Statistics
| Branch: | Revision:

root / gdbstub.c @ 363a37d5

History | View | Annotate | Download (40.3 kB)

1
/*
2
 * gdb server stub
3
 *
4
 * Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#ifdef CONFIG_USER_ONLY
22
#include <stdlib.h>
23
#include <stdio.h>
24
#include <stdarg.h>
25
#include <string.h>
26
#include <errno.h>
27
#include <unistd.h>
28
#include <fcntl.h>
29

    
30
#include "qemu.h"
31
#else
32
#include "qemu-common.h"
33
#include "qemu-char.h"
34
#include "sysemu.h"
35
#include "gdbstub.h"
36
#endif
37

    
38
#include "qemu_socket.h"
39
#ifdef _WIN32
40
/* XXX: these constants may be independent of the host ones even for Unix */
41
#ifndef SIGTRAP
42
#define SIGTRAP 5
43
#endif
44
#ifndef SIGINT
45
#define SIGINT 2
46
#endif
47
#else
48
#include <signal.h>
49
#endif
50

    
51
//#define DEBUG_GDB
52

    
53
enum RSState {
54
    RS_IDLE,
55
    RS_GETLINE,
56
    RS_CHKSUM1,
57
    RS_CHKSUM2,
58
    RS_SYSCALL,
59
};
60
typedef struct GDBState {
61
    CPUState *env; /* current CPU */
62
    enum RSState state; /* parsing state */
63
    char line_buf[4096];
64
    int line_buf_index;
65
    int line_csum;
66
    uint8_t last_packet[4100];
67
    int last_packet_len;
68
    int signal;
69
#ifdef CONFIG_USER_ONLY
70
    int fd;
71
    int running_state;
72
#else
73
    CharDriverState *chr;
74
#endif
75
} GDBState;
76

    
77
/* By default use no IRQs and no timers while single stepping so as to
78
 * make single stepping like an ICE HW step.
79
 */
80
static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
81

    
82
#ifdef CONFIG_USER_ONLY
83
/* XXX: This is not thread safe.  Do we care?  */
84
static int gdbserver_fd = -1;
85

    
86
/* XXX: remove this hack.  */
87
static GDBState gdbserver_state;
88

    
89
static int get_char(GDBState *s)
90
{
91
    uint8_t ch;
92
    int ret;
93

    
94
    for(;;) {
95
        ret = recv(s->fd, &ch, 1, 0);
96
        if (ret < 0) {
97
            if (errno == ECONNRESET)
98
                s->fd = -1;
99
            if (errno != EINTR && errno != EAGAIN)
100
                return -1;
101
        } else if (ret == 0) {
102
            close(s->fd);
103
            s->fd = -1;
104
            return -1;
105
        } else {
106
            break;
107
        }
108
    }
109
    return ch;
110
}
111
#endif
112

    
113
/* GDB stub state for use by semihosting syscalls.  */
114
static GDBState *gdb_syscall_state;
115
static gdb_syscall_complete_cb gdb_current_syscall_cb;
116

    
117
enum {
118
    GDB_SYS_UNKNOWN,
119
    GDB_SYS_ENABLED,
120
    GDB_SYS_DISABLED,
121
} gdb_syscall_mode;
122

    
123
/* If gdb is connected when the first semihosting syscall occurs then use
124
   remote gdb syscalls.  Otherwise use native file IO.  */
125
int use_gdb_syscalls(void)
126
{
127
    if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
128
        gdb_syscall_mode = (gdb_syscall_state ? GDB_SYS_ENABLED
129
                                              : GDB_SYS_DISABLED);
130
    }
131
    return gdb_syscall_mode == GDB_SYS_ENABLED;
132
}
133

    
134
/* Resume execution.  */
135
static inline void gdb_continue(GDBState *s)
136
{
137
#ifdef CONFIG_USER_ONLY
138
    s->running_state = 1;
139
#else
140
    vm_start();
141
#endif
142
}
143

    
144
static void put_buffer(GDBState *s, const uint8_t *buf, int len)
145
{
146
#ifdef CONFIG_USER_ONLY
147
    int ret;
148

    
149
    while (len > 0) {
150
        ret = send(s->fd, buf, len, 0);
151
        if (ret < 0) {
152
            if (errno != EINTR && errno != EAGAIN)
153
                return;
154
        } else {
155
            buf += ret;
156
            len -= ret;
157
        }
158
    }
159
#else
160
    qemu_chr_write(s->chr, buf, len);
161
#endif
162
}
163

    
164
static inline int fromhex(int v)
165
{
166
    if (v >= '0' && v <= '9')
167
        return v - '0';
168
    else if (v >= 'A' && v <= 'F')
169
        return v - 'A' + 10;
170
    else if (v >= 'a' && v <= 'f')
171
        return v - 'a' + 10;
172
    else
173
        return 0;
174
}
175

    
176
static inline int tohex(int v)
177
{
178
    if (v < 10)
179
        return v + '0';
180
    else
181
        return v - 10 + 'a';
182
}
183

    
184
static void memtohex(char *buf, const uint8_t *mem, int len)
185
{
186
    int i, c;
187
    char *q;
188
    q = buf;
189
    for(i = 0; i < len; i++) {
190
        c = mem[i];
191
        *q++ = tohex(c >> 4);
192
        *q++ = tohex(c & 0xf);
193
    }
194
    *q = '\0';
195
}
196

    
197
static void hextomem(uint8_t *mem, const char *buf, int len)
198
{
199
    int i;
200

    
201
    for(i = 0; i < len; i++) {
202
        mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
203
        buf += 2;
204
    }
205
}
206

    
207
/* return -1 if error, 0 if OK */
208
static int put_packet(GDBState *s, char *buf)
209
{
210
    int len, csum, i;
211
    uint8_t *p;
212

    
213
#ifdef DEBUG_GDB
214
    printf("reply='%s'\n", buf);
215
#endif
216

    
217
    for(;;) {
218
        p = s->last_packet;
219
        *(p++) = '$';
220
        len = strlen(buf);
221
        memcpy(p, buf, len);
222
        p += len;
223
        csum = 0;
224
        for(i = 0; i < len; i++) {
225
            csum += buf[i];
226
        }
227
        *(p++) = '#';
228
        *(p++) = tohex((csum >> 4) & 0xf);
229
        *(p++) = tohex((csum) & 0xf);
230

    
231
        s->last_packet_len = p - s->last_packet;
232
        put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
233

    
234
#ifdef CONFIG_USER_ONLY
235
        i = get_char(s);
236
        if (i < 0)
237
            return -1;
238
        if (i == '+')
239
            break;
240
#else
241
        break;
242
#endif
243
    }
244
    return 0;
245
}
246

    
247
#if defined(TARGET_I386)
248

    
249
#ifdef TARGET_X86_64
250
static const uint8_t gdb_x86_64_regs[16] = {
251
    R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
252
    8, 9, 10, 11, 12, 13, 14, 15,
253
};
254
#endif
255

