Statistics
| Branch: | Revision:

root / block / mirror.c @ 34b5d2c6

History | View | Annotate | Download (18.8 kB)

1
/*
2
 * Image mirroring
3
 *
4
 * Copyright Red Hat, Inc. 2012
5
 *
6
 * Authors:
7
 *  Paolo Bonzini  <pbonzini@redhat.com>
8
 *
9
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
10
 * See the COPYING.LIB file in the top-level directory.
11
 *
12
 */
13

    
14
#include "trace.h"
15
#include "block/blockjob.h"
16
#include "block/block_int.h"
17
#include "qemu/ratelimit.h"
18
#include "qemu/bitmap.h"
19

    
20
#define SLICE_TIME    100000000ULL /* ns */
21
#define MAX_IN_FLIGHT 16
22

    
23
/* The mirroring buffer is a list of granularity-sized chunks.
24
 * Free chunks are organized in a list.
25
 */
26
typedef struct MirrorBuffer {
27
    QSIMPLEQ_ENTRY(MirrorBuffer) next;
28
} MirrorBuffer;
29

    
30
typedef struct MirrorBlockJob {
31
    BlockJob common;
32
    RateLimit limit;
33
    BlockDriverState *target;
34
    MirrorSyncMode mode;
35
    BlockdevOnError on_source_error, on_target_error;
36
    bool synced;
37
    bool should_complete;
38
    int64_t sector_num;
39
    int64_t granularity;
40
    size_t buf_size;
41
    unsigned long *cow_bitmap;
42
    HBitmapIter hbi;
43
    uint8_t *buf;
44
    QSIMPLEQ_HEAD(, MirrorBuffer) buf_free;
45
    int buf_free_count;
46

    
47
    unsigned long *in_flight_bitmap;
48
    int in_flight;
49
    int ret;
50
} MirrorBlockJob;
51

    
52
typedef struct MirrorOp {
53
    MirrorBlockJob *s;
54
    QEMUIOVector qiov;
55
    int64_t sector_num;
56
    int nb_sectors;
57
} MirrorOp;
58

    
59
static BlockErrorAction mirror_error_action(MirrorBlockJob *s, bool read,
60
                                            int error)
61
{
62
    s->synced = false;
63
    if (read) {
64
        return block_job_error_action(&s->common, s->common.bs,
65
                                      s->on_source_error, true, error);
66
    } else {
67
        return block_job_error_action(&s->common, s->target,
68
                                      s->on_target_error, false, error);
69
    }
70
}
71

    
72
static void mirror_iteration_done(MirrorOp *op, int ret)
73
{
74
    MirrorBlockJob *s = op->s;
75
    struct iovec *iov;
76
    int64_t chunk_num;
77
    int i, nb_chunks, sectors_per_chunk;
78

    
79
    trace_mirror_iteration_done(s, op->sector_num, op->nb_sectors, ret);
80

    
81
    s->in_flight--;
82
    iov = op->qiov.iov;
83
    for (i = 0; i < op->qiov.niov; i++) {
84
        MirrorBuffer *buf = (MirrorBuffer *) iov[i].iov_base;
85
        QSIMPLEQ_INSERT_TAIL(&s->buf_free, buf, next);
86
        s->buf_free_count++;
87
    }
88

    
89
    sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS;
90
    chunk_num = op->sector_num / sectors_per_chunk;
91
    nb_chunks = op->nb_sectors / sectors_per_chunk;
92
    bitmap_clear(s->in_flight_bitmap, chunk_num, nb_chunks);
93
    if (s->cow_bitmap && ret >= 0) {
94
        bitmap_set(s->cow_bitmap, chunk_num, nb_chunks);
95
    }
96

    
97
    g_slice_free(MirrorOp, op);
98
    qemu_coroutine_enter(s->common.co, NULL);
99
}
100

    
101
static void mirror_write_complete(void *opaque, int ret)
102
{
103
    MirrorOp *op = opaque;
104
    MirrorBlockJob *s = op->s;
105
    if (ret < 0) {
106
        BlockDriverState *source = s->common.bs;
107
        BlockErrorAction action;
108

