Statistics
| Branch: | Revision:

root / target-i386 / op_helper.c @ 35bed8ee

History | View | Annotate | Download (159 kB)

1
/*
2
 *  i386 helpers
3
 *
4
 *  Copyright (c) 2003 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18
 */
19
#define CPU_NO_GLOBAL_REGS
20
#include "exec.h"
21
#include "exec-all.h"
22
#include "host-utils.h"
23
#include "ioport.h"
24

    
25
//#define DEBUG_PCALL
26

    
27

    
28
#ifdef DEBUG_PCALL
29
#  define LOG_PCALL(...) qemu_log_mask(CPU_LOG_PCALL, ## __VA_ARGS__)
30
#  define LOG_PCALL_STATE(env) \
31
          log_cpu_state_mask(CPU_LOG_PCALL, (env), X86_DUMP_CCOP)
32
#else
33
#  define LOG_PCALL(...) do { } while (0)
34
#  define LOG_PCALL_STATE(env) do { } while (0)
35
#endif
36

    
37

    
38
#if 0
39
#define raise_exception_err(a, b)\
40
do {\
41
    qemu_log("raise_exception line=%d\n", __LINE__);\
42
    (raise_exception_err)(a, b);\
43
} while (0)
44
#endif
45

    
46
static const uint8_t parity_table[256] = {
47
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
48
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
49
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
50
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
51
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
54
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
55
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
56
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
57
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
58
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
59
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
60
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
61
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
62
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
63
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
64
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
65
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
66
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
67
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
68
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
69
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
70
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
71
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
72
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
73
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
74
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
75
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
76
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
77
    CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
78
    0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
79
};
80

    
81
/* modulo 17 table */
82
static const uint8_t rclw_table[32] = {
83
    0, 1, 2, 3, 4, 5, 6, 7,
84
    8, 9,10,11,12,13,14,15,
85
   16, 0, 1, 2, 3, 4, 5, 6,
86
    7, 8, 9,10,11,12,13,14,
87
};
88

    
89
/* modulo 9 table */
90
static const uint8_t rclb_table[32] = {
91
    0, 1, 2, 3, 4, 5, 6, 7,
92
    8, 0, 1, 2, 3, 4, 5, 6,
93
    7, 8, 0, 1, 2, 3, 4, 5,
94
    6, 7, 8, 0, 1, 2, 3, 4,
95
};
96

    
97
static const CPU86_LDouble f15rk[7] =
98
{
99
    0.00000000000000000000L,
100
    1.00000000000000000000L,
101
    3.14159265358979323851L,  /*pi*/
102
    0.30102999566398119523L,  /*lg2*/
103
    0.69314718055994530943L,  /*ln2*/
104
    1.44269504088896340739L,  /*l2e*/
105
    3.32192809488736234781L,  /*l2t*/
106
};
107

    
108
/* broken thread support */
109

    
110
static spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
111

    
112
void helper_lock(void)
113
{
114
    spin_lock(&global_cpu_lock);
115
}
116

    
117
void helper_unlock(void)
118
{
119
    spin_unlock(&global_cpu_lock);
120
}
121

    
122
void helper_write_eflags(target_ulong t0, uint32_t update_mask)
123
{
124
    load_eflags(t0, update_mask);
125
}
126

    
127
target_ulong helper_read_eflags(void)
128
{
129
    uint32_t eflags;
130
    eflags = helper_cc_compute_all(CC_OP);
131
    eflags |= (DF & DF_MASK);
132
    eflags |= env->eflags & ~(VM_MASK | RF_MASK);
133
    return eflags;
134
}
135

    
136
/* return non zero if error */
137
static inline int load_segment(uint32_t *e1_ptr, uint32_t *e2_ptr,
138
                               int selector)
139
{
140
    SegmentCache *dt;
141
    int index;
142
    target_ulong ptr;
143

    
144
    if (selector & 0x4)
145
        dt = &env->ldt;
146
    else
147
        dt = &env->gdt;
148
    index = selector & ~7;
149
    if ((index + 7) > dt->limit)
150
        return -1;
151
    ptr = dt->base + index;
152
    *e1_ptr = ldl_kernel(ptr);
153
    *e2_ptr = ldl_kernel(ptr + 4);
154
    return 0;
155
}
156

    
157
static inline unsigned int get_seg_limit(uint32_t e1, uint32_t e2)
158
{
159
    unsigned int limit;
160
    limit = (e1 & 0xffff) | (e2 & 0x000f0000);
161
    if (e2 & DESC_G_MASK)
162
        limit = (limit << 12) | 0xfff;
163
    return limit;
164
}
165

    
166
static inline uint32_t get_seg_base(uint32_t e1, uint32_t e2)
167
{
168
    return ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
169
}
170

    
171
static inline void load_seg_cache_raw_dt(SegmentCache *sc, uint32_t e1, uint32_t e2)
172
{
173
    sc->base = get_seg_base(e1, e2);
174
    sc->limit = get_seg_limit(e1, e2);
175
    sc->flags = e2;
176
}
177

    
178
/* init the segment cache in vm86 mode. */
179
static inline void load_seg_vm(int seg, int selector)
180
{
181
    selector &= 0xffff;
182
    cpu_x86_load_seg_cache(env, seg, selector,
183
                           (selector << 4), 0xffff, 0);
184
}
185

    
186
static inline void get_ss_esp_from_tss(uint32_t *ss_ptr,
187
                                       uint32_t *esp_ptr, int dpl)
188
{
189
    int type, index, shift;
190

    
191
#if 0
192
    {
193
        int i;
194
        printf("TR: base=%p limit=%x\n", env->tr.base, env->tr.limit);
195
        for(i=0;i<env->tr.limit;i++) {
196
            printf("%02x ", env->tr.base[i]);
197
            if ((i & 7) == 7) printf("\n");
198
        }
199
        printf("\n");
200
    }
201
#endif
202

    
203
    if (!(env->tr.flags & DESC_P_MASK))
204
        cpu_abort(env, "invalid tss");
205
    type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
206
    if ((type & 7) != 1)
207
        cpu_abort(env, "invalid tss type");
208
    shift = type >> 3;
209
    index = (dpl * 4 + 2) << shift;
210
    if (index + (4 << shift) - 1 > env->tr.limit)
211
        raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc);
212
    if (shift == 0) {
213
        *esp_ptr = lduw_kernel(env->tr.base + index);
214
        *ss_ptr = lduw_kernel(env->tr.base + index + 2);
215
    } else {
216
        *esp_ptr = ldl_kernel(env->tr.base + index);
217
        *ss_ptr = lduw_kernel(env->tr.base + index + 4);
218
    }
219
}
220

    
221
/* XXX: merge with load_seg() */
222
static void tss_load_seg(int seg_reg, int selector)
223
{
224
    uint32_t e1, e2;
225
    int rpl, dpl, cpl;
226

    
227
    if ((selector & 0xfffc) != 0) {
228
        if (load_segment(&e1, &e2, selector) != 0)
229
            raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
230
        if (!(e2 & DESC_S_MASK))
231
            raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
232
        rpl = selector & 3;
233
        dpl = (e2 >> DESC_DPL_SHIFT) & 3;
234
        cpl = env->hflags & HF_CPL_MASK;
235
        if (seg_reg == R_CS) {
236
            if (!(e2 & DESC_CS_MASK))
237
                raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
238
            /* XXX: is it correct ? */
239
            if (dpl != rpl)
240
                raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
241
            if ((e2 & DESC_C_MASK) && dpl > rpl)
242
                raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
243
        } else if (seg_reg == R_SS) {
244
            /* SS must be writable data */
245
            if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK))
246
                raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
247
            if (dpl != cpl || dpl != rpl)
248
                raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
249
        } else {
250
            /* not readable code */
251
            if ((e2 & DESC_CS_MASK) && !(e2 & DESC_R_MASK))
252
                raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
253
            /* if data or non conforming code, checks the rights */
254
            if (((e2 >> DESC_TYPE_SHIFT) & 0xf) < 12) {
255
                if (dpl < cpl || dpl < rpl)
256
                    raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
257
            }
258
        }
259
        if (!(e2 & DESC_P_MASK))
260
            raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
261
        cpu_x86_load_seg_cache(env, seg_reg, selector,
262
                       get_seg_base(e1, e2),
263
                       get_seg_limit(e1, e2),
264
                       e2);
265
    } else {
266
        if (seg_reg == R_SS || seg_reg == R_CS)
267
            raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
268
    }
269
}
270

    
271
#define SWITCH_TSS_JMP  0
272
#define SWITCH_TSS_IRET 1
273
#define SWITCH_TSS_CALL 2
274

    
275
/* XXX: restore CPU state in registers (PowerPC case) */
276
static void switch_tss(int tss_selector,
277
                       uint32_t e1, uint32_t e2, int source,
278
                       uint32_t next_eip)
279
{
280
    int tss_limit, tss_limit_max, type, old_tss_limit_max, old_type, v1, v2, i;
281
    target_ulong tss_base;
282
    uint32_t new_regs[8], new_segs[6];
283
    uint32_t new_eflags, new_eip, new_cr3, new_ldt, new_trap;
284
    uint32_t old_eflags, eflags_mask;
285
    SegmentCache *dt;
286
    int index;
287
    target_ulong ptr;
288

    
289
    type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
290
    LOG_PCALL("switch_tss: sel=0x%04x type=%d src=%d\n", tss_selector, type, source);
291

    
292
    /* if task gate, we read the TSS segment and we load it */
293
    if (type == 5) {
294
        if (!(e2 & DESC_P_MASK))
295
            raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc);
296
        tss_selector = e1 >> 16;
297
        if (tss_selector & 4)
298
            raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
299
        if (load_segment(&e1, &e2, tss_selector) != 0)
300
            raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
301
        if (e2 & DESC_S_MASK)
302
            raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
303
        type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
304
        if ((type & 7) != 1)
305
            raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
306
    }
307

    
308
    if (!(e2 & DESC_P_MASK))
309
        raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc);
310

    
311
    if (type & 8)
312
        tss_limit_max = 103;
313
    else
314
        tss_limit_max = 43;
315
    tss_limit = get_seg_limit(e1, e2);
316
    tss_base = get_seg_base(e1, e2);
317
    if ((tss_selector & 4) != 0 ||
318
        tss_limit < tss_limit_max)
319
        raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
320
    old_type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
321
    if (old_type & 8)
322
        old_tss_limit_max = 103;
323
    else
324
        old_tss_limit_max = 43;
325

    
326
    /* read all the registers from the new TSS */
327
    if (type & 8) {
328
        /* 32 bit */
329
        new_cr3 = ldl_kernel(tss_base + 0x1c);
330
        new_eip = ldl_kernel(tss_base + 0x20);
331
        new_eflags = ldl_kernel(tss_base + 0x24);
332
        for(i = 0; i < 8; i++)
333
            new_regs[i] = ldl_kernel(tss_base + (0x28 + i * 4));
334
        for(i = 0; i < 6; i++)
335
            new_segs[i] = lduw_kernel(tss_base + (0x48 + i * 4));
336
        new_ldt = lduw_kernel(tss_base + 0x60);
337
        new_trap = ldl_kernel(tss_base + 0x64);
338
    } else {
339
        /* 16 bit */
340
        new_cr3 = 0;
341
        new_eip = lduw_kernel(tss_base + 0x0e);
342
        new_eflags = lduw_kernel(tss_base + 0x10);
343
        for(i = 0; i < 8; i++)
344
            new_regs[i] = lduw_kernel(tss_base + (0x12 + i * 2)) | 0xffff0000;
345
        for(i = 0; i < 4; i++)
346
            new_segs[i] = lduw_kernel(tss_base + (0x22 + i * 4));
347
        new_ldt = lduw_kernel(tss_base + 0x2a);
348
        new_segs[R_FS] = 0;
349
        new_segs[R_GS] = 0;
350
        new_trap = 0;
351
    }
352

    
353
    /* NOTE: we must avoid memory exceptions during the task switch,
354
       so we make dummy accesses before */
355
    /* XXX: it can still fail in some cases, so a bigger hack is
356
       necessary to valid the TLB after having done the accesses */
357

    
358
    v1 = ldub_kernel(env->tr.base);
359
    v2 = ldub_kernel(env->tr.base + old_tss_limit_max);
360
    stb_kernel(env->tr.base, v1);
361
    stb_kernel(env->tr.base + old_tss_limit_max, v2);
362

    
363
    /* clear busy bit (it is restartable) */
364
    if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_IRET) {
365
        target_ulong ptr;
366
        uint32_t e2;
367
        ptr = env->gdt.base + (env->tr.selector & ~7);
368
        e2 = ldl_kernel(ptr + 4);
369
        e2 &= ~DESC_TSS_BUSY_MASK;
370
        stl_kernel(ptr + 4, e2);
371
    }
372
    old_eflags = compute_eflags();
373
    if (source == SWITCH_TSS_IRET)
374
        old_eflags &= ~NT_MASK;
375

    
376
    /* save the current state in the old TSS */
377
    if (type & 8) {
378
        /* 32 bit */
379
        stl_kernel(env->tr.base + 0x20, next_eip);
380
        stl_kernel(env->tr.base + 0x24, old_eflags);
381
        stl_kernel(env->tr.base + (0x28 + 0 * 4), EAX);
382
        stl_kernel(env->tr.base + (0x28 + 1 * 4), ECX);
383
        stl_kernel(env->tr.base + (0x28 + 2 * 4), EDX);
384
        stl_kernel(env->tr.base + (0x28 + 3 * 4), EBX);
385
        stl_kernel(env->tr.base + (0x28 + 4 * 4), ESP);
386
        stl_kernel(env->tr.base + (0x28 + 5 * 4), EBP);
387
        stl_kernel(env->tr.base + (0x28 + 6 * 4), ESI);
388
        stl_kernel(env->tr.base + (0x28 + 7 * 4), EDI);
389
        for(i = 0; i < 6; i++)
390
            stw_kernel(env->tr.base + (0x48 + i * 4), env->segs[i].selector);
391
    } else {
392
        /* 16 bit */
393
        stw_kernel(env->tr.base + 0x0e, next_eip);
394
        stw_kernel(env->tr.base + 0x10, old_eflags);
395
        stw_kernel(env->tr.base + (0x12 + 0 * 2), EAX);
396
        stw_kernel(env->tr.base + (0x12 + 1 * 2), ECX);
397
        stw_kernel(env->tr.base + (0x12 + 2 * 2), EDX);
398
        stw_kernel(env->tr.base + (0x12 + 3 * 2), EBX);
399
        stw_kernel(env->tr.base + (0x12 + 4 * 2), ESP);
400
        stw_kernel(env->tr.base + (0x12 + 5 * 2), EBP);
401
        stw_kernel(env->tr.base + (0x12 + 6 * 2), ESI);
402
        stw_kernel(env->tr.base + (0x12 + 7 * 2), EDI);
403
        for(i = 0; i < 4; i++)
404
            stw_kernel(env->tr.base + (0x22 + i * 4), env->segs[i].selector);
405
    }
406

    
407
    /* now if an exception occurs, it will occurs in the next task
408
       context */
409

    
410
    if (source == SWITCH_TSS_CALL) {
411
        stw_kernel(tss_base, env->tr.selector);
412
        new_eflags |= NT_MASK;
413
    }
414

    
415
    /* set busy bit */
416
    if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_CALL) {
417
        target_ulong ptr;
418
        uint32_t e2;
419
        ptr = env->gdt.base + (tss_selector & ~7);
420
        e2 = ldl_kernel(ptr + 4);
421
        e2 |= DESC_TSS_BUSY_MASK;
422
        stl_kernel(ptr + 4, e2);
423
    }
424

    
425
    /* set the new CPU state */
426
    /* from this point, any exception which occurs can give problems */
427
    env->cr[0] |= CR0_TS_MASK;
428
    env->hflags |= HF_TS_MASK;
429
    env->tr.selector = tss_selector;
430
    env->tr.base = tss_base;
431
    env->tr.limit = tss_limit;
432
    env->tr.flags = e2 & ~DESC_TSS_BUSY_MASK;
433

    
434
    if ((type & 8) && (env->cr[0] & CR0_PG_MASK)) {
435
        cpu_x86_update_cr3(env, new_cr3);
436
    }
437

    
438
    /* load all registers without an exception, then reload them with
439
       possible exception */
440
    env->eip = new_eip;
441
    eflags_mask = TF_MASK | AC_MASK | ID_MASK |
442
        IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK;
443
    if (!(type & 8))
444
        eflags_mask &= 0xffff;
445
    load_eflags(new_eflags, eflags_mask);
446
    /* XXX: what to do in 16 bit case ? */
447
    EAX = new_regs[0];
448
    ECX = new_regs[1];
449
    EDX = new_regs[2];
450
    EBX = new_regs[3];
451
    ESP = new_regs[4];
452
    EBP = new_regs[5];
453
    ESI = new_regs[6];
454
    EDI = new_regs[7];
455
    if (new_eflags & VM_MASK) {
456
        for(i = 0; i < 6; i++)
457
            load_seg_vm(i, new_segs[i]);
458
        /* in vm86, CPL is always 3 */
459
        cpu_x86_set_cpl(env, 3);
460
    } else {
461
        /* CPL is set the RPL of CS */
462
        cpu_x86_set_cpl(env, new_segs[R_CS] & 3);
463
        /* first just selectors as the rest may trigger exceptions */
464
        for(i = 0; i < 6; i++)
465
            cpu_x86_load_seg_cache(env, i, new_segs[i], 0, 0, 0);
466
    }
467

    
468
    env->ldt.selector = new_ldt & ~4;
469
    env->ldt.base = 0;
470
    env->ldt.limit = 0;
471
    env->ldt.flags = 0;
472

    
473
    /* load the LDT */
474
    if (new_ldt & 4)
475
        raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
476

    
477
    if ((new_ldt & 0xfffc) != 0) {
478
        dt = &env->gdt;
479
        index = new_ldt & ~7;
480
        if ((index + 7) > dt->limit)
481
            raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
482
        ptr = dt->base + index;
483
        e1 = ldl_kernel(ptr);
484
        e2 = ldl_kernel(ptr + 4);
485
        if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2)
486
            raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
487
        if (!(e2 & DESC_P_MASK))
488
            raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
489
        load_seg_cache_raw_dt(&env->ldt, e1, e2);
490
    }
491

    
492
    /* load the segments */
493
    if (!(new_eflags & VM_MASK)) {
494
        tss_load_seg(R_CS, new_segs[R_CS]);
495
        tss_load_seg(R_SS, new_segs[R_SS]);
496
        tss_load_seg(R_ES, new_segs[R_ES]);
497
        tss_load_seg(R_DS, new_segs[R_DS]);
498
        tss_load_seg(R_FS, new_segs[R_FS]);
499
        tss_load_seg(R_GS, new_segs[R_GS]);
500
    }
501

    
502
    /* check that EIP is in the CS segment limits */
503
    if (new_eip > env->segs[R_CS].limit) {
504
        /* XXX: different exception if CALL ? */
505
        raise_exception_err(EXCP0D_GPF, 0);
506
    }
507

    
508
#ifndef CONFIG_USER_ONLY
509
    /* reset local breakpoints */
510
    if (env->dr[7] & 0x55) {
511
        for (i = 0; i < 4; i++) {
512
            if (hw_breakpoint_enabled(env->dr[7], i) == 0x1)
513
                hw_breakpoint_remove(env, i);
514
        }
515
        env->dr[7] &= ~0x55;
516
    }
517
#endif
518
}
519

    
520
/* check if Port I/O is allowed in TSS */
521
static inline void check_io(int addr, int size)
522
{
523
    int io_offset, val, mask;
524

    
525
    /* TSS must be a valid 32 bit one */
526
    if (!(env->tr.flags & DESC_P_MASK) ||
527
        ((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 ||
528
        env->tr.limit < 103)
529
        goto fail;
530
    io_offset = lduw_kernel(env->tr.base + 0x66);
531
    io_offset += (addr >> 3);
532
    /* Note: the check needs two bytes */
533
    if ((io_offset + 1) > env->tr.limit)
534
        goto fail;
535
    val = lduw_kernel(env->tr.base + io_offset);
536
    val >>= (addr & 7);
537
    mask = (1 << size) - 1;
538
    /* all bits must be zero to allow the I/O */
539
    if ((val & mask) != 0) {
540
    fail:
541
        raise_exception_err(EXCP0D_GPF, 0);
542
    }
543
}
544

    
545
void helper_check_iob(uint32_t t0)
546
{
547
    check_io(t0, 1);
548
}
549

    
550
void helper_check_iow(uint32_t t0)
551
{
552
    check_io(t0, 2);
553
}
554

    
555
void helper_check_iol(uint32_t t0)
556
{
557
    check_io(t0, 4);
558
}
559

    
560
void helper_outb(uint32_t port, uint32_t data)
561
{
562
    cpu_outb(port, data & 0xff);
563
}
564

    
565
target_ulong helper_inb(uint32_t port)
566
{
567
    return cpu_inb(port);
568
}
569

    
570
void helper_outw(uint32_t port, uint32_t data)
571
{
572
    cpu_outw(port, data & 0xffff);
573
}
574

    
575
target_ulong helper_inw(uint32_t port)
576
{
577
    return cpu_inw(port);
578
}
579

    
580
void helper_outl(uint32_t port, uint32_t data)
581
{
582
    cpu_outl(port, data);
583
}
584

    
585
target_ulong helper_inl(uint32_t port)
586
{
587
    return cpu_inl(port);
588
}
589

    
590
static inline unsigned int get_sp_mask(unsigned int e2)
591
{
592
    if (e2 & DESC_B_MASK)
593
        return 0xffffffff;
594
    else
595
        return 0xffff;
596
}
597

    
598
static int exeption_has_error_code(int intno)
599
{
600
        switch(intno) {
601
        case 8:
602
        case 10:
603
        case 11:
604
        case 12:
605
        case 13:
606
        case 14:
607
        case 17:
608
            return 1;
609
        }
610
        return 0;
611
}
612

    
613
#ifdef TARGET_X86_64
614
#define SET_ESP(val, sp_mask)\
615
do {\
616
    if ((sp_mask) == 0xffff)\
617
        ESP = (ESP & ~0xffff) | ((val) & 0xffff);\
618
    else if ((sp_mask) == 0xffffffffLL)\
619
        ESP = (uint32_t)(val);\
620
    else\
621
        ESP = (val);\
622
} while (0)
623
#else
624
#define SET_ESP(val, sp_mask) ESP = (ESP & ~(sp_mask)) | ((val) & (sp_mask))
625
#endif
626

    
627
/* in 64-bit machines, this can overflow. So this segment addition macro
628
 * can be used to trim the value to 32-bit whenever needed */
629
#define SEG_ADDL(ssp, sp, sp_mask) ((uint32_t)((ssp) + (sp & (sp_mask))))
630

    
631
/* XXX: add a is_user flag to have proper security support */
632
#define PUSHW(ssp, sp, sp_mask, val)\
633
{\
634
    sp -= 2;\
635
    stw_kernel((ssp) + (sp & (sp_mask)), (val));\
636
}
637