    
256
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
257
{
258
    int i, fpus, nb_regs;
259
    uint8_t *p;
260

    
261
    p = mem_buf;
262
#ifdef TARGET_X86_64
263
    if (env->hflags & HF_CS64_MASK) {
264
        nb_regs = 16;
265
        for(i = 0; i < 16; i++) {
266
            *(uint64_t *)p = tswap64(env->regs[gdb_x86_64_regs[i]]);
267
            p += 8;
268
        }
269
        *(uint64_t *)p = tswap64(env->eip);
270
        p += 8;
271
    } else
272
#endif
273
    {
274
        nb_regs = 8;
275
        for(i = 0; i < 8; i++) {
276
            *(uint32_t *)p = tswap32(env->regs[i]);
277
            p += 4;
278
        }
279
        *(uint32_t *)p = tswap32(env->eip);
280
        p += 4;
281
    }
282

    
283
    *(uint32_t *)p = tswap32(env->eflags);
284
    p += 4;
285
    *(uint32_t *)p = tswap32(env->segs[R_CS].selector);
286
    p += 4;
287
    *(uint32_t *)p = tswap32(env->segs[R_SS].selector);
288
    p += 4;
289
    *(uint32_t *)p = tswap32(env->segs[R_DS].selector);
290
    p += 4;
291
    *(uint32_t *)p = tswap32(env->segs[R_ES].selector);
292
    p += 4;
293
    *(uint32_t *)p = tswap32(env->segs[R_FS].selector);
294
    p += 4;
295
    *(uint32_t *)p = tswap32(env->segs[R_GS].selector);
296
    p += 4;
297
    for(i = 0; i < 8; i++) {
298
        /* XXX: convert floats */
299
#ifdef USE_X86LDOUBLE
300
        memcpy(p, &env->fpregs[i], 10);
301
#else
302
        memset(p, 0, 10);
303
#endif
304
        p += 10;
305
    }
306
    *(uint32_t *)p = tswap32(env->fpuc); /* fctrl */
307
    p += 4;
308
    fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
309
    *(uint32_t *)p = tswap32(fpus); /* fstat */
310
    p += 4;
311
    *(uint32_t *)p = 0; /* ftag */
312
    p += 4;
313
    *(uint32_t *)p = 0; /* fiseg */
314
    p += 4;
315
    *(uint32_t *)p = 0; /* fioff */
316
    p += 4;
317
    *(uint32_t *)p = 0; /* foseg */
318
    p += 4;
319
    *(uint32_t *)p = 0; /* fooff */
320
    p += 4;
321
    *(uint32_t *)p = 0; /* fop */
322
    p += 4;
323
    for(i = 0; i < nb_regs; i++) {
324
        *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(0));
325
        p += 8;
326
        *(uint64_t *)p = tswap64(env->xmm_regs[i].XMM_Q(1));
327
        p += 8;
328
    }
329
    *(uint32_t *)p = tswap32(env->mxcsr);
330
    p += 4;
331
    return p - mem_buf;
332
}
333

    
334
static inline void cpu_gdb_load_seg(CPUState *env, const uint8_t **pp, 
335
                                    int sreg)
336
{
337
    const uint8_t *p;
338
    uint32_t sel;
339
    p = *pp;
340
    sel = tswap32(*(uint32_t *)p);
341
    p += 4;
342
    if (sel != env->segs[sreg].selector) {
343
#if defined(CONFIG_USER_ONLY)
344
        cpu_x86_load_seg(env, sreg, sel);
345
#else
346
        /* XXX: do it with a debug function which does not raise an
347
           exception */
348
#endif
349
    }
350
    *pp = p;
351
}
352

    
353
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
354
{
355
    const uint8_t *p = mem_buf;
356
    int i, nb_regs;
357
    uint16_t fpus;
358

    
359
#ifdef TARGET_X86_64
360
    if (env->hflags & HF_CS64_MASK) {
361
        nb_regs = 16;
362
        for(i = 0; i < 16; i++) {
363
            env->regs[gdb_x86_64_regs[i]] = tswap64(*(uint64_t *)p);
364
            p += 8;
365
        }
366
        env->eip = tswap64(*(uint64_t *)p);
367
        p += 8;
368
    } else
369
#endif
370
    {
371
        nb_regs = 8;
372
        for(i = 0; i < 8; i++) {
373
            env->regs[i] = tswap32(*(uint32_t *)p);
374
            p += 4;
375
        }
376
        env->eip = tswap32(*(uint32_t *)p);
377
        p += 4;
378
    }
379
    env->eflags = tswap32(*(uint32_t *)p);
380
    p += 4;
381
    cpu_gdb_load_seg(env, &p, R_CS);
382
    cpu_gdb_load_seg(env, &p, R_SS);
383
    cpu_gdb_load_seg(env, &p, R_DS);
384
    cpu_gdb_load_seg(env, &p, R_ES);
385
    cpu_gdb_load_seg(env, &p, R_FS);
386
    cpu_gdb_load_seg(env, &p, R_GS);
387
    
388
    /* FPU state */
389
    for(i = 0; i < 8; i++) {
390
        /* XXX: convert floats */
391
#ifdef USE_X86LDOUBLE
392
        memcpy(&env->fpregs[i], p, 10);
393
#endif
394
        p += 10;
395
    }
396
    env->fpuc = tswap32(*(uint32_t *)p); /* fctrl */
397
    p += 4;
398
    fpus = tswap32(*(uint32_t *)p);
399
    p += 4;
400
    env->fpstt = (fpus >> 11) & 7;
401
    env->fpus = fpus & ~0x3800;
402
    p += 4 * 6;
403
    
404
    if (size >= ((p - mem_buf) + 16 * nb_regs + 4)) {
405
        /* SSE state */
406
        for(i = 0; i < nb_regs; i++) {
407
            env->xmm_regs[i].XMM_Q(0) = tswap64(*(uint64_t *)p);
408
            p += 8;
409
            env->xmm_regs[i].XMM_Q(1) = tswap64(*(uint64_t *)p);
410
            p += 8;
411
        }
412
        env->mxcsr = tswap32(*(uint32_t *)p);
413
        p += 4;
414
    }
415
}
416

    
417
#elif defined (TARGET_PPC)
418
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
419
{
420
    uint32_t *registers = (uint32_t *)mem_buf, tmp;
421
    int i;
422

    
423
    /* fill in gprs */
424
    for(i = 0; i < 32; i++) {
425
        registers[i] = tswapl(env->gpr[i]);
426
    }
427
    /* fill in fprs */
428
    for (i = 0; i < 32; i++) {
429
        registers[(i * 2) + 32] = tswapl(*((uint32_t *)&env->fpr[i]));
430
        registers[(i * 2) + 33] = tswapl(*((uint32_t *)&env->fpr[i] + 1));
431
    }
432
    /* nip, msr, ccr, lnk, ctr, xer, mq */
433
    registers[96] = tswapl(env->nip);
434
    registers[97] = tswapl(env->msr);
435
    tmp = 0;
436
    for (i = 0; i < 8; i++)
437
        tmp |= env->crf[i] << (32 - ((i + 1) * 4));
438
    registers[98] = tswapl(tmp);
439
    registers[99] = tswapl(env->lr);
440
    registers[100] = tswapl(env->ctr);
441
    registers[101] = tswapl(ppc_load_xer(env));
442
    registers[102] = 0;
443