    
109
        bdrv_set_dirty(source, op->sector_num, op->nb_sectors);
110
        action = mirror_error_action(s, false, -ret);
111
        if (action == BDRV_ACTION_REPORT && s->ret >= 0) {
112
            s->ret = ret;
113
        }
114
    }
115
    mirror_iteration_done(op, ret);
116
}
117

    
118
static void mirror_read_complete(void *opaque, int ret)
119
{
120
    MirrorOp *op = opaque;
121
    MirrorBlockJob *s = op->s;
122
    if (ret < 0) {
123
        BlockDriverState *source = s->common.bs;
124
        BlockErrorAction action;
125

    
126
        bdrv_set_dirty(source, op->sector_num, op->nb_sectors);
127
        action = mirror_error_action(s, true, -ret);
128
        if (action == BDRV_ACTION_REPORT && s->ret >= 0) {
129
            s->ret = ret;
130
        }
131

    
132
        mirror_iteration_done(op, ret);
133
        return;
134
    }
135
    bdrv_aio_writev(s->target, op->sector_num, &op->qiov, op->nb_sectors,
136
                    mirror_write_complete, op);
137
}
138

    
139
static void coroutine_fn mirror_iteration(MirrorBlockJob *s)
140
{
141
    BlockDriverState *source = s->common.bs;
142
    int nb_sectors, sectors_per_chunk, nb_chunks;
143
    int64_t end, sector_num, next_chunk, next_sector, hbitmap_next_sector;
144
    MirrorOp *op;
145

    
146
    s->sector_num = hbitmap_iter_next(&s->hbi);
147
    if (s->sector_num < 0) {
148
        bdrv_dirty_iter_init(source, &s->hbi);
149
        s->sector_num = hbitmap_iter_next(&s->hbi);
150
        trace_mirror_restart_iter(s, bdrv_get_dirty_count(source));
151
        assert(s->sector_num >= 0);
152
    }
153

    
154
    hbitmap_next_sector = s->sector_num;
155
    sector_num = s->sector_num;
156
    sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS;
157
    end = s->common.len >> BDRV_SECTOR_BITS;
158

    
159
    /* Extend the QEMUIOVector to include all adjacent blocks that will
160
     * be copied in this operation.
161
     *
162
     * We have to do this if we have no backing file yet in the destination,
163
     * and the cluster size is very large.  Then we need to do COW ourselves.
164
     * The first time a cluster is copied, copy it entirely.  Note that,
165
     * because both the granularity and the cluster size are powers of two,
166
     * the number of sectors to copy cannot exceed one cluster.
167
     *
168
     * We also want to extend the QEMUIOVector to include more adjacent
169
     * dirty blocks if possible, to limit the number of I/O operations and
170
     * run efficiently even with a small granularity.
171
     */
172
    nb_chunks = 0;
173
    nb_sectors = 0;
174
    next_sector = sector_num;
175
    next_chunk = sector_num / sectors_per_chunk;
176

    
177
    /* Wait for I/O to this cluster (from a previous iteration) to be done.  */
178
    while (test_bit(next_chunk, s->in_flight_bitmap)) {
179
        trace_mirror_yield_in_flight(s, sector_num, s->in_flight);
180
        qemu_coroutine_yield();
181
    }
182

    
183
    do {
184
        int added_sectors, added_chunks;
185

    
186
        if (!bdrv_get_dirty(source, next_sector) ||
187
            test_bit(next_chunk, s->in_flight_bitmap)) {
188
            assert(nb_sectors > 0);
189
            break;
190
        }
191

    
192
        added_sectors = sectors_per_chunk;
193
        if (s->cow_bitmap && !test_bit(next_chunk, s->cow_bitmap)) {
194
            bdrv_round_to_clusters(s->target,
195
                                   next_sector, added_sectors,
196
                                   &next_sector, &added_sectors);
197

