Revision 35b961cf

b/hw/lance.c
48 48
#define LE_RDP  0
49 49
#define LE_RAP  1
50 50

  
51
#define LE_MO_PROM      0x8000  /* Enable promiscuous mode */
51
#define LE_MO_PROM      0x8000	/* Enable promiscuous mode */
52 52

  
53 53
#define	LE_C0_ERR	0x8000	/* Error: set if BAB, SQE, MISS or ME is set */
54 54
#define	LE_C0_BABL	0x4000	/* BAB:  Babble: tx timeout. */
......
67 67
#define	LE_C0_STRT	0x0002	/* Start the card */
68 68
#define	LE_C0_INIT	0x0001	/* Init the card */
69 69

  
70
#define	LE_C3_BSWP	0x4     /* SWAP */
70
#define	LE_C3_BSWP	0x4	/* SWAP */
71 71
#define	LE_C3_ACON	0x2	/* ALE Control */
72 72
#define	LE_C3_BCON	0x1	/* Byte control */
73 73

  
74 74
/* Receive message descriptor 1 */
75
#define LE_R1_OWN       0x80    /* Who owns the entry */
76
#define LE_R1_ERR       0x40    /* Error: if FRA, OFL, CRC or BUF is set */
77
#define LE_R1_FRA       0x20    /* FRA: Frame error */
78
#define LE_R1_OFL       0x10    /* OFL: Frame overflow */
79
#define LE_R1_CRC       0x08    /* CRC error */
80
#define LE_R1_BUF       0x04    /* BUF: Buffer error */
81
#define LE_R1_SOP       0x02    /* Start of packet */
82
#define LE_R1_EOP       0x01    /* End of packet */
83
#define LE_R1_POK       0x03    /* Packet is complete: SOP + EOP */
84

  
85
#define LE_T1_OWN       0x80    /* Lance owns the packet */
86
#define LE_T1_ERR       0x40    /* Error summary */
87
#define LE_T1_EMORE     0x10    /* Error: more than one retry needed */
88
#define LE_T1_EONE      0x08    /* Error: one retry needed */
89
#define LE_T1_EDEF      0x04    /* Error: deferred */
90
#define LE_T1_SOP       0x02    /* Start of packet */
91
#define LE_T1_EOP       0x01    /* End of packet */
75
#define LE_R1_OWN       0x80	/* Who owns the entry */
76
#define LE_R1_ERR       0x40	/* Error: if FRA, OFL, CRC or BUF is set */
77
#define LE_R1_FRA       0x20	/* FRA: Frame error */
78
#define LE_R1_OFL       0x10	/* OFL: Frame overflow */
79
#define LE_R1_CRC       0x08	/* CRC error */
80
#define LE_R1_BUF       0x04	/* BUF: Buffer error */
81
#define LE_R1_SOP       0x02	/* Start of packet */
82
#define LE_R1_EOP       0x01	/* End of packet */
83
#define LE_R1_POK       0x03	/* Packet is complete: SOP + EOP */
84

  
85
#define LE_T1_OWN       0x80	/* Lance owns the packet */
86
#define LE_T1_ERR       0x40	/* Error summary */
87
#define LE_T1_EMORE     0x10	/* Error: more than one retry needed */
88
#define LE_T1_EONE      0x08	/* Error: one retry needed */
89
#define LE_T1_EDEF      0x04	/* Error: deferred */
90
#define LE_T1_SOP       0x02	/* Start of packet */
91
#define LE_T1_EOP       0x01	/* End of packet */
92 92
#define LE_T1_POK	0x03	/* Packet is complete: SOP + EOP */
93 93