    
444
    return 103 * 4;
445
}
446

    
447
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
448
{
449
    uint32_t *registers = (uint32_t *)mem_buf;
450
    int i;
451

    
452
    /* fill in gprs */
453
    for (i = 0; i < 32; i++) {
454
        env->gpr[i] = tswapl(registers[i]);
455
    }
456
    /* fill in fprs */
457
    for (i = 0; i < 32; i++) {
458
        *((uint32_t *)&env->fpr[i]) = tswapl(registers[(i * 2) + 32]);
459
        *((uint32_t *)&env->fpr[i] + 1) = tswapl(registers[(i * 2) + 33]);
460
    }
461
    /* nip, msr, ccr, lnk, ctr, xer, mq */
462
    env->nip = tswapl(registers[96]);
463
    ppc_store_msr(env, tswapl(registers[97]));
464
    registers[98] = tswapl(registers[98]);
465
    for (i = 0; i < 8; i++)
466
        env->crf[i] = (registers[98] >> (32 - ((i + 1) * 4))) & 0xF;
467
    env->lr = tswapl(registers[99]);
468
    env->ctr = tswapl(registers[100]);
469
    ppc_store_xer(env, tswapl(registers[101]));
470
}
471
#elif defined (TARGET_SPARC)
472
#ifdef TARGET_ABI32
473
#define tswap_abi(val) tswap32(val &0xffffffff)
474
#else
475
#define tswap_abi(val) tswapl(val)
476
#endif
477
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
478
{
479
#ifdef TARGET_ABI32
480
    abi_ulong *registers = (abi_ulong *)mem_buf;
481
#else
482
    target_ulong *registers = (target_ulong *)mem_buf;
483
#endif
484
    int i;
485

    
486
    /* fill in g0..g7 */
487
    for(i = 0; i < 8; i++) {
488
        registers[i] = tswap_abi(env->gregs[i]);
489
    }
490
    /* fill in register window */
491
    for(i = 0; i < 24; i++) {
492
        registers[i + 8] = tswap_abi(env->regwptr[i]);
493
    }
494
#if !defined(TARGET_SPARC64) || defined(TARGET_ABI32)
495
    /* fill in fprs */
496
    for (i = 0; i < 32; i++) {
497
        registers[i + 32] = tswap_abi(*((uint32_t *)&env->fpr[i]));
498
    }
499
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
500
    registers[64] = tswap_abi(env->y);
501
    {
502
        uint32_t tmp;
503

    
504
        tmp = GET_PSR(env);
505
        registers[65] = tswap32(tmp);
506
    }
507
    registers[66] = tswap_abi(env->wim);
508
    registers[67] = tswap_abi(env->tbr);
509
    registers[68] = tswap_abi(env->pc);
510
    registers[69] = tswap_abi(env->npc);
511
    registers[70] = tswap_abi(env->fsr);
512
    registers[71] = 0; /* csr */
513
    registers[72] = 0;
514
    return 73 * sizeof(uint32_t);
515
#else
516
    /* fill in fprs */
517
    for (i = 0; i < 64; i += 2) {
518
        uint64_t tmp;
519

    
520
        tmp = ((uint64_t)*(uint32_t *)&env->fpr[i]) << 32;
521
        tmp |= *(uint32_t *)&env->fpr[i + 1];
522
        registers[i / 2 + 32] = tswap64(tmp);
523
    }
524
    registers[64] = tswapl(env->pc);
525
    registers[65] = tswapl(env->npc);
526
    registers[66] = tswapl(((uint64_t)GET_CCR(env) << 32) |
527
                           ((env->asi & 0xff) << 24) |
528
                           ((env->pstate & 0xfff) << 8) |
529
                           GET_CWP64(env));
530
    registers[67] = tswapl(env->fsr);
531
    registers[68] = tswapl(env->fprs);
532
    registers[69] = tswapl(env->y);
533
    return 70 * sizeof(target_ulong);
534
#endif
535
}
536

    
537
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
538
{
539
#ifdef TARGET_ABI32
540
    abi_ulong *registers = (abi_ulong *)mem_buf;
541
#else
542
    target_ulong *registers = (target_ulong *)mem_buf;
543
#endif
544
    int i;
545

    
546
    /* fill in g0..g7 */
547
    for(i = 0; i < 7; i++) {
548
        env->gregs[i] = tswap_abi(registers[i]);
549
    }
550
    /* fill in register window */
551
    for(i = 0; i < 24; i++) {
552
        env->regwptr[i] = tswap_abi(registers[i + 8]);
553
    }
554
#if !defined(TARGET_SPARC64) || defined(TARGET_ABI32)
555
    /* fill in fprs */
556
    for (i = 0; i < 32; i++) {
557
        *((uint32_t *)&env->fpr[i]) = tswap_abi(registers[i + 32]);
558
    }
559
    /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
560
    env->y = tswap_abi(registers[64]);
561
    PUT_PSR(env, tswap_abi(registers[65]));
562
    env->wim = tswap_abi(registers[66]);
563
    env->tbr = tswap_abi(registers[67]);
564
    env->pc = tswap_abi(registers[68]);
565
    env->npc = tswap_abi(registers[69]);
566
    env->fsr = tswap_abi(registers[70]);
567
#else
568
    for (i = 0; i < 64; i += 2) {
569
        uint64_t tmp;
570

    
571
        tmp = tswap64(registers[i / 2 + 32]);
572
        *((uint32_t *)&env->fpr[i]) = tmp >> 32;
573
        *((uint32_t *)&env->fpr[i + 1]) = tmp & 0xffffffff;
574
    }
575
    env->pc = tswapl(registers[64]);
576
    env->npc = tswapl(registers[65]);
577
    {
578
        uint64_t tmp = tswapl(registers[66]);
579

    
580
        PUT_CCR(env, tmp >> 32);
581
        env->asi = (tmp >> 24) & 0xff;
582
        env->pstate = (tmp >> 8) & 0xfff;
583
        PUT_CWP64(env, tmp & 0xff);
584
    }
585
    env->fsr = tswapl(registers[67]);
586
    env->fprs = tswapl(registers[68]);
587
    env->y = tswapl(registers[69]);
588
#endif
589
}
590
#undef tswap_abi
591
#elif defined (TARGET_ARM)
592
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
593
{
594
    int i;
595
    uint8_t *ptr;
596