    
198
            /* On the first iteration, the rounding may make us copy
199
             * sectors before the first dirty one.
200
             */
201
            if (next_sector < sector_num) {
202
                assert(nb_sectors == 0);
203
                sector_num = next_sector;
204
                next_chunk = next_sector / sectors_per_chunk;
205
            }
206
        }
207

    
208
        added_sectors = MIN(added_sectors, end - (sector_num + nb_sectors));
209
        added_chunks = (added_sectors + sectors_per_chunk - 1) / sectors_per_chunk;
210

    
211
        /* When doing COW, it may happen that there is not enough space for
212
         * a full cluster.  Wait if that is the case.
213
         */
214
        while (nb_chunks == 0 && s->buf_free_count < added_chunks) {
215
            trace_mirror_yield_buf_busy(s, nb_chunks, s->in_flight);
216
            qemu_coroutine_yield();
217
        }
218
        if (s->buf_free_count < nb_chunks + added_chunks) {
219
            trace_mirror_break_buf_busy(s, nb_chunks, s->in_flight);
220
            break;
221
        }
222

    
223
        /* We have enough free space to copy these sectors.  */
224
        bitmap_set(s->in_flight_bitmap, next_chunk, added_chunks);
225

    
226
        nb_sectors += added_sectors;
227
        nb_chunks += added_chunks;
228
        next_sector += added_sectors;
229
        next_chunk += added_chunks;
230
    } while (next_sector < end);
231

    
232
    /* Allocate a MirrorOp that is used as an AIO callback.  */
233
    op = g_slice_new(MirrorOp);
234
    op->s = s;
235
    op->sector_num = sector_num;
236
    op->nb_sectors = nb_sectors;
237

    
238
    /* Now make a QEMUIOVector taking enough granularity-sized chunks
239
     * from s->buf_free.
240
     */
241
    qemu_iovec_init(&op->qiov, nb_chunks);
242
    next_sector = sector_num;
243
    while (nb_chunks-- > 0) {
244
        MirrorBuffer *buf = QSIMPLEQ_FIRST(&s->buf_free);
245
        QSIMPLEQ_REMOVE_HEAD(&s->buf_free, next);
246
        s->buf_free_count--;
247
        qemu_iovec_add(&op->qiov, buf, s->granularity);
248

    
249
        /* Advance the HBitmapIter in parallel, so that we do not examine
250
         * the same sector twice.
251
         */
252
        if (next_sector > hbitmap_next_sector && bdrv_get_dirty(source, next_sector)) {
253
            hbitmap_next_sector = hbitmap_iter_next(&s->hbi);
254
        }
255

    
256
        next_sector += sectors_per_chunk;
257
    }
258

    
259
    bdrv_reset_dirty(source, sector_num, nb_sectors);
260

    
261
    /* Copy the dirty cluster.  */
262
    s->in_flight++;
263
    trace_mirror_one_iteration(s, sector_num, nb_sectors);
264
    bdrv_aio_readv(source, sector_num, &op->qiov, nb_sectors,
265
                   mirror_read_complete, op);
266
}
267

    
268
static void mirror_free_init(MirrorBlockJob *s)
269
{
270
    int granularity = s->granularity;
271
    size_t buf_size = s->buf_size;
272
    uint8_t *buf = s->buf;
273

    
274
    assert(s->buf_free_count == 0);
275
    QSIMPLEQ_INIT(&s->buf_free);
276
    while (buf_size != 0) {
277
        MirrorBuffer *cur = (MirrorBuffer *)buf;
278
        QSIMPLEQ_INSERT_TAIL(&s->buf_free, cur, next);
279
        s->buf_free_count++;
280
        buf_size -= granularity;
281
        buf += granularity;
282
    }
283
}
284

    
285
static void mirror_drain(MirrorBlockJob *s)
286
{
287
    while (s->in_flight > 0) {
288
        qemu_coroutine_yield();
289
    }
290
}
291

