Statistics
| Branch: | Revision:

root / hw / sun4m.c @ 3475187d

History | View | Annotate | Download (9.8 kB)

1
/*
2
 * QEMU Sun4m System Emulator
3
 * 
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 * 
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
#include "m48t08.h"
26

    
27
#define KERNEL_LOAD_ADDR     0x00004000
28
#define CMDLINE_ADDR         0x007ff000
29
#define INITRD_LOAD_ADDR     0x00800000
30
#define PROM_ADDR             0xffd00000
31
#define PROM_FILENAMEB             "proll.bin"
32
#define PROM_FILENAMEE             "proll.elf"
33
#define PHYS_JJ_EEPROM        0x71200000        /* m48t08 */
34
#define PHYS_JJ_IDPROM_OFF        0x1FD8
35
#define PHYS_JJ_EEPROM_SIZE        0x2000
36
// IRQs are not PIL ones, but master interrupt controller register
37
// bits
38
#define PHYS_JJ_IOMMU        0x10000000        /* I/O MMU */
39
#define PHYS_JJ_TCX_FB        0x50000000        /* TCX frame buffer */
40
#define PHYS_JJ_SLAVIO        0x70000000        /* Slavio base */
41
#define PHYS_JJ_ESPDMA  0x78400000      /* ESP DMA controller */
42
#define PHYS_JJ_ESP     0x78800000      /* ESP SCSI */
43
#define PHYS_JJ_ESP_IRQ    18
44
#define PHYS_JJ_LEDMA   0x78400010      /* Lance DMA controller */
45
#define PHYS_JJ_LE      0x78C00000      /* Lance ethernet */
46
#define PHYS_JJ_LE_IRQ     16
47
#define PHYS_JJ_CLOCK        0x71D00000      /* Per-CPU timer/counter, L14 */
48
#define PHYS_JJ_CLOCK_IRQ  7
49
#define PHYS_JJ_CLOCK1        0x71D10000      /* System timer/counter, L10 */
50
#define PHYS_JJ_CLOCK1_IRQ 19
51
#define PHYS_JJ_INTR0        0x71E00000        /* Per-CPU interrupt control registers */
52
#define PHYS_JJ_INTR_G        0x71E10000        /* Master interrupt control registers */
53
#define PHYS_JJ_MS_KBD        0x71000000        /* Mouse and keyboard */
54
#define PHYS_JJ_MS_KBD_IRQ    14
55
#define PHYS_JJ_SER        0x71100000        /* Serial */
56
#define PHYS_JJ_SER_IRQ    15
57
#define PHYS_JJ_FDC        0x71400000        /* Floppy */
58
#define PHYS_JJ_FLOPPY_IRQ 22
59
#define PHYS_JJ_ME_IRQ 30                /* Module error, power fail */
60

    
61
/* TSC handling */
62

    
63
uint64_t cpu_get_tsc()
64
{
65
    return qemu_get_clock(vm_clock);
66
}
67

    
68
int DMA_get_channel_mode (int nchan)
69
{
70
    return 0;
71
}
72
int DMA_read_memory (int nchan, void *buf, int pos, int size)
73
{
74
    return 0;
75
}
76
int DMA_write_memory (int nchan, void *buf, int pos, int size)
77
{
78
    return 0;
79
}
80
void DMA_hold_DREQ (int nchan) {}
81
void DMA_release_DREQ (int nchan) {}
82
void DMA_schedule(int nchan) {}
83
void DMA_run (void) {}
84
void DMA_init (int high_page_enable) {}
85
void DMA_register_channel (int nchan,
86
                           DMA_transfer_handler transfer_handler,
87
                           void *opaque)
88
{
89
}
90

    
91
static void nvram_set_word (m48t08_t *nvram, uint32_t addr, uint16_t value)
92
{
93
    m48t08_write(nvram, addr++, (value >> 8) & 0xff);
94
    m48t08_write(nvram, addr++, value & 0xff);
95
}
96

    
97
static void nvram_set_lword (m48t08_t *nvram, uint32_t addr, uint32_t value)
98
{
99
    m48t08_write(nvram, addr++, value >> 24);
100
    m48t08_write(nvram, addr++, (value >> 16) & 0xff);
101
    m48t08_write(nvram, addr++, (value >> 8) & 0xff);
102
    m48t08_write(nvram, addr++, value & 0xff);
103
}
104

