Statistics
| Branch: | Revision:

root / target-mips / op.c @ 36d23958

History | View | Annotate | Download (40.2 kB)

1
/*
2
 *  MIPS emulation micro-operations for qemu.
3
 * 
4
 *  Copyright (c) 2004-2005 Jocelyn Mayer
5
 *  Copyright (c) 2006 Marius Groeger (FPU operations)
6
 *
7
 * This library is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2 of the License, or (at your option) any later version.
11
 *
12
 * This library is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with this library; if not, write to the Free Software
19
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
20
 */
21

    
22
#include "config.h"
23
#include "exec.h"
24

    
25
#ifndef CALL_FROM_TB0
26
#define CALL_FROM_TB0(func) func();
27
#endif
28
#ifndef CALL_FROM_TB1
29
#define CALL_FROM_TB1(func, arg0) func(arg0);
30
#endif
31
#ifndef CALL_FROM_TB1_CONST16
32
#define CALL_FROM_TB1_CONST16(func, arg0) CALL_FROM_TB1(func, arg0);
33
#endif
34
#ifndef CALL_FROM_TB2
35
#define CALL_FROM_TB2(func, arg0, arg1) func(arg0, arg1);
36
#endif
37
#ifndef CALL_FROM_TB2_CONST16
38
#define CALL_FROM_TB2_CONST16(func, arg0, arg1)     \
39
CALL_FROM_TB2(func, arg0, arg1);
40
#endif
41
#ifndef CALL_FROM_TB3
42
#define CALL_FROM_TB3(func, arg0, arg1, arg2) func(arg0, arg1, arg2);
43
#endif
44
#ifndef CALL_FROM_TB4
45
#define CALL_FROM_TB4(func, arg0, arg1, arg2, arg3) \
46
        func(arg0, arg1, arg2, arg3);
47
#endif
48

    
49
#define REG 1
50
#include "op_template.c"
51
#undef REG
52
#define REG 2
53
#include "op_template.c"
54
#undef REG
55
#define REG 3
56
#include "op_template.c"
57
#undef REG
58
#define REG 4
59
#include "op_template.c"
60
#undef REG
61
#define REG 5
62
#include "op_template.c"
63
#undef REG
64
#define REG 6
65
#include "op_template.c"
66
#undef REG
67
#define REG 7
68
#include "op_template.c"
69
#undef REG
70
#define REG 8
71
#include "op_template.c"
72
#undef REG
73
#define REG 9
74
#include "op_template.c"
75
#undef REG
76
#define REG 10
77
#include "op_template.c"
78
#undef REG
79
#define REG 11
80
#include "op_template.c"
81
#undef REG
82
#define REG 12
83
#include "op_template.c"
84
#undef REG
85
#define REG 13
86
#include "op_template.c"
87
#undef REG
88
#define REG 14
89
#include "op_template.c"
90
#undef REG
91
#define REG 15
92
#include "op_template.c"
93
#undef REG
94
#define REG 16
95
#include "op_template.c"
96
#undef REG
97
#define REG 17
98
#include "op_template.c"
99
#undef REG
100
#define REG 18
101
#include "op_template.c"
102
#undef REG
103
#define REG 19
104
#include "op_template.c"
105
#undef REG
106
#define REG 20
107
#include "op_template.c"
108
#undef REG
109
#define REG 21
110
#include "op_template.c"
111
#undef REG
112
#define REG 22
113
#include "op_template.c"
114
#undef REG
115
#define REG 23
116
#include "op_template.c"
117
#undef REG
118
#define REG 24
119
#include "op_template.c"
120
#undef REG
121
#define REG 25
122
#include "op_template.c"
123
#undef REG
124
#define REG 26
125
#include "op_template.c"
126
#undef REG
127
#define REG 27
128
#include "op_template.c"
129
#undef REG
130
#define REG 28
131
#include "op_template.c"
132
#undef REG
133
#define REG 29
134
#include "op_template.c"
135
#undef REG
136
#define REG 30
137
#include "op_template.c"
138
#undef REG
139
#define REG 31
140
#include "op_template.c"
141
#undef REG
142