    
638
#define PUSHL(ssp, sp, sp_mask, val)\
639
{\
640
    sp -= 4;\
641
    stl_kernel(SEG_ADDL(ssp, sp, sp_mask), (uint32_t)(val));\
642
}
643

    
644
#define POPW(ssp, sp, sp_mask, val)\
645
{\
646
    val = lduw_kernel((ssp) + (sp & (sp_mask)));\
647
    sp += 2;\
648
}
649

    
650
#define POPL(ssp, sp, sp_mask, val)\
651
{\
652
    val = (uint32_t)ldl_kernel(SEG_ADDL(ssp, sp, sp_mask));\
653
    sp += 4;\
654
}
655

    
656
/* protected mode interrupt */
657
static void do_interrupt_protected(int intno, int is_int, int error_code,
658
                                   unsigned int next_eip, int is_hw)
659
{
660
    SegmentCache *dt;
661
    target_ulong ptr, ssp;
662
    int type, dpl, selector, ss_dpl, cpl;
663
    int has_error_code, new_stack, shift;
664
    uint32_t e1, e2, offset, ss = 0, esp, ss_e1 = 0, ss_e2 = 0;
665
    uint32_t old_eip, sp_mask;
666

    
667
    has_error_code = 0;
668
    if (!is_int && !is_hw)
669
        has_error_code = exeption_has_error_code(intno);
670
    if (is_int)
671
        old_eip = next_eip;
672
    else
673
        old_eip = env->eip;
674

    
675
    dt = &env->idt;
676
    if (intno * 8 + 7 > dt->limit)
677
        raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
678
    ptr = dt->base + intno * 8;
679
    e1 = ldl_kernel(ptr);
680
    e2 = ldl_kernel(ptr + 4);
681
    /* check gate type */
682
    type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
683
    switch(type) {
684
    case 5: /* task gate */
685
        /* must do that check here to return the correct error code */
686
        if (!(e2 & DESC_P_MASK))
687
            raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
688
        switch_tss(intno * 8, e1, e2, SWITCH_TSS_CALL, old_eip);
689
        if (has_error_code) {
690
            int type;
691
            uint32_t mask;
692
            /* push the error code */
693
            type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
694
            shift = type >> 3;
695
            if (env->segs[R_SS].flags & DESC_B_MASK)
696
                mask = 0xffffffff;
697
            else
698
                mask = 0xffff;
699
            esp = (ESP - (2 << shift)) & mask;
700
            ssp = env->segs[R_SS].base + esp;
701
            if (shift)
702
                stl_kernel(ssp, error_code);
703
            else
704
                stw_kernel(ssp, error_code);
705
            SET_ESP(esp, mask);
706
        }
707
        return;
708
    case 6: /* 286 interrupt gate */
709
    case 7: /* 286 trap gate */
710
    case 14: /* 386 interrupt gate */
711
    case 15: /* 386 trap gate */
712
        break;
713
    default:
714
        raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
715
        break;
716
    }
717
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
718
    cpl = env->hflags & HF_CPL_MASK;
719
    /* check privilege if software int */
720
    if (is_int && dpl < cpl)
721
        raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
722
    /* check valid bit */
723
    if (!(e2 & DESC_P_MASK))
724
        raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
725
    selector = e1 >> 16;
726
    offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
727
    if ((selector & 0xfffc) == 0)
728
        raise_exception_err(EXCP0D_GPF, 0);
729

    
730
    if (load_segment(&e1, &e2, selector) != 0)
731
        raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
732
    if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
733
        raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
734
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
735
    if (dpl > cpl)
736
        raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
737
    if (!(e2 & DESC_P_MASK))
738
        raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
739
    if (!(e2 & DESC_C_MASK) && dpl < cpl) {
740
        /* to inner privilege */
741
        get_ss_esp_from_tss(&ss, &esp, dpl);
742
        if ((ss & 0xfffc) == 0)
743
            raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
744
        if ((ss & 3) != dpl)
745
            raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
746
        if (load_segment(&ss_e1, &ss_e2, ss) != 0)
747
            raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
748
        ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
749
        if (ss_dpl != dpl)
750
            raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
751
        if (!(ss_e2 & DESC_S_MASK) ||
752
            (ss_e2 & DESC_CS_MASK) ||
753
            !(ss_e2 & DESC_W_MASK))
754
            raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
755
        if (!(ss_e2 & DESC_P_MASK))
756
            raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
757
        new_stack = 1;
758
        sp_mask = get_sp_mask(ss_e2);
759
        ssp = get_seg_base(ss_e1, ss_e2);
760
    } else if ((e2 & DESC_C_MASK) || dpl == cpl) {
761
        /* to same privilege */
762
        if (env->eflags & VM_MASK)
763
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
764
        new_stack = 0;
765
        sp_mask = get_sp_mask(env->segs[R_SS].flags);
766
        ssp = env->segs[R_SS].base;
767
        esp = ESP;
768
        dpl = cpl;
769
    } else {
770
        raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
771
        new_stack = 0; /* avoid warning */
772
        sp_mask = 0; /* avoid warning */
773
        ssp = 0; /* avoid warning */
774
        esp = 0; /* avoid warning */
775
    }
776

    
777
    shift = type >> 3;
778

    
779
#if 0
780
    /* XXX: check that enough room is available */
781
    push_size = 6 + (new_stack << 2) + (has_error_code << 1);
782
    if (env->eflags & VM_MASK)
783
        push_size += 8;
784
    push_size <<= shift;
785
#endif
786
    if (shift == 1) {
787
        if (new_stack) {
788
            if (env->eflags & VM_MASK) {
789
                PUSHL(ssp, esp, sp_mask, env->segs[R_GS].selector);
790
                PUSHL(ssp, esp, sp_mask, env->segs[R_FS].selector);
791
                PUSHL(ssp, esp, sp_mask, env->segs[R_DS].selector);
792
                PUSHL(ssp, esp, sp_mask, env->segs[R_ES].selector);
793
            }
794
            PUSHL(ssp, esp, sp_mask, env->segs[R_SS].selector);
795
            PUSHL(ssp, esp, sp_mask, ESP);
796
        }
797
        PUSHL(ssp, esp, sp_mask, compute_eflags());
798
        PUSHL(ssp, esp, sp_mask, env->segs[R_CS].selector);
799
        PUSHL(ssp, esp, sp_mask, old_eip);
800
        if (has_error_code) {
801
            PUSHL(ssp, esp, sp_mask, error_code);
802
        }
803
    } else {
804
        if (new_stack) {
805
            if (env->eflags & VM_MASK) {
806
                PUSHW(ssp, esp, sp_mask, env->segs[R_GS].selector);
807
                PUSHW(ssp, esp, sp_mask, env->segs[R_FS].selector);
808
                PUSHW(ssp, esp, sp_mask, env->segs[R_DS].selector);
809
                PUSHW(ssp, esp, sp_mask, env->segs[R_ES].selector);
810
            }
811
            PUSHW(ssp, esp, sp_mask, env->segs[R_SS].selector);
812
            PUSHW(ssp, esp, sp_mask, ESP);
813
        }
814
        PUSHW(ssp, esp, sp_mask, compute_eflags());
815
        PUSHW(ssp, esp, sp_mask, env->segs[R_CS].selector);
816
        PUSHW(ssp, esp, sp_mask, old_eip);
817
        if (has_error_code) {
818
            PUSHW(ssp, esp, sp_mask, error_code);
819
        }
820
    }
821

    
822
    if (new_stack) {
823
        if (env->eflags & VM_MASK) {
824
            cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0, 0);
825
            cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0, 0);
826
            cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0, 0);
827
            cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0, 0);
828
        }
829
        ss = (ss & ~3) | dpl;
830
        cpu_x86_load_seg_cache(env, R_SS, ss,
831
                               ssp, get_seg_limit(ss_e1, ss_e2), ss_e2);
832
    }
833
    SET_ESP(esp, sp_mask);
834

    
835
    selector = (selector & ~3) | dpl;
836
    cpu_x86_load_seg_cache(env, R_CS, selector,
837
                   get_seg_base(e1, e2),
838
                   get_seg_limit(e1, e2),
839
                   e2);
840
    cpu_x86_set_cpl(env, dpl);
841
    env->eip = offset;
842

    
843
    /* interrupt gate clear IF mask */
844
    if ((type & 1) == 0) {
845
        env->eflags &= ~IF_MASK;
846
    }
847
    env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
848
}
849

    
850
#ifdef TARGET_X86_64
851

    
852
#define PUSHQ(sp, val)\
853
{\
854
    sp -= 8;\
855
    stq_kernel(sp, (val));\
856
}
857

    
858
#define POPQ(sp, val)\
859
{\
860
    val = ldq_kernel(sp);\
861
    sp += 8;\
862
}
863

    
864
static inline target_ulong get_rsp_from_tss(int level)
865
{
866
    int index;
867

    
868
#if 0
869
    printf("TR: base=" TARGET_FMT_lx " limit=%x\n",
870
           env->tr.base, env->tr.limit);
871
#endif
872

    
873
    if (!(env->tr.flags & DESC_P_MASK))
874
        cpu_abort(env, "invalid tss");
875
    index = 8 * level + 4;
876
    if ((index + 7) > env->tr.limit)
877
        raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc);
878
    return ldq_kernel(env->tr.base + index);
879
}
880

    
881
/* 64 bit interrupt */
882
static void do_interrupt64(int intno, int is_int, int error_code,
883
                           target_ulong next_eip, int is_hw)
884
{
885
    SegmentCache *dt;
886
    target_ulong ptr;
887
    int type, dpl, selector, cpl, ist;
888
    int has_error_code, new_stack;
889
    uint32_t e1, e2, e3, ss;
890
    target_ulong old_eip, esp, offset;
891

    
892
    has_error_code = 0;
893
    if (!is_int && !is_hw)
894
        has_error_code = exeption_has_error_code(intno);
895
    if (is_int)
896
        old_eip = next_eip;
897
    else
898
        old_eip = env->eip;
899

    
900
    dt = &env->idt;
901
    if (intno * 16 + 15 > dt->limit)
902
        raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
903
    ptr = dt->base + intno * 16;
904
    e1 = ldl_kernel(ptr);
905
    e2 = ldl_kernel(ptr + 4);
906
    e3 = ldl_kernel(ptr + 8);
907
    /* check gate type */
908
    type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
909
    switch(type) {
910
    case 14: /* 386 interrupt gate */
911
    case 15: /* 386 trap gate */
912
        break;
913
    default:
914
        raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
915
        break;
916
    }
917
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
918
    cpl = env->hflags & HF_CPL_MASK;
919
    /* check privilege if software int */
920
    if (is_int && dpl < cpl)
921
        raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
922
    /* check valid bit */
923
    if (!(e2 & DESC_P_MASK))
924
        raise_exception_err(EXCP0B_NOSEG, intno * 16 + 2);
925
    selector = e1 >> 16;
926
    offset = ((target_ulong)e3 << 32) | (e2 & 0xffff0000) | (e1 & 0x0000ffff);
927
    ist = e2 & 7;
928
    if ((selector & 0xfffc) == 0)
929
        raise_exception_err(EXCP0D_GPF, 0);
930

    
931
    if (load_segment(&e1, &e2, selector) != 0)
932
        raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
933
    if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
934
        raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
935
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
936
    if (dpl > cpl)
937
        raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
938
    if (!(e2 & DESC_P_MASK))
939
        raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
940
    if (!(e2 & DESC_L_MASK) || (e2 & DESC_B_MASK))
941
        raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
942
    if ((!(e2 & DESC_C_MASK) && dpl < cpl) || ist != 0) {
943
        /* to inner privilege */
944
        if (ist != 0)
945
            esp = get_rsp_from_tss(ist + 3);
946
        else
947
            esp = get_rsp_from_tss(dpl);
948
        esp &= ~0xfLL; /* align stack */
949
        ss = 0;
950
        new_stack = 1;
951
    } else if ((e2 & DESC_C_MASK) || dpl == cpl) {
952
        /* to same privilege */
953
        if (env->eflags & VM_MASK)
954
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
955
        new_stack = 0;
956
        if (ist != 0)
957
            esp = get_rsp_from_tss(ist + 3);
958
        else
959
            esp = ESP;
960
        esp &= ~0xfLL; /* align stack */
961
        dpl = cpl;
962
    } else {
963
        raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
964
        new_stack = 0; /* avoid warning */
965
        esp = 0; /* avoid warning */
966
    }
967

    
968
    PUSHQ(esp, env->segs[R_SS].selector);
969
    PUSHQ(esp, ESP);
970
    PUSHQ(esp, compute_eflags());
971
    PUSHQ(esp, env->segs[R_CS].selector);
972
    PUSHQ(esp, old_eip);
973
    if (has_error_code) {
974
        PUSHQ(esp, error_code);
975
    }
976

    
977
    if (new_stack) {
978
        ss = 0 | dpl;
979
        cpu_x86_load_seg_cache(env, R_SS, ss, 0, 0, 0);
980
    }
981
    ESP = esp;
982

    
983
    selector = (selector & ~3) | dpl;
984
    cpu_x86_load_seg_cache(env, R_CS, selector,
985
                   get_seg_base(e1, e2),
986
                   get_seg_limit(e1, e2),
987
                   e2);
988
    cpu_x86_set_cpl(env, dpl);
989
    env->eip = offset;
990

    
991
    /* interrupt gate clear IF mask */
992
    if ((type & 1) == 0) {
993
        env->eflags &= ~IF_MASK;
994
    }
995
    env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
996
}
997
#endif
998

    
999
#ifdef TARGET_X86_64
1000
#if defined(CONFIG_USER_ONLY)
1001
void helper_syscall(int next_eip_addend)
1002
{
1003
    env->exception_index = EXCP_SYSCALL;
1004
    env->exception_next_eip = env->eip + next_eip_addend;
1005
    cpu_loop_exit();
1006
}
1007
#else
1008
void helper_syscall(int next_eip_addend)
1009
{
1010
    int selector;
1011

    
1012
    if (!(env->efer & MSR_EFER_SCE)) {
1013
        raise_exception_err(EXCP06_ILLOP, 0);
1014
    }
1015
    selector = (env->star >> 32) & 0xffff;
1016
    if (env->hflags & HF_LMA_MASK) {
1017
        int code64;
1018

    
1019
        ECX = env->eip + next_eip_addend;
1020
        env->regs[11] = compute_eflags();
1021

    
1022
        code64 = env->hflags & HF_CS64_MASK;
1023

    
1024
        cpu_x86_set_cpl(env, 0);
1025
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
1026
                           0, 0xffffffff,
1027
                               DESC_G_MASK | DESC_P_MASK |
1028
                               DESC_S_MASK |
1029
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
1030
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
1031
                               0, 0xffffffff,
1032
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1033
                               DESC_S_MASK |
1034
                               DESC_W_MASK | DESC_A_MASK);
1035
        env->eflags &= ~env->fmask;
1036
        load_eflags(env->eflags, 0);
1037
        if (code64)
1038
            env->eip = env->lstar;
1039
        else
1040
            env->eip = env->cstar;
1041
    } else {
1042
        ECX = (uint32_t)(env->eip + next_eip_addend);
1043

    
1044
        cpu_x86_set_cpl(env, 0);
1045
        cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
1046
                           0, 0xffffffff,
1047
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1048
                               DESC_S_MASK |
1049
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
1050
        cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
1051
                               0, 0xffffffff,
1052
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1053
                               DESC_S_MASK |
1054
                               DESC_W_MASK | DESC_A_MASK);
1055
        env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
1056
        env->eip = (uint32_t)env->star;
1057
    }
1058
}
1059
#endif
1060
#endif
1061

    
1062
#ifdef TARGET_X86_64
1063
void helper_sysret(int dflag)
1064
{
1065
    int cpl, selector;
1066

    
1067
    if (!(env->efer & MSR_EFER_SCE)) {
1068
        raise_exception_err(EXCP06_ILLOP, 0);
1069
    }
1070
    cpl = env->hflags & HF_CPL_MASK;
1071
    if (!(env->cr[0] & CR0_PE_MASK) || cpl != 0) {
1072
        raise_exception_err(EXCP0D_GPF, 0);
1073
    }
1074
    selector = (env->star >> 48) & 0xffff;
1075
    if (env->hflags & HF_LMA_MASK) {
1076
        if (dflag == 2) {
1077
            cpu_x86_load_seg_cache(env, R_CS, (selector + 16) | 3,
1078
                                   0, 0xffffffff,
1079
                                   DESC_G_MASK | DESC_P_MASK |
1080
                                   DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1081
                                   DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
1082
                                   DESC_L_MASK);
1083
            env->eip = ECX;
1084
        } else {
1085
            cpu_x86_load_seg_cache(env, R_CS, selector | 3,
1086
                                   0, 0xffffffff,
1087
                                   DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1088
                                   DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1089
                                   DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
1090
            env->eip = (uint32_t)ECX;
1091
        }
1092
        cpu_x86_load_seg_cache(env, R_SS, selector + 8,
1093
                               0, 0xffffffff,
1094
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1095
                               DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1096
                               DESC_W_MASK | DESC_A_MASK);
1097
        load_eflags((uint32_t)(env->regs[11]), TF_MASK | AC_MASK | ID_MASK |
1098
                    IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK);
1099
        cpu_x86_set_cpl(env, 3);
1100
    } else {
1101
        cpu_x86_load_seg_cache(env, R_CS, selector | 3,
1102
                               0, 0xffffffff,
1103
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1104
                               DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1105
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
1106
        env->eip = (uint32_t)ECX;
1107
        cpu_x86_load_seg_cache(env, R_SS, selector + 8,
1108
                               0, 0xffffffff,
1109
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1110
                               DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1111
                               DESC_W_MASK | DESC_A_MASK);
1112
        env->eflags |= IF_MASK;
1113
        cpu_x86_set_cpl(env, 3);
1114
    }
1115
}
1116
#endif
1117

    
1118
/* real mode interrupt */
1119
static void do_interrupt_real(int intno, int is_int, int error_code,
1120
                              unsigned int next_eip)
1121
{
1122
    SegmentCache *dt;
1123
    target_ulong ptr, ssp;
1124
    int selector;
1125
    uint32_t offset, esp;
1126
    uint32_t old_cs, old_eip;
1127

    
1128
    /* real mode (simpler !) */
1129
    dt = &env->idt;
1130
    if (intno * 4 + 3 > dt->limit)
1131
        raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
1132
    ptr = dt->base + intno * 4;
1133
    offset = lduw_kernel(ptr);
1134
    selector = lduw_kernel(ptr + 2);
1135
    esp = ESP;
1136
    ssp = env->segs[R_SS].base;
1137
    if (is_int)
1138
        old_eip = next_eip;
1139
    else
1140
        old_eip = env->eip;
1141
    old_cs = env->segs[R_CS].selector;
1142
    /* XXX: use SS segment size ? */
1143
    PUSHW(ssp, esp, 0xffff, compute_eflags());
1144
    PUSHW(ssp, esp, 0xffff, old_cs);
1145
    PUSHW(ssp, esp, 0xffff, old_eip);
1146

    
1147
    /* update processor state */
1148
    ESP = (ESP & ~0xffff) | (esp & 0xffff);
1149
    env->eip = offset;
1150
    env->segs[R_CS].selector = selector;
1151
    env->segs[R_CS].base = (selector << 4);
1152
    env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK);
1153
}
1154

    
1155
/* fake user mode interrupt */
1156
void do_interrupt_user(int intno, int is_int, int error_code,
1157
                       target_ulong next_eip)
1158
{
1159
    SegmentCache *dt;
1160
    target_ulong ptr;
1161
    int dpl, cpl, shift;
1162
    uint32_t e2;
1163

    
1164
    dt = &env->idt;
1165
    if (env->hflags & HF_LMA_MASK) {
1166
        shift = 4;
1167
    } else {
1168
        shift = 3;
1169
    }
1170
    ptr = dt->base + (intno << shift);
1171
    e2 = ldl_kernel(ptr + 4);
1172

    
1173
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
1174
    cpl = env->hflags & HF_CPL_MASK;
1175
    /* check privilege if software int */
1176
    if (is_int && dpl < cpl)
1177
        raise_exception_err(EXCP0D_GPF, (intno << shift) + 2);
1178

    
1179
    /* Since we emulate only user space, we cannot do more than
1180
       exiting the emulation with the suitable exception and error
1181
       code */
1182
    if (is_int)
1183
        EIP = next_eip;
1184
}
1185

    
1186
#if !defined(CONFIG_USER_ONLY)
1187
static void handle_even_inj(int intno, int is_int, int error_code,
1188
                int is_hw, int rm)
1189
{
1190
    uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
1191
    if (!(event_inj & SVM_EVTINJ_VALID)) {
1192
            int type;
1193
            if (is_int)
1194
                    type = SVM_EVTINJ_TYPE_SOFT;
1195
            else
1196
                    type = SVM_EVTINJ_TYPE_EXEPT;
1197
            event_inj = intno | type | SVM_EVTINJ_VALID;
1198
            if (!rm && exeption_has_error_code(intno)) {
1199
                    event_inj |= SVM_EVTINJ_VALID_ERR;
1200
                    stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err), error_code);
1201
            }
1202
            stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj);
1203
    }
1204
}
1205
#endif
1206

    
1207
/*
1208
 * Begin execution of an interruption. is_int is TRUE if coming from
1209
 * the int instruction. next_eip is the EIP value AFTER the interrupt
1210
 * instruction. It is only relevant if is_int is TRUE.
1211
 */
1212
void do_interrupt(int intno, int is_int, int error_code,
1213
                  target_ulong next_eip, int is_hw)
1214
{
1215
    if (qemu_loglevel_mask(CPU_LOG_INT)) {
1216
        if ((env->cr[0] & CR0_PE_MASK)) {
1217
            static int count;
1218
            qemu_log("%6d: v=%02x e=%04x i=%d cpl=%d IP=%04x:" TARGET_FMT_lx " pc=" TARGET_FMT_lx " SP=%04x:" TARGET_FMT_lx,
1219
                    count, intno, error_code, is_int,
1220
                    env->hflags & HF_CPL_MASK,
1221
                    env->segs[R_CS].selector, EIP,
1222
                    (int)env->segs[R_CS].base + EIP,
1223
                    env->segs[R_SS].selector, ESP);
1224
            if (intno == 0x0e) {
1225
                qemu_log(" CR2=" TARGET_FMT_lx, env->cr[2]);
1226
            } else {
1227
                qemu_log(" EAX=" TARGET_FMT_lx, EAX);
1228
            }
1229
            qemu_log("\n");
1230
            log_cpu_state(env, X86_DUMP_CCOP);
1231
#if 0
1232
            {
1233
                int i;
1234
                uint8_t *ptr;
1235
                qemu_log("       code=");
1236
                ptr = env->segs[R_CS].base + env->eip;
1237
                for(i = 0; i < 16; i++) {
1238
                    qemu_log(" %02x", ldub(ptr + i));
1239
                }
1240
                qemu_log("\n");
1241
            }
1242
#endif
1243
            count++;
1244
        }
1245
    }
1246
    if (env->cr[0] & CR0_PE_MASK) {
1247
#if !defined(CONFIG_USER_ONLY)
1248
        if (env->hflags & HF_SVMI_MASK)
1249
            handle_even_inj(intno, is_int, error_code, is_hw, 0);
1250
#endif
1251
#ifdef TARGET_X86_64
1252
        if (env->hflags & HF_LMA_MASK) {
1253
            do_interrupt64(intno, is_int, error_code, next_eip, is_hw);
1254
        } else
1255
#endif
1256
        {
1257
            do_interrupt_protected(intno, is_int, error_code, next_eip, is_hw);
1258
        }
1259
    } else {
1260
#if !defined(CONFIG_USER_ONLY)
1261
        if (env->hflags & HF_SVMI_MASK)
1262
            handle_even_inj(intno, is_int, error_code, is_hw, 1);
1263
#endif
1264
        do_interrupt_real(intno, is_int, error_code, next_eip);
1265
    }
1266

