
742

    
743
For example, to redirect host X11 connection from screen 1 to guest
744
screen 0, use the following:
745

    
746
@example
747
# on the host
748
qemu -redir tcp:6001::6000 [...]
749
# this host xterm should open in the guest X11 server
750
xterm -display :1
751
@end example
752

    
753
To redirect telnet connections from host port 5555 to telnet port on
754
the guest, use the following:
755

    
756
@example
757
# on the host
758
qemu -redir tcp:5555::23 [...]
759
telnet localhost 5555
760
@end example
761

    
762
Then when you use on the host @code{telnet localhost 5555}, you
763
connect to the guest telnet server.
764

    
765
@end table
766

    
767
Linux boot specific: When using these options, you can use a given
768
Linux kernel without installing it in the disk image. It can be useful
769
for easier testing of various kernels.
770

    
771
@table @option
772

    
773
@item -kernel @var{bzImage}
774
Use @var{bzImage} as kernel image.
775

    
776
@item -append @var{cmdline}
777
Use @var{cmdline} as kernel command line
778

    
779
@item -initrd @var{file}
780
Use @var{file} as initial ram disk.
781

    
782
@end table
783

    
784
Debug/Expert options:
785
@table @option
786

    
787
@item -serial @var{dev}
788
Redirect the virtual serial port to host character device
789
@var{dev}. The default device is @code{vc} in graphical mode and
790
@code{stdio} in non graphical mode.
791

    
792
This option can be used several times to simulate up to 4 serials
793
ports.
794

    
795
Use @code{-serial none} to disable all serial ports.
796

    
797
Available character devices are:
798
@table @code
799
@item vc[:WxH]
800
Virtual console. Optionally, a width and height can be given in pixel with
801
@example
802
vc:800x600
803
@end example
804
It is also possible to specify width or height in characters:
805
@example
806
vc:80Cx24C
807
@end example
808
@item pty
809
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
810
@item none
811
No device is allocated.
812
@item null
813
void device
814
@item /dev/XXX
815
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
816
parameters are set according to the emulated ones.
817
@item /dev/parport@var{N}
818
[Linux only, parallel port only] Use host parallel port
819
@var{N}. Currently SPP and EPP parallel port features can be used.
820
@item file:@var{filename}
821
Write output to @var{filename}. No character can be read.
822
@item stdio
823
[Unix only] standard input/output
824
@item pipe:@var{filename}
825
name pipe @var{filename}
826
@item COM@var{n}
827
[Windows only] Use host serial port @var{n}
828
@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
829
This implements UDP Net Console.
830
When @var{remote_host} or @var{src_ip} are not specified
831
they default to @code{0.0.0.0}.
832
When not using a specified @var{src_port} a random port is automatically chosen.
833

    
834
If you just want a simple readonly console you can use @code{netcat} or
835
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
836
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
837
will appear in the netconsole session.
838

    
839
If you plan to send characters back via netconsole or you want to stop
840
and start qemu a lot of times, you should have qemu use the same
841
source port each time by using something like @code{-serial
842
udp::4555@@:4556} to qemu. Another approach is to use a patched
843
version of netcat which can listen to a TCP port and send and receive
844
characters via udp.  If you have a patched version of netcat which
845
activates telnet remote echo and single char transfer, then you can
846
use the following options to step up a netcat redirector to allow
847
telnet on port 5555 to access the qemu port.
848
@table @code
849
@item Qemu Options:
850
-serial udp::4555@@:4556
851
@item netcat options:
852
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
853
@item telnet options:
854
localhost 5555
855
@end table
856

    
857

    
858
@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
859
The TCP Net Console has two modes of operation.  It can send the serial
860
I/O to a location or wait for a connection from a location.  By default
861
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
862
the @var{server} option QEMU will wait for a client socket application
863
to connect to the port before continuing, unless the @code{nowait}
864
option was specified.  The @code{nodelay} option disables the Nagle buffering
865
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
866
one TCP connection at a time is accepted. You can use @code{telnet} to
867
connect to the corresponding character device.
868
@table @code
869
@item Example to send tcp console to 192.168.0.2 port 4444
870
-serial tcp:192.168.0.2:4444
871
@item Example to listen and wait on port 4444 for connection
872
-serial tcp::4444,server
873
@item Example to not wait and listen on ip 192.168.0.100 port 4444
874
-serial tcp:192.168.0.100:4444,server,nowait
875
@end table
876

    
877
@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
878
The telnet protocol is used instead of raw tcp sockets.  The options
879
work the same as if you had specified @code{-serial tcp}.  The
880
difference is that the port acts like a telnet server or client using
881
telnet option negotiation.  This will also allow you to send the
882
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
883
sequence.  Typically in unix telnet you do it with Control-] and then
884
type "send break" followed by pressing the enter key.
885

    
886
@item unix:@var{path}[,server][,nowait]
887
A unix domain socket is used instead of a tcp socket.  The option works the
888
same as if you had specified @code{-serial tcp} except the unix domain socket
889
@var{path} is used for connections.
890

    
891
@item mon:@var{dev_string}
892
This is a special option to allow the monitor to be multiplexed onto
893
another serial port.  The monitor is accessed with key sequence of
894
@key{Control-a} and then pressing @key{c}. See monitor access
895
@ref{pcsys_keys} in the -nographic section for more keys.
896
@var{dev_string} should be any one of the serial devices specified
897
above.  An example to multiplex the monitor onto a telnet server
898
listening on port 4444 would be:
899
@table @code
900
@item -serial mon:telnet::4444,server,nowait
901
@end table
902

    
903
@item braille
904
Braille device.  This will use BrlAPI to display the braille output on a real
905
or fake device.
906

    
907
@end table
908

    
909
@item -parallel @var{dev}
910
Redirect the virtual parallel port to host device @var{dev} (same
911
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
912
be used to use hardware devices connected on the corresponding host
913
parallel port.
914

    
915
This option can be used several times to simulate up to 3 parallel
916
ports.
917

    
918
Use @code{-parallel none} to disable all parallel ports.
919

    
920
@item -monitor @var{dev}
921
Redirect the monitor to host device @var{dev} (same devices as the
922
serial port).
923
The default device is @code{vc} in graphical mode and @code{stdio} in
924
non graphical mode.
925

    
926
@item -echr numeric_ascii_value
927
Change the escape character used for switching to the monitor when using
928
monitor and serial sharing.  The default is @code{0x01} when using the
929
@code{-nographic} option.  @code{0x01} is equal to pressing
930
@code{Control-a}.  You can select a different character from the ascii
931
control keys where 1 through 26 map to Control-a through Control-z.  For
932
instance you could use the either of the following to change the escape
933
character to Control-t.
934
@table @code
935
@item -echr 0x14
936
@item -echr 20
937
@end table
938

    
939
@item -s
940
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
941
@item -p @var{port}
942
Change gdb connection port.  @var{port} can be either a decimal number
943
to specify a TCP port, or a host device (same devices as the serial port).
944
@item -S
945
Do not start CPU at startup (you must type 'c' in the monitor).
946
@item -d
947
Output log in /tmp/qemu.log
948
@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
949
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
950
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
951
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
952
all those parameters. This option is useful for old MS-DOS disk
953
images.
954

    
955
@item -L path
956
Set the directory for the BIOS, VGA BIOS and keymaps.
957

    
958
@item -std-vga
959
Simulate a standard VGA card with Bochs VBE extensions (default is
960
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
961
VBE extensions (e.g. Windows XP) and if you want to use high
962
resolution modes (>= 1280x1024x16) then you should use this option.
963

    
964
@item -no-acpi
965
Disable ACPI (Advanced Configuration and Power Interface) support. Use
966
it if your guest OS complains about ACPI problems (PC target machine
967
only).
968

    
969
@item -no-reboot
970
Exit instead of rebooting.
971

    
972
@item -no-shutdown
973
Don't exit QEMU on guest shutdown, but instead only stop the emulation.
974
This allows for instance switching to monitor to commit changes to the
975
disk image.
976

    
977
@item -loadvm file
978
Start right away with a saved state (@code{loadvm} in monitor)
979

    
980
@item -semihosting
981
Enable semihosting syscall emulation (ARM and M68K target machines only).
982

    
983
On ARM this implements the "Angel" interface.
984
On M68K this implements the "ColdFire GDB" interface used by libgloss.
985

    
986
Note that this allows guest direct access to the host filesystem,
987
so should only be used with trusted guest OS.
988

    
989
@item -icount [N|auto]
990
Enable virtual instruction counter.  The virtual cpu will execute one
991
instruction every 2^N ns of virtual time.  If @code{auto} is specified
992
then the virtual cpu speed will be automatically adjusted to keep virtual
993
time within a few seconds of real time.
994

    
995
Note that while this option can give deterministic behavior, it does not
996
provide cycle accurate emulation.  Modern CPUs contain superscalar out of
997
order cores with complex cache hierarchies.  The number of instructions
998
executed often has little or no correlation with actual performance.
999
@end table
1000