    
597
    ptr = mem_buf;
598
    /* 16 core integer registers (4 bytes each).  */
599
    for (i = 0; i < 16; i++)
600
      {
601
        *(uint32_t *)ptr = tswapl(env->regs[i]);
602
        ptr += 4;
603
      }
604
    /* 8 FPA registers (12 bytes each), FPS (4 bytes).
605
       Not yet implemented.  */
606
    memset (ptr, 0, 8 * 12 + 4);
607
    ptr += 8 * 12 + 4;
608
    /* CPSR (4 bytes).  */
609
    *(uint32_t *)ptr = tswapl (cpsr_read(env));
610
    ptr += 4;
611

    
612
    return ptr - mem_buf;
613
}
614

    
615
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
616
{
617
    int i;
618
    uint8_t *ptr;
619

    
620
    ptr = mem_buf;
621
    /* Core integer registers.  */
622
    for (i = 0; i < 16; i++)
623
      {
624
        env->regs[i] = tswapl(*(uint32_t *)ptr);
625
        ptr += 4;
626
      }
627
    /* Ignore FPA regs and scr.  */
628
    ptr += 8 * 12 + 4;
629
    cpsr_write (env, tswapl(*(uint32_t *)ptr), 0xffffffff);
630
}
631
#elif defined (TARGET_M68K)
632
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
633
{
634
    int i;
635
    uint8_t *ptr;
636
    CPU_DoubleU u;
637

    
638
    ptr = mem_buf;
639
    /* D0-D7 */
640
    for (i = 0; i < 8; i++) {
641
        *(uint32_t *)ptr = tswapl(env->dregs[i]);
642
        ptr += 4;
643
    }
644
    /* A0-A7 */
645
    for (i = 0; i < 8; i++) {
646
        *(uint32_t *)ptr = tswapl(env->aregs[i]);
647
        ptr += 4;
648
    }
649
    *(uint32_t *)ptr = tswapl(env->sr);
650
    ptr += 4;
651
    *(uint32_t *)ptr = tswapl(env->pc);
652
    ptr += 4;
653
    /* F0-F7.  The 68881/68040 have 12-bit extended precision registers.
654
       ColdFire has 8-bit double precision registers.  */
655
    for (i = 0; i < 8; i++) {
656
        u.d = env->fregs[i];
657
        *(uint32_t *)ptr = tswap32(u.l.upper);
658
        *(uint32_t *)ptr = tswap32(u.l.lower);
659
    }
660
    /* FP control regs (not implemented).  */
661
    memset (ptr, 0, 3 * 4);
662
    ptr += 3 * 4;
663

    
664
    return ptr - mem_buf;
665
}
666

    
667
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
668
{
669
    int i;
670
    uint8_t *ptr;
671
    CPU_DoubleU u;
672

    
673
    ptr = mem_buf;
674
    /* D0-D7 */
675
    for (i = 0; i < 8; i++) {
676
        env->dregs[i] = tswapl(*(uint32_t *)ptr);
677
        ptr += 4;
678
    }
679
    /* A0-A7 */
680
    for (i = 0; i < 8; i++) {
681
        env->aregs[i] = tswapl(*(uint32_t *)ptr);
682
        ptr += 4;
683
    }
684
    env->sr = tswapl(*(uint32_t *)ptr);
685
    ptr += 4;
686
    env->pc = tswapl(*(uint32_t *)ptr);
687
    ptr += 4;
688
    /* F0-F7.  The 68881/68040 have 12-bit extended precision registers.
689
       ColdFire has 8-bit double precision registers.  */
690
    for (i = 0; i < 8; i++) {
691
        u.l.upper = tswap32(*(uint32_t *)ptr);
692
        u.l.lower = tswap32(*(uint32_t *)ptr);
693
        env->fregs[i] = u.d;
694
    }
695
    /* FP control regs (not implemented).  */
696
    ptr += 3 * 4;
697
}
698
#elif defined (TARGET_MIPS)
699
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
700
{
701
    int i;
702
    uint8_t *ptr;
703

    
704
    ptr = mem_buf;
705
    for (i = 0; i < 32; i++)
706
      {
707
        *(target_ulong *)ptr = tswapl(env->active_tc.gpr[i]);
708
        ptr += sizeof(target_ulong);
709
      }
710

    
711
    *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Status);
712
    ptr += sizeof(target_ulong);
713

    
714
    *(target_ulong *)ptr = tswapl(env->active_tc.LO[0]);
715
    ptr += sizeof(target_ulong);
716

    
717
    *(target_ulong *)ptr = tswapl(env->active_tc.HI[0]);
718
    ptr += sizeof(target_ulong);
719

    
720
    *(target_ulong *)ptr = tswapl(env->CP0_BadVAddr);
721
    ptr += sizeof(target_ulong);
722

    
723
    *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_Cause);
724
    ptr += sizeof(target_ulong);
725

    
726
    *(target_ulong *)ptr = tswapl(env->active_tc.PC);
727
    ptr += sizeof(target_ulong);
728

    
729
    if (env->CP0_Config1 & (1 << CP0C1_FP))
730
      {
731
        for (i = 0; i < 32; i++)
732
          {
733
            if (env->CP0_Status & (1 << CP0St_FR))
734
              *(target_ulong *)ptr = tswapl(env->fpu->fpr[i].d);
735
            else
736
              *(target_ulong *)ptr = tswap32(env->fpu->fpr[i].w[FP_ENDIAN_IDX]);
737
            ptr += sizeof(target_ulong);
738
          }
739

    
740
        *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr31);
741
        ptr += sizeof(target_ulong);
742

    
743
        *(target_ulong *)ptr = (int32_t)tswap32(env->fpu->fcr0);
744
        ptr += sizeof(target_ulong);
745
      }
746

    
747
    /* "fp", pseudo frame pointer. Not yet implemented in gdb. */
748
    *(target_ulong *)ptr = 0;
749
    ptr += sizeof(target_ulong);
750

    
751
    /* Registers for embedded use, we just pad them. */
752
    for (i = 0; i < 16; i++)
753
      {
754
        *(target_ulong *)ptr = 0;
755
        ptr += sizeof(target_ulong);
756
      }
757

    
758
    /* Processor ID. */
759
    *(target_ulong *)ptr = (int32_t)tswap32(env->CP0_PRid);
760
    ptr += sizeof(target_ulong);
761

    
762
    return ptr - mem_buf;
763
}
764

    
765
/* convert MIPS rounding mode in FCR31 to IEEE library */
766
static unsigned int ieee_rm[] =
767
  {
768
    float_round_nearest_even,
769
    float_round_to_zero,
770
    float_round_up,
771
    float_round_down
772
  };
773
#define RESTORE_ROUNDING_MODE \
774
    set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
775

    
776
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
777
{
778
    int i;
779
    uint8_t *ptr;
780

    
781
    ptr = mem_buf;
782
    for (i = 0; i < 32; i++)
783
      {
784
        env->active_tc.gpr[i] = tswapl(*(target_ulong *)ptr);
785
        ptr += sizeof(target_ulong);
786
      }
787

    
788
    env->CP0_Status = tswapl(*(target_ulong *)ptr);
789
    ptr += sizeof(target_ulong);
790