    
1267
#if !defined(CONFIG_USER_ONLY)
1268
    if (env->hflags & HF_SVMI_MASK) {
1269
            uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
1270
            stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj & ~SVM_EVTINJ_VALID);
1271
    }
1272
#endif
1273
}
1274

    
1275
/* This should come from sysemu.h - if we could include it here... */
1276
void qemu_system_reset_request(void);
1277

    
1278
/*
1279
 * Check nested exceptions and change to double or triple fault if
1280
 * needed. It should only be called, if this is not an interrupt.
1281
 * Returns the new exception number.
1282
 */
1283
static int check_exception(int intno, int *error_code)
1284
{
1285
    int first_contributory = env->old_exception == 0 ||
1286
                              (env->old_exception >= 10 &&
1287
                               env->old_exception <= 13);
1288
    int second_contributory = intno == 0 ||
1289
                               (intno >= 10 && intno <= 13);
1290

    
1291
    qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n",
1292
                env->old_exception, intno);
1293

    
1294
#if !defined(CONFIG_USER_ONLY)
1295
    if (env->old_exception == EXCP08_DBLE) {
1296
        if (env->hflags & HF_SVMI_MASK)
1297
            helper_vmexit(SVM_EXIT_SHUTDOWN, 0); /* does not return */
1298

    
1299
        qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
1300

    
1301
        qemu_system_reset_request();
1302
        return EXCP_HLT;
1303
    }
1304
#endif
1305

    
1306
    if ((first_contributory && second_contributory)
1307
        || (env->old_exception == EXCP0E_PAGE &&
1308
            (second_contributory || (intno == EXCP0E_PAGE)))) {
1309
        intno = EXCP08_DBLE;
1310
        *error_code = 0;
1311
    }
1312

    
1313
    if (second_contributory || (intno == EXCP0E_PAGE) ||
1314
        (intno == EXCP08_DBLE))
1315
        env->old_exception = intno;
1316

    
1317
    return intno;
1318
}
1319

    
1320
/*
1321
 * Signal an interruption. It is executed in the main CPU loop.
1322
 * is_int is TRUE if coming from the int instruction. next_eip is the
1323
 * EIP value AFTER the interrupt instruction. It is only relevant if
1324
 * is_int is TRUE.
1325
 */
1326
static void QEMU_NORETURN raise_interrupt(int intno, int is_int, int error_code,
1327
                                          int next_eip_addend)
1328
{
1329
    if (!is_int) {
1330
        helper_svm_check_intercept_param(SVM_EXIT_EXCP_BASE + intno, error_code);
1331
        intno = check_exception(intno, &error_code);
1332
    } else {
1333
        helper_svm_check_intercept_param(SVM_EXIT_SWINT, 0);
1334
    }
1335

    
1336
    env->exception_index = intno;
1337
    env->error_code = error_code;
1338
    env->exception_is_int = is_int;
1339
    env->exception_next_eip = env->eip + next_eip_addend;
1340
    cpu_loop_exit();
1341
}
1342

    
1343
/* shortcuts to generate exceptions */
1344

    
1345
void raise_exception_err(int exception_index, int error_code)
1346
{
1347
    raise_interrupt(exception_index, 0, error_code, 0);
1348
}
1349

    
1350
void raise_exception(int exception_index)
1351
{
1352
    raise_interrupt(exception_index, 0, 0, 0);
1353
}
1354

    
1355
void raise_exception_env(int exception_index, CPUState *nenv)
1356
{
1357
    env = nenv;
1358
    raise_exception(exception_index);
1359
}
1360
/* SMM support */
1361

    
1362
#if defined(CONFIG_USER_ONLY)
1363

    
1364
void do_smm_enter(void)
1365
{
1366
}
1367

    
1368
void helper_rsm(void)
1369
{
1370
}
1371

    
1372
#else
1373

    
1374
#ifdef TARGET_X86_64
1375
#define SMM_REVISION_ID 0x00020064
1376
#else
1377
#define SMM_REVISION_ID 0x00020000
1378
#endif
1379

    
1380
void do_smm_enter(void)
1381
{
1382
    target_ulong sm_state;
1383
    SegmentCache *dt;
1384
    int i, offset;
1385

    
1386
    qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
1387
    log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
1388

    
1389
    env->hflags |= HF_SMM_MASK;
1390
    cpu_smm_update(env);
1391

    
1392
    sm_state = env->smbase + 0x8000;
1393

    
1394
#ifdef TARGET_X86_64
1395
    for(i = 0; i < 6; i++) {
1396
        dt = &env->segs[i];
1397
        offset = 0x7e00 + i * 16;
1398
        stw_phys(sm_state + offset, dt->selector);
1399
        stw_phys(sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
1400
        stl_phys(sm_state + offset + 4, dt->limit);
1401
        stq_phys(sm_state + offset + 8, dt->base);
1402
    }
1403

    
1404
    stq_phys(sm_state + 0x7e68, env->gdt.base);
1405
    stl_phys(sm_state + 0x7e64, env->gdt.limit);
1406

    
1407
    stw_phys(sm_state + 0x7e70, env->ldt.selector);
1408
    stq_phys(sm_state + 0x7e78, env->ldt.base);
1409
    stl_phys(sm_state + 0x7e74, env->ldt.limit);
1410
    stw_phys(sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
1411

    
1412
    stq_phys(sm_state + 0x7e88, env->idt.base);
1413
    stl_phys(sm_state + 0x7e84, env->idt.limit);
1414

    
1415
    stw_phys(sm_state + 0x7e90, env->tr.selector);
1416
    stq_phys(sm_state + 0x7e98, env->tr.base);
1417
    stl_phys(sm_state + 0x7e94, env->tr.limit);
1418
    stw_phys(sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
1419

    
1420
    stq_phys(sm_state + 0x7ed0, env->efer);
1421

    
1422
    stq_phys(sm_state + 0x7ff8, EAX);
1423
    stq_phys(sm_state + 0x7ff0, ECX);
1424
    stq_phys(sm_state + 0x7fe8, EDX);
1425
    stq_phys(sm_state + 0x7fe0, EBX);
1426
    stq_phys(sm_state + 0x7fd8, ESP);
1427
    stq_phys(sm_state + 0x7fd0, EBP);
1428
    stq_phys(sm_state + 0x7fc8, ESI);
1429
    stq_phys(sm_state + 0x7fc0, EDI);
1430
    for(i = 8; i < 16; i++)
1431
        stq_phys(sm_state + 0x7ff8 - i * 8, env->regs[i]);
1432
    stq_phys(sm_state + 0x7f78, env->eip);
1433
    stl_phys(sm_state + 0x7f70, compute_eflags());
1434
    stl_phys(sm_state + 0x7f68, env->dr[6]);
1435
    stl_phys(sm_state + 0x7f60, env->dr[7]);
1436

    
1437
    stl_phys(sm_state + 0x7f48, env->cr[4]);
1438
    stl_phys(sm_state + 0x7f50, env->cr[3]);
1439
    stl_phys(sm_state + 0x7f58, env->cr[0]);
1440

    
1441
    stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
1442
    stl_phys(sm_state + 0x7f00, env->smbase);
1443
#else
1444
    stl_phys(sm_state + 0x7ffc, env->cr[0]);
1445
    stl_phys(sm_state + 0x7ff8, env->cr[3]);
1446
    stl_phys(sm_state + 0x7ff4, compute_eflags());
1447
    stl_phys(sm_state + 0x7ff0, env->eip);
1448
    stl_phys(sm_state + 0x7fec, EDI);
1449
    stl_phys(sm_state + 0x7fe8, ESI);
1450
    stl_phys(sm_state + 0x7fe4, EBP);
1451
    stl_phys(sm_state + 0x7fe0, ESP);
1452
    stl_phys(sm_state + 0x7fdc, EBX);
1453
    stl_phys(sm_state + 0x7fd8, EDX);
1454
    stl_phys(sm_state + 0x7fd4, ECX);
1455
    stl_phys(sm_state + 0x7fd0, EAX);
1456
    stl_phys(sm_state + 0x7fcc, env->dr[6]);
1457
    stl_phys(sm_state + 0x7fc8, env->dr[7]);
1458

    
1459
    stl_phys(sm_state + 0x7fc4, env->tr.selector);
1460
    stl_phys(sm_state + 0x7f64, env->tr.base);
1461
    stl_phys(sm_state + 0x7f60, env->tr.limit);
1462
    stl_phys(sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
1463

    
1464
    stl_phys(sm_state + 0x7fc0, env->ldt.selector);
1465
    stl_phys(sm_state + 0x7f80, env->ldt.base);
1466
    stl_phys(sm_state + 0x7f7c, env->ldt.limit);
1467
    stl_phys(sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
1468

    
1469
    stl_phys(sm_state + 0x7f74, env->gdt.base);
1470
    stl_phys(sm_state + 0x7f70, env->gdt.limit);
1471

    
1472
    stl_phys(sm_state + 0x7f58, env->idt.base);
1473
    stl_phys(sm_state + 0x7f54, env->idt.limit);
1474

    
1475
    for(i = 0; i < 6; i++) {
1476
        dt = &env->segs[i];
1477
        if (i < 3)
1478
            offset = 0x7f84 + i * 12;
1479
        else
1480
            offset = 0x7f2c + (i - 3) * 12;
1481
        stl_phys(sm_state + 0x7fa8 + i * 4, dt->selector);
1482
        stl_phys(sm_state + offset + 8, dt->base);
1483
        stl_phys(sm_state + offset + 4, dt->limit);
1484
        stl_phys(sm_state + offset, (dt->flags >> 8) & 0xf0ff);
1485
    }
1486
    stl_phys(sm_state + 0x7f14, env->cr[4]);
1487

    
1488
    stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
1489
    stl_phys(sm_state + 0x7ef8, env->smbase);
1490
#endif
1491
    /* init SMM cpu state */
1492

    
1493
#ifdef TARGET_X86_64
1494
    cpu_load_efer(env, 0);
1495
#endif
1496
    load_eflags(0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
1497
    env->eip = 0x00008000;
1498
    cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
1499
                           0xffffffff, 0);
1500
    cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff, 0);
1501
    cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff, 0);
1502
    cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff, 0);
1503
    cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff, 0);
1504
    cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff, 0);
1505

    
1506
    cpu_x86_update_cr0(env,
1507
                       env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK | CR0_PG_MASK));
1508
    cpu_x86_update_cr4(env, 0);
1509
    env->dr[7] = 0x00000400;
1510
    CC_OP = CC_OP_EFLAGS;
1511
}
1512

    
1513
void helper_rsm(void)
1514
{
1515
    target_ulong sm_state;
1516
    int i, offset;
1517
    uint32_t val;
1518

    
1519
    sm_state = env->smbase + 0x8000;
1520
#ifdef TARGET_X86_64
1521
    cpu_load_efer(env, ldq_phys(sm_state + 0x7ed0));
1522

    
1523
    for(i = 0; i < 6; i++) {
1524
        offset = 0x7e00 + i * 16;
1525
        cpu_x86_load_seg_cache(env, i,
1526
                               lduw_phys(sm_state + offset),
1527
                               ldq_phys(sm_state + offset + 8),
1528
                               ldl_phys(sm_state + offset + 4),
1529
                               (lduw_phys(sm_state + offset + 2) & 0xf0ff) << 8);
1530
    }
1531

    
1532
    env->gdt.base = ldq_phys(sm_state + 0x7e68);
1533
    env->gdt.limit = ldl_phys(sm_state + 0x7e64);
1534

    
1535
    env->ldt.selector = lduw_phys(sm_state + 0x7e70);
1536
    env->ldt.base = ldq_phys(sm_state + 0x7e78);
1537
    env->ldt.limit = ldl_phys(sm_state + 0x7e74);
1538
    env->ldt.flags = (lduw_phys(sm_state + 0x7e72) & 0xf0ff) << 8;
1539

    
1540
    env->idt.base = ldq_phys(sm_state + 0x7e88);
1541
    env->idt.limit = ldl_phys(sm_state + 0x7e84);
1542

    
1543
    env->tr.selector = lduw_phys(sm_state + 0x7e90);
1544
    env->tr.base = ldq_phys(sm_state + 0x7e98);
1545
    env->tr.limit = ldl_phys(sm_state + 0x7e94);
1546
    env->tr.flags = (lduw_phys(sm_state + 0x7e92) & 0xf0ff) << 8;
1547

    
1548
    EAX = ldq_phys(sm_state + 0x7ff8);
1549
    ECX = ldq_phys(sm_state + 0x7ff0);
1550
    EDX = ldq_phys(sm_state + 0x7fe8);
1551
    EBX = ldq_phys(sm_state + 0x7fe0);
1552
    ESP = ldq_phys(sm_state + 0x7fd8);
1553
    EBP = ldq_phys(sm_state + 0x7fd0);
1554
    ESI = ldq_phys(sm_state + 0x7fc8);
1555
    EDI = ldq_phys(sm_state + 0x7fc0);
1556
    for(i = 8; i < 16; i++)
1557
        env->regs[i] = ldq_phys(sm_state + 0x7ff8 - i * 8);
1558
    env->eip = ldq_phys(sm_state + 0x7f78);
1559
    load_eflags(ldl_phys(sm_state + 0x7f70),
1560
                ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
1561
    env->dr[6] = ldl_phys(sm_state + 0x7f68);
1562
    env->dr[7] = ldl_phys(sm_state + 0x7f60);
1563

    
1564
    cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f48));
1565
    cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7f50));
1566
    cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7f58));
1567

    
1568
    val = ldl_phys(sm_state + 0x7efc); /* revision ID */
1569
    if (val & 0x20000) {
1570
        env->smbase = ldl_phys(sm_state + 0x7f00) & ~0x7fff;
1571
    }
1572
#else
1573
    cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7ffc));
1574
    cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7ff8));
1575
    load_eflags(ldl_phys(sm_state + 0x7ff4),
1576
                ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
1577
    env->eip = ldl_phys(sm_state + 0x7ff0);
1578
    EDI = ldl_phys(sm_state + 0x7fec);
1579
    ESI = ldl_phys(sm_state + 0x7fe8);
1580
    EBP = ldl_phys(sm_state + 0x7fe4);
1581
    ESP = ldl_phys(sm_state + 0x7fe0);
1582
    EBX = ldl_phys(sm_state + 0x7fdc);
1583
    EDX = ldl_phys(sm_state + 0x7fd8);
1584
    ECX = ldl_phys(sm_state + 0x7fd4);
1585
    EAX = ldl_phys(sm_state + 0x7fd0);
1586
    env->dr[6] = ldl_phys(sm_state + 0x7fcc);
1587
    env->dr[7] = ldl_phys(sm_state + 0x7fc8);
1588

    
1589
    env->tr.selector = ldl_phys(sm_state + 0x7fc4) & 0xffff;
1590
    env->tr.base = ldl_phys(sm_state + 0x7f64);
1591
    env->tr.limit = ldl_phys(sm_state + 0x7f60);
1592
    env->tr.flags = (ldl_phys(sm_state + 0x7f5c) & 0xf0ff) << 8;
1593

    
1594
    env->ldt.selector = ldl_phys(sm_state + 0x7fc0) & 0xffff;
1595
    env->ldt.base = ldl_phys(sm_state + 0x7f80);
1596
    env->ldt.limit = ldl_phys(sm_state + 0x7f7c);
1597
    env->ldt.flags = (ldl_phys(sm_state + 0x7f78) & 0xf0ff) << 8;
1598

    
1599
    env->gdt.base = ldl_phys(sm_state + 0x7f74);
1600
    env->gdt.limit = ldl_phys(sm_state + 0x7f70);
1601

    
1602
    env->idt.base = ldl_phys(sm_state + 0x7f58);
1603
    env->idt.limit = ldl_phys(sm_state + 0x7f54);
1604

    
1605
    for(i = 0; i < 6; i++) {
1606
        if (i < 3)
1607
            offset = 0x7f84 + i * 12;
1608
        else
1609
            offset = 0x7f2c + (i - 3) * 12;
1610
        cpu_x86_load_seg_cache(env, i,
1611
                               ldl_phys(sm_state + 0x7fa8 + i * 4) & 0xffff,
1612
                               ldl_phys(sm_state + offset + 8),
1613
                               ldl_phys(sm_state + offset + 4),
1614
                               (ldl_phys(sm_state + offset) & 0xf0ff) << 8);
1615
    }
1616
    cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f14));
1617

    
1618
    val = ldl_phys(sm_state + 0x7efc); /* revision ID */
1619
    if (val & 0x20000) {
1620
        env->smbase = ldl_phys(sm_state + 0x7ef8) & ~0x7fff;
1621
    }
1622
#endif
1623
    CC_OP = CC_OP_EFLAGS;
1624
    env->hflags &= ~HF_SMM_MASK;
1625
    cpu_smm_update(env);
1626

    
1627
    qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
1628
    log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
1629
}
1630

    
1631
#endif /* !CONFIG_USER_ONLY */
1632

    
1633

    
1634
/* division, flags are undefined */
1635

    
1636
void helper_divb_AL(target_ulong t0)
1637
{
1638
    unsigned int num, den, q, r;
1639

    
1640
    num = (EAX & 0xffff);
1641
    den = (t0 & 0xff);
1642
    if (den == 0) {
1643
        raise_exception(EXCP00_DIVZ);
1644
    }
1645
    q = (num / den);
1646
    if (q > 0xff)
1647
        raise_exception(EXCP00_DIVZ);
1648
    q &= 0xff;
1649
    r = (num % den) & 0xff;
1650
    EAX = (EAX & ~0xffff) | (r << 8) | q;
1651
}
1652

    
1653
void helper_idivb_AL(target_ulong t0)
1654
{
1655
    int num, den, q, r;
1656

    
1657
    num = (int16_t)EAX;
1658
    den = (int8_t)t0;
1659
    if (den == 0) {
1660
        raise_exception(EXCP00_DIVZ);
1661
    }
1662
    q = (num / den);
1663
    if (q != (int8_t)q)
1664
        raise_exception(EXCP00_DIVZ);
1665
    q &= 0xff;
1666
    r = (num % den) & 0xff;
1667
    EAX = (EAX & ~0xffff) | (r << 8) | q;
1668
}
1669

    
1670
void helper_divw_AX(target_ulong t0)
1671
{
1672
    unsigned int num, den, q, r;
1673

    
1674
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
1675
    den = (t0 & 0xffff);
1676
    if (den == 0) {
1677
        raise_exception(EXCP00_DIVZ);
1678
    }
1679
    q = (num / den);
1680
    if (q > 0xffff)
1681
        raise_exception(EXCP00_DIVZ);
1682
    q &= 0xffff;
1683
    r = (num % den) & 0xffff;
1684
    EAX = (EAX & ~0xffff) | q;
1685
    EDX = (EDX & ~0xffff) | r;
1686
}
1687

    
1688
void helper_idivw_AX(target_ulong t0)
1689
{
1690
    int num, den, q, r;
1691

    
1692
    num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
1693
    den = (int16_t)t0;
1694
    if (den == 0) {
1695
        raise_exception(EXCP00_DIVZ);
1696
    }
1697
    q = (num / den);
1698
    if (q != (int16_t)q)
1699
        raise_exception(EXCP00_DIVZ);
1700
    q &= 0xffff;
1701
    r = (num % den) & 0xffff;
1702
    EAX = (EAX & ~0xffff) | q;
1703
    EDX = (EDX & ~0xffff) | r;
1704
}
1705

    
1706
void helper_divl_EAX(target_ulong t0)
1707
{
1708
    unsigned int den, r;
1709
    uint64_t num, q;
1710

    
1711
    num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
1712
    den = t0;
1713
    if (den == 0) {
1714
        raise_exception(EXCP00_DIVZ);
1715
    }
1716
    q = (num / den);
1717
    r = (num % den);
1718
    if (q > 0xffffffff)
1719
        raise_exception(EXCP00_DIVZ);
1720
    EAX = (uint32_t)q;
1721
    EDX = (uint32_t)r;
1722
}
1723

    
1724
void helper_idivl_EAX(target_ulong t0)
1725
{
1726
    int den, r;
1727
    int64_t num, q;
1728

    
1729
    num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
1730
    den = t0;
1731
    if (den == 0) {
1732
        raise_exception(EXCP00_DIVZ);
1733
    }
1734
    q = (num / den);
1735
    r = (num % den);
1736
    if (q != (int32_t)q)
1737
        raise_exception(EXCP00_DIVZ);
1738
    EAX = (uint32_t)q;
1739
    EDX = (uint32_t)r;
1740
}
1741

    
1742
/* bcd */
1743

    
1744
/* XXX: exception */
1745
void helper_aam(int base)
1746
{
1747
    int al, ah;
1748
    al = EAX & 0xff;
1749
    ah = al / base;
1750
    al = al % base;
1751
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1752
    CC_DST = al;
1753
}
1754

    
1755
void helper_aad(int base)
1756
{
1757
    int al, ah;
1758
    al = EAX & 0xff;
1759
    ah = (EAX >> 8) & 0xff;
1760
    al = ((ah * base) + al) & 0xff;
1761
    EAX = (EAX & ~0xffff) | al;
1762
    CC_DST = al;
1763
}
1764

    
1765
void helper_aaa(void)
1766
{
1767
    int icarry;
1768
    int al, ah, af;
1769
    int eflags;
1770

    
1771
    eflags = helper_cc_compute_all(CC_OP);
1772
    af = eflags & CC_A;
1773
    al = EAX & 0xff;
1774
    ah = (EAX >> 8) & 0xff;
1775

    
1776
    icarry = (al > 0xf9);
1777
    if (((al & 0x0f) > 9 ) || af) {
1778
        al = (al + 6) & 0x0f;
1779
        ah = (ah + 1 + icarry) & 0xff;
1780
        eflags |= CC_C | CC_A;
1781
    } else {
1782
        eflags &= ~(CC_C | CC_A);
1783
        al &= 0x0f;
1784
    }
1785
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1786
    CC_SRC = eflags;
1787
}
1788

    
1789
void helper_aas(void)
1790
{
1791
    int icarry;
1792
    int al, ah, af;
1793
    int eflags;
1794