    
1001
@c man end
1002

    
1003
@node pcsys_keys
1004
@section Keys
1005

    
1006
@c man begin OPTIONS
1007

    
1008
During the graphical emulation, you can use the following keys:
1009
@table @key
1010
@item Ctrl-Alt-f
1011
Toggle full screen
1012

    
1013
@item Ctrl-Alt-n
1014
Switch to virtual console 'n'. Standard console mappings are:
1015
@table @emph
1016
@item 1
1017
Target system display
1018
@item 2
1019
Monitor
1020
@item 3
1021
Serial port
1022
@end table
1023

    
1024
@item Ctrl-Alt
1025
Toggle mouse and keyboard grab.
1026
@end table
1027

    
1028
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1029
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1030

    
1031
During emulation, if you are using the @option{-nographic} option, use
1032
@key{Ctrl-a h} to get terminal commands:
1033

    
1034
@table @key
1035
@item Ctrl-a h
1036
Print this help
1037
@item Ctrl-a x
1038
Exit emulator
1039
@item Ctrl-a s
1040
Save disk data back to file (if -snapshot)
1041
@item Ctrl-a t
1042
toggle console timestamps
1043
@item Ctrl-a b
1044
Send break (magic sysrq in Linux)
1045
@item Ctrl-a c
1046
Switch between console and monitor
1047
@item Ctrl-a Ctrl-a
1048
Send Ctrl-a
1049
@end table
1050
@c man end
1051

    
1052
@ignore
1053

    
1054
@c man begin SEEALSO
1055
The HTML documentation of QEMU for more precise information and Linux
1056
user mode emulator invocation.
1057
@c man end
1058

    
1059
@c man begin AUTHOR
1060
Fabrice Bellard
1061
@c man end
1062

    
1063
@end ignore
1064

    
1065
@node pcsys_monitor
1066
@section QEMU Monitor
1067

    
1068
The QEMU monitor is used to give complex commands to the QEMU
1069
emulator. You can use it to:
1070

    
1071
@itemize @minus
1072

    
1073
@item
1074
Remove or insert removable media images
1075
(such as CD-ROM or floppies).
1076

    
1077
@item
1078
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1079
from a disk file.
1080

    
1081
@item Inspect the VM state without an external debugger.
1082

    
1083
@end itemize
1084

    
1085
@subsection Commands
1086

    
1087
The following commands are available:
1088

    
1089
@table @option
1090

    
1091
@item help or ? [@var{cmd}]
1092
Show the help for all commands or just for command @var{cmd}.
1093

    
1094
@item commit
1095
Commit changes to the disk images (if -snapshot is used).
1096

    
1097
@item info @var{subcommand}
1098
Show various information about the system state.
1099

    
1100
@table @option
1101
@item info network
1102
show the various VLANs and the associated devices
1103
@item info block
1104
show the block devices
1105
@item info registers
1106
show the cpu registers
1107
@item info history
1108
show the command line history
1109
@item info pci
1110
show emulated PCI device
1111
@item info usb
1112
show USB devices plugged on the virtual USB hub
1113
@item info usbhost
1114
show all USB host devices
1115
@item info capture
1116
show information about active capturing
1117
@item info snapshots
1118
show list of VM snapshots
1119
@item info mice
1120
show which guest mouse is receiving events
1121
@end table
1122

    
1123
@item q or quit
1124
Quit the emulator.
1125

    
1126
@item eject [-f] @var{device}
1127
Eject a removable medium (use -f to force it).
1128

    
1129
@item change @var{device} @var{setting}
1130

    
1131
Change the configuration of a device.
1132

    
1133
@table @option
1134
@item change @var{diskdevice} @var{filename}
1135
Change the medium for a removable disk device to point to @var{filename}. eg
1136

    
1137
@example
1138
(qemu) change ide1-cd0 /path/to/some.iso
1139
@end example
1140

    
1141
@item change vnc @var{display},@var{options}
1142
Change the configuration of the VNC server. The valid syntax for @var{display}
1143
and @var{options} are described at @ref{sec_invocation}. eg
1144

    
1145
@example
1146
(qemu) change vnc localhost:1
1147
@end example
1148

    
1149
@item change vnc password
1150

    
1151
Change the password associated with the VNC server. The monitor will prompt for
1152
the new password to be entered. VNC passwords are only significant upto 8 letters.
1153
eg.
1154

    
1155
@example
1156
(qemu) change vnc password
1157
Password: ********
1158
@end example
1159

    
1160
@end table
1161

    
1162
@item screendump @var{filename}
1163
Save screen into PPM image @var{filename}.
1164

    
1165
@item mouse_move @var{dx} @var{dy} [@var{dz}]
1166
Move the active mouse to the specified coordinates @var{dx} @var{dy}
1167
with optional scroll axis @var{dz}.
1168

    
1169
@item mouse_button @var{val}
1170
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1171

    
1172
@item mouse_set @var{index}
1173
Set which mouse device receives events at given @var{index}, index
1174
can be obtained with
1175
@example
1176
info mice
1177
@end example
1178

    
1179
@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1180
Capture audio into @var{filename}. Using sample rate @var{frequency}
1181
bits per sample @var{bits} and number of channels @var{channels}.
1182

    
1183
Defaults:
1184
@itemize @minus
1185
@item Sample rate = 44100 Hz - CD quality
1186
@item Bits = 16
1187
@item Number of channels = 2 - Stereo
1188
@end itemize
1189

    
1190
@item stopcapture @var{index}
1191
Stop capture with a given @var{index}, index can be obtained with
1192
@example
1193
info capture
1194
@end example
1195

    
1196
@item log @var{item1}[,...]
1197
Activate logging of the specified items to @file{/tmp/qemu.log}.
1198

    
1199
@item savevm [@var{tag}|@var{id}]
1200
Create a snapshot of the whole virtual machine. If @var{tag} is
1201
provided, it is used as human readable identifier. If there is already
1202
a snapshot with the same tag or ID, it is replaced. More info at
1203
@ref{vm_snapshots}.
1204

    
1205
@item loadvm @var{tag}|@var{id}
1206
Set the whole virtual machine to the snapshot identified by the tag
1207
@var{tag} or the unique snapshot ID @var{id}.
1208

    
1209
@item delvm @var{tag}|@var{id}
1210
Delete the snapshot identified by @var{tag} or @var{id}.
1211

    
1212
@item stop
1213
Stop emulation.
1214

    
1215
@item c or cont
1216
Resume emulation.
1217

    
1218
@item gdbserver [@var{port}]
1219
Start gdbserver session (default @var{port}=1234)
1220

    
1221
@item x/fmt @var{addr}
1222
Virtual memory dump starting at @var{addr}.
1223

    
1224
@item xp /@var{fmt} @var{addr}
1225
Physical memory dump starting at @var{addr}.
1226

    
1227
@var{fmt} is a format which tells the command how to format the
1228
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1229

    
1230
@table @var
1231
@item count
1232
is the number of items to be dumped.
1233

    
1234
@item format
1235
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1236
c (char) or i (asm instruction).
1237

    
1238
@item size
1239
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1240
@code{h} or @code{w} can be specified with the @code{i} format to
1241
respectively select 16 or 32 bit code instruction size.
1242

    
1243
@end table
1244

    
1245
Examples:
1246
@itemize
1247
@item
1248
Dump 10 instructions at the current instruction pointer:
1249
@example
1250
(qemu) x/10i $eip
1251
0x90107063:  ret
1252
0x90107064:  sti
1253
0x90107065:  lea    0x0(%esi,1),%esi
1254
0x90107069:  lea    0x0(%edi,1),%edi
1255
0x90107070:  ret
1256
0x90107071:  jmp    0x90107080
1257
0x90107073:  nop
1258
0x90107074:  nop
1259
0x90107075:  nop
1260
0x90107076:  nop
1261
@end example
1262

    
1263
@item
1264
Dump 80 16 bit values at the start of the video memory.
1265
@smallexample
1266
(qemu) xp/80hx 0xb8000
1267
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1268
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1269
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1270
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1271
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1272
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1273
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1274
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1275
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1276
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1277
@end smallexample
1278
@end itemize
1279

    
1280
@item p or print/@var{fmt} @var{expr}
1281

    
1282
Print expression value. Only the @var{format} part of @var{fmt} is
1283
used.
1284

    
1285
@item sendkey @var{keys}
1286

    
1287
Send @var{keys} to the emulator. Use @code{-} to press several keys
1288
simultaneously. Example:
1289
@example
1290
sendkey ctrl-alt-f1
1291
@end example
1292

    
1293
This command is useful to send keys that your graphical user interface
1294
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1295

    
1296
@item system_reset
1297

    
1298
Reset the system.
1299

    
1300
@item boot_set @var{bootdevicelist}
1301

    
1302
Define new values for the boot device list. Those values will override
1303
the values specified on the command line through the @code{-boot} option.
1304

    
1305
The values that can be specified here depend on the machine type, but are
1306
the same that can be specified in the @code{-boot} command line option.
1307