    
143
#define TN
144
#include "op_template.c"
145
#undef TN
146

    
147
#define SFREG 0
148
#define DFREG 0
149
#include "fop_template.c"
150
#undef SFREG
151
#undef DFREG
152
#define SFREG 1
153
#include "fop_template.c"
154
#undef SFREG
155
#define SFREG 2
156
#define DFREG 2
157
#include "fop_template.c"
158
#undef SFREG
159
#undef DFREG
160
#define SFREG 3
161
#include "fop_template.c"
162
#undef SFREG
163
#define SFREG 4
164
#define DFREG 4
165
#include "fop_template.c"
166
#undef SFREG
167
#undef DFREG
168
#define SFREG 5
169
#include "fop_template.c"
170
#undef SFREG
171
#define SFREG 6
172
#define DFREG 6
173
#include "fop_template.c"
174
#undef SFREG
175
#undef DFREG
176
#define SFREG 7
177
#include "fop_template.c"
178
#undef SFREG
179
#define SFREG 8
180
#define DFREG 8
181
#include "fop_template.c"
182
#undef SFREG
183
#undef DFREG
184
#define SFREG 9
185
#include "fop_template.c"
186
#undef SFREG
187
#define SFREG 10
188
#define DFREG 10
189
#include "fop_template.c"
190
#undef SFREG
191
#undef DFREG
192
#define SFREG 11
193
#include "fop_template.c"
194
#undef SFREG
195
#define SFREG 12
196
#define DFREG 12
197
#include "fop_template.c"
198
#undef SFREG
199
#undef DFREG
200
#define SFREG 13
201
#include "fop_template.c"
202
#undef SFREG
203
#define SFREG 14
204
#define DFREG 14
205
#include "fop_template.c"
206
#undef SFREG
207
#undef DFREG
208
#define SFREG 15
209
#include "fop_template.c"
210
#undef SFREG
211
#define SFREG 16
212
#define DFREG 16
213
#include "fop_template.c"
214
#undef SFREG
215
#undef DFREG
216
#define SFREG 17
217
#include "fop_template.c"
218
#undef SFREG
219
#define SFREG 18
220
#define DFREG 18
221
#include "fop_template.c"
222
#undef SFREG
223
#undef DFREG
224
#define SFREG 19
225
#include "fop_template.c"
226
#undef SFREG
227
#define SFREG 20
228
#define DFREG 20
229
#include "fop_template.c"
230
#undef SFREG
231
#undef DFREG
232
#define SFREG 21
233
#include "fop_template.c"
234
#undef SFREG
235
#define SFREG 22
236
#define DFREG 22
237
#include "fop_template.c"
238
#undef SFREG
239
#undef DFREG
240
#define SFREG 23
241
#include "fop_template.c"
242
#undef SFREG
243
#define SFREG 24
244
#define DFREG 24
245
#include "fop_template.c"
246
#undef SFREG
247
#undef DFREG
248
#define SFREG 25
249
#include "fop_template.c"
250
#undef SFREG
251
#define SFREG 26
252
#define DFREG 26
253
#include "fop_template.c"
254
#undef SFREG
255
#undef DFREG
256
#define SFREG 27
257
#include "fop_template.c"
258
#undef SFREG
259
#define SFREG 28
260
#define DFREG 28
261
#include "fop_template.c"
262
#undef SFREG
263
#undef DFREG
264
#define SFREG 29
265
#include "fop_template.c"
266
#undef SFREG
267
#define SFREG 30
268
#define DFREG 30
269
#include "fop_template.c"
270
#undef SFREG
271
#undef DFREG
272
#define SFREG 31
273
#include "fop_template.c"
274
#undef SFREG
275