    
1795
    eflags = helper_cc_compute_all(CC_OP);
1796
    af = eflags & CC_A;
1797
    al = EAX & 0xff;
1798
    ah = (EAX >> 8) & 0xff;
1799

    
1800
    icarry = (al < 6);
1801
    if (((al & 0x0f) > 9 ) || af) {
1802
        al = (al - 6) & 0x0f;
1803
        ah = (ah - 1 - icarry) & 0xff;
1804
        eflags |= CC_C | CC_A;
1805
    } else {
1806
        eflags &= ~(CC_C | CC_A);
1807
        al &= 0x0f;
1808
    }
1809
    EAX = (EAX & ~0xffff) | al | (ah << 8);
1810
    CC_SRC = eflags;
1811
}
1812

    
1813
void helper_daa(void)
1814
{
1815
    int al, af, cf;
1816
    int eflags;
1817

    
1818
    eflags = helper_cc_compute_all(CC_OP);
1819
    cf = eflags & CC_C;
1820
    af = eflags & CC_A;
1821
    al = EAX & 0xff;
1822

    
1823
    eflags = 0;
1824
    if (((al & 0x0f) > 9 ) || af) {
1825
        al = (al + 6) & 0xff;
1826
        eflags |= CC_A;
1827
    }
1828
    if ((al > 0x9f) || cf) {
1829
        al = (al + 0x60) & 0xff;
1830
        eflags |= CC_C;
1831
    }
1832
    EAX = (EAX & ~0xff) | al;
1833
    /* well, speed is not an issue here, so we compute the flags by hand */
1834
    eflags |= (al == 0) << 6; /* zf */
1835
    eflags |= parity_table[al]; /* pf */
1836
    eflags |= (al & 0x80); /* sf */
1837
    CC_SRC = eflags;
1838
}
1839

    
1840
void helper_das(void)
1841
{
1842
    int al, al1, af, cf;
1843
    int eflags;
1844

    
1845
    eflags = helper_cc_compute_all(CC_OP);
1846
    cf = eflags & CC_C;
1847
    af = eflags & CC_A;
1848
    al = EAX & 0xff;
1849

    
1850
    eflags = 0;
1851
    al1 = al;
1852
    if (((al & 0x0f) > 9 ) || af) {
1853
        eflags |= CC_A;
1854
        if (al < 6 || cf)
1855
            eflags |= CC_C;
1856
        al = (al - 6) & 0xff;
1857
    }
1858
    if ((al1 > 0x99) || cf) {
1859
        al = (al - 0x60) & 0xff;
1860
        eflags |= CC_C;
1861
    }
1862
    EAX = (EAX & ~0xff) | al;
1863
    /* well, speed is not an issue here, so we compute the flags by hand */
1864
    eflags |= (al == 0) << 6; /* zf */
1865
    eflags |= parity_table[al]; /* pf */
1866
    eflags |= (al & 0x80); /* sf */
1867
    CC_SRC = eflags;
1868
}
1869

    
1870
void helper_into(int next_eip_addend)
1871
{
1872
    int eflags;
1873
    eflags = helper_cc_compute_all(CC_OP);
1874
    if (eflags & CC_O) {
1875
        raise_interrupt(EXCP04_INTO, 1, 0, next_eip_addend);
1876
    }
1877
}
1878

    
1879
void helper_cmpxchg8b(target_ulong a0)
1880
{
1881
    uint64_t d;
1882
    int eflags;
1883

    
1884
    eflags = helper_cc_compute_all(CC_OP);
1885
    d = ldq(a0);
1886
    if (d == (((uint64_t)EDX << 32) | (uint32_t)EAX)) {
1887
        stq(a0, ((uint64_t)ECX << 32) | (uint32_t)EBX);
1888
        eflags |= CC_Z;
1889
    } else {
1890
        /* always do the store */
1891
        stq(a0, d); 
1892
        EDX = (uint32_t)(d >> 32);
1893
        EAX = (uint32_t)d;
1894
        eflags &= ~CC_Z;
1895
    }
1896
    CC_SRC = eflags;
1897
}
1898

    
1899
#ifdef TARGET_X86_64
1900
void helper_cmpxchg16b(target_ulong a0)
1901
{
1902
    uint64_t d0, d1;
1903
    int eflags;
1904

    
1905
    if ((a0 & 0xf) != 0)
1906
        raise_exception(EXCP0D_GPF);
1907
    eflags = helper_cc_compute_all(CC_OP);
1908
    d0 = ldq(a0);
1909
    d1 = ldq(a0 + 8);
1910
    if (d0 == EAX && d1 == EDX) {
1911
        stq(a0, EBX);
1912
        stq(a0 + 8, ECX);
1913
        eflags |= CC_Z;
1914
    } else {
1915
        /* always do the store */
1916
        stq(a0, d0); 
1917
        stq(a0 + 8, d1); 
1918
        EDX = d1;
1919
        EAX = d0;
1920
        eflags &= ~CC_Z;
1921
    }
1922
    CC_SRC = eflags;
1923
}
1924
#endif
1925

    
1926
void helper_single_step(void)
1927
{
1928
#ifndef CONFIG_USER_ONLY
1929
    check_hw_breakpoints(env, 1);
1930
    env->dr[6] |= DR6_BS;
1931
#endif
1932
    raise_exception(EXCP01_DB);
1933
}
1934

    
1935
void helper_cpuid(void)
1936
{
1937
    uint32_t eax, ebx, ecx, edx;
1938

    
1939
    helper_svm_check_intercept_param(SVM_EXIT_CPUID, 0);
1940

    
1941
    cpu_x86_cpuid(env, (uint32_t)EAX, (uint32_t)ECX, &eax, &ebx, &ecx, &edx);
1942
    EAX = eax;
1943
    EBX = ebx;
1944
    ECX = ecx;
1945
    EDX = edx;
1946
}
1947

    
1948
void helper_enter_level(int level, int data32, target_ulong t1)
1949
{
1950
    target_ulong ssp;
1951
    uint32_t esp_mask, esp, ebp;
1952

    
1953
    esp_mask = get_sp_mask(env->segs[R_SS].flags);
1954
    ssp = env->segs[R_SS].base;
1955
    ebp = EBP;
1956
    esp = ESP;
1957
    if (data32) {
1958
        /* 32 bit */
1959
        esp -= 4;
1960
        while (--level) {
1961
            esp -= 4;
1962
            ebp -= 4;
1963
            stl(ssp + (esp & esp_mask), ldl(ssp + (ebp & esp_mask)));
1964
        }
1965
        esp -= 4;
1966
        stl(ssp + (esp & esp_mask), t1);
1967
    } else {
1968
        /* 16 bit */
1969
        esp -= 2;
1970
        while (--level) {
1971
            esp -= 2;
1972
            ebp -= 2;
1973
            stw(ssp + (esp & esp_mask), lduw(ssp + (ebp & esp_mask)));
1974
        }
1975
        esp -= 2;
1976
        stw(ssp + (esp & esp_mask), t1);
1977
    }
1978
}
1979

    
1980
#ifdef TARGET_X86_64
1981
void helper_enter64_level(int level, int data64, target_ulong t1)
1982
{
1983
    target_ulong esp, ebp;
1984
    ebp = EBP;
1985
    esp = ESP;
1986

    
1987
    if (data64) {
1988
        /* 64 bit */
1989
        esp -= 8;
1990
        while (--level) {
1991
            esp -= 8;
1992
            ebp -= 8;
1993
            stq(esp, ldq(ebp));
1994
        }
1995
        esp -= 8;
1996
        stq(esp, t1);
1997
    } else {
1998
        /* 16 bit */
1999
        esp -= 2;
2000
        while (--level) {
2001
            esp -= 2;
2002
            ebp -= 2;
2003
            stw(esp, lduw(ebp));
2004
        }
2005
        esp -= 2;
2006
        stw(esp, t1);
2007
    }
2008
}
2009
#endif
2010

    
2011
void helper_lldt(int selector)
2012
{
2013
    SegmentCache *dt;
2014
    uint32_t e1, e2;
2015
    int index, entry_limit;
2016
    target_ulong ptr;
2017

    
2018
    selector &= 0xffff;
2019
    if ((selector & 0xfffc) == 0) {
2020
        /* XXX: NULL selector case: invalid LDT */
2021
        env->ldt.base = 0;
2022
        env->ldt.limit = 0;
2023
    } else {
2024
        if (selector & 0x4)
2025
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2026
        dt = &env->gdt;
2027
        index = selector & ~7;
2028
#ifdef TARGET_X86_64
2029
        if (env->hflags & HF_LMA_MASK)
2030
            entry_limit = 15;
2031
        else
2032
#endif
2033
            entry_limit = 7;
2034
        if ((index + entry_limit) > dt->limit)
2035
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2036
        ptr = dt->base + index;
2037
        e1 = ldl_kernel(ptr);
2038
        e2 = ldl_kernel(ptr + 4);
2039
        if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2)
2040
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2041
        if (!(e2 & DESC_P_MASK))
2042
            raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2043
#ifdef TARGET_X86_64
2044
        if (env->hflags & HF_LMA_MASK) {
2045
            uint32_t e3;
2046
            e3 = ldl_kernel(ptr + 8);
2047
            load_seg_cache_raw_dt(&env->ldt, e1, e2);
2048
            env->ldt.base |= (target_ulong)e3 << 32;
2049
        } else
2050
#endif
2051
        {
2052
            load_seg_cache_raw_dt(&env->ldt, e1, e2);
2053
        }
2054
    }
2055
    env->ldt.selector = selector;
2056
}
2057

    
2058
void helper_ltr(int selector)
2059
{
2060
    SegmentCache *dt;
2061
    uint32_t e1, e2;
2062
    int index, type, entry_limit;
2063
    target_ulong ptr;
2064

    
2065
    selector &= 0xffff;
2066
    if ((selector & 0xfffc) == 0) {
2067
        /* NULL selector case: invalid TR */
2068
        env->tr.base = 0;
2069
        env->tr.limit = 0;
2070
        env->tr.flags = 0;
2071
    } else {
2072
        if (selector & 0x4)
2073
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2074
        dt = &env->gdt;
2075
        index = selector & ~7;
2076
#ifdef TARGET_X86_64
2077
        if (env->hflags & HF_LMA_MASK)
2078
            entry_limit = 15;
2079
        else
2080
#endif
2081
            entry_limit = 7;
2082
        if ((index + entry_limit) > dt->limit)
2083
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2084
        ptr = dt->base + index;
2085
        e1 = ldl_kernel(ptr);
2086
        e2 = ldl_kernel(ptr + 4);
2087
        type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
2088
        if ((e2 & DESC_S_MASK) ||
2089
            (type != 1 && type != 9))
2090
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2091
        if (!(e2 & DESC_P_MASK))
2092
            raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2093
#ifdef TARGET_X86_64
2094
        if (env->hflags & HF_LMA_MASK) {
2095
            uint32_t e3, e4;
2096
            e3 = ldl_kernel(ptr + 8);
2097
            e4 = ldl_kernel(ptr + 12);
2098
            if ((e4 >> DESC_TYPE_SHIFT) & 0xf)
2099
                raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2100
            load_seg_cache_raw_dt(&env->tr, e1, e2);
2101
            env->tr.base |= (target_ulong)e3 << 32;
2102
        } else
2103
#endif
2104
        {
2105
            load_seg_cache_raw_dt(&env->tr, e1, e2);
2106
        }
2107
        e2 |= DESC_TSS_BUSY_MASK;
2108
        stl_kernel(ptr + 4, e2);
2109
    }
2110
    env->tr.selector = selector;
2111
}
2112

    
2113
/* only works if protected mode and not VM86. seg_reg must be != R_CS */
2114
void helper_load_seg(int seg_reg, int selector)
2115
{
2116
    uint32_t e1, e2;
2117
    int cpl, dpl, rpl;
2118
    SegmentCache *dt;
2119
    int index;
2120
    target_ulong ptr;
2121

    
2122
    selector &= 0xffff;
2123
    cpl = env->hflags & HF_CPL_MASK;
2124
    if ((selector & 0xfffc) == 0) {
2125
        /* null selector case */
2126
        if (seg_reg == R_SS
2127
#ifdef TARGET_X86_64
2128
            && (!(env->hflags & HF_CS64_MASK) || cpl == 3)
2129
#endif
2130
            )
2131
            raise_exception_err(EXCP0D_GPF, 0);
2132
        cpu_x86_load_seg_cache(env, seg_reg, selector, 0, 0, 0);
2133
    } else {
2134

    
2135
        if (selector & 0x4)
2136
            dt = &env->ldt;
2137
        else
2138
            dt = &env->gdt;
2139
        index = selector & ~7;
2140
        if ((index + 7) > dt->limit)
2141
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2142
        ptr = dt->base + index;
2143
        e1 = ldl_kernel(ptr);
2144
        e2 = ldl_kernel(ptr + 4);
2145

    
2146
        if (!(e2 & DESC_S_MASK))
2147
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2148
        rpl = selector & 3;
2149
        dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2150
        if (seg_reg == R_SS) {
2151
            /* must be writable segment */
2152
            if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK))
2153
                raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2154
            if (rpl != cpl || dpl != cpl)
2155
                raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2156
        } else {
2157
            /* must be readable segment */
2158
            if ((e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK)
2159
                raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2160

    
2161
            if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
2162
                /* if not conforming code, test rights */
2163
                if (dpl < cpl || dpl < rpl)
2164
                    raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2165
            }
2166
        }
2167

    
2168
        if (!(e2 & DESC_P_MASK)) {
2169
            if (seg_reg == R_SS)
2170
                raise_exception_err(EXCP0C_STACK, selector & 0xfffc);
2171
            else
2172
                raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2173
        }
2174

    
2175
        /* set the access bit if not already set */
2176
        if (!(e2 & DESC_A_MASK)) {
2177
            e2 |= DESC_A_MASK;
2178
            stl_kernel(ptr + 4, e2);
2179
        }
2180

    
2181
        cpu_x86_load_seg_cache(env, seg_reg, selector,
2182
                       get_seg_base(e1, e2),
2183
                       get_seg_limit(e1, e2),
2184
                       e2);
2185
#if 0
2186
        qemu_log("load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n",
2187
                selector, (unsigned long)sc->base, sc->limit, sc->flags);
2188
#endif
2189
    }
2190
}
2191

    
2192
/* protected mode jump */
2193
void helper_ljmp_protected(int new_cs, target_ulong new_eip,
2194
                           int next_eip_addend)
2195
{
2196
    int gate_cs, type;
2197
    uint32_t e1, e2, cpl, dpl, rpl, limit;
2198
    target_ulong next_eip;
2199

    
2200
    if ((new_cs & 0xfffc) == 0)
2201
        raise_exception_err(EXCP0D_GPF, 0);
2202
    if (load_segment(&e1, &e2, new_cs) != 0)
2203
        raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2204
    cpl = env->hflags & HF_CPL_MASK;
2205
    if (e2 & DESC_S_MASK) {
2206
        if (!(e2 & DESC_CS_MASK))
2207
            raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2208
        dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2209
        if (e2 & DESC_C_MASK) {
2210
            /* conforming code segment */
2211
            if (dpl > cpl)
2212
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2213
        } else {
2214
            /* non conforming code segment */
2215
            rpl = new_cs & 3;
2216
            if (rpl > cpl)
2217
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2218
            if (dpl != cpl)
2219
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2220
        }
2221
        if (!(e2 & DESC_P_MASK))
2222
            raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2223
        limit = get_seg_limit(e1, e2);
2224
        if (new_eip > limit &&
2225
            !(env->hflags & HF_LMA_MASK) && !(e2 & DESC_L_MASK))
2226
            raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2227
        cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
2228
                       get_seg_base(e1, e2), limit, e2);
2229
        EIP = new_eip;
2230
    } else {
2231
        /* jump to call or task gate */
2232
        dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2233
        rpl = new_cs & 3;
2234
        cpl = env->hflags & HF_CPL_MASK;
2235
        type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
2236
        switch(type) {
2237
        case 1: /* 286 TSS */
2238
        case 9: /* 386 TSS */
2239
        case 5: /* task gate */
2240
            if (dpl < cpl || dpl < rpl)
2241
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2242
            next_eip = env->eip + next_eip_addend;
2243
            switch_tss(new_cs, e1, e2, SWITCH_TSS_JMP, next_eip);
2244
            CC_OP = CC_OP_EFLAGS;
2245
            break;
2246
        case 4: /* 286 call gate */
2247
        case 12: /* 386 call gate */
2248
            if ((dpl < cpl) || (dpl < rpl))
2249
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2250
            if (!(e2 & DESC_P_MASK))
2251
                raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2252
            gate_cs = e1 >> 16;
2253
            new_eip = (e1 & 0xffff);
2254
            if (type == 12)
2255
                new_eip |= (e2 & 0xffff0000);
2256
            if (load_segment(&e1, &e2, gate_cs) != 0)
2257
                raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2258
            dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2259
            /* must be code segment */
2260
            if (((e2 & (DESC_S_MASK | DESC_CS_MASK)) !=
2261
                 (DESC_S_MASK | DESC_CS_MASK)))
2262
                raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2263
            if (((e2 & DESC_C_MASK) && (dpl > cpl)) ||
2264
                (!(e2 & DESC_C_MASK) && (dpl != cpl)))
2265
                raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2266
            if (!(e2 & DESC_P_MASK))
2267
                raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2268
            limit = get_seg_limit(e1, e2);
2269
            if (new_eip > limit)
2270
                raise_exception_err(EXCP0D_GPF, 0);
2271
            cpu_x86_load_seg_cache(env, R_CS, (gate_cs & 0xfffc) | cpl,
2272
                                   get_seg_base(e1, e2), limit, e2);
2273
            EIP = new_eip;
2274
            break;
2275
        default:
2276
            raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2277
            break;
2278
        }
2279
    }
2280
}
2281

    
2282
/* real mode call */
2283
void helper_lcall_real(int new_cs, target_ulong new_eip1,
2284
                       int shift, int next_eip)
2285
{
2286
    int new_eip;
2287
    uint32_t esp, esp_mask;
2288
    target_ulong ssp;
2289

    
2290
    new_eip = new_eip1;
2291
    esp = ESP;
2292
    esp_mask = get_sp_mask(env->segs[R_SS].flags);
2293
    ssp = env->segs[R_SS].base;
2294
    if (shift) {
2295
        PUSHL(ssp, esp, esp_mask, env->segs[R_CS].selector);
2296
        PUSHL(ssp, esp, esp_mask, next_eip);
2297
    } else {
2298
        PUSHW(ssp, esp, esp_mask, env->segs[R_CS].selector);
2299
        PUSHW(ssp, esp, esp_mask, next_eip);
2300
    }
2301

    
2302
    SET_ESP(esp, esp_mask);
2303
    env->eip = new_eip;
2304
    env->segs[R_CS].selector = new_cs;
2305
    env->segs[R_CS].base = (new_cs << 4);
2306
}
2307

    
2308
/* protected mode call */
2309
void helper_lcall_protected(int new_cs, target_ulong new_eip, 
2310
                            int shift, int next_eip_addend)
2311
{
2312
    int new_stack, i;
2313
    uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count;
2314
    uint32_t ss = 0, ss_e1 = 0, ss_e2 = 0, sp, type, ss_dpl, sp_mask;
2315
    uint32_t val, limit, old_sp_mask;
2316
    target_ulong ssp, old_ssp, next_eip;
2317

    
2318
    next_eip = env->eip + next_eip_addend;
2319
    LOG_PCALL("lcall %04x:%08x s=%d\n", new_cs, (uint32_t)new_eip, shift);
2320
    LOG_PCALL_STATE(env);
2321
    if ((new_cs & 0xfffc) == 0)
2322
        raise_exception_err(EXCP0D_GPF, 0);
2323
    if (load_segment(&e1, &e2, new_cs) != 0)
2324
        raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2325
    cpl = env->hflags & HF_CPL_MASK;
2326
    LOG_PCALL("desc=%08x:%08x\n", e1, e2);
2327
    if (e2 & DESC_S_MASK) {
2328
        if (!(e2 & DESC_CS_MASK))
2329
            raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2330
        dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2331
        if (e2 & DESC_C_MASK) {
2332
            /* conforming code segment */
2333
            if (dpl > cpl)
2334
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2335
        } else {
2336
            /* non conforming code segment */
2337
            rpl = new_cs & 3;
2338
            if (rpl > cpl)
2339
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2340
            if (dpl != cpl)
2341
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2342
        }
2343
        if (!(e2 & DESC_P_MASK))
2344
            raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2345

    
2346
#ifdef TARGET_X86_64
2347
        /* XXX: check 16/32 bit cases in long mode */
2348
        if (shift == 2) {
2349
            target_ulong rsp;
2350
            /* 64 bit case */
2351
            rsp = ESP;
2352
            PUSHQ(rsp, env->segs[R_CS].selector);
2353
            PUSHQ(rsp, next_eip);
2354
            /* from this point, not restartable */
2355
            ESP = rsp;
2356
            cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
2357
                                   get_seg_base(e1, e2),
2358
                                   get_seg_limit(e1, e2), e2);
2359
            EIP = new_eip;
2360
        } else
2361
#endif
2362
        {
2363
            sp = ESP;
2364
            sp_mask = get_sp_mask(env->segs[R_SS].flags);
2365
            ssp = env->segs[R_SS].base;
2366
            if (shift) {
2367
                PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
2368
                PUSHL(ssp, sp, sp_mask, next_eip);
2369
            } else {
2370
                PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector);
2371
                PUSHW(ssp, sp, sp_mask, next_eip);
2372
            }
2373

    
2374
            limit = get_seg_limit(e1, e2);
2375
            if (new_eip > limit)
2376
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2377
            /* from this point, not restartable */
2378
            SET_ESP(sp, sp_mask);
2379
            cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
2380
                                   get_seg_base(e1, e2), limit, e2);
2381
            EIP = new_eip;
2382
        }
2383
    } else {
2384
        /* check gate type */
2385
        type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
2386
        dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2387
        rpl = new_cs & 3;
2388
        switch(type) {
2389
        case 1: /* available 286 TSS */
2390
        case 9: /* available 386 TSS */
2391
        case 5: /* task gate */
2392
            if (dpl < cpl || dpl < rpl)
2393
                raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2394
            switch_tss(new_cs, e1, e2, SWITCH_TSS_CALL, next_eip);
2395
            CC_OP = CC_OP_EFLAGS;
2396
            return;
2397
        case 4: /* 286 call gate */
2398
        case 12: /* 386 call gate */
2399
            break;
2400
        default:
2401
            raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2402
            break;
2403
        }
2404
        shift = type >> 3;
2405

    
2406
        if (dpl < cpl || dpl < rpl)
2407
            raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2408
        /* check valid bit */
2409
        if (!(e2 & DESC_P_MASK))
2410
            raise_exception_err(EXCP0B_NOSEG,  new_cs & 0xfffc);
2411
        selector = e1 >> 16;
2412
        offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
2413
        param_count = e2 & 0x1f;
2414
        if ((selector & 0xfffc) == 0)
2415
            raise_exception_err(EXCP0D_GPF, 0);
2416