    
1308
@item usb_add @var{devname}
1309

    
1310
Add the USB device @var{devname}.  For details of available devices see
1311
@ref{usb_devices}
1312

    
1313
@item usb_del @var{devname}
1314

    
1315
Remove the USB device @var{devname} from the QEMU virtual USB
1316
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1317
command @code{info usb} to see the devices you can remove.
1318

    
1319
@end table
1320

    
1321
@subsection Integer expressions
1322

    
1323
The monitor understands integers expressions for every integer
1324
argument. You can use register names to get the value of specifics
1325
CPU registers by prefixing them with @emph{$}.
1326

    
1327
@node disk_images
1328
@section Disk Images
1329

    
1330
Since version 0.6.1, QEMU supports many disk image formats, including
1331
growable disk images (their size increase as non empty sectors are
1332
written), compressed and encrypted disk images. Version 0.8.3 added
1333
the new qcow2 disk image format which is essential to support VM
1334
snapshots.
1335

    
1336
@menu
1337
* disk_images_quickstart::    Quick start for disk image creation
1338
* disk_images_snapshot_mode:: Snapshot mode
1339
* vm_snapshots::              VM snapshots
1340
* qemu_img_invocation::       qemu-img Invocation
1341
* qemu_nbd_invocation::       qemu-nbd Invocation
1342
* host_drives::               Using host drives
1343
* disk_images_fat_images::    Virtual FAT disk images
1344
* disk_images_nbd::           NBD access
1345
@end menu
1346

    
1347
@node disk_images_quickstart
1348
@subsection Quick start for disk image creation
1349

    
1350
You can create a disk image with the command:
1351
@example
1352
qemu-img create myimage.img mysize
1353
@end example
1354
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1355
size in kilobytes. You can add an @code{M} suffix to give the size in
1356
megabytes and a @code{G} suffix for gigabytes.
1357

    
1358
See @ref{qemu_img_invocation} for more information.
1359

    
1360
@node disk_images_snapshot_mode
1361
@subsection Snapshot mode
1362

    
1363
If you use the option @option{-snapshot}, all disk images are
1364
considered as read only. When sectors in written, they are written in
1365
a temporary file created in @file{/tmp}. You can however force the
1366
write back to the raw disk images by using the @code{commit} monitor
1367
command (or @key{C-a s} in the serial console).
1368

    
1369
@node vm_snapshots
1370
@subsection VM snapshots
1371

    
1372
VM snapshots are snapshots of the complete virtual machine including
1373
CPU state, RAM, device state and the content of all the writable
1374
disks. In order to use VM snapshots, you must have at least one non
1375
removable and writable block device using the @code{qcow2} disk image
1376
format. Normally this device is the first virtual hard drive.
1377

    
1378
Use the monitor command @code{savevm} to create a new VM snapshot or
1379
replace an existing one. A human readable name can be assigned to each
1380
snapshot in addition to its numerical ID.
1381

    
1382
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1383
a VM snapshot. @code{info snapshots} lists the available snapshots
1384
with their associated information:
1385

    
1386
@example
1387
(qemu) info snapshots
1388
Snapshot devices: hda
1389
Snapshot list (from hda):
1390
ID        TAG                 VM SIZE                DATE       VM CLOCK
1391
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1392
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1393
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1394
@end example
1395

    
1396
A VM snapshot is made of a VM state info (its size is shown in
1397
@code{info snapshots}) and a snapshot of every writable disk image.
1398
The VM state info is stored in the first @code{qcow2} non removable
1399
and writable block device. The disk image snapshots are stored in
1400
every disk image. The size of a snapshot in a disk image is difficult
1401
to evaluate and is not shown by @code{info snapshots} because the
1402
associated disk sectors are shared among all the snapshots to save
1403
disk space (otherwise each snapshot would need a full copy of all the
1404
disk images).
1405

    
1406
When using the (unrelated) @code{-snapshot} option
1407
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1408
but they are deleted as soon as you exit QEMU.
1409

    
1410
VM snapshots currently have the following known limitations:
1411
@itemize
1412
@item
1413
They cannot cope with removable devices if they are removed or
1414
inserted after a snapshot is done.
1415
@item
1416
A few device drivers still have incomplete snapshot support so their
1417
state is not saved or restored properly (in particular USB).
1418
@end itemize
1419

    
1420
@node qemu_img_invocation
1421
@subsection @code{qemu-img} Invocation
1422

    
1423
@include qemu-img.texi
1424

    
1425
@node qemu_nbd_invocation
1426
@subsection @code{qemu-nbd} Invocation
1427

    
1428
@include qemu-nbd.texi
1429

    
1430
@node host_drives
1431
@subsection Using host drives
1432

    
1433
In addition to disk image files, QEMU can directly access host
1434
devices. We describe here the usage for QEMU version >= 0.8.3.
1435

    
1436
@subsubsection Linux
1437

    
1438
On Linux, you can directly use the host device filename instead of a
1439
disk image filename provided you have enough privileges to access
1440
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1441
@file{/dev/fd0} for the floppy.
1442

    
1443
@table @code
1444
@item CD
1445
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1446
specific code to detect CDROM insertion or removal. CDROM ejection by
1447
the guest OS is supported. Currently only data CDs are supported.
1448
@item Floppy
1449
You can specify a floppy device even if no floppy is loaded. Floppy
1450
removal is currently not detected accurately (if you change floppy
1451
without doing floppy access while the floppy is not loaded, the guest
1452
OS will think that the same floppy is loaded).
1453
@item Hard disks
1454
Hard disks can be used. Normally you must specify the whole disk
1455
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1456
see it as a partitioned disk. WARNING: unless you know what you do, it
1457
is better to only make READ-ONLY accesses to the hard disk otherwise
1458
you may corrupt your host data (use the @option{-snapshot} command
1459
line option or modify the device permissions accordingly).
1460
@end table
1461

    
1462
@subsubsection Windows
1463

    
1464
@table @code
1465
@item CD
1466
The preferred syntax is the drive letter (e.g. @file{d:}). The
1467
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1468
supported as an alias to the first CDROM drive.
1469

    
1470
Currently there is no specific code to handle removable media, so it
1471
is better to use the @code{change} or @code{eject} monitor commands to
1472
change or eject media.
1473
@item Hard disks
1474
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1475
where @var{N} is the drive number (0 is the first hard disk).
1476

    
1477
WARNING: unless you know what you do, it is better to only make
1478
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1479
host data (use the @option{-snapshot} command line so that the
1480
modifications are written in a temporary file).
1481
@end table
1482

    
1483

    
1484
@subsubsection Mac OS X
1485

    
1486
@file{/dev/cdrom} is an alias to the first CDROM.
1487

    
1488
Currently there is no specific code to handle removable media, so it
1489
is better to use the @code{change} or @code{eject} monitor commands to
1490
change or eject media.
1491

    
1492
@node disk_images_fat_images
1493
@subsection Virtual FAT disk images
1494

    
1495
QEMU can automatically create a virtual FAT disk image from a
1496
directory tree. In order to use it, just type:
1497

    
1498
@example
1499
qemu linux.img -hdb fat:/my_directory
1500
@end example
1501

    
1502
Then you access access to all the files in the @file{/my_directory}
1503
directory without having to copy them in a disk image or to export
1504
them via SAMBA or NFS. The default access is @emph{read-only}.
1505

    
1506
Floppies can be emulated with the @code{:floppy:} option:
1507

    
1508
@example
1509
qemu linux.img -fda fat:floppy:/my_directory
1510
@end example
1511

    
1512
A read/write support is available for testing (beta stage) with the
1513
@code{:rw:} option:
1514

    
1515
@example
1516
qemu linux.img -fda fat:floppy:rw:/my_directory
1517
@end example
1518

    
1519
What you should @emph{never} do:
1520
@itemize
1521
@item use non-ASCII filenames ;
1522
@item use "-snapshot" together with ":rw:" ;
1523
@item expect it to work when loadvm'ing ;
1524
@item write to the FAT directory on the host system while accessing it with the guest system.
1525
@end itemize
1526

    
1527
@node disk_images_nbd
1528
@subsection NBD access
1529

    
1530
QEMU can access directly to block device exported using the Network Block Device
1531
protocol.
1532

    
1533
@example
1534
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1535
@end example
1536

    
1537
If the NBD server is located on the same host, you can use an unix socket instead
1538
of an inet socket:
1539

    
1540
@example
1541
qemu linux.img -hdb nbd:unix:/tmp/my_socket
1542
@end example
1543

    
1544
In this case, the block device must be exported using qemu-nbd:
1545

    
1546
@example
1547
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1548
@end example
1549

    
1550
The use of qemu-nbd allows to share a disk between several guests:
1551
@example
1552
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1553
@end example
1554

    
1555
and then you can use it with two guests:
1556
@example
1557
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1558
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1559
@end example
1560

    
1561
@node pcsys_network
1562
@section Network emulation
1563

    
1564
QEMU can simulate several network cards (PCI or ISA cards on the PC
1565
target) and can connect them to an arbitrary number of Virtual Local
1566
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1567
VLAN. VLAN can be connected between separate instances of QEMU to
1568
simulate large networks. For simpler usage, a non privileged user mode
1569
network stack can replace the TAP device to have a basic network
1570
connection.
1571