    
791
    env->active_tc.LO[0] = tswapl(*(target_ulong *)ptr);
792
    ptr += sizeof(target_ulong);
793

    
794
    env->active_tc.HI[0] = tswapl(*(target_ulong *)ptr);
795
    ptr += sizeof(target_ulong);
796

    
797
    env->CP0_BadVAddr = tswapl(*(target_ulong *)ptr);
798
    ptr += sizeof(target_ulong);
799

    
800
    env->CP0_Cause = tswapl(*(target_ulong *)ptr);
801
    ptr += sizeof(target_ulong);
802

    
803
    env->active_tc.PC = tswapl(*(target_ulong *)ptr);
804
    ptr += sizeof(target_ulong);
805

    
806
    if (env->CP0_Config1 & (1 << CP0C1_FP))
807
      {
808
        for (i = 0; i < 32; i++)
809
          {
810
            if (env->CP0_Status & (1 << CP0St_FR))
811
              env->fpu->fpr[i].d = tswapl(*(target_ulong *)ptr);
812
            else
813
              env->fpu->fpr[i].w[FP_ENDIAN_IDX] = tswapl(*(target_ulong *)ptr);
814
            ptr += sizeof(target_ulong);
815
          }
816

    
817
        env->fpu->fcr31 = tswapl(*(target_ulong *)ptr) & 0xFF83FFFF;
818
        ptr += sizeof(target_ulong);
819

    
820
        /* The remaining registers are assumed to be read-only. */
821

    
822
        /* set rounding mode */
823
        RESTORE_ROUNDING_MODE;
824

    
825
#ifndef CONFIG_SOFTFLOAT
826
        /* no floating point exception for native float */
827
        SET_FP_ENABLE(env->fcr31, 0);
828
#endif
829
      }
830
}
831
#elif defined (TARGET_SH4)
832

    
833
/* Hint: Use "set architecture sh4" in GDB to see fpu registers */
834

    
835
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
836
{
837
  uint32_t *ptr = (uint32_t *)mem_buf;
838
  int i;
839

    
840
#define SAVE(x) *ptr++=tswapl(x)
841
  if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
842
      for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
843
  } else {
844
      for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
845
  }
846
  for (i = 8; i < 16; i++) SAVE(env->gregs[i]);
847
  SAVE (env->pc);
848
  SAVE (env->pr);
849
  SAVE (env->gbr);
850
  SAVE (env->vbr);
851
  SAVE (env->mach);
852
  SAVE (env->macl);
853
  SAVE (env->sr);
854
  SAVE (env->fpul);
855
  SAVE (env->fpscr);
856
  for (i = 0; i < 16; i++)
857
      SAVE(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
858
  SAVE (env->ssr);
859
  SAVE (env->spc);
860
  for (i = 0; i < 8; i++) SAVE(env->gregs[i]);
861
  for (i = 0; i < 8; i++) SAVE(env->gregs[i + 16]);
862
  return ((uint8_t *)ptr - mem_buf);
863
}
864

    
865
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
866
{
867
  uint32_t *ptr = (uint32_t *)mem_buf;
868
  int i;
869

    
870
#define LOAD(x) (x)=*ptr++;
871
  if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
872
      for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
873
  } else {
874
      for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
875
  }
876
  for (i = 8; i < 16; i++) LOAD(env->gregs[i]);
877
  LOAD (env->pc);
878
  LOAD (env->pr);
879
  LOAD (env->gbr);
880
  LOAD (env->vbr);
881
  LOAD (env->mach);
882
  LOAD (env->macl);
883
  LOAD (env->sr);
884
  LOAD (env->fpul);
885
  LOAD (env->fpscr);
886
  for (i = 0; i < 16; i++)
887
      LOAD(env->fregs[i + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
888
  LOAD (env->ssr);
889
  LOAD (env->spc);
890
  for (i = 0; i < 8; i++) LOAD(env->gregs[i]);
891
  for (i = 0; i < 8; i++) LOAD(env->gregs[i + 16]);
892
}
893
#elif defined (TARGET_CRIS)
894

    
895
static int cris_save_32 (unsigned char *d, uint32_t value)
896
{
897
        *d++ = (value);
898
        *d++ = (value >>= 8);
899
        *d++ = (value >>= 8);
900
        *d++ = (value >>= 8);
901
        return 4;
902
}
903
static int cris_save_16 (unsigned char *d, uint32_t value)
904
{
905
        *d++ = (value);
906
        *d++ = (value >>= 8);
907
        return 2;
908
}
909
static int cris_save_8 (unsigned char *d, uint32_t value)
910
{
911
        *d++ = (value);
912
        return 1;
913
}
914

    
915
/* FIXME: this will bug on archs not supporting unaligned word accesses.  */
916
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
917
{
918
  uint8_t *ptr = mem_buf;
919
  uint8_t srs;
920
  int i;
921

    
922
  for (i = 0; i < 16; i++)
923
          ptr += cris_save_32 (ptr, env->regs[i]);
924

    
925
  srs = env->pregs[PR_SRS];
926

    
927
  ptr += cris_save_8 (ptr, env->pregs[0]);
928
  ptr += cris_save_8 (ptr, env->pregs[1]);
929
  ptr += cris_save_32 (ptr, env->pregs[2]);
930
  ptr += cris_save_8 (ptr, srs);
931
  ptr += cris_save_16 (ptr, env->pregs[4]);
932

    
933
  for (i = 5; i < 16; i++)
934
          ptr += cris_save_32 (ptr, env->pregs[i]);
935

    
936
  ptr += cris_save_32 (ptr, env->pc);
937

    
938
  for (i = 0; i < 16; i++)
939
          ptr += cris_save_32 (ptr, env->sregs[srs][i]);
940

    
941
  return ((uint8_t *)ptr - mem_buf);
942
}
943

    
944
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
945
{
946
  uint32_t *ptr = (uint32_t *)mem_buf;
947
  int i;
948

    
949
#define LOAD(x) (x)=*ptr++;
950
  for (i = 0; i < 16; i++) LOAD(env->regs[i]);
951
  LOAD (env->pc);
952
}
953
#else
954
static int cpu_gdb_read_registers(CPUState *env, uint8_t *mem_buf)
955
{
956
    return 0;
957
}
958

    
959
static void cpu_gdb_write_registers(CPUState *env, uint8_t *mem_buf, int size)
960
{
961
}
962

    
963
#endif
964

    
965
static int gdb_handle_packet(GDBState *s, CPUState *env, const char *line_buf)
966
{
967
    const char *p;
968
    int ch, reg_size, type;
969
    char buf[4096];
970
    uint8_t mem_buf[4096];
971
    uint32_t *registers;
972
    target_ulong addr, len;
973