    
2417
        if (load_segment(&e1, &e2, selector) != 0)
2418
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2419
        if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
2420
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2421
        dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2422
        if (dpl > cpl)
2423
            raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2424
        if (!(e2 & DESC_P_MASK))
2425
            raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2426

    
2427
        if (!(e2 & DESC_C_MASK) && dpl < cpl) {
2428
            /* to inner privilege */
2429
            get_ss_esp_from_tss(&ss, &sp, dpl);
2430
            LOG_PCALL("new ss:esp=%04x:%08x param_count=%d ESP=" TARGET_FMT_lx "\n",
2431
                        ss, sp, param_count, ESP);
2432
            if ((ss & 0xfffc) == 0)
2433
                raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2434
            if ((ss & 3) != dpl)
2435
                raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2436
            if (load_segment(&ss_e1, &ss_e2, ss) != 0)
2437
                raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2438
            ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
2439
            if (ss_dpl != dpl)
2440
                raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2441
            if (!(ss_e2 & DESC_S_MASK) ||
2442
                (ss_e2 & DESC_CS_MASK) ||
2443
                !(ss_e2 & DESC_W_MASK))
2444
                raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2445
            if (!(ss_e2 & DESC_P_MASK))
2446
                raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2447

    
2448
            //            push_size = ((param_count * 2) + 8) << shift;
2449

    
2450
            old_sp_mask = get_sp_mask(env->segs[R_SS].flags);
2451
            old_ssp = env->segs[R_SS].base;
2452

    
2453
            sp_mask = get_sp_mask(ss_e2);
2454
            ssp = get_seg_base(ss_e1, ss_e2);
2455
            if (shift) {
2456
                PUSHL(ssp, sp, sp_mask, env->segs[R_SS].selector);
2457
                PUSHL(ssp, sp, sp_mask, ESP);
2458
                for(i = param_count - 1; i >= 0; i--) {
2459
                    val = ldl_kernel(old_ssp + ((ESP + i * 4) & old_sp_mask));
2460
                    PUSHL(ssp, sp, sp_mask, val);
2461
                }
2462
            } else {
2463
                PUSHW(ssp, sp, sp_mask, env->segs[R_SS].selector);
2464
                PUSHW(ssp, sp, sp_mask, ESP);
2465
                for(i = param_count - 1; i >= 0; i--) {
2466
                    val = lduw_kernel(old_ssp + ((ESP + i * 2) & old_sp_mask));
2467
                    PUSHW(ssp, sp, sp_mask, val);
2468
                }
2469
            }
2470
            new_stack = 1;
2471
        } else {
2472
            /* to same privilege */
2473
            sp = ESP;
2474
            sp_mask = get_sp_mask(env->segs[R_SS].flags);
2475
            ssp = env->segs[R_SS].base;
2476
            //            push_size = (4 << shift);
2477
            new_stack = 0;
2478
        }
2479

    
2480
        if (shift) {
2481
            PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
2482
            PUSHL(ssp, sp, sp_mask, next_eip);
2483
        } else {
2484
            PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector);
2485
            PUSHW(ssp, sp, sp_mask, next_eip);
2486
        }
2487

    
2488
        /* from this point, not restartable */
2489

    
2490
        if (new_stack) {
2491
            ss = (ss & ~3) | dpl;
2492
            cpu_x86_load_seg_cache(env, R_SS, ss,
2493
                                   ssp,
2494
                                   get_seg_limit(ss_e1, ss_e2),
2495
                                   ss_e2);
2496
        }
2497

    
2498
        selector = (selector & ~3) | dpl;
2499
        cpu_x86_load_seg_cache(env, R_CS, selector,
2500
                       get_seg_base(e1, e2),
2501
                       get_seg_limit(e1, e2),
2502
                       e2);
2503
        cpu_x86_set_cpl(env, dpl);
2504
        SET_ESP(sp, sp_mask);
2505
        EIP = offset;
2506
    }
2507
}
2508

    
2509
/* real and vm86 mode iret */
2510
void helper_iret_real(int shift)
2511
{
2512
    uint32_t sp, new_cs, new_eip, new_eflags, sp_mask;
2513
    target_ulong ssp;
2514
    int eflags_mask;
2515

    
2516
    sp_mask = 0xffff; /* XXXX: use SS segment size ? */
2517
    sp = ESP;
2518
    ssp = env->segs[R_SS].base;
2519
    if (shift == 1) {
2520
        /* 32 bits */
2521
        POPL(ssp, sp, sp_mask, new_eip);
2522
        POPL(ssp, sp, sp_mask, new_cs);
2523
        new_cs &= 0xffff;
2524
        POPL(ssp, sp, sp_mask, new_eflags);
2525
    } else {
2526
        /* 16 bits */
2527
        POPW(ssp, sp, sp_mask, new_eip);
2528
        POPW(ssp, sp, sp_mask, new_cs);
2529
        POPW(ssp, sp, sp_mask, new_eflags);
2530
    }
2531
    ESP = (ESP & ~sp_mask) | (sp & sp_mask);
2532
    env->segs[R_CS].selector = new_cs;
2533
    env->segs[R_CS].base = (new_cs << 4);
2534
    env->eip = new_eip;
2535
    if (env->eflags & VM_MASK)
2536
        eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | RF_MASK | NT_MASK;
2537
    else
2538
        eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | RF_MASK | NT_MASK;
2539
    if (shift == 0)
2540
        eflags_mask &= 0xffff;
2541
    load_eflags(new_eflags, eflags_mask);
2542
    env->hflags2 &= ~HF2_NMI_MASK;
2543
}
2544

    
2545
static inline void validate_seg(int seg_reg, int cpl)
2546
{
2547
    int dpl;
2548
    uint32_t e2;
2549

    
2550
    /* XXX: on x86_64, we do not want to nullify FS and GS because
2551
       they may still contain a valid base. I would be interested to
2552
       know how a real x86_64 CPU behaves */
2553
    if ((seg_reg == R_FS || seg_reg == R_GS) &&
2554
        (env->segs[seg_reg].selector & 0xfffc) == 0)
2555
        return;
2556

    
2557
    e2 = env->segs[seg_reg].flags;
2558
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2559
    if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
2560
        /* data or non conforming code segment */
2561
        if (dpl < cpl) {
2562
            cpu_x86_load_seg_cache(env, seg_reg, 0, 0, 0, 0);
2563
        }
2564
    }
2565
}
2566

    
2567
/* protected mode iret */
2568
static inline void helper_ret_protected(int shift, int is_iret, int addend)
2569
{
2570
    uint32_t new_cs, new_eflags, new_ss;
2571
    uint32_t new_es, new_ds, new_fs, new_gs;
2572
    uint32_t e1, e2, ss_e1, ss_e2;
2573
    int cpl, dpl, rpl, eflags_mask, iopl;
2574
    target_ulong ssp, sp, new_eip, new_esp, sp_mask;
2575

    
2576
#ifdef TARGET_X86_64
2577
    if (shift == 2)
2578
        sp_mask = -1;
2579
    else
2580
#endif
2581
        sp_mask = get_sp_mask(env->segs[R_SS].flags);
2582
    sp = ESP;
2583
    ssp = env->segs[R_SS].base;
2584
    new_eflags = 0; /* avoid warning */
2585
#ifdef TARGET_X86_64
2586
    if (shift == 2) {
2587
        POPQ(sp, new_eip);
2588
        POPQ(sp, new_cs);
2589
        new_cs &= 0xffff;
2590
        if (is_iret) {
2591
            POPQ(sp, new_eflags);
2592
        }
2593
    } else
2594
#endif
2595
    if (shift == 1) {
2596
        /* 32 bits */
2597
        POPL(ssp, sp, sp_mask, new_eip);
2598
        POPL(ssp, sp, sp_mask, new_cs);
2599
        new_cs &= 0xffff;
2600
        if (is_iret) {
2601
            POPL(ssp, sp, sp_mask, new_eflags);
2602
            if (new_eflags & VM_MASK)
2603
                goto return_to_vm86;
2604
        }
2605
    } else {
2606
        /* 16 bits */
2607
        POPW(ssp, sp, sp_mask, new_eip);
2608
        POPW(ssp, sp, sp_mask, new_cs);
2609
        if (is_iret)
2610
            POPW(ssp, sp, sp_mask, new_eflags);
2611
    }
2612
    LOG_PCALL("lret new %04x:" TARGET_FMT_lx " s=%d addend=0x%x\n",
2613
              new_cs, new_eip, shift, addend);
2614
    LOG_PCALL_STATE(env);
2615
    if ((new_cs & 0xfffc) == 0)
2616
        raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2617
    if (load_segment(&e1, &e2, new_cs) != 0)
2618
        raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2619
    if (!(e2 & DESC_S_MASK) ||
2620
        !(e2 & DESC_CS_MASK))
2621
        raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2622
    cpl = env->hflags & HF_CPL_MASK;
2623
    rpl = new_cs & 3;
2624
    if (rpl < cpl)
2625
        raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2626
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2627
    if (e2 & DESC_C_MASK) {
2628
        if (dpl > rpl)
2629
            raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2630
    } else {
2631
        if (dpl != rpl)
2632
            raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2633
    }
2634
    if (!(e2 & DESC_P_MASK))
2635
        raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2636

    
2637
    sp += addend;
2638
    if (rpl == cpl && (!(env->hflags & HF_CS64_MASK) ||
2639
                       ((env->hflags & HF_CS64_MASK) && !is_iret))) {
2640
        /* return to same privilege level */
2641
        cpu_x86_load_seg_cache(env, R_CS, new_cs,
2642
                       get_seg_base(e1, e2),
2643
                       get_seg_limit(e1, e2),
2644
                       e2);
2645
    } else {
2646
        /* return to different privilege level */
2647
#ifdef TARGET_X86_64
2648
        if (shift == 2) {
2649
            POPQ(sp, new_esp);
2650
            POPQ(sp, new_ss);
2651
            new_ss &= 0xffff;
2652
        } else
2653
#endif
2654
        if (shift == 1) {
2655
            /* 32 bits */
2656
            POPL(ssp, sp, sp_mask, new_esp);
2657
            POPL(ssp, sp, sp_mask, new_ss);
2658
            new_ss &= 0xffff;
2659
        } else {
2660
            /* 16 bits */
2661
            POPW(ssp, sp, sp_mask, new_esp);
2662
            POPW(ssp, sp, sp_mask, new_ss);
2663
        }
2664
        LOG_PCALL("new ss:esp=%04x:" TARGET_FMT_lx "\n",
2665
                    new_ss, new_esp);
2666
        if ((new_ss & 0xfffc) == 0) {
2667
#ifdef TARGET_X86_64
2668
            /* NULL ss is allowed in long mode if cpl != 3*/
2669
            /* XXX: test CS64 ? */
2670
            if ((env->hflags & HF_LMA_MASK) && rpl != 3) {
2671
                cpu_x86_load_seg_cache(env, R_SS, new_ss,
2672
                                       0, 0xffffffff,
2673
                                       DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2674
                                       DESC_S_MASK | (rpl << DESC_DPL_SHIFT) |
2675
                                       DESC_W_MASK | DESC_A_MASK);
2676
                ss_e2 = DESC_B_MASK; /* XXX: should not be needed ? */
2677
            } else
2678
#endif
2679
            {
2680
                raise_exception_err(EXCP0D_GPF, 0);
2681
            }
2682
        } else {
2683
            if ((new_ss & 3) != rpl)
2684
                raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2685
            if (load_segment(&ss_e1, &ss_e2, new_ss) != 0)
2686
                raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2687
            if (!(ss_e2 & DESC_S_MASK) ||
2688
                (ss_e2 & DESC_CS_MASK) ||
2689
                !(ss_e2 & DESC_W_MASK))
2690
                raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2691
            dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
2692
            if (dpl != rpl)
2693
                raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2694
            if (!(ss_e2 & DESC_P_MASK))
2695
                raise_exception_err(EXCP0B_NOSEG, new_ss & 0xfffc);
2696
            cpu_x86_load_seg_cache(env, R_SS, new_ss,
2697
                                   get_seg_base(ss_e1, ss_e2),
2698
                                   get_seg_limit(ss_e1, ss_e2),
2699
                                   ss_e2);
2700
        }
2701

    
2702
        cpu_x86_load_seg_cache(env, R_CS, new_cs,
2703
                       get_seg_base(e1, e2),
2704
                       get_seg_limit(e1, e2),
2705
                       e2);
2706
        cpu_x86_set_cpl(env, rpl);
2707
        sp = new_esp;
2708
#ifdef TARGET_X86_64
2709
        if (env->hflags & HF_CS64_MASK)
2710
            sp_mask = -1;
2711
        else
2712
#endif
2713
            sp_mask = get_sp_mask(ss_e2);
2714

    
2715
        /* validate data segments */
2716
        validate_seg(R_ES, rpl);
2717
        validate_seg(R_DS, rpl);
2718
        validate_seg(R_FS, rpl);
2719
        validate_seg(R_GS, rpl);
2720

    
2721
        sp += addend;
2722
    }
2723
    SET_ESP(sp, sp_mask);
2724
    env->eip = new_eip;
2725
    if (is_iret) {
2726
        /* NOTE: 'cpl' is the _old_ CPL */
2727
        eflags_mask = TF_MASK | AC_MASK | ID_MASK | RF_MASK | NT_MASK;
2728
        if (cpl == 0)
2729
            eflags_mask |= IOPL_MASK;
2730
        iopl = (env->eflags >> IOPL_SHIFT) & 3;
2731
        if (cpl <= iopl)
2732
            eflags_mask |= IF_MASK;
2733
        if (shift == 0)
2734
            eflags_mask &= 0xffff;
2735
        load_eflags(new_eflags, eflags_mask);
2736
    }
2737
    return;
2738

    
2739
 return_to_vm86:
2740
    POPL(ssp, sp, sp_mask, new_esp);
2741
    POPL(ssp, sp, sp_mask, new_ss);
2742
    POPL(ssp, sp, sp_mask, new_es);
2743
    POPL(ssp, sp, sp_mask, new_ds);
2744
    POPL(ssp, sp, sp_mask, new_fs);
2745
    POPL(ssp, sp, sp_mask, new_gs);
2746

    
2747
    /* modify processor state */
2748
    load_eflags(new_eflags, TF_MASK | AC_MASK | ID_MASK |
2749
                IF_MASK | IOPL_MASK | VM_MASK | NT_MASK | VIF_MASK | VIP_MASK);
2750
    load_seg_vm(R_CS, new_cs & 0xffff);
2751
    cpu_x86_set_cpl(env, 3);
2752
    load_seg_vm(R_SS, new_ss & 0xffff);
2753
    load_seg_vm(R_ES, new_es & 0xffff);
2754
    load_seg_vm(R_DS, new_ds & 0xffff);
2755
    load_seg_vm(R_FS, new_fs & 0xffff);
2756
    load_seg_vm(R_GS, new_gs & 0xffff);
2757

    
2758
    env->eip = new_eip & 0xffff;
2759
    ESP = new_esp;
2760
}
2761

    
2762
void helper_iret_protected(int shift, int next_eip)
2763
{
2764
    int tss_selector, type;
2765
    uint32_t e1, e2;
2766

    
2767
    /* specific case for TSS */
2768
    if (env->eflags & NT_MASK) {
2769
#ifdef TARGET_X86_64
2770
        if (env->hflags & HF_LMA_MASK)
2771
            raise_exception_err(EXCP0D_GPF, 0);
2772
#endif
2773
        tss_selector = lduw_kernel(env->tr.base + 0);
2774
        if (tss_selector & 4)
2775
            raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
2776
        if (load_segment(&e1, &e2, tss_selector) != 0)
2777
            raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
2778
        type = (e2 >> DESC_TYPE_SHIFT) & 0x17;
2779
        /* NOTE: we check both segment and busy TSS */
2780
        if (type != 3)
2781
            raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
2782
        switch_tss(tss_selector, e1, e2, SWITCH_TSS_IRET, next_eip);
2783
    } else {
2784
        helper_ret_protected(shift, 1, 0);
2785
    }
2786
    env->hflags2 &= ~HF2_NMI_MASK;
2787
}
2788

    
2789
void helper_lret_protected(int shift, int addend)
2790
{
2791
    helper_ret_protected(shift, 0, addend);
2792
}
2793

    
2794
void helper_sysenter(void)
2795
{
2796
    if (env->sysenter_cs == 0) {
2797
        raise_exception_err(EXCP0D_GPF, 0);
2798
    }
2799
    env->eflags &= ~(VM_MASK | IF_MASK | RF_MASK);
2800
    cpu_x86_set_cpl(env, 0);
2801

    
2802
#ifdef TARGET_X86_64
2803
    if (env->hflags & HF_LMA_MASK) {
2804
        cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
2805
                               0, 0xffffffff,
2806
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2807
                               DESC_S_MASK |
2808
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
2809
    } else
2810
#endif
2811
    {
2812
        cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
2813
                               0, 0xffffffff,
2814
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2815
                               DESC_S_MASK |
2816
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
2817
    }
2818
    cpu_x86_load_seg_cache(env, R_SS, (env->sysenter_cs + 8) & 0xfffc,
2819
                           0, 0xffffffff,
2820
                           DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2821
                           DESC_S_MASK |
2822
                           DESC_W_MASK | DESC_A_MASK);
2823
    ESP = env->sysenter_esp;
2824
    EIP = env->sysenter_eip;
2825
}
2826

    
2827
void helper_sysexit(int dflag)
2828
{
2829
    int cpl;
2830

    
2831
    cpl = env->hflags & HF_CPL_MASK;
2832
    if (env->sysenter_cs == 0 || cpl != 0) {
2833
        raise_exception_err(EXCP0D_GPF, 0);
2834
    }
2835
    cpu_x86_set_cpl(env, 3);
2836
#ifdef TARGET_X86_64
2837
    if (dflag == 2) {
2838
        cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 32) & 0xfffc) | 3,
2839
                               0, 0xffffffff,
2840
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2841
                               DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
2842
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
2843
        cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 40) & 0xfffc) | 3,
2844
                               0, 0xffffffff,
2845
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2846
                               DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
2847
                               DESC_W_MASK | DESC_A_MASK);
2848
    } else
2849
#endif
2850
    {
2851
        cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 16) & 0xfffc) | 3,
2852
                               0, 0xffffffff,
2853
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2854
                               DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
2855
                               DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
2856
        cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 24) & 0xfffc) | 3,
2857
                               0, 0xffffffff,
2858
                               DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2859
                               DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
2860
                               DESC_W_MASK | DESC_A_MASK);
2861
    }
2862
    ESP = ECX;
2863
    EIP = EDX;
2864
}
2865

    
2866
#if defined(CONFIG_USER_ONLY)
2867
target_ulong helper_read_crN(int reg)
2868
{
2869
    return 0;
2870
}
2871

    
2872
void helper_write_crN(int reg, target_ulong t0)
2873
{
2874
}
2875

    
2876
void helper_movl_drN_T0(int reg, target_ulong t0)
2877
{
2878
}
2879
#else
2880
target_ulong helper_read_crN(int reg)
2881
{
2882
    target_ulong val;
2883

    
2884
    helper_svm_check_intercept_param(SVM_EXIT_READ_CR0 + reg, 0);
2885
    switch(reg) {
2886
    default:
2887
        val = env->cr[reg];
2888
        break;
2889
    case 8:
2890
        if (!(env->hflags2 & HF2_VINTR_MASK)) {
2891
            val = cpu_get_apic_tpr(env);
2892
        } else {
2893
            val = env->v_tpr;
2894
        }
2895
        break;
2896
    }
2897
    return val;
2898
}
2899

    
2900
void helper_write_crN(int reg, target_ulong t0)
2901
{
2902
    helper_svm_check_intercept_param(SVM_EXIT_WRITE_CR0 + reg, 0);
2903
    switch(reg) {
2904
    case 0:
2905
        cpu_x86_update_cr0(env, t0);
2906
        break;
2907
    case 3:
2908
        cpu_x86_update_cr3(env, t0);
2909
        break;
2910
    case 4:
2911
        cpu_x86_update_cr4(env, t0);
2912
        break;
2913
    case 8:
2914
        if (!(env->hflags2 & HF2_VINTR_MASK)) {
2915
            cpu_set_apic_tpr(env, t0);
2916
        }
2917
        env->v_tpr = t0 & 0x0f;
2918
        break;
2919
    default:
2920
        env->cr[reg] = t0;
2921
        break;
2922
    }
2923
}
2924

    
2925
void helper_movl_drN_T0(int reg, target_ulong t0)
2926
{
2927
    int i;
2928

    
2929
    if (reg < 4) {
2930
        hw_breakpoint_remove(env, reg);
2931
        env->dr[reg] = t0;
2932
        hw_breakpoint_insert(env, reg);
2933
    } else if (reg == 7) {
2934
        for (i = 0; i < 4; i++)
2935
            hw_breakpoint_remove(env, i);
2936
        env->dr[7] = t0;
2937
        for (i = 0; i < 4; i++)
2938
            hw_breakpoint_insert(env, i);
2939
    } else
2940
        env->dr[reg] = t0;
2941
}
2942
#endif
2943

    
2944
void helper_lmsw(target_ulong t0)
2945
{
2946
    /* only 4 lower bits of CR0 are modified. PE cannot be set to zero
2947
       if already set to one. */
2948
    t0 = (env->cr[0] & ~0xe) | (t0 & 0xf);
2949
    helper_write_crN(0, t0);
2950
}
2951

    
2952
void helper_clts(void)
2953
{
2954
    env->cr[0] &= ~CR0_TS_MASK;
2955
    env->hflags &= ~HF_TS_MASK;
2956
}
2957

    
2958
void helper_invlpg(target_ulong addr)
2959
{
2960
    helper_svm_check_intercept_param(SVM_EXIT_INVLPG, 0);
2961
    tlb_flush_page(env, addr);
2962
}
2963

    
2964
void helper_rdtsc(void)
2965
{
2966
    uint64_t val;
2967

    
2968
    if ((env->cr[4] & CR4_TSD_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
2969
        raise_exception(EXCP0D_GPF);
2970
    }
2971
    helper_svm_check_intercept_param(SVM_EXIT_RDTSC, 0);
2972

    
2973
    val = cpu_get_tsc(env) + env->tsc_offset;
2974
    EAX = (uint32_t)(val);
2975
    EDX = (uint32_t)(val >> 32);
2976
}
2977

    
2978
void helper_rdtscp(void)
2979
{
2980
    helper_rdtsc();
2981
    ECX = (uint32_t)(env->tsc_aux);
2982
}
2983

    
2984
void helper_rdpmc(void)
2985
{
2986
    if ((env->cr[4] & CR4_PCE_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
2987
        raise_exception(EXCP0D_GPF);
2988
    }
2989
    helper_svm_check_intercept_param(SVM_EXIT_RDPMC, 0);
2990
    
2991
    /* currently unimplemented */
2992
    raise_exception_err(EXCP06_ILLOP, 0);
2993
}
2994

    
2995
#if defined(CONFIG_USER_ONLY)
2996
void helper_wrmsr(void)
2997
{
2998
}
2999