    
1572
@subsection VLANs
1573

    
1574
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1575
connection between several network devices. These devices can be for
1576
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1577
(TAP devices).
1578

    
1579
@subsection Using TAP network interfaces
1580

    
1581
This is the standard way to connect QEMU to a real network. QEMU adds
1582
a virtual network device on your host (called @code{tapN}), and you
1583
can then configure it as if it was a real ethernet card.
1584

    
1585
@subsubsection Linux host
1586

    
1587
As an example, you can download the @file{linux-test-xxx.tar.gz}
1588
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1589
configure properly @code{sudo} so that the command @code{ifconfig}
1590
contained in @file{qemu-ifup} can be executed as root. You must verify
1591
that your host kernel supports the TAP network interfaces: the
1592
device @file{/dev/net/tun} must be present.
1593

    
1594
See @ref{sec_invocation} to have examples of command lines using the
1595
TAP network interfaces.
1596

    
1597
@subsubsection Windows host
1598

    
1599
There is a virtual ethernet driver for Windows 2000/XP systems, called
1600
TAP-Win32. But it is not included in standard QEMU for Windows,
1601
so you will need to get it separately. It is part of OpenVPN package,
1602
so download OpenVPN from : @url{http://openvpn.net/}.
1603

    
1604
@subsection Using the user mode network stack
1605

    
1606
By using the option @option{-net user} (default configuration if no
1607
@option{-net} option is specified), QEMU uses a completely user mode
1608
network stack (you don't need root privilege to use the virtual
1609
network). The virtual network configuration is the following:
1610

    
1611
@example
1612

    
1613
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1614
                           |          (10.0.2.2)
1615
                           |
1616
                           ---->  DNS server (10.0.2.3)
1617
                           |
1618
                           ---->  SMB server (10.0.2.4)
1619
@end example
1620

    
1621
The QEMU VM behaves as if it was behind a firewall which blocks all
1622
incoming connections. You can use a DHCP client to automatically
1623
configure the network in the QEMU VM. The DHCP server assign addresses
1624
to the hosts starting from 10.0.2.15.
1625

    
1626
In order to check that the user mode network is working, you can ping
1627
the address 10.0.2.2 and verify that you got an address in the range
1628
10.0.2.x from the QEMU virtual DHCP server.
1629

    
1630
Note that @code{ping} is not supported reliably to the internet as it
1631
would require root privileges. It means you can only ping the local
1632
router (10.0.2.2).
1633

    
1634
When using the built-in TFTP server, the router is also the TFTP
1635
server.
1636

    
1637
When using the @option{-redir} option, TCP or UDP connections can be
1638
redirected from the host to the guest. It allows for example to
1639
redirect X11, telnet or SSH connections.
1640

    
1641
@subsection Connecting VLANs between QEMU instances
1642

    
1643
Using the @option{-net socket} option, it is possible to make VLANs
1644
that span several QEMU instances. See @ref{sec_invocation} to have a
1645
basic example.
1646

    
1647
@node direct_linux_boot
1648
@section Direct Linux Boot
1649

    
1650
This section explains how to launch a Linux kernel inside QEMU without
1651
having to make a full bootable image. It is very useful for fast Linux
1652
kernel testing.
1653

    
1654
The syntax is:
1655
@example
1656
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1657
@end example
1658

    
1659
Use @option{-kernel} to provide the Linux kernel image and
1660
@option{-append} to give the kernel command line arguments. The
1661
@option{-initrd} option can be used to provide an INITRD image.
1662

    
1663
When using the direct Linux boot, a disk image for the first hard disk
1664
@file{hda} is required because its boot sector is used to launch the
1665
Linux kernel.
1666

    
1667
If you do not need graphical output, you can disable it and redirect
1668
the virtual serial port and the QEMU monitor to the console with the
1669
@option{-nographic} option. The typical command line is:
1670
@example
1671
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1672
     -append "root=/dev/hda console=ttyS0" -nographic
1673
@end example
1674

    
1675
Use @key{Ctrl-a c} to switch between the serial console and the
1676
monitor (@pxref{pcsys_keys}).
1677

    
1678
@node pcsys_usb
1679
@section USB emulation
1680

    
1681
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1682
virtual USB devices or real host USB devices (experimental, works only
1683
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1684
as necessary to connect multiple USB devices.
1685

    
1686
@menu
1687
* usb_devices::
1688
* host_usb_devices::
1689
@end menu
1690
@node usb_devices
1691
@subsection Connecting USB devices
1692

    
1693
USB devices can be connected with the @option{-usbdevice} commandline option
1694
or the @code{usb_add} monitor command.  Available devices are:
1695

    
1696
@table @code
1697
@item mouse
1698
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1699
@item tablet
1700
Pointer device that uses absolute coordinates (like a touchscreen).
1701
This means qemu is able to report the mouse position without having
1702
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1703
@item disk:@var{file}
1704
Mass storage device based on @var{file} (@pxref{disk_images})
1705
@item host:@var{bus.addr}
1706
Pass through the host device identified by @var{bus.addr}
1707
(Linux only)
1708
@item host:@var{vendor_id:product_id}
1709
Pass through the host device identified by @var{vendor_id:product_id}
1710
(Linux only)
1711
@item wacom-tablet
1712
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1713
above but it can be used with the tslib library because in addition to touch
1714
coordinates it reports touch pressure.
1715
@item keyboard
1716
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1717
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1718
Serial converter. This emulates an FTDI FT232BM chip connected to host character
1719
device @var{dev}. The available character devices are the same as for the
1720
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
1721
used to override the default 0403:6001. For instance, 
1722
@example
1723
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1724
@end example
1725
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1726
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1727
@item braille
1728
Braille device.  This will use BrlAPI to display the braille output on a real
1729
or fake device.
1730
@item net:@var{options}
1731
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1732
specifies NIC options as with @code{-net nic,}@var{options} (see description).
1733
For instance, user-mode networking can be used with
1734
@example
1735
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1736
@end example
1737
Currently this cannot be used in machines that support PCI NICs.
1738
@end table
1739

    
1740
@node host_usb_devices
1741
@subsection Using host USB devices on a Linux host
1742

    
1743
WARNING: this is an experimental feature. QEMU will slow down when
1744
using it. USB devices requiring real time streaming (i.e. USB Video
1745
Cameras) are not supported yet.
1746

    
1747
@enumerate
1748
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1749
is actually using the USB device. A simple way to do that is simply to
1750
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1751
to @file{mydriver.o.disabled}.
1752

    
1753
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1754
@example
1755
ls /proc/bus/usb
1756
001  devices  drivers
1757
@end example
1758

    
1759
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1760
@example
1761
chown -R myuid /proc/bus/usb
1762
@end example
1763

    
1764
@item Launch QEMU and do in the monitor:
1765
@example
1766
info usbhost
1767
  Device 1.2, speed 480 Mb/s
1768
    Class 00: USB device 1234:5678, USB DISK
1769
@end example
1770
You should see the list of the devices you can use (Never try to use
1771
hubs, it won't work).
1772

    
1773
@item Add the device in QEMU by using:
1774
@example
1775
usb_add host:1234:5678
1776
@end example
1777

    
1778
Normally the guest OS should report that a new USB device is
1779
plugged. You can use the option @option{-usbdevice} to do the same.
1780

    
1781
@item Now you can try to use the host USB device in QEMU.
1782

    
1783
@end enumerate
1784

    
1785
When relaunching QEMU, you may have to unplug and plug again the USB
1786
device to make it work again (this is a bug).
1787

    
1788
@node vnc_security
1789
@section VNC security
1790

    
1791
The VNC server capability provides access to the graphical console
1792
of the guest VM across the network. This has a number of security
1793
considerations depending on the deployment scenarios.
1794

    
1795
@menu
1796
* vnc_sec_none::
1797
* vnc_sec_password::
1798
* vnc_sec_certificate::
1799
* vnc_sec_certificate_verify::
1800
* vnc_sec_certificate_pw::
1801
* vnc_generate_cert::
1802
@end menu
1803
@node vnc_sec_none
1804
@subsection Without passwords
1805

    
1806
The simplest VNC server setup does not include any form of authentication.
1807
For this setup it is recommended to restrict it to listen on a UNIX domain
1808
socket only. For example
1809

    
1810
@example
1811
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1812
@end example
1813

    
1814
This ensures that only users on local box with read/write access to that
1815
path can access the VNC server. To securely access the VNC server from a
1816
remote machine, a combination of netcat+ssh can be used to provide a secure
1817
tunnel.
1818

    
1819
@node vnc_sec_password
1820
@subsection With passwords
1821

    
1822
The VNC protocol has limited support for password based authentication. Since
1823
the protocol limits passwords to 8 characters it should not be considered
1824
to provide high security. The password can be fairly easily brute-forced by
1825
a client making repeat connections. For this reason, a VNC server using password
1826
authentication should be restricted to only listen on the loopback interface
1827
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1828
option, and then once QEMU is running the password is set with the monitor. Until
1829
the monitor is used to set the password all clients will be rejected.
1830

