Statistics
| Branch: | Revision:

root / hw / slavio_intctl.c @ 3475187d

History | View | Annotate | Download (9 kB)

1
/*
2
 * QEMU Sparc SLAVIO interrupt controller emulation
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
//#define DEBUG_IRQ_COUNT
26
//#define DEBUG_IRQ
27

    
28
#ifdef DEBUG_IRQ
29
#define DPRINTF(fmt, args...) \
30
do { printf("IRQ: " fmt , ##args); } while (0)
31
#else
32
#define DPRINTF(fmt, args...)
33
#endif
34

    
35
/*
36
 * Registers of interrupt controller in sun4m.
37
 *
38
 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
39
 * produced as NCR89C105. See
40
 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
41
 *
42
 * There is a system master controller and one for each cpu.
43
 * 
44
 */
45

    
46
#define MAX_CPUS 16
47

    
48
typedef struct SLAVIO_INTCTLState {
49
    uint32_t intreg_pending[MAX_CPUS];
50
    uint32_t intregm_pending;
51
    uint32_t intregm_disabled;
52
    uint32_t target_cpu;
53
#ifdef DEBUG_IRQ_COUNT
54
    uint64_t irq_count[32];
55
#endif
56
} SLAVIO_INTCTLState;
57

    
58
#define INTCTL_MAXADDR 0xf
59
#define INTCTLM_MAXADDR 0xf
60
static void slavio_check_interrupts(void *opaque);
61

    
62
// per-cpu interrupt controller
63
static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
64
{
65
    SLAVIO_INTCTLState *s = opaque;
66
    uint32_t saddr;
67
    int cpu;
68

    
69
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
70
    saddr = (addr & INTCTL_MAXADDR) >> 2;
71
    switch (saddr) {
72
    case 0:
73
        return s->intreg_pending[cpu];
74
    default:
75
        break;
76
    }
77
    return 0;
78
}
79

    
80
static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
81
{
82
    SLAVIO_INTCTLState *s = opaque;
83
    uint32_t saddr;
84
    int cpu;
85

    
86
    cpu = (addr & (MAX_CPUS - 1) * TARGET_PAGE_SIZE) >> 12;
87
    saddr = (addr & INTCTL_MAXADDR) >> 2;
88
    switch (saddr) {
89
    case 1: // clear pending softints
90
        if (val & 0x4000)
91
            val |= 80000000;
92
        val &= 0xfffe0000;
93
        s->intreg_pending[cpu] &= ~val;
94
        DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
95
        break;
96
    case 2: // set softint
97
        val &= 0xfffe0000;
98
        s->intreg_pending[cpu] |= val;
99
        DPRINTF("Set cpu %d irq mask %x, curmask %x\n", cpu, val, s->intreg_pending[cpu]);
100
        break;
101
    default:
102
        break;
103
    }
104
}
105

    
106
static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
107
    slavio_intctl_mem_readl,
108
    slavio_intctl_mem_readl,
109
    slavio_intctl_mem_readl,
110
};
111

    
112
static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
113
    slavio_intctl_mem_writel,
114
    slavio_intctl_mem_writel,
115
    slavio_intctl_mem_writel,
116
};
117

    
118
// master system interrupt controller
119
static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
120
{
121
    SLAVIO_INTCTLState *s = opaque;
122
    uint32_t saddr;
123

    
124
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
125
    switch (saddr) {
126
    case 0:
127
        return s->intregm_pending & 0x7fffffff;
128
    case 1:
129
        return s->intregm_disabled;
130
    case 4:
131
        return s->target_cpu;
132
    default:
133
        break;
134
    }
135
    return 0;
136
}
137

    
138
static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
139
{
140
    SLAVIO_INTCTLState *s = opaque;
141
    uint32_t saddr;
142

    
143
    saddr = (addr & INTCTLM_MAXADDR) >> 2;
144
    switch (saddr) {
145
    case 2: // clear (enable)
146
        // Force clear unused bits
147
        val &= ~0x4fb2007f;
148
        s->intregm_disabled &= ~val;
149
        DPRINTF("Enabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
150
        slavio_check_interrupts(s);
151
        break;
152
    case 3: // set (disable, clear pending)
153
        // Force clear unused bits
154
        val &= ~0x4fb2007f;
155
        s->intregm_disabled |= val;
156
        s->intregm_pending &= ~val;
157
        DPRINTF("Disabled master irq mask %x, curmask %x\n", val, s->intregm_disabled);
158
        break;
159
    case 4:
160
        s->target_cpu = val & (MAX_CPUS - 1);
161
        DPRINTF("Set master irq cpu %d\n", s->target_cpu);
162
        break;
163
    default:
164
        break;
165
    }
166
}
167

    
168
static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
169
    slavio_intctlm_mem_readl,
170
    slavio_intctlm_mem_readl,
171
    slavio_intctlm_mem_readl,
172
};
173

    
174
static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
175
    slavio_intctlm_mem_writel,
176
    slavio_intctlm_mem_writel,
177
    slavio_intctlm_mem_writel,
178
};
179

    
180
void slavio_pic_info(void *opaque)
181
{
182
    SLAVIO_INTCTLState *s = opaque;
183
    int i;
184

    
185
    for (i = 0; i < MAX_CPUS; i++) {
186
        term_printf("per-cpu %d: pending 0x%08x\n", i, s->intreg_pending[i]);
187
    }
188
    term_printf("master: pending 0x%08x, disabled 0x%08x\n", s->intregm_pending, s->intregm_disabled);
189
}
190