    
276
#define FTN
277
#include "fop_template.c"
278
#undef FTN
279

    
280
void op_dup_T0 (void)
281
{
282
    T2 = T0;
283
    RETURN();
284
}
285

    
286
void op_load_HI (void)
287
{
288
    T0 = env->HI;
289
    RETURN();
290
}
291

    
292
void op_store_HI (void)
293
{
294
    env->HI = T0;
295
    RETURN();
296
}
297

    
298
void op_load_LO (void)
299
{
300
    T0 = env->LO;
301
    RETURN();
302
}
303

    
304
void op_store_LO (void)
305
{
306
    env->LO = T0;
307
    RETURN();
308
}
309

    
310
/* Load and store */
311
#define MEMSUFFIX _raw
312
#include "op_mem.c"
313
#undef MEMSUFFIX
314
#if !defined(CONFIG_USER_ONLY)
315
#define MEMSUFFIX _user
316
#include "op_mem.c"
317
#undef MEMSUFFIX
318

    
319
#define MEMSUFFIX _kernel
320
#include "op_mem.c"
321
#undef MEMSUFFIX
322
#endif
323

    
324
/* Arithmetic */
325
void op_add (void)
326
{
327
    T0 = (int32_t)((int32_t)T0 + (int32_t)T1);
328
    RETURN();
329
}
330

    
331
void op_addo (void)
332
{
333
    target_ulong tmp;
334

    
335
    tmp = (int32_t)T0;
336
    T0 = (int32_t)T0 + (int32_t)T1;
337
    if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 31) {
338
        /* operands of same sign, result different sign */
339
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW);
340
    }
341
    T0 = (int32_t)T0;
342
    RETURN();
343
}
344

    
345
void op_sub (void)
346
{
347
    T0 = (int32_t)((int32_t)T0 - (int32_t)T1);
348
    RETURN();
349
}
350

    
351
void op_subo (void)
352
{
353
    target_ulong tmp;
354

    
355
    tmp = (int32_t)T0;
356
    T0 = (int32_t)T0 - (int32_t)T1;
357
    if (((tmp ^ T1) & (tmp ^ T0)) >> 31) {
358
        /* operands of different sign, first operand and result different sign */
359
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW);
360
    }
361
    T0 = (int32_t)T0;
362
    RETURN();
363
}
364

    
365
void op_mul (void)
366
{
367
    T0 = (int32_t)((int32_t)T0 * (int32_t)T1);
368
    RETURN();
369
}
370

    
371
void op_div (void)
372
{
373
    if (T1 != 0) {
374
        env->LO = (int32_t)((int32_t)T0 / (int32_t)T1);
375
        env->HI = (int32_t)((int32_t)T0 % (int32_t)T1);
376
    }
377
    RETURN();
378
}
379

    
380
void op_divu (void)
381
{
382
    if (T1 != 0) {
383
        env->LO = (int32_t)((uint32_t)T0 / (uint32_t)T1);
384
        env->HI = (int32_t)((uint32_t)T0 % (uint32_t)T1);
385
    }
386
    RETURN();
387
}
388

    
389
#ifdef MIPS_HAS_MIPS64
390
/* Arithmetic */
391
void op_dadd (void)
392
{
393
    T0 += T1;
394
    RETURN();
395
}
396

    
397
void op_daddo (void)
398
{
399
    target_long tmp;
400

    
401
    tmp = T0;
402
    T0 += T1;
403
    if (((tmp ^ T1 ^ (-1)) & (T0 ^ T1)) >> 63) {
404
        /* operands of same sign, result different sign */
405
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW);
406
    }
407
    RETURN();
408
}
409

    
410
void op_dsub (void)
411
{
412
    T0 -= T1;
413
    RETURN();
414
}
415

    
416
void op_dsubo (void)
417
{
418
    target_long tmp;
419

    
420
    tmp = T0;
421
    T0 = (int64_t)T0 - (int64_t)T1;
422
    if (((tmp ^ T1) & (tmp ^ T0)) >> 63) {
423
        /* operands of different sign, first operand and result different sign */
424
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_OVERFLOW);
425
    }
426
    RETURN();
427
}
428