    
1831
@example
1832
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1833
(qemu) change vnc password
1834
Password: ********
1835
(qemu)
1836
@end example
1837

    
1838
@node vnc_sec_certificate
1839
@subsection With x509 certificates
1840

    
1841
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1842
TLS for encryption of the session, and x509 certificates for authentication.
1843
The use of x509 certificates is strongly recommended, because TLS on its
1844
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1845
support provides a secure session, but no authentication. This allows any
1846
client to connect, and provides an encrypted session.
1847

    
1848
@example
1849
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1850
@end example
1851

    
1852
In the above example @code{/etc/pki/qemu} should contain at least three files,
1853
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1854
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1855
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1856
only be readable by the user owning it.
1857

    
1858
@node vnc_sec_certificate_verify
1859
@subsection With x509 certificates and client verification
1860

    
1861
Certificates can also provide a means to authenticate the client connecting.
1862
The server will request that the client provide a certificate, which it will
1863
then validate against the CA certificate. This is a good choice if deploying
1864
in an environment with a private internal certificate authority.
1865

    
1866
@example
1867
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1868
@end example
1869

    
1870

    
1871
@node vnc_sec_certificate_pw
1872
@subsection With x509 certificates, client verification and passwords
1873

    
1874
Finally, the previous method can be combined with VNC password authentication
1875
to provide two layers of authentication for clients.
1876

    
1877
@example
1878
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1879
(qemu) change vnc password
1880
Password: ********
1881
(qemu)
1882
@end example
1883

    
1884
@node vnc_generate_cert
1885
@subsection Generating certificates for VNC
1886

    
1887
The GNU TLS packages provides a command called @code{certtool} which can
1888
be used to generate certificates and keys in PEM format. At a minimum it
1889
is neccessary to setup a certificate authority, and issue certificates to
1890
each server. If using certificates for authentication, then each client
1891
will also need to be issued a certificate. The recommendation is for the
1892
server to keep its certificates in either @code{/etc/pki/qemu} or for
1893
unprivileged users in @code{$HOME/.pki/qemu}.
1894

    
1895
@menu
1896
* vnc_generate_ca::
1897
* vnc_generate_server::
1898
* vnc_generate_client::
1899
@end menu
1900
@node vnc_generate_ca
1901
@subsubsection Setup the Certificate Authority
1902

    
1903
This step only needs to be performed once per organization / organizational
1904
unit. First the CA needs a private key. This key must be kept VERY secret
1905
and secure. If this key is compromised the entire trust chain of the certificates
1906
issued with it is lost.
1907

    
1908
@example
1909
# certtool --generate-privkey > ca-key.pem
1910
@end example
1911

    
1912
A CA needs to have a public certificate. For simplicity it can be a self-signed
1913
certificate, or one issue by a commercial certificate issuing authority. To
1914
generate a self-signed certificate requires one core piece of information, the
1915
name of the organization.
1916

    
1917
@example
1918
# cat > ca.info <<EOF
1919
cn = Name of your organization
1920
ca
1921
cert_signing_key
1922
EOF
1923
# certtool --generate-self-signed \
1924
           --load-privkey ca-key.pem
1925
           --template ca.info \
1926
           --outfile ca-cert.pem
1927
@end example
1928

    
1929
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1930
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1931

    
1932
@node vnc_generate_server
1933
@subsubsection Issuing server certificates
1934

    
1935
Each server (or host) needs to be issued with a key and certificate. When connecting
1936
the certificate is sent to the client which validates it against the CA certificate.
1937
The core piece of information for a server certificate is the hostname. This should
1938
be the fully qualified hostname that the client will connect with, since the client
1939
will typically also verify the hostname in the certificate. On the host holding the
1940
secure CA private key:
1941

    
1942
@example
1943
# cat > server.info <<EOF
1944
organization = Name  of your organization
1945
cn = server.foo.example.com
1946
tls_www_server
1947
encryption_key
1948
signing_key
1949
EOF
1950
# certtool --generate-privkey > server-key.pem
1951
# certtool --generate-certificate \
1952
           --load-ca-certificate ca-cert.pem \
1953
           --load-ca-privkey ca-key.pem \
1954
           --load-privkey server server-key.pem \
1955
           --template server.info \
1956
           --outfile server-cert.pem
1957
@end example
1958

    
1959
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1960
to the server for which they were generated. The @code{server-key.pem} is security
1961
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1962

    
1963
@node vnc_generate_client
1964
@subsubsection Issuing client certificates
1965

    
1966
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1967
certificates as its authentication mechanism, each client also needs to be issued
1968
a certificate. The client certificate contains enough metadata to uniquely identify
1969
the client, typically organization, state, city, building, etc. On the host holding
1970
the secure CA private key:
1971

    
1972
@example
1973
# cat > client.info <<EOF
1974
country = GB
1975
state = London
1976
locality = London
1977
organiazation = Name of your organization
1978
cn = client.foo.example.com
1979
tls_www_client
1980
encryption_key
1981
signing_key
1982
EOF
1983
# certtool --generate-privkey > client-key.pem
1984
# certtool --generate-certificate \
1985
           --load-ca-certificate ca-cert.pem \
1986
           --load-ca-privkey ca-key.pem \
1987
           --load-privkey client-key.pem \
1988
           --template client.info \
1989
           --outfile client-cert.pem
1990
@end example
1991

    
1992
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1993
copied to the client for which they were generated.
1994

    
1995
@node gdb_usage
1996
@section GDB usage
1997

    
1998
QEMU has a primitive support to work with gdb, so that you can do
1999
'Ctrl-C' while the virtual machine is running and inspect its state.
2000

    
2001
In order to use gdb, launch qemu with the '-s' option. It will wait for a
2002
gdb connection:
2003
@example
2004
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2005
       -append "root=/dev/hda"
2006
Connected to host network interface: tun0
2007
Waiting gdb connection on port 1234
2008
@end example
2009

    
2010
Then launch gdb on the 'vmlinux' executable:
2011
@example
2012
> gdb vmlinux
2013
@end example
2014

    
2015
In gdb, connect to QEMU:
2016
@example
2017
(gdb) target remote localhost:1234
2018
@end example
2019

    
2020
Then you can use gdb normally. For example, type 'c' to launch the kernel:
2021
@example
2022
(gdb) c
2023
@end example
2024

    
2025
Here are some useful tips in order to use gdb on system code:
2026

    
2027
@enumerate
2028
@item
2029
Use @code{info reg} to display all the CPU registers.
2030
@item
2031
Use @code{x/10i $eip} to display the code at the PC position.
2032
@item
2033
Use @code{set architecture i8086} to dump 16 bit code. Then use
2034
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
2035
@end enumerate
2036

    
2037
Advanced debugging options:
2038

    
2039
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2040
@table @code
2041
@item maintenance packet qqemu.sstepbits
2042

    
2043
This will display the MASK bits used to control the single stepping IE:
2044
@example
2045
(gdb) maintenance packet qqemu.sstepbits
2046
sending: "qqemu.sstepbits"
2047
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2048
@end example
2049
@item maintenance packet qqemu.sstep
2050

    
2051
This will display the current value of the mask used when single stepping IE:
2052
@example
2053
(gdb) maintenance packet qqemu.sstep
2054
sending: "qqemu.sstep"
2055
received: "0x7"
2056
@end example
2057
@item maintenance packet Qqemu.sstep=HEX_VALUE
2058

    
2059
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2060
@example
2061
(gdb) maintenance packet Qqemu.sstep=0x5
2062
sending: "qemu.sstep=0x5"
2063
received: "OK"
2064
@end example
2065
@end table
2066

    
2067
@node pcsys_os_specific
2068
@section Target OS specific information
2069

    
2070
@subsection Linux
2071

    
2072
To have access to SVGA graphic modes under X11, use the @code{vesa} or
2073
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2074
color depth in the guest and the host OS.
2075

    
2076
When using a 2.6 guest Linux kernel, you should add the option
2077
@code{clock=pit} on the kernel command line because the 2.6 Linux
2078
kernels make very strict real time clock checks by default that QEMU
2079
cannot simulate exactly.
2080

    
2081
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2082
not activated because QEMU is slower with this patch. The QEMU
2083
Accelerator Module is also much slower in this case. Earlier Fedora
2084
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2085
patch by default. Newer kernels don't have it.
2086

    
2087
@subsection Windows
2088

    
2089
If you have a slow host, using Windows 95 is better as it gives the
2090
best speed. Windows 2000 is also a good choice.
2091

    
2092
@subsubsection SVGA graphic modes support
2093

    
2094
QEMU emulates a Cirrus Logic GD5446 Video
2095
card. All Windows versions starting from Windows 95 should recognize
2096
and use this graphic card. For optimal performances, use 16 bit color
2097
depth in the guest and the host OS.
2098

    
2099
If you are using Windows XP as guest OS and if you want to use high
2100
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2101
1280x1024x16), then you should use the VESA VBE virtual graphic card
2102
(option @option{-std-vga}).
2103