  
94
#define LE_T3_BUF       0x8000  /* Buffer error */
95
#define LE_T3_UFL       0x4000  /* Error underflow */
96
#define LE_T3_LCOL      0x1000  /* Error late collision */
97
#define LE_T3_CLOS      0x0800  /* Error carrier loss */
98
#define LE_T3_RTY       0x0400  /* Error retry */
99
#define LE_T3_TDR       0x03ff  /* Time Domain Reflectometry counter */
94
#define LE_T3_BUF       0x8000	/* Buffer error */
95
#define LE_T3_UFL       0x4000	/* Error underflow */
96
#define LE_T3_LCOL      0x1000	/* Error late collision */
97
#define LE_T3_CLOS      0x0800	/* Error carrier loss */
98
#define LE_T3_RTY       0x0400	/* Error retry */
99
#define LE_T3_TDR       0x03ff	/* Time Domain Reflectometry counter */
100 100

  
101 101
#define TX_RING_SIZE			(1 << (LANCE_LOG_TX_BUFFERS))
102 102
#define TX_RING_MOD_MASK		(TX_RING_SIZE - 1)
......
111 111
#define TX_BUFF_SIZE            PKT_BUF_SZ
112 112

  
113 113
struct lance_rx_desc {
114
	unsigned short rmd0;        /* low address of packet */
115
	unsigned char  rmd1_bits;   /* descriptor bits */
116
	unsigned char  rmd1_hadr;   /* high address of packet */
117
	short    length;    	    /* This length is 2s complement (negative)!
118
				     * Buffer length
119
				     */
120
	unsigned short mblength;    /* This is the actual number of bytes received */
114
    unsigned short rmd0;	/* low address of packet */
115
    unsigned char rmd1_bits;	/* descriptor bits */
116
    unsigned char rmd1_hadr;	/* high address of packet */
117
    short length;		/* This length is 2s complement (negative)!
118
				 * Buffer length
119
				 */
120
    unsigned short mblength;	/* This is the actual number of bytes received */
121 121
};
122 122

  
123 123
struct lance_tx_desc {
124
	unsigned short tmd0;        /* low address of packet */
125
	unsigned char  tmd1_bits;   /* descriptor bits */
126
	unsigned char  tmd1_hadr;   /* high address of packet */
127
	short length;          	    /* Length is 2s complement (negative)! */
128
	unsigned short misc;
124
    unsigned short tmd0;	/* low address of packet */
125
    unsigned char tmd1_bits;	/* descriptor bits */
126
    unsigned char tmd1_hadr;	/* high address of packet */
127
    short length;		/* Length is 2s complement (negative)! */
128
    unsigned short misc;
129 129
};
130 130

  
131 131
/* The LANCE initialization block, described in databook. */
132 132
/* On the Sparc, this block should be on a DMA region     */
133 133
struct lance_init_block {
134
	unsigned short mode;		/* Pre-set mode (reg. 15) */
135
	unsigned char phys_addr[6];     /* Physical ethernet address */
136
	unsigned filter[2];		/* Multicast filter. */
137

  
138
	/* Receive and transmit ring base, along with extra bits. */
139
	unsigned short rx_ptr;		/* receive descriptor addr */
140
	unsigned short rx_len;		/* receive len and high addr */
141
	unsigned short tx_ptr;		/* transmit descriptor addr */
142
	unsigned short tx_len;		/* transmit len and high addr */
143
    
144
	/* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
145
	struct lance_rx_desc brx_ring[RX_RING_SIZE];
146
	struct lance_tx_desc btx_ring[TX_RING_SIZE];
147
    
148
	char   tx_buf [TX_RING_SIZE][TX_BUFF_SIZE];
149
	char   pad[2];			/* align rx_buf for copy_and_sum(). */
150
	char   rx_buf [RX_RING_SIZE][RX_BUFF_SIZE];
134
    unsigned short mode;	/* Pre-set mode (reg. 15) */
135
    unsigned char phys_addr[6];	/* Physical ethernet address */
136
    unsigned filter[2];		/* Multicast filter. */
137

  
138
    /* Receive and transmit ring base, along with extra bits. */
139
    unsigned short rx_ptr;	/* receive descriptor addr */
140
    unsigned short rx_len;	/* receive len and high addr */
141
    unsigned short tx_ptr;	/* transmit descriptor addr */
142
    unsigned short tx_len;	/* transmit len and high addr */
143