    
292
static void coroutine_fn mirror_run(void *opaque)
293
{
294
    MirrorBlockJob *s = opaque;
295
    BlockDriverState *bs = s->common.bs;
296
    int64_t sector_num, end, sectors_per_chunk, length;
297
    uint64_t last_pause_ns;
298
    BlockDriverInfo bdi;
299
    char backing_filename[1024];
300
    int ret = 0;
301
    int n;
302

    
303
    if (block_job_is_cancelled(&s->common)) {
304
        goto immediate_exit;
305
    }
306

    
307
    s->common.len = bdrv_getlength(bs);
308
    if (s->common.len <= 0) {
309
        block_job_completed(&s->common, s->common.len);
310
        return;
311
    }
312

    
313
    length = (bdrv_getlength(bs) + s->granularity - 1) / s->granularity;
314
    s->in_flight_bitmap = bitmap_new(length);
315

    
316
    /* If we have no backing file yet in the destination, we cannot let
317
     * the destination do COW.  Instead, we copy sectors around the
318
     * dirty data if needed.  We need a bitmap to do that.
319
     */
320
    bdrv_get_backing_filename(s->target, backing_filename,
321
                              sizeof(backing_filename));
322
    if (backing_filename[0] && !s->target->backing_hd) {
323
        bdrv_get_info(s->target, &bdi);
324
        if (s->granularity < bdi.cluster_size) {
325
            s->buf_size = MAX(s->buf_size, bdi.cluster_size);
326
            s->cow_bitmap = bitmap_new(length);
327
        }
328
    }
329

    
330
    end = s->common.len >> BDRV_SECTOR_BITS;
331
    s->buf = qemu_blockalign(bs, s->buf_size);
332
    sectors_per_chunk = s->granularity >> BDRV_SECTOR_BITS;
333
    mirror_free_init(s);
334

    
335
    if (s->mode != MIRROR_SYNC_MODE_NONE) {
336
        /* First part, loop on the sectors and initialize the dirty bitmap.  */
337
        BlockDriverState *base;
338
        base = s->mode == MIRROR_SYNC_MODE_FULL ? NULL : bs->backing_hd;
339
        for (sector_num = 0; sector_num < end; ) {
340
            int64_t next = (sector_num | (sectors_per_chunk - 1)) + 1;
341
            ret = bdrv_is_allocated_above(bs, base,
342
                                          sector_num, next - sector_num, &n);
343

    
344
            if (ret < 0) {
345
                goto immediate_exit;
346
            }
347

    
348
            assert(n > 0);
349
            if (ret == 1) {
350
                bdrv_set_dirty(bs, sector_num, n);
351
                sector_num = next;
352
            } else {
353
                sector_num += n;
354
            }
355
        }
356
    }
357

    
358
    bdrv_dirty_iter_init(bs, &s->hbi);
359
    last_pause_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
360
    for (;;) {
361
        uint64_t delay_ns;
362
        int64_t cnt;
363
        bool should_complete;
364

    
365
        if (s->ret < 0) {
366
            ret = s->ret;
367
            goto immediate_exit;
368
        }
369

    
370
        cnt = bdrv_get_dirty_count(bs);
371

    
372
        /* Note that even when no rate limit is applied we need to yield
373
         * periodically with no pending I/O so that qemu_aio_flush() returns.
374
         * We do so every SLICE_TIME nanoseconds, or when there is an error,
375
         * or when the source is clean, whichever comes first.
376
         */
377
        if (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - last_pause_ns < SLICE_TIME &&
378
            s->common.iostatus == BLOCK_DEVICE_IO_STATUS_OK) {
379
            if (s->in_flight == MAX_IN_FLIGHT || s->buf_free_count == 0 ||
380
                (cnt == 0 && s->in_flight > 0)) {
381
                trace_mirror_yield(s, s->in_flight, s->buf_free_count, cnt);
382
                qemu_coroutine_yield();
383
                continue;
384
            } else if (cnt != 0) {
385
                mirror_iteration(s);
386
                continue;
387
            }
388
        }
389