    
2104
@subsubsection CPU usage reduction
2105

    
2106
Windows 9x does not correctly use the CPU HLT
2107
instruction. The result is that it takes host CPU cycles even when
2108
idle. You can install the utility from
2109
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2110
problem. Note that no such tool is needed for NT, 2000 or XP.
2111

    
2112
@subsubsection Windows 2000 disk full problem
2113

    
2114
Windows 2000 has a bug which gives a disk full problem during its
2115
installation. When installing it, use the @option{-win2k-hack} QEMU
2116
option to enable a specific workaround. After Windows 2000 is
2117
installed, you no longer need this option (this option slows down the
2118
IDE transfers).
2119

    
2120
@subsubsection Windows 2000 shutdown
2121

    
2122
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2123
can. It comes from the fact that Windows 2000 does not automatically
2124
use the APM driver provided by the BIOS.
2125

    
2126
In order to correct that, do the following (thanks to Struan
2127
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2128
Add/Troubleshoot a device => Add a new device & Next => No, select the
2129
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2130
(again) a few times. Now the driver is installed and Windows 2000 now
2131
correctly instructs QEMU to shutdown at the appropriate moment.
2132

    
2133
@subsubsection Share a directory between Unix and Windows
2134

    
2135
See @ref{sec_invocation} about the help of the option @option{-smb}.
2136

    
2137
@subsubsection Windows XP security problem
2138

    
2139
Some releases of Windows XP install correctly but give a security
2140
error when booting:
2141
@example
2142
A problem is preventing Windows from accurately checking the
2143
license for this computer. Error code: 0x800703e6.
2144
@end example
2145

    
2146
The workaround is to install a service pack for XP after a boot in safe
2147
mode. Then reboot, and the problem should go away. Since there is no
2148
network while in safe mode, its recommended to download the full
2149
installation of SP1 or SP2 and transfer that via an ISO or using the
2150
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2151

    
2152
@subsection MS-DOS and FreeDOS
2153

    
2154
@subsubsection CPU usage reduction
2155

    
2156
DOS does not correctly use the CPU HLT instruction. The result is that
2157
it takes host CPU cycles even when idle. You can install the utility
2158
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2159
problem.
2160

    
2161
@node QEMU System emulator for non PC targets
2162
@chapter QEMU System emulator for non PC targets
2163

    
2164
QEMU is a generic emulator and it emulates many non PC
2165
machines. Most of the options are similar to the PC emulator. The
2166
differences are mentioned in the following sections.
2167

    
2168
@menu
2169
* QEMU PowerPC System emulator::
2170
* Sparc32 System emulator::
2171
* Sparc64 System emulator::
2172
* MIPS System emulator::
2173
* ARM System emulator::
2174
* ColdFire System emulator::
2175
@end menu
2176

    
2177
@node QEMU PowerPC System emulator
2178
@section QEMU PowerPC System emulator
2179

    
2180
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2181
or PowerMac PowerPC system.
2182

    
2183
QEMU emulates the following PowerMac peripherals:
2184

    
2185
@itemize @minus
2186
@item
2187
UniNorth PCI Bridge
2188
@item
2189
PCI VGA compatible card with VESA Bochs Extensions
2190
@item
2191
2 PMAC IDE interfaces with hard disk and CD-ROM support
2192
@item
2193
NE2000 PCI adapters
2194
@item
2195
Non Volatile RAM
2196
@item
2197
VIA-CUDA with ADB keyboard and mouse.
2198
@end itemize
2199

    
2200
QEMU emulates the following PREP peripherals:
2201

    
2202
@itemize @minus
2203
@item
2204
PCI Bridge
2205
@item
2206
PCI VGA compatible card with VESA Bochs Extensions
2207
@item
2208
2 IDE interfaces with hard disk and CD-ROM support
2209
@item
2210
Floppy disk
2211
@item
2212
NE2000 network adapters
2213
@item
2214
Serial port
2215
@item
2216
PREP Non Volatile RAM
2217
@item
2218
PC compatible keyboard and mouse.
2219
@end itemize
2220

    
2221
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2222
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2223

    
2224
@c man begin OPTIONS
2225

    
2226
The following options are specific to the PowerPC emulation:
2227

    
2228
@table @option
2229

    
2230
@item -g WxH[xDEPTH]
2231

    
2232
Set the initial VGA graphic mode. The default is 800x600x15.
2233

    
2234
@end table
2235

    
2236
@c man end
2237

    
2238

    
2239
More information is available at
2240
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2241

    
2242
@node Sparc32 System emulator
2243
@section Sparc32 System emulator
2244

    
2245
Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
2246
5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
2247
architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
2248
or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
2249
complete.  SMP up to 16 CPUs is supported, but Linux limits the number
2250
of usable CPUs to 4.
2251

    
2252
QEMU emulates the following sun4m/sun4d peripherals:
2253

    
2254
@itemize @minus
2255
@item
2256
IOMMU or IO-UNITs
2257
@item
2258
TCX Frame buffer
2259
@item
2260
Lance (Am7990) Ethernet
2261
@item
2262
Non Volatile RAM M48T08
2263
@item
2264
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2265
and power/reset logic
2266
@item
2267
ESP SCSI controller with hard disk and CD-ROM support
2268
@item
2269
Floppy drive (not on SS-600MP)
2270
@item
2271
CS4231 sound device (only on SS-5, not working yet)
2272
@end itemize
2273

    
2274
The number of peripherals is fixed in the architecture.  Maximum
2275
memory size depends on the machine type, for SS-5 it is 256MB and for
2276
others 2047MB.
2277

    
2278
Since version 0.8.2, QEMU uses OpenBIOS
2279
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2280
firmware implementation. The goal is to implement a 100% IEEE
2281
1275-1994 (referred to as Open Firmware) compliant firmware.
2282

    
2283
A sample Linux 2.6 series kernel and ram disk image are available on
2284
the QEMU web site. Please note that currently NetBSD, OpenBSD or
2285
Solaris kernels don't work.
2286

    
2287
@c man begin OPTIONS
2288

    
2289
The following options are specific to the Sparc32 emulation:
2290

    
2291
@table @option
2292

    
2293
@item -g WxHx[xDEPTH]
2294

    
2295
Set the initial TCX graphic mode. The default is 1024x768x8, currently
2296
the only other possible mode is 1024x768x24.
2297

    
2298
@item -prom-env string
2299

    
2300
Set OpenBIOS variables in NVRAM, for example:
2301

    
2302
@example
2303
qemu-system-sparc -prom-env 'auto-boot?=false' \
2304
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2305
@end example
2306

    
2307
@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
2308

    
2309
Set the emulated machine type. Default is SS-5.
2310

    
2311
@end table
2312

    
2313
@c man end
2314

    
2315
@node Sparc64 System emulator
2316
@section Sparc64 System emulator
2317

    
2318
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u or
2319
Sun4v machine. The emulator is not usable for anything yet.
2320

    
2321
QEMU emulates the following peripherals:
2322

    
2323
@itemize @minus
2324
@item
2325
UltraSparc IIi APB PCI Bridge
2326
@item
2327
PCI VGA compatible card with VESA Bochs Extensions
2328
@item
2329
Non Volatile RAM M48T59
2330
@item
2331
PC-compatible serial ports
2332
@item
2333
2 PCI IDE interfaces with hard disk and CD-ROM support
2334
@end itemize
2335

    
2336
@c man begin OPTIONS
2337

    
2338
The following options are specific to the Sparc64 emulation:
2339

    
2340
@table @option
2341

    
2342
@item -M [sun4u|sun4v]
2343

    
2344
Set the emulated machine type. The default is sun4u.
2345

    
2346
@end table
2347

    
2348
@c man end
2349

    
2350
@node MIPS System emulator
2351
@section MIPS System emulator
2352

    
2353
Four executables cover simulation of 32 and 64-bit MIPS systems in
2354
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2355
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2356
Five different machine types are emulated:
2357

    
2358
@itemize @minus
2359
@item
2360
A generic ISA PC-like machine "mips"
2361
@item
2362
The MIPS Malta prototype board "malta"
2363
@item
2364
An ACER Pica "pica61". This machine needs the 64-bit emulator.
2365
@item
2366
MIPS emulator pseudo board "mipssim"
2367
@item
2368
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2369
@end itemize
2370

    
2371
The generic emulation is supported by Debian 'Etch' and is able to
2372
install Debian into a virtual disk image. The following devices are
2373
emulated:
2374

    
2375
@itemize @minus
2376
@item
2377
A range of MIPS CPUs, default is the 24Kf
2378
@item
2379
PC style serial port
2380
@item
2381
PC style IDE disk
2382
@item
2383
NE2000 network card
2384
@end itemize
2385

    
2386
The Malta emulation supports the following devices:
2387

    
2388
@itemize @minus
2389
@item
2390
Core board with MIPS 24Kf CPU and Galileo system controller
2391
@item
2392
PIIX4 PCI/USB/SMbus controller
2393
@item
2394
The Multi-I/O chip's serial device
2395
@item
2396
PCnet32 PCI network card
2397
@item
2398
Malta FPGA serial device
2399
@item
2400
Cirrus VGA graphics card
2401
@end itemize
2402