    
105
static void nvram_set_string (m48t08_t *nvram, uint32_t addr,
106
                       const unsigned char *str, uint32_t max)
107
{
108
    unsigned int i;
109

    
110
    for (i = 0; i < max && str[i] != '\0'; i++) {
111
        m48t08_write(nvram, addr + i, str[i]);
112
    }
113
    m48t08_write(nvram, addr + max - 1, '\0');
114
}
115

    
116
static m48t08_t *nvram;
117

    
118
extern int nographic;
119

    
120
static void nvram_init(m48t08_t *nvram, uint8_t *macaddr, const char *cmdline,
121
                       int boot_device, uint32_t RAM_size,
122
                       uint32_t kernel_size,
123
                       int width, int height, int depth)
124
{
125
    unsigned char tmp = 0;
126
    int i, j;
127

    
128
    // Try to match PPC NVRAM
129
    nvram_set_string(nvram, 0x00, "QEMU_BIOS", 16);
130
    nvram_set_lword(nvram,  0x10, 0x00000001); /* structure v1 */
131
    // NVRAM_size, arch not applicable
132
    m48t08_write(nvram, 0x2F, nographic & 0xff);
133
    nvram_set_lword(nvram,  0x30, RAM_size);
134
    m48t08_write(nvram, 0x34, boot_device & 0xff);
135
    nvram_set_lword(nvram,  0x38, KERNEL_LOAD_ADDR);
136
    nvram_set_lword(nvram,  0x3C, kernel_size);
137
    if (cmdline) {
138
        strcpy(phys_ram_base + CMDLINE_ADDR, cmdline);
139
        nvram_set_lword(nvram,  0x40, CMDLINE_ADDR);
140
        nvram_set_lword(nvram,  0x44, strlen(cmdline));
141
    }
142
    // initrd_image, initrd_size passed differently
143
    nvram_set_word(nvram,   0x54, width);
144
    nvram_set_word(nvram,   0x56, height);
145
    nvram_set_word(nvram,   0x58, depth);
146

    
147
    // Sun4m specific use
148
    i = 0x1fd8;
149
    m48t08_write(nvram, i++, 0x01);
150
    m48t08_write(nvram, i++, 0x80); /* Sun4m OBP */
151
    j = 0;
152
    m48t08_write(nvram, i++, macaddr[j++]);
153
    m48t08_write(nvram, i++, macaddr[j++]);
154
    m48t08_write(nvram, i++, macaddr[j++]);
155
    m48t08_write(nvram, i++, macaddr[j++]);
156
    m48t08_write(nvram, i++, macaddr[j++]);
157
    m48t08_write(nvram, i, macaddr[j]);
158

    
159
    /* Calculate checksum */
160
    for (i = 0x1fd8; i < 0x1fe7; i++) {
161
        tmp ^= m48t08_read(nvram, i);
162
    }
163
    m48t08_write(nvram, 0x1fe7, tmp);
164
}
165

    
166
static void *slavio_intctl;
167

    
168
void pic_info()
169
{
170
    slavio_pic_info(slavio_intctl);
171
}
172

    
173
void irq_info()
174
{
175
    slavio_irq_info(slavio_intctl);
176
}
177

    
178
void pic_set_irq(int irq, int level)
179
{
180
    slavio_pic_set_irq(slavio_intctl, irq, level);
181
}
182

    
183
static void *tcx;
184

    
185
void vga_update_display()
186
{
187
    tcx_update_display(tcx);
188
}
189

    
190
void vga_invalidate_display()
191
{
192
    tcx_invalidate_display(tcx);
193
}
194

    
195
void vga_screen_dump(const char *filename)
196
{
197
    tcx_screen_dump(tcx, filename);
198
}
199

    
200
static void *iommu;
201

    
202
uint32_t iommu_translate(uint32_t addr)
203
{
204
    return iommu_translate_local(iommu, addr);
205
}
206

    
207
static void *slavio_misc;
208

    
209
void qemu_system_powerdown(void)
210
{
211
    slavio_set_power_fail(slavio_misc, 1);
212
}
213

    
214
/* Sun4m hardware initialisation */
215
static void sun4m_init(int ram_size, int vga_ram_size, int boot_device,
216
                       DisplayState *ds, const char **fd_filename, int snapshot,
217
                       const char *kernel_filename, const char *kernel_cmdline,
218
                       const char *initrd_filename)
219
{
220
    char buf[1024];
221
    int ret, linux_boot;
222
    unsigned int i;
223
    long vram_size = 0x100000, prom_offset, initrd_size, kernel_size;
224