    
974
#ifdef DEBUG_GDB
975
    printf("command='%s'\n", line_buf);
976
#endif
977
    p = line_buf;
978
    ch = *p++;
979
    switch(ch) {
980
    case '?':
981
        /* TODO: Make this return the correct value for user-mode.  */
982
        snprintf(buf, sizeof(buf), "S%02x", SIGTRAP);
983
        put_packet(s, buf);
984
        /* Remove all the breakpoints when this query is issued,
985
         * because gdb is doing and initial connect and the state
986
         * should be cleaned up.
987
         */
988
        cpu_breakpoint_remove_all(env);
989
        cpu_watchpoint_remove_all(env);
990
        break;
991
    case 'c':
992
        if (*p != '\0') {
993
            addr = strtoull(p, (char **)&p, 16);
994
#if defined(TARGET_I386)
995
            env->eip = addr;
996
#elif defined (TARGET_PPC)
997
            env->nip = addr;
998
#elif defined (TARGET_SPARC)
999
            env->pc = addr;
1000
            env->npc = addr + 4;
1001
#elif defined (TARGET_ARM)
1002
            env->regs[15] = addr;
1003
#elif defined (TARGET_SH4)
1004
            env->pc = addr;
1005
#elif defined (TARGET_MIPS)
1006
            env->active_tc.PC = addr;
1007
#elif defined (TARGET_CRIS)
1008
            env->pc = addr;
1009
#endif
1010
        }
1011
        gdb_continue(s);
1012
        return RS_IDLE;
1013
    case 'C':
1014
        s->signal = strtoul(p, (char **)&p, 16);
1015
        gdb_continue(s);
1016
        return RS_IDLE;
1017
    case 'k':
1018
        /* Kill the target */
1019
        fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1020
        exit(0);
1021
    case 'D':
1022
        /* Detach packet */
1023
        cpu_breakpoint_remove_all(env);
1024
        cpu_watchpoint_remove_all(env);
1025
        gdb_continue(s);
1026
        put_packet(s, "OK");
1027
        break;
1028
    case 's':
1029
        if (*p != '\0') {
1030
            addr = strtoull(p, (char **)&p, 16);
1031
#if defined(TARGET_I386)
1032
            env->eip = addr;
1033
#elif defined (TARGET_PPC)
1034
            env->nip = addr;
1035
#elif defined (TARGET_SPARC)
1036
            env->pc = addr;
1037
            env->npc = addr + 4;
1038
#elif defined (TARGET_ARM)
1039
            env->regs[15] = addr;
1040
#elif defined (TARGET_SH4)
1041
            env->pc = addr;
1042
#elif defined (TARGET_MIPS)
1043
            env->active_tc.PC = addr;
1044
#elif defined (TARGET_CRIS)
1045
            env->pc = addr;
1046
#endif
1047
        }
1048
        cpu_single_step(env, sstep_flags);
1049
        gdb_continue(s);
1050
        return RS_IDLE;
1051
    case 'F':
1052
        {
1053
            target_ulong ret;
1054
            target_ulong err;
1055

    
1056
            ret = strtoull(p, (char **)&p, 16);
1057
            if (*p == ',') {
1058
                p++;
1059
                err = strtoull(p, (char **)&p, 16);
1060
            } else {
1061
                err = 0;
1062
            }
1063
            if (*p == ',')
1064
                p++;
1065
            type = *p;
1066
            if (gdb_current_syscall_cb)
1067
                gdb_current_syscall_cb(s->env, ret, err);
1068
            if (type == 'C') {
1069
                put_packet(s, "T02");
1070
            } else {
1071
                gdb_continue(s);
1072
            }
1073
        }
1074
        break;
1075
    case 'g':
1076
        reg_size = cpu_gdb_read_registers(env, mem_buf);
1077
        memtohex(buf, mem_buf, reg_size);
1078
        put_packet(s, buf);
1079
        break;
1080
    case 'G':
1081
        registers = (void *)mem_buf;
1082
        len = strlen(p) / 2;
1083
        hextomem((uint8_t *)registers, p, len);
1084
        cpu_gdb_write_registers(env, mem_buf, len);
1085
        put_packet(s, "OK");
1086
        break;
1087
    case 'm':
1088
        addr = strtoull(p, (char **)&p, 16);
1089
        if (*p == ',')
1090
            p++;
1091
        len = strtoull(p, NULL, 16);
1092
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 0) != 0) {
1093
            put_packet (s, "E14");
1094
        } else {
1095
            memtohex(buf, mem_buf, len);
1096
            put_packet(s, buf);
1097
        }
1098
        break;
1099
    case 'M':
1100
        addr = strtoull(p, (char **)&p, 16);
1101
        if (*p == ',')
1102
            p++;
1103
        len = strtoull(p, (char **)&p, 16);
1104
        if (*p == ':')
1105
            p++;
1106
        hextomem(mem_buf, p, len);
1107
        if (cpu_memory_rw_debug(env, addr, mem_buf, len, 1) != 0)
1108
            put_packet(s, "E14");
1109
        else
1110
            put_packet(s, "OK");
1111
        break;
1112
    case 'Z':
1113
        type = strtoul(p, (char **)&p, 16);
1114
        if (*p == ',')
1115
            p++;
1116
        addr = strtoull(p, (char **)&p, 16);
1117
        if (*p == ',')
1118
            p++;
1119
        len = strtoull(p, (char **)&p, 16);
1120
        switch (type) {
1121
        case 0:
1122
        case 1:
1123
            if (cpu_breakpoint_insert(env, addr) < 0)
1124
                goto breakpoint_error;
1125
            put_packet(s, "OK");
1126
            break;
1127
#ifndef CONFIG_USER_ONLY
1128
        case 2:
1129
            type = PAGE_WRITE;
1130
            goto insert_watchpoint;
1131
        case 3:
1132
            type = PAGE_READ;
1133
            goto insert_watchpoint;
1134
        case 4:
1135
            type = PAGE_READ | PAGE_WRITE;
1136
        insert_watchpoint:
1137
            if (cpu_watchpoint_insert(env, addr, type) < 0)
1138
                goto breakpoint_error;
1139
            put_packet(s, "OK");
1140
            break;
1141
#endif
1142
        default:
1143
            put_packet(s, "");
1144
            break;
1145
        }
1146
        break;
1147
    breakpoint_error:
1148
        put_packet(s, "E22");
1149
        break;
1150