  
144
    /* The Tx and Rx ring entries must aligned on 8-byte boundaries. */
145
    struct lance_rx_desc brx_ring[RX_RING_SIZE];
146
    struct lance_tx_desc btx_ring[TX_RING_SIZE];
147

  
148
    char tx_buf[TX_RING_SIZE][TX_BUFF_SIZE];
149
    char pad[2];		/* align rx_buf for copy_and_sum(). */
150
    char rx_buf[RX_RING_SIZE][RX_BUFF_SIZE];
151 151
};
152 152

  
153 153
#define LEDMA_REGS 4
......
155 155

  
156 156
typedef struct LANCEState {
157 157
    VLANClientState *vc;
158
    uint8_t macaddr[6]; /* init mac address */
158
    uint8_t macaddr[6];		/* init mac address */
159 159
    uint32_t leptr;
160 160
    uint16_t addr;
161 161
    uint16_t regs[LE_NREGS];
162
    uint8_t phys[6]; /* mac address */
162
    uint8_t phys[6];		/* mac address */
163 163
    int irq;
164 164
    unsigned int rxptr, txptr;
165 165
    uint32_t ledmaregs[LEDMA_REGS];
......
192 192
	DPRINTF("read areg = %4.4x\n", s->addr);
193 193
	return s->addr;
194 194
    default:
195
	DPRINTF("read unknown(%d)\n", saddr>>1);
195
	DPRINTF("read unknown(%d)\n", saddr >> 1);
196 196
	break;
197 197
    }
198 198
    return 0;
199 199
}
200 200

  
201
static void lance_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
201
static void lance_mem_writew(void *opaque, target_phys_addr_t addr,
202
			     uint32_t val)
202 203
{
203 204
    LANCEState *s = opaque;
204 205
    uint32_t saddr;
......
208 209
    switch (saddr >> 1) {
209 210
    case LE_RDP:
210 211
	DPRINTF("write dreg[%d] = %4.4x\n", s->addr, val);
211
	switch(s->addr) {
212
	switch (s->addr) {
212 213
	case LE_CSR0:
213 214
	    if (val & LE_C0_STOP) {
214 215
		s->regs[LE_CSR0] = LE_C0_STOP;
......
235 236
	    if (val & LE_C0_INIT) {
236 237
		reg |= LE_C0_IDON | LE_C0_INIT;
237 238
		reg &= ~LE_C0_STOP;
238
	    }
239
	    else if (val & LE_C0_STRT) {
239
	    } else if (val & LE_C0_STRT) {
240 240
		reg |= LE_C0_STRT | LE_C0_RXON | LE_C0_TXON;
241 241
		reg &= ~LE_C0_STOP;
242 242
	    }
......
262 262
	    s->addr = val;
263 263
	break;
264 264
    default:
265
	DPRINTF("write unknown(%d) = %4.4x\n", saddr>>1, val);
265
	DPRINTF("write unknown(%d) = %4.4x\n", saddr >> 1, val);
266 266
	break;
267 267
    }
268 268
    lance_send(s);
......
288 288
    return 1;
289 289
}
290 290

  
291
static void lance_receive(void *opaque, const uint8_t *buf, int size)
291
static void lance_receive(void *opaque, const uint8_t * buf, int size)
292 292
{
293 293
    LANCEState *s = opaque;
294 294
    uint32_t dmaptr = s->leptr + s->ledmaregs[3];
......
304 304
    ib = (void *) iommu_translate(dmaptr);
305 305