    
3000
void helper_rdmsr(void)
3001
{
3002
}
3003
#else
3004
void helper_wrmsr(void)
3005
{
3006
    uint64_t val;
3007

    
3008
    helper_svm_check_intercept_param(SVM_EXIT_MSR, 1);
3009

    
3010
    val = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
3011

    
3012
    switch((uint32_t)ECX) {
3013
    case MSR_IA32_SYSENTER_CS:
3014
        env->sysenter_cs = val & 0xffff;
3015
        break;
3016
    case MSR_IA32_SYSENTER_ESP:
3017
        env->sysenter_esp = val;
3018
        break;
3019
    case MSR_IA32_SYSENTER_EIP:
3020
        env->sysenter_eip = val;
3021
        break;
3022
    case MSR_IA32_APICBASE:
3023
        cpu_set_apic_base(env, val);
3024
        break;
3025
    case MSR_EFER:
3026
        {
3027
            uint64_t update_mask;
3028
            update_mask = 0;
3029
            if (env->cpuid_ext2_features & CPUID_EXT2_SYSCALL)
3030
                update_mask |= MSR_EFER_SCE;
3031
            if (env->cpuid_ext2_features & CPUID_EXT2_LM)
3032
                update_mask |= MSR_EFER_LME;
3033
            if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR)
3034
                update_mask |= MSR_EFER_FFXSR;
3035
            if (env->cpuid_ext2_features & CPUID_EXT2_NX)
3036
                update_mask |= MSR_EFER_NXE;
3037
            if (env->cpuid_ext3_features & CPUID_EXT3_SVM)
3038
                update_mask |= MSR_EFER_SVME;
3039
            if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR)
3040
                update_mask |= MSR_EFER_FFXSR;
3041
            cpu_load_efer(env, (env->efer & ~update_mask) |
3042
                          (val & update_mask));
3043
        }
3044
        break;
3045
    case MSR_STAR:
3046
        env->star = val;
3047
        break;
3048
    case MSR_PAT:
3049
        env->pat = val;
3050
        break;
3051
    case MSR_VM_HSAVE_PA:
3052
        env->vm_hsave = val;
3053
        break;
3054
#ifdef TARGET_X86_64
3055
    case MSR_LSTAR:
3056
        env->lstar = val;
3057
        break;
3058
    case MSR_CSTAR:
3059
        env->cstar = val;
3060
        break;
3061
    case MSR_FMASK:
3062
        env->fmask = val;
3063
        break;
3064
    case MSR_FSBASE:
3065
        env->segs[R_FS].base = val;
3066
        break;
3067
    case MSR_GSBASE:
3068
        env->segs[R_GS].base = val;
3069
        break;
3070
    case MSR_KERNELGSBASE:
3071
        env->kernelgsbase = val;
3072
        break;
3073
#endif
3074
    case MSR_MTRRphysBase(0):
3075
    case MSR_MTRRphysBase(1):
3076
    case MSR_MTRRphysBase(2):
3077
    case MSR_MTRRphysBase(3):
3078
    case MSR_MTRRphysBase(4):
3079
    case MSR_MTRRphysBase(5):
3080
    case MSR_MTRRphysBase(6):
3081
    case MSR_MTRRphysBase(7):
3082
        env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base = val;
3083
        break;
3084
    case MSR_MTRRphysMask(0):
3085
    case MSR_MTRRphysMask(1):
3086
    case MSR_MTRRphysMask(2):
3087
    case MSR_MTRRphysMask(3):
3088
    case MSR_MTRRphysMask(4):
3089
    case MSR_MTRRphysMask(5):
3090
    case MSR_MTRRphysMask(6):
3091
    case MSR_MTRRphysMask(7):
3092
        env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask = val;
3093
        break;
3094
    case MSR_MTRRfix64K_00000:
3095
        env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix64K_00000] = val;
3096
        break;
3097
    case MSR_MTRRfix16K_80000:
3098
    case MSR_MTRRfix16K_A0000:
3099
        env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1] = val;
3100
        break;
3101
    case MSR_MTRRfix4K_C0000:
3102
    case MSR_MTRRfix4K_C8000:
3103
    case MSR_MTRRfix4K_D0000:
3104
    case MSR_MTRRfix4K_D8000:
3105
    case MSR_MTRRfix4K_E0000:
3106
    case MSR_MTRRfix4K_E8000:
3107
    case MSR_MTRRfix4K_F0000:
3108
    case MSR_MTRRfix4K_F8000:
3109
        env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3] = val;
3110
        break;
3111
    case MSR_MTRRdefType:
3112
        env->mtrr_deftype = val;
3113
        break;
3114
    case MSR_MCG_STATUS:
3115
        env->mcg_status = val;
3116
        break;
3117
    case MSR_MCG_CTL:
3118
        if ((env->mcg_cap & MCG_CTL_P)
3119
            && (val == 0 || val == ~(uint64_t)0))
3120
            env->mcg_ctl = val;
3121
        break;
3122
    case MSR_TSC_AUX:
3123
        env->tsc_aux = val;
3124
        break;
3125
    default:
3126
        if ((uint32_t)ECX >= MSR_MC0_CTL
3127
            && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
3128
            uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
3129
            if ((offset & 0x3) != 0
3130
                || (val == 0 || val == ~(uint64_t)0))
3131
                env->mce_banks[offset] = val;
3132
            break;
3133
        }
3134
        /* XXX: exception ? */
3135
        break;
3136
    }
3137
}
3138

    
3139
void helper_rdmsr(void)
3140
{
3141
    uint64_t val;
3142

    
3143
    helper_svm_check_intercept_param(SVM_EXIT_MSR, 0);
3144

    
3145
    switch((uint32_t)ECX) {
3146
    case MSR_IA32_SYSENTER_CS:
3147
        val = env->sysenter_cs;
3148
        break;
3149
    case MSR_IA32_SYSENTER_ESP:
3150
        val = env->sysenter_esp;
3151
        break;
3152
    case MSR_IA32_SYSENTER_EIP:
3153
        val = env->sysenter_eip;
3154
        break;
3155
    case MSR_IA32_APICBASE:
3156
        val = cpu_get_apic_base(env);
3157
        break;
3158
    case MSR_EFER:
3159
        val = env->efer;
3160
        break;
3161
    case MSR_STAR:
3162
        val = env->star;
3163
        break;
3164
    case MSR_PAT:
3165
        val = env->pat;
3166
        break;
3167
    case MSR_VM_HSAVE_PA:
3168
        val = env->vm_hsave;
3169
        break;
3170
    case MSR_IA32_PERF_STATUS:
3171
        /* tsc_increment_by_tick */
3172
        val = 1000ULL;
3173
        /* CPU multiplier */
3174
        val |= (((uint64_t)4ULL) << 40);
3175
        break;
3176
#ifdef TARGET_X86_64
3177
    case MSR_LSTAR:
3178
        val = env->lstar;
3179
        break;
3180
    case MSR_CSTAR:
3181
        val = env->cstar;
3182
        break;
3183
    case MSR_FMASK:
3184
        val = env->fmask;
3185
        break;
3186
    case MSR_FSBASE:
3187
        val = env->segs[R_FS].base;
3188
        break;
3189
    case MSR_GSBASE:
3190
        val = env->segs[R_GS].base;
3191
        break;
3192
    case MSR_KERNELGSBASE:
3193
        val = env->kernelgsbase;
3194
        break;
3195
    case MSR_TSC_AUX:
3196
        val = env->tsc_aux;
3197
        break;
3198
#endif
3199
    case MSR_MTRRphysBase(0):
3200
    case MSR_MTRRphysBase(1):
3201
    case MSR_MTRRphysBase(2):
3202
    case MSR_MTRRphysBase(3):
3203
    case MSR_MTRRphysBase(4):
3204
    case MSR_MTRRphysBase(5):
3205
    case MSR_MTRRphysBase(6):
3206
    case MSR_MTRRphysBase(7):
3207
        val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base;
3208
        break;
3209
    case MSR_MTRRphysMask(0):
3210
    case MSR_MTRRphysMask(1):
3211
    case MSR_MTRRphysMask(2):
3212
    case MSR_MTRRphysMask(3):
3213
    case MSR_MTRRphysMask(4):
3214
    case MSR_MTRRphysMask(5):
3215
    case MSR_MTRRphysMask(6):
3216
    case MSR_MTRRphysMask(7):
3217
        val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask;
3218
        break;
3219
    case MSR_MTRRfix64K_00000:
3220
        val = env->mtrr_fixed[0];
3221
        break;
3222
    case MSR_MTRRfix16K_80000:
3223
    case MSR_MTRRfix16K_A0000:
3224
        val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1];
3225
        break;
3226
    case MSR_MTRRfix4K_C0000:
3227
    case MSR_MTRRfix4K_C8000:
3228
    case MSR_MTRRfix4K_D0000:
3229
    case MSR_MTRRfix4K_D8000:
3230
    case MSR_MTRRfix4K_E0000:
3231
    case MSR_MTRRfix4K_E8000:
3232
    case MSR_MTRRfix4K_F0000:
3233
    case MSR_MTRRfix4K_F8000:
3234
        val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3];
3235
        break;
3236
    case MSR_MTRRdefType:
3237
        val = env->mtrr_deftype;
3238
        break;
3239
    case MSR_MTRRcap:
3240
        if (env->cpuid_features & CPUID_MTRR)
3241
            val = MSR_MTRRcap_VCNT | MSR_MTRRcap_FIXRANGE_SUPPORT | MSR_MTRRcap_WC_SUPPORTED;
3242
        else
3243
            /* XXX: exception ? */
3244
            val = 0;
3245
        break;
3246
    case MSR_MCG_CAP:
3247
        val = env->mcg_cap;
3248
        break;
3249
    case MSR_MCG_CTL:
3250
        if (env->mcg_cap & MCG_CTL_P)
3251
            val = env->mcg_ctl;
3252
        else
3253
            val = 0;
3254
        break;
3255
    case MSR_MCG_STATUS:
3256
        val = env->mcg_status;
3257
        break;
3258
    default:
3259
        if ((uint32_t)ECX >= MSR_MC0_CTL
3260
            && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
3261
            uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
3262
            val = env->mce_banks[offset];
3263
            break;
3264
        }
3265
        /* XXX: exception ? */
3266
        val = 0;
3267
        break;
3268
    }
3269
    EAX = (uint32_t)(val);
3270
    EDX = (uint32_t)(val >> 32);
3271
}
3272
#endif
3273

    
3274
target_ulong helper_lsl(target_ulong selector1)
3275
{
3276
    unsigned int limit;
3277
    uint32_t e1, e2, eflags, selector;
3278
    int rpl, dpl, cpl, type;
3279

    
3280
    selector = selector1 & 0xffff;
3281
    eflags = helper_cc_compute_all(CC_OP);
3282
    if ((selector & 0xfffc) == 0)
3283
        goto fail;
3284
    if (load_segment(&e1, &e2, selector) != 0)
3285
        goto fail;
3286
    rpl = selector & 3;
3287
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3288
    cpl = env->hflags & HF_CPL_MASK;
3289
    if (e2 & DESC_S_MASK) {
3290
        if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
3291
            /* conforming */
3292
        } else {
3293
            if (dpl < cpl || dpl < rpl)
3294
                goto fail;
3295
        }
3296
    } else {
3297
        type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
3298
        switch(type) {
3299
        case 1:
3300
        case 2:
3301
        case 3:
3302
        case 9:
3303
        case 11:
3304
            break;
3305
        default:
3306
            goto fail;
3307
        }
3308
        if (dpl < cpl || dpl < rpl) {
3309
        fail:
3310
            CC_SRC = eflags & ~CC_Z;
3311
            return 0;
3312
        }
3313
    }
3314
    limit = get_seg_limit(e1, e2);
3315
    CC_SRC = eflags | CC_Z;
3316
    return limit;
3317
}
3318

    
3319
target_ulong helper_lar(target_ulong selector1)
3320
{
3321
    uint32_t e1, e2, eflags, selector;
3322
    int rpl, dpl, cpl, type;
3323

    
3324
    selector = selector1 & 0xffff;
3325
    eflags = helper_cc_compute_all(CC_OP);
3326
    if ((selector & 0xfffc) == 0)
3327
        goto fail;
3328
    if (load_segment(&e1, &e2, selector) != 0)
3329
        goto fail;
3330
    rpl = selector & 3;
3331
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3332
    cpl = env->hflags & HF_CPL_MASK;
3333
    if (e2 & DESC_S_MASK) {
3334
        if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
3335
            /* conforming */
3336
        } else {
3337
            if (dpl < cpl || dpl < rpl)
3338
                goto fail;
3339
        }
3340
    } else {
3341
        type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
3342
        switch(type) {
3343
        case 1:
3344
        case 2:
3345
        case 3:
3346
        case 4:
3347
        case 5:
3348
        case 9:
3349
        case 11:
3350
        case 12:
3351
            break;
3352
        default:
3353
            goto fail;
3354
        }
3355
        if (dpl < cpl || dpl < rpl) {
3356
        fail:
3357
            CC_SRC = eflags & ~CC_Z;
3358
            return 0;
3359
        }
3360
    }
3361
    CC_SRC = eflags | CC_Z;
3362
    return e2 & 0x00f0ff00;
3363
}
3364

    
3365
void helper_verr(target_ulong selector1)
3366
{
3367
    uint32_t e1, e2, eflags, selector;
3368
    int rpl, dpl, cpl;
3369

    
3370
    selector = selector1 & 0xffff;
3371
    eflags = helper_cc_compute_all(CC_OP);
3372
    if ((selector & 0xfffc) == 0)
3373
        goto fail;
3374
    if (load_segment(&e1, &e2, selector) != 0)
3375
        goto fail;
3376
    if (!(e2 & DESC_S_MASK))
3377
        goto fail;
3378
    rpl = selector & 3;
3379
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3380
    cpl = env->hflags & HF_CPL_MASK;
3381
    if (e2 & DESC_CS_MASK) {
3382
        if (!(e2 & DESC_R_MASK))
3383
            goto fail;
3384
        if (!(e2 & DESC_C_MASK)) {
3385
            if (dpl < cpl || dpl < rpl)
3386
                goto fail;
3387
        }
3388
    } else {
3389
        if (dpl < cpl || dpl < rpl) {
3390
        fail:
3391
            CC_SRC = eflags & ~CC_Z;
3392
            return;
3393
        }
3394
    }
3395
    CC_SRC = eflags | CC_Z;
3396
}
3397

    
3398
void helper_verw(target_ulong selector1)
3399
{
3400
    uint32_t e1, e2, eflags, selector;
3401
    int rpl, dpl, cpl;
3402

    
3403
    selector = selector1 & 0xffff;
3404
    eflags = helper_cc_compute_all(CC_OP);
3405
    if ((selector & 0xfffc) == 0)
3406
        goto fail;
3407
    if (load_segment(&e1, &e2, selector) != 0)
3408
        goto fail;
3409
    if (!(e2 & DESC_S_MASK))
3410
        goto fail;
3411
    rpl = selector & 3;
3412
    dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3413
    cpl = env->hflags & HF_CPL_MASK;
3414
    if (e2 & DESC_CS_MASK) {
3415
        goto fail;
3416
    } else {
3417
        if (dpl < cpl || dpl < rpl)
3418
            goto fail;
3419
        if (!(e2 & DESC_W_MASK)) {
3420
        fail:
3421
            CC_SRC = eflags & ~CC_Z;
3422
            return;
3423
        }
3424
    }
3425
    CC_SRC = eflags | CC_Z;
3426
}
3427

    
3428
/* x87 FPU helpers */
3429

    
3430
static void fpu_set_exception(int mask)
3431
{
3432
    env->fpus |= mask;
3433
    if (env->fpus & (~env->fpuc & FPUC_EM))
3434
        env->fpus |= FPUS_SE | FPUS_B;
3435
}
3436

    
3437
static inline CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b)
3438
{
3439
    if (b == 0.0)
3440
        fpu_set_exception(FPUS_ZE);
3441
    return a / b;
3442
}
3443

    
3444
static void fpu_raise_exception(void)
3445
{
3446
    if (env->cr[0] & CR0_NE_MASK) {
3447
        raise_exception(EXCP10_COPR);
3448
    }
3449
#if !defined(CONFIG_USER_ONLY)
3450
    else {
3451
        cpu_set_ferr(env);
3452
    }
3453
#endif
3454
}
3455

    
3456
void helper_flds_FT0(uint32_t val)
3457
{
3458
    union {
3459
        float32 f;
3460
        uint32_t i;
3461
    } u;
3462
    u.i = val;
3463
    FT0 = float32_to_floatx(u.f, &env->fp_status);
3464
}
3465

    
3466
void helper_fldl_FT0(uint64_t val)
3467
{
3468
    union {
3469
        float64 f;
3470
        uint64_t i;
3471
    } u;
3472
    u.i = val;
3473
    FT0 = float64_to_floatx(u.f, &env->fp_status);
3474
}
3475

    
3476
void helper_fildl_FT0(int32_t val)
3477
{
3478
    FT0 = int32_to_floatx(val, &env->fp_status);
3479
}
3480

    
3481
void helper_flds_ST0(uint32_t val)
3482
{
3483
    int new_fpstt;
3484
    union {
3485
        float32 f;
3486
        uint32_t i;
3487
    } u;
3488
    new_fpstt = (env->fpstt - 1) & 7;
3489
    u.i = val;
3490
    env->fpregs[new_fpstt].d = float32_to_floatx(u.f, &env->fp_status);
3491
    env->fpstt = new_fpstt;
3492
    env->fptags[new_fpstt] = 0; /* validate stack entry */
3493
}
3494

    
3495
void helper_fldl_ST0(uint64_t val)
3496
{
3497
    int new_fpstt;
3498
    union {
3499
        float64 f;
3500
        uint64_t i;
3501
    } u;
3502
    new_fpstt = (env->fpstt - 1) & 7;
3503
    u.i = val;
3504
    env->fpregs[new_fpstt].d = float64_to_floatx(u.f, &env->fp_status);
3505
    env->fpstt = new_fpstt;
3506
    env->fptags[new_fpstt] = 0; /* validate stack entry */
3507
}
3508

    
3509
void helper_fildl_ST0(int32_t val)
3510
{
3511
    int new_fpstt;
3512
    new_fpstt = (env->fpstt - 1) & 7;
3513
    env->fpregs[new_fpstt].d = int32_to_floatx(val, &env->fp_status);
3514
    env->fpstt = new_fpstt;
3515
    env->fptags[new_fpstt] = 0; /* validate stack entry */
3516
}
3517

    
3518
void helper_fildll_ST0(int64_t val)
3519
{
3520
    int new_fpstt;
3521
    new_fpstt = (env->fpstt - 1) & 7;
3522
    env->fpregs[new_fpstt].d = int64_to_floatx(val, &env->fp_status);
3523
    env->fpstt = new_fpstt;
3524
    env->fptags[new_fpstt] = 0; /* validate stack entry */
3525
}
3526

    
3527
uint32_t helper_fsts_ST0(void)
3528
{
3529
    union {
3530
        float32 f;
3531
        uint32_t i;
3532
    } u;
3533
    u.f = floatx_to_float32(ST0, &env->fp_status);
3534
    return u.i;
3535
}
3536

    
3537
uint64_t helper_fstl_ST0(void)
3538
{
3539
    union {
3540
        float64 f;
3541
        uint64_t i;
3542
    } u;
3543
    u.f = floatx_to_float64(ST0, &env->fp_status);
3544
    return u.i;
3545
}
3546

    
3547
int32_t helper_fist_ST0(void)
3548
{
3549
    int32_t val;
3550
    val = floatx_to_int32(ST0, &env->fp_status);
3551
    if (val != (int16_t)val)
3552
        val = -32768;
3553
    return val;
3554
}
3555

    
3556
int32_t helper_fistl_ST0(void)
3557
{
3558
    int32_t val;
3559
    val = floatx_to_int32(ST0, &env->fp_status);
3560
    return val;
3561
}
3562

    
3563
int64_t helper_fistll_ST0(void)
3564
{
3565
    int64_t val;
3566
    val = floatx_to_int64(ST0, &env->fp_status);
3567
    return val;
3568
}
3569

    
3570
int32_t helper_fistt_ST0(void)
3571
{
3572
    int32_t val;
3573
    val = floatx_to_int32_round_to_zero(ST0, &env->fp_status);
3574
    if (val != (int16_t)val)
3575
        val = -32768;
3576
    return val;
3577
}
3578

    
3579
int32_t helper_fisttl_ST0(void)
3580
{
3581
    int32_t val;
3582
    val = floatx_to_int32_round_to_zero(ST0, &env->fp_status);
3583
    return val;
3584
}
3585

    
3586
int64_t helper_fisttll_ST0(void)
3587
{
3588
    int64_t val;
3589
    val = floatx_to_int64_round_to_zero(ST0, &env->fp_status);
3590
    return val;
3591
}
3592

    
3593
void helper_fldt_ST0(target_ulong ptr)
3594
{
3595
    int new_fpstt;
3596
    new_fpstt = (env->fpstt - 1) & 7;
3597
    env->fpregs[new_fpstt].d = helper_fldt(ptr);
3598
    env->fpstt = new_fpstt;
3599
    env->fptags[new_fpstt] = 0; /* validate stack entry */
3600
}
3601

    
3602
void helper_fstt_ST0(target_ulong ptr)
3603
{
3604
    helper_fstt(ST0, ptr);
3605
}
3606

    
3607
void helper_fpush(void)
3608
{
3609
    fpush();
3610
}
3611

    
3612
void helper_fpop(void)
3613
{
3614
    fpop();
3615
}
3616

    
3617
void helper_fdecstp(void)
3618
{
3619
    env->fpstt = (env->fpstt - 1) & 7;
3620
    env->fpus &= (~0x4700);
3621
}
3622

    
3623
void helper_fincstp(void)
3624
{
3625
    env->fpstt = (env->fpstt + 1) & 7;
3626
    env->fpus &= (~0x4700);
3627
}
3628

    
3629
/* FPU move */
3630

    
3631
void helper_ffree_STN(int st_index)
3632
{
3633
    env->fptags[(env->fpstt + st_index) & 7] = 1;
3634
}
3635

    
3636
void helper_fmov_ST0_FT0(void)
3637
{
3638
    ST0 = FT0;
3639
}
3640

    
3641
void helper_fmov_FT0_STN(int st_index)
3642
{
3643
    FT0 = ST(st_index);
3644
}
3645

    
3646
void helper_fmov_ST0_STN(int st_index)
3647
{
3648
    ST0 = ST(st_index);
3649
}
3650

    
3651
void helper_fmov_STN_ST0(int st_index)
3652
{
3653
    ST(st_index) = ST0;
3654
}
3655

    
3656
void helper_fxchg_ST0_STN(int st_index)
3657
{
3658
    CPU86_LDouble tmp;
3659
    tmp = ST(st_index);
3660
    ST(st_index) = ST0;
3661
    ST0 = tmp;
3662
}
3663