    
2403
The ACER Pica emulation supports:
2404

    
2405
@itemize @minus
2406
@item
2407
MIPS R4000 CPU
2408
@item
2409
PC-style IRQ and DMA controllers
2410
@item
2411
PC Keyboard
2412
@item
2413
IDE controller
2414
@end itemize
2415

    
2416
The mipssim pseudo board emulation provides an environment similiar
2417
to what the proprietary MIPS emulator uses for running Linux.
2418
It supports:
2419

    
2420
@itemize @minus
2421
@item
2422
A range of MIPS CPUs, default is the 24Kf
2423
@item
2424
PC style serial port
2425
@item
2426
MIPSnet network emulation
2427
@end itemize
2428

    
2429
The MIPS Magnum R4000 emulation supports:
2430

    
2431
@itemize @minus
2432
@item
2433
MIPS R4000 CPU
2434
@item
2435
PC-style IRQ controller
2436
@item
2437
PC Keyboard
2438
@item
2439
SCSI controller
2440
@item
2441
G364 framebuffer
2442
@end itemize
2443

    
2444

    
2445
@node ARM System emulator
2446
@section ARM System emulator
2447

    
2448
Use the executable @file{qemu-system-arm} to simulate a ARM
2449
machine. The ARM Integrator/CP board is emulated with the following
2450
devices:
2451

    
2452
@itemize @minus
2453
@item
2454
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2455
@item
2456
Two PL011 UARTs
2457
@item
2458
SMC 91c111 Ethernet adapter
2459
@item
2460
PL110 LCD controller
2461
@item
2462
PL050 KMI with PS/2 keyboard and mouse.
2463
@item
2464
PL181 MultiMedia Card Interface with SD card.
2465
@end itemize
2466

    
2467
The ARM Versatile baseboard is emulated with the following devices:
2468

    
2469
@itemize @minus
2470
@item
2471
ARM926E, ARM1136 or Cortex-A8 CPU
2472
@item
2473
PL190 Vectored Interrupt Controller
2474
@item
2475
Four PL011 UARTs
2476
@item
2477
SMC 91c111 Ethernet adapter
2478
@item
2479
PL110 LCD controller
2480
@item
2481
PL050 KMI with PS/2 keyboard and mouse.
2482
@item
2483
PCI host bridge.  Note the emulated PCI bridge only provides access to
2484
PCI memory space.  It does not provide access to PCI IO space.
2485
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2486
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2487
mapped control registers.
2488
@item
2489
PCI OHCI USB controller.
2490
@item
2491
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2492
@item
2493
PL181 MultiMedia Card Interface with SD card.
2494
@end itemize
2495

    
2496
The ARM RealView Emulation baseboard is emulated with the following devices:
2497

    
2498
@itemize @minus
2499
@item
2500
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2501
@item
2502
ARM AMBA Generic/Distributed Interrupt Controller
2503
@item
2504
Four PL011 UARTs
2505
@item
2506
SMC 91c111 Ethernet adapter
2507
@item
2508
PL110 LCD controller
2509
@item
2510
PL050 KMI with PS/2 keyboard and mouse
2511
@item
2512
PCI host bridge
2513
@item
2514
PCI OHCI USB controller
2515
@item
2516
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2517
@item
2518
PL181 MultiMedia Card Interface with SD card.
2519
@end itemize
2520

    
2521
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2522
and "Terrier") emulation includes the following peripherals:
2523

    
2524
@itemize @minus
2525
@item
2526
Intel PXA270 System-on-chip (ARM V5TE core)
2527
@item
2528
NAND Flash memory
2529
@item
2530
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2531
@item
2532
On-chip OHCI USB controller
2533
@item
2534
On-chip LCD controller
2535
@item
2536
On-chip Real Time Clock
2537
@item
2538
TI ADS7846 touchscreen controller on SSP bus
2539
@item
2540
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2541
@item
2542
GPIO-connected keyboard controller and LEDs
2543
@item
2544
Secure Digital card connected to PXA MMC/SD host
2545
@item
2546
Three on-chip UARTs
2547
@item
2548
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2549
@end itemize
2550

    
2551
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2552
following elements:
2553

    
2554
@itemize @minus
2555
@item
2556
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2557
@item
2558
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2559
@item
2560
On-chip LCD controller
2561
@item
2562
On-chip Real Time Clock
2563
@item
2564
TI TSC2102i touchscreen controller / analog-digital converter / Audio
2565
CODEC, connected through MicroWire and I@math{^2}S busses
2566
@item
2567
GPIO-connected matrix keypad
2568
@item
2569
Secure Digital card connected to OMAP MMC/SD host
2570
@item
2571
Three on-chip UARTs
2572
@end itemize
2573

    
2574
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2575
emulation supports the following elements:
2576

    
2577
@itemize @minus
2578
@item
2579
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2580
@item
2581
RAM and non-volatile OneNAND Flash memories
2582
@item
2583
Display connected to EPSON remote framebuffer chip and OMAP on-chip
2584
display controller and a LS041y3 MIPI DBI-C controller
2585
@item
2586
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2587
driven through SPI bus
2588
@item
2589
National Semiconductor LM8323-controlled qwerty keyboard driven
2590
through I@math{^2}C bus
2591
@item
2592
Secure Digital card connected to OMAP MMC/SD host
2593
@item
2594
Three OMAP on-chip UARTs and on-chip STI debugging console
2595
@item
2596
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2597
TUSB6010 chip - only USB host mode is supported
2598
@item
2599
TI TMP105 temperature sensor driven through I@math{^2}C bus
2600
@item
2601
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2602
@item
2603
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2604
through CBUS
2605
@end itemize
2606

    
2607
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2608
devices:
2609

    
2610
@itemize @minus
2611
@item
2612
Cortex-M3 CPU core.
2613
@item
2614
64k Flash and 8k SRAM.
2615
@item
2616
Timers, UARTs, ADC and I@math{^2}C interface.
2617
@item
2618
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2619
@end itemize
2620

    
2621
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2622
devices:
2623

    
2624
@itemize @minus
2625
@item
2626
Cortex-M3 CPU core.
2627
@item
2628
256k Flash and 64k SRAM.
2629
@item
2630
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2631
@item
2632
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2633
@end itemize
2634

    
2635
The Freecom MusicPal internet radio emulation includes the following
2636
elements:
2637

    
2638
@itemize @minus
2639
@item
2640
Marvell MV88W8618 ARM core.
2641
@item
2642
32 MB RAM, 256 KB SRAM, 8 MB flash.
2643
@item
2644
Up to 2 16550 UARTs
2645
@item
2646
MV88W8xx8 Ethernet controller
2647
@item
2648
MV88W8618 audio controller, WM8750 CODEC and mixer
2649
@item
2650
128?64 display with brightness control
2651
@item
2652
2 buttons, 2 navigation wheels with button function
2653
@end itemize
2654

    
2655
A Linux 2.6 test image is available on the QEMU web site. More
2656
information is available in the QEMU mailing-list archive.
2657

    
2658
@node ColdFire System emulator
2659
@section ColdFire System emulator
2660

    
2661
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2662
The emulator is able to boot a uClinux kernel.
2663

    
2664
The M5208EVB emulation includes the following devices:
2665

    
2666
@itemize @minus
2667
@item
2668
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2669
@item
2670
Three Two on-chip UARTs.
2671
@item
2672
Fast Ethernet Controller (FEC)
2673
@end itemize
2674

    
2675
The AN5206 emulation includes the following devices:
2676

    
2677
@itemize @minus
2678
@item
2679
MCF5206 ColdFire V2 Microprocessor.
2680
@item
2681
Two on-chip UARTs.
2682
@end itemize
2683

    
2684
@node QEMU User space emulator
2685
@chapter QEMU User space emulator
2686

    
2687
@menu
2688
* Supported Operating Systems ::
2689
* Linux User space emulator::
2690
* Mac OS X/Darwin User space emulator ::
2691
@end menu
2692

    
2693
@node Supported Operating Systems
2694
@section Supported Operating Systems
2695

    
2696
The following OS are supported in user space emulation:
2697

    
2698
@itemize @minus
2699
@item
2700
Linux (referred as qemu-linux-user)
2701
@item
2702
Mac OS X/Darwin (referred as qemu-darwin-user)
2703
@end itemize
2704

    
2705
@node Linux User space emulator
2706
@section Linux User space emulator
2707

    
2708
@menu
2709
* Quick Start::
2710
* Wine launch::
2711
* Command line options::
2712
* Other binaries::
2713
@end menu
2714

    
2715
@node Quick Start
2716
@subsection Quick Start
2717

    
2718
In order to launch a Linux process, QEMU needs the process executable
2719
itself and all the target (x86) dynamic libraries used by it.
2720

    
2721
@itemize
2722

    
2723
@item On x86, you can just try to launch any process by using the native
2724
libraries:
2725

    
2726
@example
2727
qemu-i386 -L / /bin/ls
2728
@end example
2729

    
2730
@code{-L /} tells that the x86 dynamic linker must be searched with a
2731
@file{/} prefix.
2732