    
225
    linux_boot = (kernel_filename != NULL);
226

    
227
    /* allocate RAM */
228
    cpu_register_physical_memory(0, ram_size, 0);
229

    
230
    iommu = iommu_init(PHYS_JJ_IOMMU);
231
    slavio_intctl = slavio_intctl_init(PHYS_JJ_INTR0, PHYS_JJ_INTR_G);
232
    tcx = tcx_init(ds, PHYS_JJ_TCX_FB, phys_ram_base + ram_size, ram_size, vram_size, graphic_width, graphic_height);
233
    lance_init(&nd_table[0], PHYS_JJ_LE_IRQ, PHYS_JJ_LE, PHYS_JJ_LEDMA);
234
    nvram = m48t08_init(PHYS_JJ_EEPROM, PHYS_JJ_EEPROM_SIZE);
235
    slavio_timer_init(PHYS_JJ_CLOCK, PHYS_JJ_CLOCK_IRQ, PHYS_JJ_CLOCK1, PHYS_JJ_CLOCK1_IRQ);
236
    slavio_serial_ms_kbd_init(PHYS_JJ_MS_KBD, PHYS_JJ_MS_KBD_IRQ);
237
    // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
238
    // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
239
    slavio_serial_init(PHYS_JJ_SER, PHYS_JJ_SER_IRQ, serial_hds[1], serial_hds[0]);
240
    fdctrl_init(PHYS_JJ_FLOPPY_IRQ, 0, 1, PHYS_JJ_FDC, fd_table);
241
    esp_init(bs_table, PHYS_JJ_ESP_IRQ, PHYS_JJ_ESP, PHYS_JJ_ESPDMA);
242
    slavio_misc = slavio_misc_init(PHYS_JJ_SLAVIO, PHYS_JJ_ME_IRQ);
243

    
244
    prom_offset = ram_size + vram_size;
245

    
246
    snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEE);
247
    ret = load_elf(buf, phys_ram_base + prom_offset);
248
    if (ret < 0) {
249
        snprintf(buf, sizeof(buf), "%s/%s", bios_dir, PROM_FILENAMEB);
250
        ret = load_image(buf, phys_ram_base + prom_offset);
251
    }
252
    if (ret < 0) {
253
        fprintf(stderr, "qemu: could not load prom '%s'\n", 
254
                buf);
255
        exit(1);
256
    }
257
    cpu_register_physical_memory(PROM_ADDR, (ret + TARGET_PAGE_SIZE) & TARGET_PAGE_MASK, 
258
                                 prom_offset | IO_MEM_ROM);
259

    
260
    kernel_size = 0;
261
    if (linux_boot) {
262
        kernel_size = load_elf(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
263
        if (kernel_size < 0)
264
            kernel_size = load_aout(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
265
        if (kernel_size < 0)
266
            kernel_size = load_image(kernel_filename, phys_ram_base + KERNEL_LOAD_ADDR);
267
        if (kernel_size < 0) {
268
            fprintf(stderr, "qemu: could not load kernel '%s'\n", 
269
                    kernel_filename);
270
            exit(1);
271
        }
272

    
273
        /* load initrd */
274
        initrd_size = 0;
275
        if (initrd_filename) {
276
            initrd_size = load_image(initrd_filename, phys_ram_base + INITRD_LOAD_ADDR);
277
            if (initrd_size < 0) {
278
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n", 
279
                        initrd_filename);
280
                exit(1);
281
            }
282
        }
283
        if (initrd_size > 0) {
284
            for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
285
                if (ldl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i)
286
                    == 0x48647253) { // HdrS
287
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 16, INITRD_LOAD_ADDR);
288
                    stl_raw(phys_ram_base + KERNEL_LOAD_ADDR + i + 20, initrd_size);
289
                    break;
290
                }
291
            }
292
        }
293
    }
294
    nvram_init(nvram, (uint8_t *)&nd_table[0].macaddr, kernel_cmdline, boot_device, ram_size, kernel_size, graphic_width, graphic_height, graphic_depth);
295
}
296

    
297
QEMUMachine sun4m_machine = {
298
    "sun4m",
299
    "Sun4m platform",
300
    sun4m_init,
301
};