    
3664
/* FPU operations */
3665

    
3666
static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};
3667

    
3668
void helper_fcom_ST0_FT0(void)
3669
{
3670
    int ret;
3671

    
3672
    ret = floatx_compare(ST0, FT0, &env->fp_status);
3673
    env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
3674
}
3675

    
3676
void helper_fucom_ST0_FT0(void)
3677
{
3678
    int ret;
3679

    
3680
    ret = floatx_compare_quiet(ST0, FT0, &env->fp_status);
3681
    env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret+ 1];
3682
}
3683

    
3684
static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
3685

    
3686
void helper_fcomi_ST0_FT0(void)
3687
{
3688
    int eflags;
3689
    int ret;
3690

    
3691
    ret = floatx_compare(ST0, FT0, &env->fp_status);
3692
    eflags = helper_cc_compute_all(CC_OP);
3693
    eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
3694
    CC_SRC = eflags;
3695
}
3696

    
3697
void helper_fucomi_ST0_FT0(void)
3698
{
3699
    int eflags;
3700
    int ret;
3701

    
3702
    ret = floatx_compare_quiet(ST0, FT0, &env->fp_status);
3703
    eflags = helper_cc_compute_all(CC_OP);
3704
    eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
3705
    CC_SRC = eflags;
3706
}
3707

    
3708
void helper_fadd_ST0_FT0(void)
3709
{
3710
    ST0 += FT0;
3711
}
3712

    
3713
void helper_fmul_ST0_FT0(void)
3714
{
3715
    ST0 *= FT0;
3716
}
3717

    
3718
void helper_fsub_ST0_FT0(void)
3719
{
3720
    ST0 -= FT0;
3721
}
3722

    
3723
void helper_fsubr_ST0_FT0(void)
3724
{
3725
    ST0 = FT0 - ST0;
3726
}
3727

    
3728
void helper_fdiv_ST0_FT0(void)
3729
{
3730
    ST0 = helper_fdiv(ST0, FT0);
3731
}
3732

    
3733
void helper_fdivr_ST0_FT0(void)
3734
{
3735
    ST0 = helper_fdiv(FT0, ST0);
3736
}
3737

    
3738
/* fp operations between STN and ST0 */
3739

    
3740
void helper_fadd_STN_ST0(int st_index)
3741
{
3742
    ST(st_index) += ST0;
3743
}
3744

    
3745
void helper_fmul_STN_ST0(int st_index)
3746
{
3747
    ST(st_index) *= ST0;
3748
}
3749

    
3750
void helper_fsub_STN_ST0(int st_index)
3751
{
3752
    ST(st_index) -= ST0;
3753
}
3754

    
3755
void helper_fsubr_STN_ST0(int st_index)
3756
{
3757
    CPU86_LDouble *p;
3758
    p = &ST(st_index);
3759
    *p = ST0 - *p;
3760
}
3761

    
3762
void helper_fdiv_STN_ST0(int st_index)
3763
{
3764
    CPU86_LDouble *p;
3765
    p = &ST(st_index);
3766
    *p = helper_fdiv(*p, ST0);
3767
}
3768

    
3769
void helper_fdivr_STN_ST0(int st_index)
3770
{
3771
    CPU86_LDouble *p;
3772
    p = &ST(st_index);
3773
    *p = helper_fdiv(ST0, *p);
3774
}
3775

    
3776
/* misc FPU operations */
3777
void helper_fchs_ST0(void)
3778
{
3779
    ST0 = floatx_chs(ST0);
3780
}
3781

    
3782
void helper_fabs_ST0(void)
3783
{
3784
    ST0 = floatx_abs(ST0);
3785
}
3786

    
3787
void helper_fld1_ST0(void)
3788
{
3789
    ST0 = f15rk[1];
3790
}
3791

    
3792
void helper_fldl2t_ST0(void)
3793
{
3794
    ST0 = f15rk[6];
3795
}
3796

    
3797
void helper_fldl2e_ST0(void)
3798
{
3799
    ST0 = f15rk[5];
3800
}
3801

    
3802
void helper_fldpi_ST0(void)
3803
{
3804
    ST0 = f15rk[2];
3805
}
3806

    
3807
void helper_fldlg2_ST0(void)
3808
{
3809
    ST0 = f15rk[3];
3810
}
3811

    
3812
void helper_fldln2_ST0(void)
3813
{
3814
    ST0 = f15rk[4];
3815
}
3816

    
3817
void helper_fldz_ST0(void)
3818
{
3819
    ST0 = f15rk[0];
3820
}
3821

    
3822
void helper_fldz_FT0(void)
3823
{
3824
    FT0 = f15rk[0];
3825
}
3826

    
3827
uint32_t helper_fnstsw(void)
3828
{
3829
    return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
3830
}
3831

    
3832
uint32_t helper_fnstcw(void)
3833
{
3834
    return env->fpuc;
3835
}
3836

    
3837
static void update_fp_status(void)
3838
{
3839
    int rnd_type;
3840

    
3841
    /* set rounding mode */
3842
    switch(env->fpuc & RC_MASK) {
3843
    default:
3844
    case RC_NEAR:
3845
        rnd_type = float_round_nearest_even;
3846
        break;
3847
    case RC_DOWN:
3848
        rnd_type = float_round_down;
3849
        break;
3850
    case RC_UP:
3851
        rnd_type = float_round_up;
3852
        break;
3853
    case RC_CHOP:
3854
        rnd_type = float_round_to_zero;
3855
        break;
3856
    }
3857
    set_float_rounding_mode(rnd_type, &env->fp_status);
3858
#ifdef FLOATX80
3859
    switch((env->fpuc >> 8) & 3) {
3860
    case 0:
3861
        rnd_type = 32;
3862
        break;
3863
    case 2:
3864
        rnd_type = 64;
3865
        break;
3866
    case 3:
3867
    default:
3868
        rnd_type = 80;
3869
        break;
3870
    }
3871
    set_floatx80_rounding_precision(rnd_type, &env->fp_status);
3872
#endif
3873
}
3874

    
3875
void helper_fldcw(uint32_t val)
3876
{
3877
    env->fpuc = val;
3878
    update_fp_status();
3879
}
3880

    
3881
void helper_fclex(void)
3882
{
3883
    env->fpus &= 0x7f00;
3884
}
3885

    
3886
void helper_fwait(void)
3887
{
3888
    if (env->fpus & FPUS_SE)
3889
        fpu_raise_exception();
3890
}
3891

    
3892
void helper_fninit(void)
3893
{
3894
    env->fpus = 0;
3895
    env->fpstt = 0;
3896
    env->fpuc = 0x37f;
3897
    env->fptags[0] = 1;
3898
    env->fptags[1] = 1;
3899
    env->fptags[2] = 1;
3900
    env->fptags[3] = 1;
3901
    env->fptags[4] = 1;
3902
    env->fptags[5] = 1;
3903
    env->fptags[6] = 1;
3904
    env->fptags[7] = 1;
3905
}
3906

    
3907
/* BCD ops */
3908

    
3909
void helper_fbld_ST0(target_ulong ptr)
3910
{
3911
    CPU86_LDouble tmp;
3912
    uint64_t val;
3913
    unsigned int v;
3914
    int i;
3915

    
3916
    val = 0;
3917
    for(i = 8; i >= 0; i--) {
3918
        v = ldub(ptr + i);
3919
        val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
3920
    }
3921
    tmp = val;
3922
    if (ldub(ptr + 9) & 0x80)
3923
        tmp = -tmp;
3924
    fpush();
3925
    ST0 = tmp;
3926
}
3927

    
3928
void helper_fbst_ST0(target_ulong ptr)
3929
{
3930
    int v;
3931
    target_ulong mem_ref, mem_end;
3932
    int64_t val;
3933

    
3934
    val = floatx_to_int64(ST0, &env->fp_status);
3935
    mem_ref = ptr;
3936
    mem_end = mem_ref + 9;
3937
    if (val < 0) {
3938
        stb(mem_end, 0x80);
3939
        val = -val;
3940
    } else {
3941
        stb(mem_end, 0x00);
3942
    }
3943
    while (mem_ref < mem_end) {
3944
        if (val == 0)
3945
            break;
3946
        v = val % 100;
3947
        val = val / 100;
3948
        v = ((v / 10) << 4) | (v % 10);
3949
        stb(mem_ref++, v);
3950
    }
3951
    while (mem_ref < mem_end) {
3952
        stb(mem_ref++, 0);
3953
    }
3954
}
3955

    
3956
void helper_f2xm1(void)
3957
{
3958
    ST0 = pow(2.0,ST0) - 1.0;
3959
}
3960

    
3961
void helper_fyl2x(void)
3962
{
3963
    CPU86_LDouble fptemp;
3964

    
3965
    fptemp = ST0;
3966
    if (fptemp>0.0){
3967
        fptemp = log(fptemp)/log(2.0);         /* log2(ST) */
3968
        ST1 *= fptemp;
3969
        fpop();
3970
    } else {
3971
        env->fpus &= (~0x4700);
3972
        env->fpus |= 0x400;
3973
    }
3974
}
3975

    
3976
void helper_fptan(void)
3977
{
3978
    CPU86_LDouble fptemp;
3979

    
3980
    fptemp = ST0;
3981
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
3982
        env->fpus |= 0x400;
3983
    } else {
3984
        ST0 = tan(fptemp);
3985
        fpush();
3986
        ST0 = 1.0;
3987
        env->fpus &= (~0x400);  /* C2 <-- 0 */
3988
        /* the above code is for  |arg| < 2**52 only */
3989
    }
3990
}
3991

    
3992
void helper_fpatan(void)
3993
{
3994
    CPU86_LDouble fptemp, fpsrcop;
3995

    
3996
    fpsrcop = ST1;
3997
    fptemp = ST0;
3998
    ST1 = atan2(fpsrcop,fptemp);
3999
    fpop();
4000
}
4001

    
4002
void helper_fxtract(void)
4003
{
4004
    CPU86_LDoubleU temp;
4005
    unsigned int expdif;
4006

    
4007
    temp.d = ST0;
4008
    expdif = EXPD(temp) - EXPBIAS;
4009
    /*DP exponent bias*/
4010
    ST0 = expdif;
4011
    fpush();
4012
    BIASEXPONENT(temp);
4013
    ST0 = temp.d;
4014
}
4015

    
4016
void helper_fprem1(void)
4017
{
4018
    CPU86_LDouble dblq, fpsrcop, fptemp;
4019
    CPU86_LDoubleU fpsrcop1, fptemp1;
4020
    int expdif;
4021
    signed long long int q;
4022

    
4023
    if (isinf(ST0) || isnan(ST0) || isnan(ST1) || (ST1 == 0.0)) {
4024
        ST0 = 0.0 / 0.0; /* NaN */
4025
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4026
        return;
4027
    }
4028

    
4029
    fpsrcop = ST0;
4030
    fptemp = ST1;
4031
    fpsrcop1.d = fpsrcop;
4032
    fptemp1.d = fptemp;
4033
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
4034

    
4035
    if (expdif < 0) {
4036
        /* optimisation? taken from the AMD docs */
4037
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4038
        /* ST0 is unchanged */
4039
        return;
4040
    }
4041

    
4042
    if (expdif < 53) {
4043
        dblq = fpsrcop / fptemp;
4044
        /* round dblq towards nearest integer */
4045
        dblq = rint(dblq);
4046
        ST0 = fpsrcop - fptemp * dblq;
4047

    
4048
        /* convert dblq to q by truncating towards zero */
4049
        if (dblq < 0.0)
4050
           q = (signed long long int)(-dblq);
4051
        else
4052
           q = (signed long long int)dblq;
4053

    
4054
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4055
                                /* (C0,C3,C1) <-- (q2,q1,q0) */
4056
        env->fpus |= (q & 0x4) << (8 - 2);  /* (C0) <-- q2 */
4057
        env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
4058
        env->fpus |= (q & 0x1) << (9 - 0);  /* (C1) <-- q0 */
4059
    } else {
4060
        env->fpus |= 0x400;  /* C2 <-- 1 */
4061
        fptemp = pow(2.0, expdif - 50);
4062
        fpsrcop = (ST0 / ST1) / fptemp;
4063
        /* fpsrcop = integer obtained by chopping */
4064
        fpsrcop = (fpsrcop < 0.0) ?
4065
                  -(floor(fabs(fpsrcop))) : floor(fpsrcop);
4066
        ST0 -= (ST1 * fpsrcop * fptemp);
4067
    }
4068
}
4069

    
4070
void helper_fprem(void)
4071
{
4072
    CPU86_LDouble dblq, fpsrcop, fptemp;
4073
    CPU86_LDoubleU fpsrcop1, fptemp1;
4074
    int expdif;
4075
    signed long long int q;
4076

    
4077
    if (isinf(ST0) || isnan(ST0) || isnan(ST1) || (ST1 == 0.0)) {
4078
       ST0 = 0.0 / 0.0; /* NaN */
4079
       env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4080
       return;
4081
    }
4082

    
4083
    fpsrcop = (CPU86_LDouble)ST0;
4084
    fptemp = (CPU86_LDouble)ST1;
4085
    fpsrcop1.d = fpsrcop;
4086
    fptemp1.d = fptemp;
4087
    expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
4088

    
4089
    if (expdif < 0) {
4090
        /* optimisation? taken from the AMD docs */
4091
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4092
        /* ST0 is unchanged */
4093
        return;
4094
    }
4095

    
4096
    if ( expdif < 53 ) {
4097
        dblq = fpsrcop/*ST0*/ / fptemp/*ST1*/;
4098
        /* round dblq towards zero */
4099
        dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq);
4100
        ST0 = fpsrcop/*ST0*/ - fptemp * dblq;
4101

    
4102
        /* convert dblq to q by truncating towards zero */
4103
        if (dblq < 0.0)
4104
           q = (signed long long int)(-dblq);
4105
        else
4106
           q = (signed long long int)dblq;
4107

    
4108
        env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4109
                                /* (C0,C3,C1) <-- (q2,q1,q0) */
4110
        env->fpus |= (q & 0x4) << (8 - 2);  /* (C0) <-- q2 */
4111
        env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
4112
        env->fpus |= (q & 0x1) << (9 - 0);  /* (C1) <-- q0 */
4113
    } else {
4114
        int N = 32 + (expdif % 32); /* as per AMD docs */
4115
        env->fpus |= 0x400;  /* C2 <-- 1 */
4116
        fptemp = pow(2.0, (double)(expdif - N));
4117
        fpsrcop = (ST0 / ST1) / fptemp;
4118
        /* fpsrcop = integer obtained by chopping */
4119
        fpsrcop = (fpsrcop < 0.0) ?
4120
                  -(floor(fabs(fpsrcop))) : floor(fpsrcop);
4121
        ST0 -= (ST1 * fpsrcop * fptemp);
4122
    }
4123
}
4124

    
4125
void helper_fyl2xp1(void)
4126
{
4127
    CPU86_LDouble fptemp;
4128

    
4129
    fptemp = ST0;
4130
    if ((fptemp+1.0)>0.0) {
4131
        fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
4132
        ST1 *= fptemp;
4133
        fpop();
4134
    } else {
4135
        env->fpus &= (~0x4700);
4136
        env->fpus |= 0x400;
4137
    }
4138
}
4139

    
4140
void helper_fsqrt(void)
4141
{
4142
    CPU86_LDouble fptemp;
4143

    
4144
    fptemp = ST0;
4145
    if (fptemp<0.0) {
4146
        env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
4147
        env->fpus |= 0x400;
4148
    }
4149
    ST0 = sqrt(fptemp);
4150
}
4151

    
4152
void helper_fsincos(void)
4153
{
4154
    CPU86_LDouble fptemp;
4155

    
4156
    fptemp = ST0;
4157
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4158
        env->fpus |= 0x400;
4159
    } else {
4160
        ST0 = sin(fptemp);
4161
        fpush();
4162
        ST0 = cos(fptemp);
4163
        env->fpus &= (~0x400);  /* C2 <-- 0 */
4164
        /* the above code is for  |arg| < 2**63 only */
4165
    }
4166
}
4167

    
4168
void helper_frndint(void)
4169
{
4170
    ST0 = floatx_round_to_int(ST0, &env->fp_status);
4171
}
4172

    
4173
void helper_fscale(void)
4174
{
4175
    ST0 = ldexp (ST0, (int)(ST1));
4176
}
4177

    
4178
void helper_fsin(void)
4179
{
4180
    CPU86_LDouble fptemp;
4181

    
4182
    fptemp = ST0;
4183
    if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4184
        env->fpus |= 0x400;
4185
    } else {
4186
        ST0 = sin(fptemp);
4187
        env->fpus &= (~0x400);  /* C2 <-- 0 */
4188
        /* the above code is for  |arg| < 2**53 only */
4189
    }
4190
}
4191

    
4192
void helper_fcos(void)
4193
{
4194
    CPU86_LDouble fptemp;
4195

    
4196
    fptemp = ST0;
4197
    if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4198
        env->fpus |= 0x400;
4199
    } else {
4200
        ST0 = cos(fptemp);
4201
        env->fpus &= (~0x400);  /* C2 <-- 0 */
4202
        /* the above code is for  |arg5 < 2**63 only */
4203
    }
4204
}
4205

    
4206
void helper_fxam_ST0(void)
4207
{
4208
    CPU86_LDoubleU temp;
4209
    int expdif;
4210

    
4211
    temp.d = ST0;
4212

    
4213
    env->fpus &= (~0x4700);  /* (C3,C2,C1,C0) <-- 0000 */
4214
    if (SIGND(temp))
4215
        env->fpus |= 0x200; /* C1 <-- 1 */
4216

    
4217
    /* XXX: test fptags too */
4218
    expdif = EXPD(temp);
4219
    if (expdif == MAXEXPD) {
4220
#ifdef USE_X86LDOUBLE
4221
        if (MANTD(temp) == 0x8000000000000000ULL)
4222
#else
4223
        if (MANTD(temp) == 0)
4224
#endif
4225
            env->fpus |=  0x500 /*Infinity*/;
4226
        else
4227
            env->fpus |=  0x100 /*NaN*/;
4228
    } else if (expdif == 0) {
4229
        if (MANTD(temp) == 0)
4230
            env->fpus |=  0x4000 /*Zero*/;
4231
        else
4232
            env->fpus |= 0x4400 /*Denormal*/;
4233
    } else {
4234
        env->fpus |= 0x400;
4235
    }
4236
}
4237

    
4238
void helper_fstenv(target_ulong ptr, int data32)
4239
{
4240
    int fpus, fptag, exp, i;
4241
    uint64_t mant;
4242
    CPU86_LDoubleU tmp;
4243

    
4244
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
4245
    fptag = 0;
4246
    for (i=7; i>=0; i--) {
4247
        fptag <<= 2;
4248
        if (env->fptags[i]) {
4249
            fptag |= 3;
4250
        } else {
4251
            tmp.d = env->fpregs[i].d;
4252
            exp = EXPD(tmp);
4253
            mant = MANTD(tmp);
4254
            if (exp == 0 && mant == 0) {
4255
                /* zero */
4256
                fptag |= 1;
4257
            } else if (exp == 0 || exp == MAXEXPD
4258
#ifdef USE_X86LDOUBLE
4259
                       || (mant & (1LL << 63)) == 0
4260
#endif
4261
                       ) {
4262
                /* NaNs, infinity, denormal */
4263
                fptag |= 2;
4264
            }
4265
        }
4266
    }
4267
    if (data32) {
4268
        /* 32 bit */
4269
        stl(ptr, env->fpuc);
4270
        stl(ptr + 4, fpus);
4271
        stl(ptr + 8, fptag);
4272
        stl(ptr + 12, 0); /* fpip */
4273
        stl(ptr + 16, 0); /* fpcs */
4274
        stl(ptr + 20, 0); /* fpoo */
4275
        stl(ptr + 24, 0); /* fpos */
4276
    } else {
4277
        /* 16 bit */
4278
        stw(ptr, env->fpuc);
4279
        stw(ptr + 2, fpus);
4280
        stw(ptr + 4, fptag);
4281
        stw(ptr + 6, 0);
4282
        stw(ptr + 8, 0);
4283
        stw(ptr + 10, 0);
4284
        stw(ptr + 12, 0);
4285
    }
4286
}
4287

    
4288
void helper_fldenv(target_ulong ptr, int data32)
4289
{
4290
    int i, fpus, fptag;
4291

    
4292
    if (data32) {
4293
        env->fpuc = lduw(ptr);
4294
        fpus = lduw(ptr + 4);
4295
        fptag = lduw(ptr + 8);
4296
    }
4297
    else {
4298
        env->fpuc = lduw(ptr);
4299
        fpus = lduw(ptr + 2);
4300
        fptag = lduw(ptr + 4);
4301
    }
4302
    env->fpstt = (fpus >> 11) & 7;
4303
    env->fpus = fpus & ~0x3800;
4304
    for(i = 0;i < 8; i++) {
4305
        env->fptags[i] = ((fptag & 3) == 3);
4306
        fptag >>= 2;
4307
    }
4308
}
4309

    
4310
void helper_fsave(target_ulong ptr, int data32)
4311
{
4312
    CPU86_LDouble tmp;
4313
    int i;
4314

    
4315
    helper_fstenv(ptr, data32);
4316

    
4317
    ptr += (14 << data32);
4318
    for(i = 0;i < 8; i++) {
4319
        tmp = ST(i);
4320
        helper_fstt(tmp, ptr);
4321
        ptr += 10;
4322
    }
4323

    
4324
    /* fninit */
4325
    env->fpus = 0;
4326
    env->fpstt = 0;
4327
    env->fpuc = 0x37f;
4328
    env->fptags[0] = 1;
4329
    env->fptags[1] = 1;
4330
    env->fptags[2] = 1;
4331
    env->fptags[3] = 1;
4332
    env->fptags[4] = 1;
4333
    env->fptags[5] = 1;
4334
    env->fptags[6] = 1;
4335
    env->fptags[7] = 1;
4336
}
4337

    
4338
void helper_frstor(target_ulong ptr, int data32)
4339
{
4340
    CPU86_LDouble tmp;
4341
    int i;
4342

    
4343
    helper_fldenv(ptr, data32);
4344
    ptr += (14 << data32);
4345

    
4346
    for(i = 0;i < 8; i++) {
4347
        tmp = helper_fldt(ptr);
4348
        ST(i) = tmp;
4349
        ptr += 10;
4350
    }
4351
}
4352

    
4353
void helper_fxsave(target_ulong ptr, int data64)
4354
{
4355
    int fpus, fptag, i, nb_xmm_regs;
4356
    CPU86_LDouble tmp;
4357
    target_ulong addr;
4358

    
4359
    /* The operand must be 16 byte aligned */
4360
    if (ptr & 0xf) {
4361
        raise_exception(EXCP0D_GPF);
4362
    }
4363