  
306 306
    old_rxptr = s->rxptr;
307
    for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK); i = (i + 1) & RX_RING_MOD_MASK) {
308
	cpu_physical_memory_read((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp8, 1);
307
    for (i = s->rxptr; i != ((old_rxptr - 1) & RX_RING_MOD_MASK);
308
	 i = (i + 1) & RX_RING_MOD_MASK) {
309
	cpu_physical_memory_read((uint32_t) & ib->brx_ring[i].rmd1_bits,
310
				 (void *) &temp8, 1);
309 311
	if (temp8 == (LE_R1_OWN)) {
310 312
	    s->rxptr = (s->rxptr + 1) & RX_RING_MOD_MASK;
311 313
	    temp16 = size + 4;
312 314
	    bswap16s(&temp16);
313
	    cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].mblength, (void *) &temp16, 2);
314
	    cpu_physical_memory_write((uint32_t)&ib->rx_buf[i], buf, size);
315
	    cpu_physical_memory_write((uint32_t) & ib->brx_ring[i].
316
				      mblength, (void *) &temp16, 2);
317
	    cpu_physical_memory_write((uint32_t) & ib->rx_buf[i], buf,
318
				      size);
315 319
	    temp8 = LE_R1_POK;
316
	    cpu_physical_memory_write((uint32_t)&ib->brx_ring[i].rmd1_bits, (void *) &temp8, 1);
320
	    cpu_physical_memory_write((uint32_t) & ib->brx_ring[i].
321
				      rmd1_bits, (void *) &temp8, 1);
317 322
	    s->regs[LE_CSR0] |= LE_C0_RINT | LE_C0_INTR;
318 323
	    if (s->regs[LE_CSR0] & LE_C0_INEA)
319 324
		pic_set_irq(s->irq, 1);
......
339 344

  
340 345
    ib = (void *) iommu_translate(dmaptr);
341 346

  
342
    DPRINTF("sending packet? (dmaptr %8.8x) (ib %p) (btx_ring %p)\n", dmaptr, ib, &ib->btx_ring);
347
    DPRINTF("sending packet? (dmaptr %8.8x) (ib %p) (btx_ring %p)\n",
348
	    dmaptr, ib, &ib->btx_ring);
343 349
    old_txptr = s->txptr;
344
    for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK); i = (i + 1) & TX_RING_MOD_MASK) {
345
	cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp8, 1);
346
	if (temp8 == (LE_T1_POK|LE_T1_OWN)) {
347
	    cpu_physical_memory_read((uint32_t)&ib->btx_ring[i].length, (void *) &temp16, 2);
350
    for (i = s->txptr; i != ((old_txptr - 1) & TX_RING_MOD_MASK);
351
	 i = (i + 1) & TX_RING_MOD_MASK) {
352
	cpu_physical_memory_read((uint32_t) & ib->btx_ring[i].tmd1_bits,
353
				 (void *) &temp8, 1);
354
	if (temp8 == (LE_T1_POK | LE_T1_OWN)) {
355
	    cpu_physical_memory_read((uint32_t) & ib->btx_ring[i].length,
356
				     (void *) &temp16, 2);
348 357
	    bswap16s(&temp16);
349 358
	    temp16 = (~temp16) + 1;
350
	    cpu_physical_memory_read((uint32_t)&ib->tx_buf[i], pkt_buf, temp16);
359
	    cpu_physical_memory_read((uint32_t) & ib->tx_buf[i], pkt_buf,
360
				     temp16);
351 361
	    DPRINTF("sending packet, len %d\n", temp16);
352 362
	    qemu_send_packet(s->vc, pkt_buf, temp16);
353 363
	    temp8 = LE_T1_POK;
354
	    cpu_physical_memory_write((uint32_t)&ib->btx_ring[i].tmd1_bits, (void *) &temp8, 1);
364
	    cpu_physical_memory_write((uint32_t) & ib->btx_ring[i].
365
				      tmd1_bits, (void *) &temp8, 1);
355 366
	    s->txptr = (s->txptr + 1) & TX_RING_MOD_MASK;
356 367
	    s->regs[LE_CSR0] |= LE_C0_TINT | LE_C0_INTR;
357 368
	}
......
369 380
    return s->ledmaregs[saddr];
370 381
}
371 382

  
372
static void ledma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
383
static void ledma_mem_writel(void *opaque, target_phys_addr_t addr,
384
			     uint32_t val)
373 385
{
374 386
    LANCEState *s = opaque;
375 387
    uint32_t saddr;
......
390 402
    ledma_mem_writel,
391 403
};
392 404

  
393
static void lance_save(QEMUFile *f, void *opaque)
405
static void lance_save(QEMUFile * f, void *opaque)
394 406
{
395 407
    LANCEState *s = opaque;
396 408
    int i;
397
    