    
390
        should_complete = false;
391
        if (s->in_flight == 0 && cnt == 0) {
392
            trace_mirror_before_flush(s);
393
            ret = bdrv_flush(s->target);
394
            if (ret < 0) {
395
                if (mirror_error_action(s, false, -ret) == BDRV_ACTION_REPORT) {
396
                    goto immediate_exit;
397
                }
398
            } else {
399
                /* We're out of the streaming phase.  From now on, if the job
400
                 * is cancelled we will actually complete all pending I/O and
401
                 * report completion.  This way, block-job-cancel will leave
402
                 * the target in a consistent state.
403
                 */
404
                s->common.offset = end * BDRV_SECTOR_SIZE;
405
                if (!s->synced) {
406
                    block_job_ready(&s->common);
407
                    s->synced = true;
408
                }
409

    
410
                should_complete = s->should_complete ||
411
                    block_job_is_cancelled(&s->common);
412
                cnt = bdrv_get_dirty_count(bs);
413
            }
414
        }
415

    
416
        if (cnt == 0 && should_complete) {
417
            /* The dirty bitmap is not updated while operations are pending.
418
             * If we're about to exit, wait for pending operations before
419
             * calling bdrv_get_dirty_count(bs), or we may exit while the
420
             * source has dirty data to copy!
421
             *
422
             * Note that I/O can be submitted by the guest while
423
             * mirror_populate runs.
424
             */
425
            trace_mirror_before_drain(s, cnt);
426
            bdrv_drain_all();
427
            cnt = bdrv_get_dirty_count(bs);
428
        }
429

    
430
        ret = 0;
431
        trace_mirror_before_sleep(s, cnt, s->synced);
432
        if (!s->synced) {
433
            /* Publish progress */
434
            s->common.offset = (end - cnt) * BDRV_SECTOR_SIZE;
435

    
436
            if (s->common.speed) {
437
                delay_ns = ratelimit_calculate_delay(&s->limit, sectors_per_chunk);
438
            } else {
439
                delay_ns = 0;
440
            }
441

    
442
            block_job_sleep_ns(&s->common, QEMU_CLOCK_REALTIME, delay_ns);
443
            if (block_job_is_cancelled(&s->common)) {
444
                break;
445
            }
446
        } else if (!should_complete) {
447
            delay_ns = (s->in_flight == 0 && cnt == 0 ? SLICE_TIME : 0);
448
            block_job_sleep_ns(&s->common, QEMU_CLOCK_REALTIME, delay_ns);
449
        } else if (cnt == 0) {
450
            /* The two disks are in sync.  Exit and report successful
451
             * completion.
452
             */
453
            assert(QLIST_EMPTY(&bs->tracked_requests));
454
            s->common.cancelled = false;
455
            break;
456
        }
457
        last_pause_ns = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
458
    }
459

    
460
immediate_exit:
461
    if (s->in_flight > 0) {
462
        /* We get here only if something went wrong.  Either the job failed,
463
         * or it was cancelled prematurely so that we do not guarantee that
464
         * the target is a copy of the source.
465
         */
466
        assert(ret < 0 || (!s->synced && block_job_is_cancelled(&s->common)));
467
        mirror_drain(s);
468
    }
469

    
470
    assert(s->in_flight == 0);
471
    qemu_vfree(s->buf);
472
    g_free(s->cow_bitmap);
473
    g_free(s->in_flight_bitmap);
474
    bdrv_set_dirty_tracking(bs, 0);
475
    bdrv_iostatus_disable(s->target);
476
    if (s->should_complete && ret == 0) {
477
        if (bdrv_get_flags(s->target) != bdrv_get_flags(s->common.bs)) {
478
            bdrv_reopen(s->target, bdrv_get_flags(s->common.bs), NULL);
479
        }
480
        bdrv_swap(s->target, s->common.bs);
481
    }
482
    bdrv_close(s->target);
483
    bdrv_unref(s->target);
484
    block_job_completed(&s->common, ret);
485
}
486

    
487
static void mirror_set_speed(BlockJob *job, int64_t speed, Error **errp)
488
{
489
    MirrorBlockJob *s = container_of(job, MirrorBlockJob, common);
490