    
1151
    case 'z':
1152
        type = strtoul(p, (char **)&p, 16);
1153
        if (*p == ',')
1154
            p++;
1155
        addr = strtoull(p, (char **)&p, 16);
1156
        if (*p == ',')
1157
            p++;
1158
        len = strtoull(p, (char **)&p, 16);
1159
        if (type == 0 || type == 1) {
1160
            cpu_breakpoint_remove(env, addr);
1161
            put_packet(s, "OK");
1162
#ifndef CONFIG_USER_ONLY
1163
        } else if (type >= 2 || type <= 4) {
1164
            cpu_watchpoint_remove(env, addr);
1165
            put_packet(s, "OK");
1166
#endif
1167
        } else {
1168
            put_packet(s, "");
1169
        }
1170
        break;
1171
    case 'q':
1172
    case 'Q':
1173
        /* parse any 'q' packets here */
1174
        if (!strcmp(p,"qemu.sstepbits")) {
1175
            /* Query Breakpoint bit definitions */
1176
            snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1177
                     SSTEP_ENABLE,
1178
                     SSTEP_NOIRQ,
1179
                     SSTEP_NOTIMER);
1180
            put_packet(s, buf);
1181
            break;
1182
        } else if (strncmp(p,"qemu.sstep",10) == 0) {
1183
            /* Display or change the sstep_flags */
1184
            p += 10;
1185
            if (*p != '=') {
1186
                /* Display current setting */
1187
                snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1188
                put_packet(s, buf);
1189
                break;
1190
            }
1191
            p++;
1192
            type = strtoul(p, (char **)&p, 16);
1193
            sstep_flags = type;
1194
            put_packet(s, "OK");
1195
            break;
1196
        }
1197
#ifdef CONFIG_LINUX_USER
1198
        else if (strncmp(p, "Offsets", 7) == 0) {
1199
            TaskState *ts = env->opaque;
1200

    
1201
            snprintf(buf, sizeof(buf),
1202
                     "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1203
                     ";Bss=" TARGET_ABI_FMT_lx,
1204
                     ts->info->code_offset,
1205
                     ts->info->data_offset,
1206
                     ts->info->data_offset);
1207
            put_packet(s, buf);
1208
            break;
1209
        }
1210
#endif
1211
        /* Fall through.  */
1212
    default:
1213
        /* put empty packet */
1214
        buf[0] = '\0';
1215
        put_packet(s, buf);
1216
        break;
1217
    }
1218
    return RS_IDLE;
1219
}
1220

    
1221
extern void tb_flush(CPUState *env);
1222

    
1223
#ifndef CONFIG_USER_ONLY
1224
static void gdb_vm_stopped(void *opaque, int reason)
1225
{
1226
    GDBState *s = opaque;
1227
    char buf[256];
1228
    int ret;
1229

    
1230
    if (s->state == RS_SYSCALL)
1231
        return;
1232

    
1233
    /* disable single step if it was enable */
1234
    cpu_single_step(s->env, 0);
1235

    
1236
    if (reason == EXCP_DEBUG) {
1237
        if (s->env->watchpoint_hit) {
1238
            snprintf(buf, sizeof(buf), "T%02xwatch:" TARGET_FMT_lx ";",
1239
                     SIGTRAP,
1240
                     s->env->watchpoint[s->env->watchpoint_hit - 1].vaddr);
1241
            put_packet(s, buf);
1242
            s->env->watchpoint_hit = 0;
1243
            return;
1244
        }
1245
        tb_flush(s->env);
1246
        ret = SIGTRAP;
1247
    } else if (reason == EXCP_INTERRUPT) {
1248
        ret = SIGINT;
1249
    } else {
1250
        ret = 0;
1251
    }
1252
    snprintf(buf, sizeof(buf), "S%02x", ret);
1253
    put_packet(s, buf);
1254
}
1255
#endif
1256

    
1257
/* Send a gdb syscall request.
1258
   This accepts limited printf-style format specifiers, specifically:
1259
    %x  - target_ulong argument printed in hex.
1260
    %lx - 64-bit argument printed in hex.
1261
    %s  - string pointer (target_ulong) and length (int) pair.  */
1262
void gdb_do_syscall(gdb_syscall_complete_cb cb, char *fmt, ...)
1263
{
1264
    va_list va;
1265
    char buf[256];
1266
    char *p;
1267
    target_ulong addr;
1268
    uint64_t i64;
1269
    GDBState *s;
1270

    
1271
    s = gdb_syscall_state;
1272
    if (!s)
1273
        return;
1274
    gdb_current_syscall_cb = cb;
1275
    s->state = RS_SYSCALL;
1276
#ifndef CONFIG_USER_ONLY
1277
    vm_stop(EXCP_DEBUG);
1278
#endif
1279
    s->state = RS_IDLE;
1280
    va_start(va, fmt);
1281
    p = buf;
1282
    *(p++) = 'F';
1283
    while (*fmt) {
1284
        if (*fmt == '%') {
1285
            fmt++;
1286
            switch (*fmt++) {
1287
            case 'x':
1288
                addr = va_arg(va, target_ulong);
1289
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1290
                break;
1291
            case 'l':
1292
                if (*(fmt++) != 'x')
1293
                    goto bad_format;
1294
                i64 = va_arg(va, uint64_t);
1295
                p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
1296
                break;
1297
            case 's':
1298
                addr = va_arg(va, target_ulong);
1299
                p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
1300
                              addr, va_arg(va, int));
1301
                break;
1302
            default:
1303
            bad_format:
1304
                fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
1305
                        fmt - 1);
1306
                break;
1307
            }
1308
        } else {
1309
            *(p++) = *(fmt++);
1310
        }
1311
    }
1312
    *p = 0;
1313
    va_end(va);
1314
    put_packet(s, buf);
1315
#ifdef CONFIG_USER_ONLY
1316
    gdb_handlesig(s->env, 0);
1317
#else
1318
    cpu_interrupt(s->env, CPU_INTERRUPT_EXIT);
1319
#endif
1320
}
1321

    
1322
static void gdb_read_byte(GDBState *s, int ch)
1323
{
1324
    CPUState *env = s->env;
1325
    int i, csum;
1326
    uint8_t reply;
1327

    
1328
#ifndef CONFIG_USER_ONLY
1329
    if (s->last_packet_len) {
1330
        /* Waiting for a response to the last packet.  If we see the start
1331
           of a new command then abandon the previous response.  */
1332
        if (ch == '-') {
1333
#ifdef DEBUG_GDB
1334
            printf("Got NACK, retransmitting\n");
1335
#endif
1336
            put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
1337
        }
1338
#ifdef DEBUG_GDB
1339
        else if (ch == '+')
1340
            printf("Got ACK\n");
1341
        else
1342
            printf("Got '%c' when expecting ACK/NACK\n", ch);
1343
#endif
1344
        if (ch == '+' || ch == '$')
1345
            s->last_packet_len = 0;
1346
        if (ch != '$')
1347
            return;
1348
    }
1349
    if (vm_running) {
1350
        /* when the CPU is running, we cannot do anything except stop
1351
           it when receiving a char */
1352
        vm_stop(EXCP_INTERRUPT);
1353
    } else
1354
#endif
1355
    {
1356
        switch(s->state) {
1357
        case RS_IDLE:
1358
            if (ch == '$') {
1359
                s->line_buf_index = 0;
1360
                s->state = RS_GETLINE;
1361
            }
1362
            break;
1363
        case RS_GETLINE:
1364
            if (ch == '#') {
1365
            s->state = RS_CHKSUM1;
1366
            } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
1367
                s->state = RS_IDLE;
1368
            } else {
1369
            s->line_buf[s->line_buf_index++] = ch;
1370
            }
1371
            break;
1372
        case RS_CHKSUM1:
1373
            s->line_buf[s->line_buf_index] = '\0';
1374
            s->line_csum = fromhex(ch) << 4;
1375
            s->state = RS_CHKSUM2;
1376
            break;
1377
        case RS_CHKSUM2:
1378
            s->line_csum |= fromhex(ch);
1379
            csum = 0;
1380
            for(i = 0; i < s->line_buf_index; i++) {
1381
                csum += s->line_buf[i];
1382
            }
1383
            if (s->line_csum != (csum & 0xff)) {
1384
                reply = '-';
1385
                put_buffer(s, &reply, 1);
1386
                s->state = RS_IDLE;
1387
            } else {
1388
                reply = '+';
1389
                put_buffer(s, &reply, 1);
1390
                s->state = gdb_handle_packet(s, env, s->line_buf);
1391
            }
1392
            break;
1393
        default:
1394
            abort();
1395
        }
1396
    }
1397
}
1398