409

  
398 410
    qemu_put_be32s(f, &s->leptr);
399 411
    qemu_put_be16s(f, &s->addr);
400
    for (i = 0; i < LE_NREGS; i ++)
412
    for (i = 0; i < LE_NREGS; i++)
401 413
	qemu_put_be16s(f, &s->regs[i]);
402 414
    qemu_put_buffer(f, s->phys, 6);
403 415
    qemu_put_be32s(f, &s->irq);
404
    for (i = 0; i < LEDMA_REGS; i ++)
416
    for (i = 0; i < LEDMA_REGS; i++)
405 417
	qemu_put_be32s(f, &s->ledmaregs[i]);
406 418
}
407 419

  
408
static int lance_load(QEMUFile *f, void *opaque, int version_id)
420
static int lance_load(QEMUFile * f, void *opaque, int version_id)
409 421
{
410 422
    LANCEState *s = opaque;
411 423
    int i;
412
    
424

  
413 425
    if (version_id != 1)
414
        return -EINVAL;
426
	return -EINVAL;
415 427

  
416 428
    qemu_get_be32s(f, &s->leptr);
417 429
    qemu_get_be16s(f, &s->addr);
418
    for (i = 0; i < LE_NREGS; i ++)
430
    for (i = 0; i < LE_NREGS; i++)
419 431
	qemu_get_be16s(f, &s->regs[i]);
420 432
    qemu_get_buffer(f, s->phys, 6);
421 433
    qemu_get_be32s(f, &s->irq);
422
    for (i = 0; i < LEDMA_REGS; i ++)
434
    for (i = 0; i < LEDMA_REGS; i++)
423 435
	qemu_get_be32s(f, &s->ledmaregs[i]);
424 436
    return 0;
425 437
}
426 438

  
427
void lance_init(NICInfo *nd, int irq, uint32_t leaddr, uint32_t ledaddr)
439
void lance_init(NICInfo * nd, int irq, uint32_t leaddr, uint32_t ledaddr)
428 440
{
429 441
    LANCEState *s;
430 442
    int lance_io_memory, ledma_io_memory;
431 443

  
432 444
    s = qemu_mallocz(sizeof(LANCEState));
433 445
    if (!s)
434
        return;
446
	return;
435 447

  
436 448
    s->irq = irq;
437 449

  
438
    lance_io_memory = cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
450
    lance_io_memory =
451
	cpu_register_io_memory(0, lance_mem_read, lance_mem_write, s);
439 452
    cpu_register_physical_memory(leaddr, 4, lance_io_memory);
440 453

  
441
    ledma_io_memory = cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s);
454
    ledma_io_memory =
455
	cpu_register_io_memory(0, ledma_mem_read, ledma_mem_write, s);
442 456
    cpu_register_physical_memory(ledaddr, 16, ledma_io_memory);
443 457

  
444 458
    memcpy(s->macaddr, nd->macaddr, 6);
445 459

  
446 460
    lance_reset(s);
447 461

  
448
    s->vc = qemu_new_vlan_client(nd->vlan, lance_receive, lance_can_receive, s);
462
    s->vc =
463
	qemu_new_vlan_client(nd->vlan, lance_receive, lance_can_receive,
464
			     s);
449 465

  
450 466
    snprintf(s->vc->info_str, sizeof(s->vc->info_str),
451
             "lance macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
452
             s->macaddr[0],
453
             s->macaddr[1],
454
             s->macaddr[2],
455
             s->macaddr[3],
456
             s->macaddr[4],
457
             s->macaddr[5]);
467
	     "lance macaddr=%02x:%02x:%02x:%02x:%02x:%02x",
468
	     s->macaddr[0],
469
	     s->macaddr[1],
470
	     s->macaddr[2], s->macaddr[3], s->macaddr[4], s->macaddr[5]);
458 471

  
459 472
    register_savevm("lance", leaddr, 1, lance_save, lance_load, s);
460 473
    qemu_register_reset(lance_reset, s);
461 474
}
462

  

Also available in: Unified diff