    
191
void slavio_irq_info(void *opaque)
192
{
193
#ifndef DEBUG_IRQ_COUNT
194
    term_printf("irq statistic code not compiled.\n");
195
#else
196
    SLAVIO_INTCTLState *s = opaque;
197
    int i;
198
    int64_t count;
199

    
200
    term_printf("IRQ statistics:\n");
201
    for (i = 0; i < 32; i++) {
202
        count = s->irq_count[i];
203
        if (count > 0)
204
            term_printf("%2d: %lld\n", i, count);
205
    }
206
#endif
207
}
208

    
209
static const uint32_t intbit_to_level[32] = {
210
    2, 3, 5, 7, 9, 11, 0, 14,        3, 5, 7, 9, 11, 13, 12, 12,
211
    6, 0, 4, 10, 8, 0, 11, 0,        0, 0, 0, 0, 15, 0, 15, 0,
212
};
213

    
214
static void slavio_check_interrupts(void *opaque)
215
{
216
    SLAVIO_INTCTLState *s = opaque;
217
    uint32_t pending = s->intregm_pending;
218
    unsigned int i, max = 0;
219

    
220
    pending &= ~s->intregm_disabled;
221

    
222
    if (pending && !(s->intregm_disabled & 0x80000000)) {
223
        for (i = 0; i < 32; i++) {
224
            if (pending & (1 << i)) {
225
                if (max < intbit_to_level[i])
226
                    max = intbit_to_level[i];
227
            }
228
        }
229
        if (cpu_single_env->interrupt_index == 0) {
230
            DPRINTF("Triggered pil %d\n", max);
231
#ifdef DEBUG_IRQ_COUNT
232
            s->irq_count[max]++;
233
#endif
234
            cpu_single_env->interrupt_index = TT_EXTINT | max;
235
            cpu_interrupt(cpu_single_env, CPU_INTERRUPT_HARD);
236
        }
237
        else
238
            DPRINTF("Not triggered (pending %x), pending exception %x\n", pending, cpu_single_env->interrupt_index);
239
    }
240
    else
241
        DPRINTF("Not triggered (pending %x), disabled %x\n", pending, s->intregm_disabled);
242
}
243

    
244
/*
245
 * "irq" here is the bit number in the system interrupt register to
246
 * separate serial and keyboard interrupts sharing a level.
247
 */
248
void slavio_pic_set_irq(void *opaque, int irq, int level)
249
{
250
    SLAVIO_INTCTLState *s = opaque;
251

    
252
    DPRINTF("Set irq %d level %d\n", irq, level);
253
    if (irq < 32) {
254
        uint32_t mask = 1 << irq;
255
        uint32_t pil = intbit_to_level[irq];
256
        if (pil > 0) {
257
            if (level) {
258
                s->intregm_pending |= mask;
259
                s->intreg_pending[s->target_cpu] |= 1 << pil;
260
            }
261
            else {
262
                s->intregm_pending &= ~mask;
263
                s->intreg_pending[s->target_cpu] &= ~(1 << pil);
264
            }
265
        }
266
    }
267
    slavio_check_interrupts(s);
268
}
269

    
270
static void slavio_intctl_save(QEMUFile *f, void *opaque)
271
{
272
    SLAVIO_INTCTLState *s = opaque;
273
    int i;
274
    
275
    for (i = 0; i < MAX_CPUS; i++) {
276
        qemu_put_be32s(f, &s->intreg_pending[i]);
277
    }
278
    qemu_put_be32s(f, &s->intregm_pending);
279
    qemu_put_be32s(f, &s->intregm_disabled);
280
    qemu_put_be32s(f, &s->target_cpu);
281
}
282

    
283
static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
284
{
285
    SLAVIO_INTCTLState *s = opaque;
286
    int i;
287

    
288
    if (version_id != 1)
289
        return -EINVAL;
290

    
291
    for (i = 0; i < MAX_CPUS; i++) {
292
        qemu_get_be32s(f, &s->intreg_pending[i]);
293
    }
294
    qemu_get_be32s(f, &s->intregm_pending);
295
    qemu_get_be32s(f, &s->intregm_disabled);
296
    qemu_get_be32s(f, &s->target_cpu);
297
    return 0;
298
}
299

    
300
static void slavio_intctl_reset(void *opaque)
301
{
302
    SLAVIO_INTCTLState *s = opaque;
303
    int i;
304

    
305
    for (i = 0; i < MAX_CPUS; i++) {
306
        s->intreg_pending[i] = 0;
307
    }
308
    s->intregm_disabled = ~0xffb2007f;
309
    s->intregm_pending = 0;
310
    s->target_cpu = 0;
311
}
312

    
313
void *slavio_intctl_init(uint32_t addr, uint32_t addrg)
314
{
315
    int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
316
    SLAVIO_INTCTLState *s;
317

    
318
    s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
319
    if (!s)
320
        return NULL;
321

    
322
    for (i = 0; i < MAX_CPUS; i++) {
323
        slavio_intctl_io_memory = cpu_register_io_memory(0, slavio_intctl_mem_read, slavio_intctl_mem_write, s);
324
        cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_MAXADDR, slavio_intctl_io_memory);
325
    }
326

    
327
    slavio_intctlm_io_memory = cpu_register_io_memory(0, slavio_intctlm_mem_read, slavio_intctlm_mem_write, s);
328
    cpu_register_physical_memory(addrg, INTCTLM_MAXADDR, slavio_intctlm_io_memory);
329

    
330
    register_savevm("slavio_intctl", addr, 1, slavio_intctl_save, slavio_intctl_load, s);
331
    qemu_register_reset(slavio_intctl_reset, s);
332
    slavio_intctl_reset(s);
333
    return s;
334
}
335