    
491
    if (speed < 0) {
492
        error_set(errp, QERR_INVALID_PARAMETER, "speed");
493
        return;
494
    }
495
    ratelimit_set_speed(&s->limit, speed / BDRV_SECTOR_SIZE, SLICE_TIME);
496
}
497

    
498
static void mirror_iostatus_reset(BlockJob *job)
499
{
500
    MirrorBlockJob *s = container_of(job, MirrorBlockJob, common);
501

    
502
    bdrv_iostatus_reset(s->target);
503
}
504

    
505
static void mirror_complete(BlockJob *job, Error **errp)
506
{
507
    MirrorBlockJob *s = container_of(job, MirrorBlockJob, common);
508
    Error *local_err = NULL;
509
    int ret;
510

    
511
    ret = bdrv_open_backing_file(s->target, NULL, &local_err);
512
    if (ret < 0) {
513
        char backing_filename[PATH_MAX];
514
        bdrv_get_full_backing_filename(s->target, backing_filename,
515
                                       sizeof(backing_filename));
516
        error_propagate(errp, local_err);
517
        return;
518
    }
519
    if (!s->synced) {
520
        error_set(errp, QERR_BLOCK_JOB_NOT_READY, job->bs->device_name);
521
        return;
522
    }
523

    
524
    s->should_complete = true;
525
    block_job_resume(job);
526
}
527

    
528
static const BlockJobType mirror_job_type = {
529
    .instance_size = sizeof(MirrorBlockJob),
530
    .job_type      = "mirror",
531
    .set_speed     = mirror_set_speed,
532
    .iostatus_reset= mirror_iostatus_reset,
533
    .complete      = mirror_complete,
534
};
535

    
536
void mirror_start(BlockDriverState *bs, BlockDriverState *target,
537
                  int64_t speed, int64_t granularity, int64_t buf_size,
538
                  MirrorSyncMode mode, BlockdevOnError on_source_error,
539
                  BlockdevOnError on_target_error,
540
                  BlockDriverCompletionFunc *cb,
541
                  void *opaque, Error **errp)
542
{
543
    MirrorBlockJob *s;
544

    
545
    if (granularity == 0) {
546
        /* Choose the default granularity based on the target file's cluster
547
         * size, clamped between 4k and 64k.  */
548
        BlockDriverInfo bdi;
549
        if (bdrv_get_info(target, &bdi) >= 0 && bdi.cluster_size != 0) {
550
            granularity = MAX(4096, bdi.cluster_size);
551
            granularity = MIN(65536, granularity);
552
        } else {
553
            granularity = 65536;
554
        }
555
    }
556

    
557
    assert ((granularity & (granularity - 1)) == 0);
558

    
559
    if ((on_source_error == BLOCKDEV_ON_ERROR_STOP ||
560
         on_source_error == BLOCKDEV_ON_ERROR_ENOSPC) &&
561
        !bdrv_iostatus_is_enabled(bs)) {
562
        error_set(errp, QERR_INVALID_PARAMETER, "on-source-error");
563
        return;
564
    }
565

    
566
    s = block_job_create(&mirror_job_type, bs, speed, cb, opaque, errp);
567
    if (!s) {
568
        return;
569
    }
570

    
571
    s->on_source_error = on_source_error;
572
    s->on_target_error = on_target_error;
573
    s->target = target;
574
    s->mode = mode;
575
    s->granularity = granularity;
576
    s->buf_size = MAX(buf_size, granularity);
577

    
578
    bdrv_set_dirty_tracking(bs, granularity);
579
    bdrv_set_enable_write_cache(s->target, true);
580
    bdrv_set_on_error(s->target, on_target_error, on_target_error);
581
    bdrv_iostatus_enable(s->target);
582
    s->common.co = qemu_coroutine_create(mirror_run);
583
    trace_mirror_start(bs, s, s->common.co, opaque);
584
    qemu_coroutine_enter(s->common.co, s);
585
}