    
429
void op_dmul (void)
430
{
431
    T0 = (int64_t)T0 * (int64_t)T1;
432
    RETURN();
433
}
434

    
435
#if TARGET_LONG_BITS > HOST_LONG_BITS
436
/* Those might call libgcc functions.  */
437
void op_ddiv (void)
438
{
439
    do_ddiv();
440
    RETURN();
441
}
442

    
443
void op_ddivu (void)
444
{
445
    do_ddivu();
446
    RETURN();
447
}
448
#else
449
void op_ddiv (void)
450
{
451
    if (T1 != 0) {
452
        env->LO = (int64_t)T0 / (int64_t)T1;
453
        env->HI = (int64_t)T0 % (int64_t)T1;
454
    }
455
    RETURN();
456
}
457

    
458
void op_ddivu (void)
459
{
460
    if (T1 != 0) {
461
        env->LO = T0 / T1;
462
        env->HI = T0 % T1;
463
    }
464
    RETURN();
465
}
466
#endif
467
#endif /* MIPS_HAS_MIPS64 */
468

    
469
/* Logical */
470
void op_and (void)
471
{
472
    T0 &= T1;
473
    RETURN();
474
}
475

    
476
void op_nor (void)
477
{
478
    T0 = ~(T0 | T1);
479
    RETURN();
480
}
481

    
482
void op_or (void)
483
{
484
    T0 |= T1;
485
    RETURN();
486
}
487

    
488
void op_xor (void)
489
{
490
    T0 ^= T1;
491
    RETURN();
492
}
493

    
494
void op_sll (void)
495
{
496
    T0 = (int32_t)((uint32_t)T0 << (uint32_t)T1);
497
    RETURN();
498
}
499

    
500
void op_sra (void)
501
{
502
    T0 = (int32_t)((int32_t)T0 >> (uint32_t)T1);
503
    RETURN();
504
}
505

    
506
void op_srl (void)
507
{
508
    T0 = (int32_t)((uint32_t)T0 >> (uint32_t)T1);
509
    RETURN();
510
}
511

    
512
void op_rotr (void)
513
{
514
    target_ulong tmp;
515

    
516
    if (T1) {
517
       tmp = (int32_t)((uint32_t)T0 << (0x20 - (uint32_t)T1));
518
       T0 = (int32_t)((uint32_t)T0 >> (uint32_t)T1) | tmp;
519
    } else
520
       T0 = T1;
521
    RETURN();
522
}
523

    
524
void op_sllv (void)
525
{
526
    T0 = (int32_t)((uint32_t)T1 << ((uint32_t)T0 & 0x1F));
527
    RETURN();
528
}
529

    
530
void op_srav (void)
531
{
532
    T0 = (int32_t)((int32_t)T1 >> (T0 & 0x1F));
533
    RETURN();
534
}
535

    
536
void op_srlv (void)
537
{
538
    T0 = (int32_t)((uint32_t)T1 >> (T0 & 0x1F));
539
    RETURN();
540
}
541

    
542
void op_rotrv (void)
543
{
544
    target_ulong tmp;
545

    
546
    T0 &= 0x1F;
547
    if (T0) {
548
       tmp = (int32_t)((uint32_t)T1 << (0x20 - T0));
549
       T0 = (int32_t)((uint32_t)T1 >> T0) | tmp;
550
    } else
551
       T0 = T1;
552
    RETURN();
553
}
554

    
555
void op_clo (void)
556
{
557
    int n;
558

    
559
    if (T0 == ~((target_ulong)0)) {
560
        T0 = 32;
561
    } else {
562
        for (n = 0; n < 32; n++) {
563
            if (!(T0 & (1 << 31)))
564
                break;
565
            T0 = T0 << 1;
566
        }
567
        T0 = n;
568
    }
569
    RETURN();
570
}
571