    
4364
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
4365
    fptag = 0;
4366
    for(i = 0; i < 8; i++) {
4367
        fptag |= (env->fptags[i] << i);
4368
    }
4369
    stw(ptr, env->fpuc);
4370
    stw(ptr + 2, fpus);
4371
    stw(ptr + 4, fptag ^ 0xff);
4372
#ifdef TARGET_X86_64
4373
    if (data64) {
4374
        stq(ptr + 0x08, 0); /* rip */
4375
        stq(ptr + 0x10, 0); /* rdp */
4376
    } else 
4377
#endif
4378
    {
4379
        stl(ptr + 0x08, 0); /* eip */
4380
        stl(ptr + 0x0c, 0); /* sel  */
4381
        stl(ptr + 0x10, 0); /* dp */
4382
        stl(ptr + 0x14, 0); /* sel  */
4383
    }
4384

    
4385
    addr = ptr + 0x20;
4386
    for(i = 0;i < 8; i++) {
4387
        tmp = ST(i);
4388
        helper_fstt(tmp, addr);
4389
        addr += 16;
4390
    }
4391

    
4392
    if (env->cr[4] & CR4_OSFXSR_MASK) {
4393
        /* XXX: finish it */
4394
        stl(ptr + 0x18, env->mxcsr); /* mxcsr */
4395
        stl(ptr + 0x1c, 0x0000ffff); /* mxcsr_mask */
4396
        if (env->hflags & HF_CS64_MASK)
4397
            nb_xmm_regs = 16;
4398
        else
4399
            nb_xmm_regs = 8;
4400
        addr = ptr + 0xa0;
4401
        /* Fast FXSAVE leaves out the XMM registers */
4402
        if (!(env->efer & MSR_EFER_FFXSR)
4403
          || (env->hflags & HF_CPL_MASK)
4404
          || !(env->hflags & HF_LMA_MASK)) {
4405
            for(i = 0; i < nb_xmm_regs; i++) {
4406
                stq(addr, env->xmm_regs[i].XMM_Q(0));
4407
                stq(addr + 8, env->xmm_regs[i].XMM_Q(1));
4408
                addr += 16;
4409
            }
4410
        }
4411
    }
4412
}
4413

    
4414
void helper_fxrstor(target_ulong ptr, int data64)
4415
{
4416
    int i, fpus, fptag, nb_xmm_regs;
4417
    CPU86_LDouble tmp;
4418
    target_ulong addr;
4419

    
4420
    /* The operand must be 16 byte aligned */
4421
    if (ptr & 0xf) {
4422
        raise_exception(EXCP0D_GPF);
4423
    }
4424

    
4425
    env->fpuc = lduw(ptr);
4426
    fpus = lduw(ptr + 2);
4427
    fptag = lduw(ptr + 4);
4428
    env->fpstt = (fpus >> 11) & 7;
4429
    env->fpus = fpus & ~0x3800;
4430
    fptag ^= 0xff;
4431
    for(i = 0;i < 8; i++) {
4432
        env->fptags[i] = ((fptag >> i) & 1);
4433
    }
4434

    
4435
    addr = ptr + 0x20;
4436
    for(i = 0;i < 8; i++) {
4437
        tmp = helper_fldt(addr);
4438
        ST(i) = tmp;
4439
        addr += 16;
4440
    }
4441

    
4442
    if (env->cr[4] & CR4_OSFXSR_MASK) {
4443
        /* XXX: finish it */
4444
        env->mxcsr = ldl(ptr + 0x18);
4445
        //ldl(ptr + 0x1c);
4446
        if (env->hflags & HF_CS64_MASK)
4447
            nb_xmm_regs = 16;
4448
        else
4449
            nb_xmm_regs = 8;
4450
        addr = ptr + 0xa0;
4451
        /* Fast FXRESTORE leaves out the XMM registers */
4452
        if (!(env->efer & MSR_EFER_FFXSR)
4453
          || (env->hflags & HF_CPL_MASK)
4454
          || !(env->hflags & HF_LMA_MASK)) {
4455
            for(i = 0; i < nb_xmm_regs; i++) {
4456
                env->xmm_regs[i].XMM_Q(0) = ldq(addr);
4457
                env->xmm_regs[i].XMM_Q(1) = ldq(addr + 8);
4458
                addr += 16;
4459
            }
4460
        }
4461
    }
4462
}
4463

    
4464
#ifndef USE_X86LDOUBLE
4465

    
4466
void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, CPU86_LDouble f)
4467
{
4468
    CPU86_LDoubleU temp;
4469
    int e;
4470

    
4471
    temp.d = f;
4472
    /* mantissa */
4473
    *pmant = (MANTD(temp) << 11) | (1LL << 63);
4474
    /* exponent + sign */
4475
    e = EXPD(temp) - EXPBIAS + 16383;
4476
    e |= SIGND(temp) >> 16;
4477
    *pexp = e;
4478
}
4479

    
4480
CPU86_LDouble cpu_set_fp80(uint64_t mant, uint16_t upper)
4481
{
4482
    CPU86_LDoubleU temp;
4483
    int e;
4484
    uint64_t ll;
4485

    
4486
    /* XXX: handle overflow ? */
4487
    e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
4488
    e |= (upper >> 4) & 0x800; /* sign */
4489
    ll = (mant >> 11) & ((1LL << 52) - 1);
4490
#ifdef __arm__
4491
    temp.l.upper = (e << 20) | (ll >> 32);
4492
    temp.l.lower = ll;
4493
#else
4494
    temp.ll = ll | ((uint64_t)e << 52);
4495
#endif
4496
    return temp.d;
4497
}
4498

    
4499
#else
4500

    
4501
void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, CPU86_LDouble f)
4502
{
4503
    CPU86_LDoubleU temp;
4504

    
4505
    temp.d = f;
4506
    *pmant = temp.l.lower;
4507
    *pexp = temp.l.upper;
4508
}
4509

    
4510
CPU86_LDouble cpu_set_fp80(uint64_t mant, uint16_t upper)
4511
{
4512
    CPU86_LDoubleU temp;
4513

    
4514
    temp.l.upper = upper;
4515
    temp.l.lower = mant;
4516
    return temp.d;
4517
}
4518
#endif
4519

    
4520
#ifdef TARGET_X86_64
4521

    
4522
//#define DEBUG_MULDIV
4523

    
4524
static void add128(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
4525
{
4526
    *plow += a;
4527
    /* carry test */
4528
    if (*plow < a)
4529
        (*phigh)++;
4530
    *phigh += b;
4531
}
4532

    
4533
static void neg128(uint64_t *plow, uint64_t *phigh)
4534
{
4535
    *plow = ~ *plow;
4536
    *phigh = ~ *phigh;
4537
    add128(plow, phigh, 1, 0);
4538
}
4539

    
4540
/* return TRUE if overflow */
4541
static int div64(uint64_t *plow, uint64_t *phigh, uint64_t b)
4542
{
4543
    uint64_t q, r, a1, a0;
4544
    int i, qb, ab;
4545

    
4546
    a0 = *plow;
4547
    a1 = *phigh;
4548
    if (a1 == 0) {
4549
        q = a0 / b;
4550
        r = a0 % b;
4551
        *plow = q;
4552
        *phigh = r;
4553
    } else {
4554
        if (a1 >= b)
4555
            return 1;
4556
        /* XXX: use a better algorithm */
4557
        for(i = 0; i < 64; i++) {
4558
            ab = a1 >> 63;
4559
            a1 = (a1 << 1) | (a0 >> 63);
4560
            if (ab || a1 >= b) {
4561
                a1 -= b;
4562
                qb = 1;
4563
            } else {
4564
                qb = 0;
4565
            }
4566
            a0 = (a0 << 1) | qb;
4567
        }
4568
#if defined(DEBUG_MULDIV)
4569
        printf("div: 0x%016" PRIx64 "%016" PRIx64 " / 0x%016" PRIx64 ": q=0x%016" PRIx64 " r=0x%016" PRIx64 "\n",
4570
               *phigh, *plow, b, a0, a1);
4571
#endif
4572
        *plow = a0;
4573
        *phigh = a1;
4574
    }
4575
    return 0;
4576
}
4577

    
4578
/* return TRUE if overflow */
4579
static int idiv64(uint64_t *plow, uint64_t *phigh, int64_t b)
4580
{
4581
    int sa, sb;
4582
    sa = ((int64_t)*phigh < 0);
4583
    if (sa)
4584
        neg128(plow, phigh);
4585
    sb = (b < 0);
4586
    if (sb)
4587
        b = -b;
4588
    if (div64(plow, phigh, b) != 0)
4589
        return 1;
4590
    if (sa ^ sb) {
4591
        if (*plow > (1ULL << 63))
4592
            return 1;
4593
        *plow = - *plow;
4594
    } else {
4595
        if (*plow >= (1ULL << 63))
4596
            return 1;
4597
    }
4598
    if (sa)
4599
        *phigh = - *phigh;
4600
    return 0;
4601
}
4602

    
4603
void helper_mulq_EAX_T0(target_ulong t0)
4604
{
4605
    uint64_t r0, r1;
4606

    
4607
    mulu64(&r0, &r1, EAX, t0);
4608
    EAX = r0;
4609
    EDX = r1;
4610
    CC_DST = r0;
4611
    CC_SRC = r1;
4612
}
4613

    
4614
void helper_imulq_EAX_T0(target_ulong t0)
4615
{
4616
    uint64_t r0, r1;
4617

    
4618
    muls64(&r0, &r1, EAX, t0);
4619
    EAX = r0;
4620
    EDX = r1;
4621
    CC_DST = r0;
4622
    CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63));
4623
}
4624

    
4625
target_ulong helper_imulq_T0_T1(target_ulong t0, target_ulong t1)
4626
{
4627
    uint64_t r0, r1;
4628

    
4629
    muls64(&r0, &r1, t0, t1);
4630
    CC_DST = r0;
4631
    CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63));
4632
    return r0;
4633
}
4634

    
4635
void helper_divq_EAX(target_ulong t0)
4636
{
4637
    uint64_t r0, r1;
4638
    if (t0 == 0) {
4639
        raise_exception(EXCP00_DIVZ);
4640
    }
4641
    r0 = EAX;
4642
    r1 = EDX;
4643
    if (div64(&r0, &r1, t0))
4644
        raise_exception(EXCP00_DIVZ);
4645
    EAX = r0;
4646
    EDX = r1;
4647
}
4648

    
4649
void helper_idivq_EAX(target_ulong t0)
4650
{
4651
    uint64_t r0, r1;
4652
    if (t0 == 0) {
4653
        raise_exception(EXCP00_DIVZ);
4654
    }
4655
    r0 = EAX;
4656
    r1 = EDX;
4657
    if (idiv64(&r0, &r1, t0))
4658
        raise_exception(EXCP00_DIVZ);
4659
    EAX = r0;
4660
    EDX = r1;
4661
}
4662
#endif
4663

    
4664
static void do_hlt(void)
4665
{
4666
    env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */
4667
    env->halted = 1;
4668
    env->exception_index = EXCP_HLT;
4669
    cpu_loop_exit();
4670
}
4671

    
4672
void helper_hlt(int next_eip_addend)
4673
{
4674
    helper_svm_check_intercept_param(SVM_EXIT_HLT, 0);
4675
    EIP += next_eip_addend;
4676
    
4677
    do_hlt();
4678
}
4679

    
4680
void helper_monitor(target_ulong ptr)
4681
{
4682
    if ((uint32_t)ECX != 0)
4683
        raise_exception(EXCP0D_GPF);
4684
    /* XXX: store address ? */
4685
    helper_svm_check_intercept_param(SVM_EXIT_MONITOR, 0);
4686
}
4687

    
4688
void helper_mwait(int next_eip_addend)
4689
{
4690
    if ((uint32_t)ECX != 0)
4691
        raise_exception(EXCP0D_GPF);
4692
    helper_svm_check_intercept_param(SVM_EXIT_MWAIT, 0);
4693
    EIP += next_eip_addend;
4694

    
4695
    /* XXX: not complete but not completely erroneous */
4696
    if (env->cpu_index != 0 || env->next_cpu != NULL) {
4697
        /* more than one CPU: do not sleep because another CPU may
4698
           wake this one */
4699
    } else {
4700
        do_hlt();
4701
    }
4702
}
4703

    
4704
void helper_debug(void)
4705
{
4706
    env->exception_index = EXCP_DEBUG;
4707
    cpu_loop_exit();
4708
}
4709

    
4710
void helper_reset_rf(void)
4711
{
4712
    env->eflags &= ~RF_MASK;
4713
}
4714

    
4715
void helper_raise_interrupt(int intno, int next_eip_addend)
4716
{
4717
    raise_interrupt(intno, 1, 0, next_eip_addend);
4718
}
4719

    
4720
void helper_raise_exception(int exception_index)
4721
{
4722
    raise_exception(exception_index);
4723
}
4724

    
4725
void helper_cli(void)
4726
{
4727
    env->eflags &= ~IF_MASK;
4728
}
4729

    
4730
void helper_sti(void)
4731
{
4732
    env->eflags |= IF_MASK;
4733
}
4734

    
4735
#if 0
4736
/* vm86plus instructions */
4737
void helper_cli_vm(void)
4738
{
4739
    env->eflags &= ~VIF_MASK;
4740
}
4741

4742
void helper_sti_vm(void)
4743
{
4744
    env->eflags |= VIF_MASK;
4745
    if (env->eflags & VIP_MASK) {
4746
        raise_exception(EXCP0D_GPF);
4747
    }
4748
}
4749
#endif
4750

    
4751
void helper_set_inhibit_irq(void)
4752
{
4753
    env->hflags |= HF_INHIBIT_IRQ_MASK;
4754
}
4755

    
4756
void helper_reset_inhibit_irq(void)
4757
{
4758
    env->hflags &= ~HF_INHIBIT_IRQ_MASK;
4759
}
4760

    
4761
void helper_boundw(target_ulong a0, int v)
4762
{
4763
    int low, high;
4764
    low = ldsw(a0);
4765
    high = ldsw(a0 + 2);
4766
    v = (int16_t)v;
4767
    if (v < low || v > high) {
4768
        raise_exception(EXCP05_BOUND);
4769
    }
4770
}
4771

    
4772
void helper_boundl(target_ulong a0, int v)
4773
{
4774
    int low, high;
4775
    low = ldl(a0);
4776
    high = ldl(a0 + 4);
4777
    if (v < low || v > high) {
4778
        raise_exception(EXCP05_BOUND);
4779
    }
4780
}
4781

    
4782
static float approx_rsqrt(float a)
4783
{
4784
    return 1.0 / sqrt(a);
4785
}
4786

    
4787
static float approx_rcp(float a)
4788
{
4789
    return 1.0 / a;
4790
}
4791

    
4792
#if !defined(CONFIG_USER_ONLY)
4793

    
4794
#define MMUSUFFIX _mmu
4795

    
4796
#define SHIFT 0
4797
#include "softmmu_template.h"
4798

    
4799
#define SHIFT 1
4800
#include "softmmu_template.h"
4801

    
4802
#define SHIFT 2
4803
#include "softmmu_template.h"
4804

    
4805
#define SHIFT 3
4806
#include "softmmu_template.h"
4807

    
4808
#endif
4809

    
4810
#if !defined(CONFIG_USER_ONLY)
4811
/* try to fill the TLB and return an exception if error. If retaddr is
4812
   NULL, it means that the function was called in C code (i.e. not
4813
   from generated code or from helper.c) */
4814
/* XXX: fix it to restore all registers */
4815
void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4816
{
4817
    TranslationBlock *tb;
4818
    int ret;
4819
    unsigned long pc;
4820
    CPUX86State *saved_env;
4821

    
4822
    /* XXX: hack to restore env in all cases, even if not called from
4823
       generated code */
4824
    saved_env = env;
4825
    env = cpu_single_env;
4826

    
4827
    ret = cpu_x86_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4828
    if (ret) {
4829
        if (retaddr) {
4830
            /* now we have a real cpu fault */
4831
            pc = (unsigned long)retaddr;
4832
            tb = tb_find_pc(pc);
4833
            if (tb) {
4834
                /* the PC is inside the translated code. It means that we have
4835
                   a virtual CPU fault */
4836
                cpu_restore_state(tb, env, pc, NULL);
4837
            }
4838
        }
4839
        raise_exception_err(env->exception_index, env->error_code);
4840
    }
4841
    env = saved_env;
4842
}
4843
#endif
4844

    
4845
/* Secure Virtual Machine helpers */
4846

    
4847
#if defined(CONFIG_USER_ONLY)
4848

    
4849
void helper_vmrun(int aflag, int next_eip_addend)
4850
{ 
4851
}
4852
void helper_vmmcall(void) 
4853
{ 
4854
}
4855
void helper_vmload(int aflag)
4856
{ 
4857
}
4858
void helper_vmsave(int aflag)
4859
{ 
4860
}
4861
void helper_stgi(void)
4862
{
4863
}
4864
void helper_clgi(void)
4865
{
4866
}
4867
void helper_skinit(void) 
4868
{ 
4869
}
4870
void helper_invlpga(int aflag)
4871
{ 
4872
}
4873
void helper_vmexit(uint32_t exit_code, uint64_t exit_info_1) 
4874
{ 
4875
}
4876
void helper_svm_check_intercept_param(uint32_t type, uint64_t param)
4877
{
4878
}
4879

    
4880
void helper_svm_check_io(uint32_t port, uint32_t param, 
4881
                         uint32_t next_eip_addend)
4882
{
4883
}
4884
#else
4885

    
4886
static inline void svm_save_seg(target_phys_addr_t addr,
4887
                                const SegmentCache *sc)
4888
{
4889
    stw_phys(addr + offsetof(struct vmcb_seg, selector), 
4890
             sc->selector);
4891
    stq_phys(addr + offsetof(struct vmcb_seg, base), 
4892
             sc->base);
4893
    stl_phys(addr + offsetof(struct vmcb_seg, limit), 
4894
             sc->limit);
4895
    stw_phys(addr + offsetof(struct vmcb_seg, attrib), 
4896
             ((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00));
4897
}
4898
                                
4899
static inline void svm_load_seg(target_phys_addr_t addr, SegmentCache *sc)
4900
{
4901
    unsigned int flags;
4902

    
4903
    sc->selector = lduw_phys(addr + offsetof(struct vmcb_seg, selector));
4904
    sc->base = ldq_phys(addr + offsetof(struct vmcb_seg, base));
4905
    sc->limit = ldl_phys(addr + offsetof(struct vmcb_seg, limit));
4906
    flags = lduw_phys(addr + offsetof(struct vmcb_seg, attrib));
4907
    sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12);
4908
}
4909

    
4910
static inline void svm_load_seg_cache(target_phys_addr_t addr, 
4911
                                      CPUState *env, int seg_reg)
4912
{
4913
    SegmentCache sc1, *sc = &sc1;
4914
    svm_load_seg(addr, sc);
4915
    cpu_x86_load_seg_cache(env, seg_reg, sc->selector,
4916
                           sc->base, sc->limit, sc->flags);
4917
}
4918

    
4919
void helper_vmrun(int aflag, int next_eip_addend)
4920
{
4921
    target_ulong addr;
4922
    uint32_t event_inj;
4923
    uint32_t int_ctl;
4924

    
4925
    helper_svm_check_intercept_param(SVM_EXIT_VMRUN, 0);
4926

    
4927
    if (aflag == 2)
4928
        addr = EAX;
4929
    else
4930
        addr = (uint32_t)EAX;
4931

    
4932
    qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr);
4933

    
4934
    env->vm_vmcb = addr;
4935

    
4936
    /* save the current CPU state in the hsave page */
4937
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), env->gdt.base);
4938
    stl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit);
4939

    
4940
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base), env->idt.base);
4941
    stl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), env->idt.limit);
4942

    
4943
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]);
4944
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]);
4945
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]);
4946
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]);
4947
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]);
4948
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]);
4949

    
4950
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer);
4951
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags), compute_eflags());
4952

    
4953
    svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.es), 
4954
                  &env->segs[R_ES]);
4955
    svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.cs), 
4956
                 &env->segs[R_CS]);
4957
    svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ss), 
4958
                 &env->segs[R_SS]);
4959
    svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ds), 
4960
                 &env->segs[R_DS]);
4961

    
4962
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip),
4963
             EIP + next_eip_addend);
4964
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp), ESP);
4965
    stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax), EAX);
4966

    
4967
    /* load the interception bitmaps so we do not need to access the
4968
       vmcb in svm mode */
4969
    env->intercept            = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept));
4970
    env->intercept_cr_read    = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_read));
4971
    env->intercept_cr_write   = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_write));
4972
    env->intercept_dr_read    = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_read));
4973
    env->intercept_dr_write   = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_write));
4974
    env->intercept_exceptions = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_exceptions));
4975

    
4976
    /* enable intercepts */
4977
    env->hflags |= HF_SVMI_MASK;
4978

    
4979
    env->tsc_offset = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.tsc_offset));
4980

    
4981
    env->gdt.base  = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base));
4982
    env->gdt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit));
4983

    
4984
    env->idt.base  = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base));
4985
    env->idt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit));
4986

    
4987
    /* clear exit_info_2 so we behave like the real hardware */
4988
    stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0);
4989

    
4990
    cpu_x86_update_cr0(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0)));
4991
    cpu_x86_update_cr4(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4)));
4992
    cpu_x86_update_cr3(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3)));
4993
    env->cr[2] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2));
4994
    int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
4995
    env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
4996
    if (int_ctl & V_INTR_MASKING_MASK) {
4997
        env->v_tpr = int_ctl & V_TPR_MASK;
4998
        env->hflags2 |= HF2_VINTR_MASK;
4999
        if (env->eflags & IF_MASK)
5000
            env->hflags2 |= HF2_HIF_MASK;
5001
    }
5002

    
5003
    cpu_load_efer(env, 
5004
                  ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer)));
5005
    env->eflags = 0;
5006
    load_eflags(ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags)),
5007
                ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
5008
    CC_OP = CC_OP_EFLAGS;
5009

    
5010
    svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.es),
5011
                       env, R_ES);
5012
    svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.cs),
5013
                       env, R_CS);
5014
    svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ss),
5015
                       env, R_SS);
5016
    svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ds),
5017
                       env, R_DS);
5018

    
5019
    EIP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip));
5020
    env->eip = EIP;
5021
    ESP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp));
5022
    EAX = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax));
5023
    env->dr[7] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7));
5024
    env->dr[6] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6));
5025
    cpu_x86_set_cpl(env, ldub_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl)));
5026

    
5027
    /* FIXME: guest state consistency checks */
5028

    
5029
    switch(ldub_phys(env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) {
5030
        case TLB_CONTROL_DO_NOTHING:
5031
            break;
5032
        case TLB_CONTROL_FLUSH_ALL_ASID:
5033
            /* FIXME: this is not 100% correct but should work for now */
5034
            tlb_flush(env, 1);
5035
        break;
5036
    }
5037

    
5038
    env->hflags2 |= HF2_GIF_MASK;
5039

    
5040
    if (int_ctl & V_IRQ_MASK) {
5041
        env->interrupt_request |= CPU_INTERRUPT_VIRQ;
5042
    }
5043

    
5044
    /* maybe we need to inject an event */
5045
    event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
5046
    if (event_inj & SVM_EVTINJ_VALID) {
5047
        uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
5048
        uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
5049
        uint32_t event_inj_err = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err));
5050

    
5051
        qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err);
5052
        /* FIXME: need to implement valid_err */
5053