    
1399
#ifdef CONFIG_USER_ONLY
1400
int
1401
gdb_handlesig (CPUState *env, int sig)
1402
{
1403
  GDBState *s;
1404
  char buf[256];
1405
  int n;
1406

    
1407
  s = &gdbserver_state;
1408
  if (gdbserver_fd < 0 || s->fd < 0)
1409
    return sig;
1410

    
1411
  /* disable single step if it was enabled */
1412
  cpu_single_step(env, 0);
1413
  tb_flush(env);
1414

    
1415
  if (sig != 0)
1416
    {
1417
      snprintf(buf, sizeof(buf), "S%02x", sig);
1418
      put_packet(s, buf);
1419
    }
1420
  /* put_packet() might have detected that the peer terminated the 
1421
     connection.  */
1422
  if (s->fd < 0)
1423
      return sig;
1424

    
1425
  sig = 0;
1426
  s->state = RS_IDLE;
1427
  s->running_state = 0;
1428
  while (s->running_state == 0) {
1429
      n = read (s->fd, buf, 256);
1430
      if (n > 0)
1431
        {
1432
          int i;
1433

    
1434
          for (i = 0; i < n; i++)
1435
            gdb_read_byte (s, buf[i]);
1436
        }
1437
      else if (n == 0 || errno != EAGAIN)
1438
        {
1439
          /* XXX: Connection closed.  Should probably wait for annother
1440
             connection before continuing.  */
1441
          return sig;
1442
        }
1443
  }
1444
  sig = s->signal;
1445
  s->signal = 0;
1446
  return sig;
1447
}
1448

    
1449
/* Tell the remote gdb that the process has exited.  */
1450
void gdb_exit(CPUState *env, int code)
1451
{
1452
  GDBState *s;
1453
  char buf[4];
1454

    
1455
  s = &gdbserver_state;
1456
  if (gdbserver_fd < 0 || s->fd < 0)
1457
    return;
1458

    
1459
  snprintf(buf, sizeof(buf), "W%02x", code);
1460
  put_packet(s, buf);
1461
}
1462

    
1463

    
1464
static void gdb_accept(void *opaque)
1465
{
1466
    GDBState *s;
1467
    struct sockaddr_in sockaddr;
1468
    socklen_t len;
1469
    int val, fd;
1470

    
1471
    for(;;) {
1472
        len = sizeof(sockaddr);
1473
        fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
1474
        if (fd < 0 && errno != EINTR) {
1475
            perror("accept");
1476
            return;
1477
        } else if (fd >= 0) {
1478
            break;
1479
        }
1480
    }
1481

    
1482
    /* set short latency */
1483
    val = 1;
1484
    setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
1485

    
1486
    s = &gdbserver_state;
1487
    memset (s, 0, sizeof (GDBState));
1488
    s->env = first_cpu; /* XXX: allow to change CPU */
1489
    s->fd = fd;
1490

    
1491
    gdb_syscall_state = s;
1492

    
1493
    fcntl(fd, F_SETFL, O_NONBLOCK);
1494
}
1495

    
1496
static int gdbserver_open(int port)
1497
{
1498
    struct sockaddr_in sockaddr;
1499
    int fd, val, ret;
1500

    
1501
    fd = socket(PF_INET, SOCK_STREAM, 0);
1502
    if (fd < 0) {
1503
        perror("socket");
1504
        return -1;
1505
    }
1506

    
1507
    /* allow fast reuse */
1508
    val = 1;
1509
    setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
1510

    
1511
    sockaddr.sin_family = AF_INET;
1512
    sockaddr.sin_port = htons(port);
1513
    sockaddr.sin_addr.s_addr = 0;
1514
    ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
1515
    if (ret < 0) {
1516
        perror("bind");
1517
        return -1;
1518
    }
1519
    ret = listen(fd, 0);
1520
    if (ret < 0) {
1521
        perror("listen");
1522
        return -1;
1523
    }
1524
    return fd;
1525
}
1526

    
1527
int gdbserver_start(int port)
1528
{
1529
    gdbserver_fd = gdbserver_open(port);
1530
    if (gdbserver_fd < 0)
1531
        return -1;
1532
    /* accept connections */
1533
    gdb_accept (NULL);
1534
    return 0;
1535
}
1536
#else
1537
static int gdb_chr_can_receive(void *opaque)
1538
{
1539
  return 1;
1540
}
1541

    
1542
static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
1543
{
1544
    GDBState *s = opaque;
1545
    int i;
1546

    
1547
    for (i = 0; i < size; i++) {
1548
        gdb_read_byte(s, buf[i]);
1549
    }
1550
}
1551

    
1552
static void gdb_chr_event(void *opaque, int event)
1553
{
1554
    switch (event) {
1555
    case CHR_EVENT_RESET:
1556
        vm_stop(EXCP_INTERRUPT);
1557
        gdb_syscall_state = opaque;
1558
        break;
1559
    default:
1560
        break;
1561
    }
1562
}
1563

    
1564
int gdbserver_start(const char *port)
1565
{
1566
    GDBState *s;
1567
    char gdbstub_port_name[128];
1568
    int port_num;
1569
    char *p;
1570
    CharDriverState *chr;
1571

    
1572
    if (!port || !*port)
1573
      return -1;
1574

    
1575
    port_num = strtol(port, &p, 10);
1576
    if (*p == 0) {
1577
        /* A numeric value is interpreted as a port number.  */
1578
        snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
1579
                 "tcp::%d,nowait,nodelay,server", port_num);
1580
        port = gdbstub_port_name;
1581
    }
1582

    
1583
    chr = qemu_chr_open(port);
1584
    if (!chr)
1585
        return -1;
1586

    
1587
    s = qemu_mallocz(sizeof(GDBState));
1588
    if (!s) {
1589
        return -1;
1590
    }
1591
    s->env = first_cpu; /* XXX: allow to change CPU */
1592
    s->chr = chr;
1593
    qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
1594
                          gdb_chr_event, s);
1595
    qemu_add_vm_stop_handler(gdb_vm_stopped, s);
1596
    return 0;
1597
}
1598
#endif