    
572
void op_clz (void)
573
{
574
    int n;
575

    
576
    if (T0 == 0) {
577
        T0 = 32;
578
    } else {
579
        for (n = 0; n < 32; n++) {
580
            if (T0 & (1 << 31))
581
                break;
582
            T0 = T0 << 1;
583
        }
584
        T0 = n;
585
    }
586
    RETURN();
587
}
588

    
589
#ifdef MIPS_HAS_MIPS64
590

    
591
#if TARGET_LONG_BITS > HOST_LONG_BITS
592
/* Those might call libgcc functions.  */
593
void op_dsll (void)
594
{
595
    CALL_FROM_TB0(do_dsll);
596
    RETURN();
597
}
598

    
599
void op_dsll32 (void)
600
{
601
    CALL_FROM_TB0(do_dsll32);
602
    RETURN();
603
}
604

    
605
void op_dsra (void)
606
{
607
    CALL_FROM_TB0(do_dsra);
608
    RETURN();
609
}
610

    
611
void op_dsra32 (void)
612
{
613
    CALL_FROM_TB0(do_dsra32);
614
    RETURN();
615
}
616

    
617
void op_dsrl (void)
618
{
619
    CALL_FROM_TB0(do_dsrl);
620
    RETURN();
621
}
622

    
623
void op_dsrl32 (void)
624
{
625
    CALL_FROM_TB0(do_dsrl32);
626
    RETURN();
627
}
628

    
629
void op_drotr (void)
630
{
631
    CALL_FROM_TB0(do_drotr);
632
    RETURN();
633
}
634

    
635
void op_drotr32 (void)
636
{
637
    CALL_FROM_TB0(do_drotr32);
638
    RETURN();
639
}
640

    
641
void op_dsllv (void)
642
{
643
    CALL_FROM_TB0(do_dsllv);
644
    RETURN();
645
}
646

    
647
void op_dsrav (void)
648
{
649
    CALL_FROM_TB0(do_dsrav);
650
    RETURN();
651
}
652

    
653
void op_dsrlv (void)
654
{
655
    CALL_FROM_TB0(do_dsrlv);
656
    RETURN();
657
}
658

    
659
void op_drotrv (void)
660
{
661
    CALL_FROM_TB0(do_drotrv);
662
    RETURN();
663
}
664

    
665
#else /* TARGET_LONG_BITS > HOST_LONG_BITS */
666

    
667
void op_dsll (void)
668
{
669
    T0 = T0 << T1;
670
    RETURN();
671
}
672

    
673
void op_dsll32 (void)
674
{
675
    T0 = T0 << (T1 + 32);
676
    RETURN();
677
}
678

    
679
void op_dsra (void)
680
{
681
    T0 = (int64_t)T0 >> T1;
682
    RETURN();
683
}
684

    
685
void op_dsra32 (void)
686
{
687
    T0 = (int64_t)T0 >> (T1 + 32);
688
    RETURN();
689
}
690

    
691
void op_dsrl (void)
692
{
693
    T0 = T0 >> T1;
694
    RETURN();
695
}
696

    
697
void op_dsrl32 (void)
698
{
699
    T0 = T0 >> (T1 + 32);
700
    RETURN();
701
}
702

    
703
void op_drotr (void)
704
{
705
    target_ulong tmp;
706

    
707
    if (T1) {
708
       tmp = T0 << (0x40 - T1);
709
       T0 = (T0 >> T1) | tmp;
710
    } else
711
       T0 = T1;
712
    RETURN();
713
}
714

    
715
void op_drotr32 (void)
716
{
717
    target_ulong tmp;
718

    
719
    if (T1) {
720
       tmp = T0 << (0x40 - (32 + T1));
721
       T0 = (T0 >> (32 + T1)) | tmp;
722
    } else
723
       T0 = T1;
724
    RETURN();
725
}
726