    
2733
@item Since QEMU is also a linux process, you can launch qemu with
2734
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2735

    
2736
@example
2737
qemu-i386 -L / qemu-i386 -L / /bin/ls
2738
@end example
2739

    
2740
@item On non x86 CPUs, you need first to download at least an x86 glibc
2741
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2742
@code{LD_LIBRARY_PATH} is not set:
2743

    
2744
@example
2745
unset LD_LIBRARY_PATH
2746
@end example
2747

    
2748
Then you can launch the precompiled @file{ls} x86 executable:
2749

    
2750
@example
2751
qemu-i386 tests/i386/ls
2752
@end example
2753
You can look at @file{qemu-binfmt-conf.sh} so that
2754
QEMU is automatically launched by the Linux kernel when you try to
2755
launch x86 executables. It requires the @code{binfmt_misc} module in the
2756
Linux kernel.
2757

    
2758
@item The x86 version of QEMU is also included. You can try weird things such as:
2759
@example
2760
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2761
          /usr/local/qemu-i386/bin/ls-i386
2762
@end example
2763

    
2764
@end itemize
2765

    
2766
@node Wine launch
2767
@subsection Wine launch
2768

    
2769
@itemize
2770

    
2771
@item Ensure that you have a working QEMU with the x86 glibc
2772
distribution (see previous section). In order to verify it, you must be
2773
able to do:
2774

    
2775
@example
2776
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2777
@end example
2778

    
2779
@item Download the binary x86 Wine install
2780
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2781

    
2782
@item Configure Wine on your account. Look at the provided script
2783
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2784
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2785

    
2786
@item Then you can try the example @file{putty.exe}:
2787

    
2788
@example
2789
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2790
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2791
@end example
2792

    
2793
@end itemize
2794

    
2795
@node Command line options
2796
@subsection Command line options
2797

    
2798
@example
2799
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2800
@end example
2801

    
2802
@table @option
2803
@item -h
2804
Print the help
2805
@item -L path
2806
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2807
@item -s size
2808
Set the x86 stack size in bytes (default=524288)
2809
@end table
2810

    
2811
Debug options:
2812

    
2813
@table @option
2814
@item -d
2815
Activate log (logfile=/tmp/qemu.log)
2816
@item -p pagesize
2817
Act as if the host page size was 'pagesize' bytes
2818
@end table
2819

    
2820
Environment variables:
2821

    
2822
@table @env
2823
@item QEMU_STRACE
2824
Print system calls and arguments similar to the 'strace' program
2825
(NOTE: the actual 'strace' program will not work because the user
2826
space emulator hasn't implemented ptrace).  At the moment this is
2827
incomplete.  All system calls that don't have a specific argument
2828
format are printed with information for six arguments.  Many
2829
flag-style arguments don't have decoders and will show up as numbers.
2830
@end table
2831

    
2832
@node Other binaries
2833
@subsection Other binaries
2834

    
2835
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2836
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2837
configurations), and arm-uclinux bFLT format binaries.
2838

    
2839
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2840
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2841
coldfire uClinux bFLT format binaries.
2842

    
2843
The binary format is detected automatically.
2844

    
2845
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2846
(Sparc64 CPU, 32 bit ABI).
2847

    
2848
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2849
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2850

    
2851
@node Mac OS X/Darwin User space emulator
2852
@section Mac OS X/Darwin User space emulator
2853

    
2854
@menu
2855
* Mac OS X/Darwin Status::
2856
* Mac OS X/Darwin Quick Start::
2857
* Mac OS X/Darwin Command line options::
2858
@end menu
2859

    
2860
@node Mac OS X/Darwin Status
2861
@subsection Mac OS X/Darwin Status
2862

    
2863
@itemize @minus
2864
@item
2865
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2866
@item
2867
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2868
@item
2869
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2870
@item
2871
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2872
@end itemize
2873

    
2874
[1] If you're host commpage can be executed by qemu.
2875

    
2876
@node Mac OS X/Darwin Quick Start
2877
@subsection Quick Start
2878

    
2879
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2880
itself and all the target dynamic libraries used by it. If you don't have the FAT
2881
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2882
CD or compile them by hand.
2883

    
2884
@itemize
2885

    
2886
@item On x86, you can just try to launch any process by using the native
2887
libraries:
2888

    
2889
@example
2890
qemu-i386 /bin/ls
2891
@end example
2892

    
2893
or to run the ppc version of the executable:
2894

    
2895
@example
2896
qemu-ppc /bin/ls
2897
@end example
2898

    
2899
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2900
are installed:
2901

    
2902
@example
2903
qemu-i386 -L /opt/x86_root/ /bin/ls
2904
@end example
2905

    
2906
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2907
@file{/opt/x86_root/usr/bin/dyld}.
2908

    
2909
@end itemize
2910

    
2911
@node Mac OS X/Darwin Command line options
2912
@subsection Command line options
2913

    
2914
@example
2915
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2916
@end example
2917

    
2918
@table @option
2919
@item -h
2920
Print the help
2921
@item -L path
2922
Set the library root path (default=/)
2923
@item -s size
2924
Set the stack size in bytes (default=524288)
2925
@end table
2926

    
2927
Debug options:
2928

    
2929
@table @option
2930
@item -d
2931
Activate log (logfile=/tmp/qemu.log)
2932
@item -p pagesize
2933
Act as if the host page size was 'pagesize' bytes
2934
@end table
2935

    
2936
@node compilation
2937
@chapter Compilation from the sources
2938

    
2939
@menu
2940
* Linux/Unix::
2941
* Windows::
2942
* Cross compilation for Windows with Linux::
2943
* Mac OS X::
2944
@end menu
2945

    
2946
@node Linux/Unix
2947
@section Linux/Unix
2948

    
2949
@subsection Compilation
2950

    
2951
First you must decompress the sources:
2952
@example
2953
cd /tmp
2954
tar zxvf qemu-x.y.z.tar.gz
2955
cd qemu-x.y.z
2956
@end example
2957

    
2958
Then you configure QEMU and build it (usually no options are needed):
2959
@example
2960
./configure
2961
make
2962
@end example
2963

    
2964
Then type as root user:
2965
@example
2966
make install
2967
@end example
2968
to install QEMU in @file{/usr/local}.
2969

    
2970
@subsection GCC version
2971

    
2972
In order to compile QEMU successfully, it is very important that you
2973
have the right tools. The most important one is gcc. On most hosts and
2974
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2975
Linux distribution includes a gcc 4.x compiler, you can usually
2976
install an older version (it is invoked by @code{gcc32} or
2977
@code{gcc34}). The QEMU configure script automatically probes for
2978
these older versions so that usually you don't have to do anything.
2979

    
2980
@node Windows
2981
@section Windows
2982

    
2983
@itemize
2984
@item Install the current versions of MSYS and MinGW from
2985
@url{http://www.mingw.org/}. You can find detailed installation
2986
instructions in the download section and the FAQ.
2987

    
2988
@item Download
2989
the MinGW development library of SDL 1.2.x
2990
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2991
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2992
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2993
directory. Edit the @file{sdl-config} script so that it gives the
2994
correct SDL directory when invoked.
2995

    
2996
@item Extract the current version of QEMU.
2997

    
2998
@item Start the MSYS shell (file @file{msys.bat}).
2999

    
3000
@item Change to the QEMU directory. Launch @file{./configure} and
3001
@file{make}.  If you have problems using SDL, verify that
3002
@file{sdl-config} can be launched from the MSYS command line.
3003

    
3004
@item You can install QEMU in @file{Program Files/Qemu} by typing
3005
@file{make install}. Don't forget to copy @file{SDL.dll} in
3006
@file{Program Files/Qemu}.
3007

    
3008
@end itemize
3009

    
3010
@node Cross compilation for Windows with Linux
3011
@section Cross compilation for Windows with Linux
3012

    
3013
@itemize
3014
@item
3015
Install the MinGW cross compilation tools available at
3016
@url{http://www.mingw.org/}.
3017

    
3018
@item
3019
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3020
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3021
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3022
the QEMU configuration script.
3023

    
3024
@item
3025
Configure QEMU for Windows cross compilation:
3026
@example
3027
./configure --enable-mingw32
3028
@end example
3029
If necessary, you can change the cross-prefix according to the prefix
3030
chosen for the MinGW tools with --cross-prefix. You can also use
3031
--prefix to set the Win32 install path.
3032

    
3033
@item You can install QEMU in the installation directory by typing
3034
@file{make install}. Don't forget to copy @file{SDL.dll} in the
3035
installation directory.
3036

    
3037
@end itemize
3038

    
3039
Note: Currently, Wine does not seem able to launch
3040
QEMU for Win32.
3041

    
3042
@node Mac OS X
3043
@section Mac OS X
3044

    
3045
The Mac OS X patches are not fully merged in QEMU, so you should look
3046
at the QEMU mailing list archive to have all the necessary
3047
information.
3048

    
3049
@node Index
3050
@chapter Index
3051
@printindex cp
3052

    
3053
@bye