    
727
void op_dsllv (void)
728
{
729
    T0 = T1 << (T0 & 0x3F);
730
    RETURN();
731
}
732

    
733
void op_dsrav (void)
734
{
735
    T0 = (int64_t)T1 >> (T0 & 0x3F);
736
    RETURN();
737
}
738

    
739
void op_dsrlv (void)
740
{
741
    T0 = T1 >> (T0 & 0x3F);
742
    RETURN();
743
}
744

    
745
void op_drotrv (void)
746
{
747
    target_ulong tmp;
748

    
749
    T0 &= 0x3F;
750
    if (T0) {
751
       tmp = T1 << (0x40 - T0);
752
       T0 = (T1 >> T0) | tmp;
753
    } else
754
       T0 = T1;
755
    RETURN();
756
}
757
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
758

    
759
void op_dclo (void)
760
{
761
    int n;
762

    
763
    if (T0 == ~((target_ulong)0)) {
764
        T0 = 64;
765
    } else {
766
        for (n = 0; n < 64; n++) {
767
            if (!(T0 & (1ULL << 63)))
768
                break;
769
            T0 = T0 << 1;
770
        }
771
        T0 = n;
772
    }
773
    RETURN();
774
}
775

    
776
void op_dclz (void)
777
{
778
    int n;
779

    
780
    if (T0 == 0) {
781
        T0 = 64;
782
    } else {
783
        for (n = 0; n < 64; n++) {
784
            if (T0 & (1ULL << 63))
785
                break;
786
            T0 = T0 << 1;
787
        }
788
        T0 = n;
789
    }
790
    RETURN();
791
}
792
#endif
793

    
794
/* 64 bits arithmetic */
795
#if TARGET_LONG_BITS > HOST_LONG_BITS
796
void op_mult (void)
797
{
798
    CALL_FROM_TB0(do_mult);
799
    RETURN();
800
}
801

    
802
void op_multu (void)
803
{
804
    CALL_FROM_TB0(do_multu);
805
    RETURN();
806
}
807

    
808
void op_madd (void)
809
{
810
    CALL_FROM_TB0(do_madd);
811
    RETURN();
812
}
813

    
814
void op_maddu (void)
815
{
816
    CALL_FROM_TB0(do_maddu);
817
    RETURN();
818
}
819

    
820
void op_msub (void)
821
{
822
    CALL_FROM_TB0(do_msub);
823
    RETURN();
824
}
825

    
826
void op_msubu (void)
827
{
828
    CALL_FROM_TB0(do_msubu);
829
    RETURN();
830
}
831

    
832
#else /* TARGET_LONG_BITS > HOST_LONG_BITS */
833

    
834
static inline uint64_t get_HILO (void)
835
{
836
    return ((uint64_t)env->HI << 32) | ((uint64_t)(uint32_t)env->LO);
837
}
838

    
839
static inline void set_HILO (uint64_t HILO)
840
{
841
    env->LO = (int32_t)(HILO & 0xFFFFFFFF);
842
    env->HI = (int32_t)(HILO >> 32);
843
}
844

    
845
void op_mult (void)
846
{
847
    set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
848
    RETURN();
849
}
850

    
851
void op_multu (void)
852
{
853
    set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
854
    RETURN();
855
}
856

    
857
void op_madd (void)
858
{
859
    int64_t tmp;
860

    
861
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
862
    set_HILO((int64_t)get_HILO() + tmp);
863
    RETURN();
864
}
865

    
866
void op_maddu (void)
867
{
868
    uint64_t tmp;
869

    
870
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
871
    set_HILO(get_HILO() + tmp);
872
    RETURN();
873
}
874

    
875
void op_msub (void)
876
{
877
    int64_t tmp;
878

    
879
    tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
880
    set_HILO((int64_t)get_HILO() - tmp);
881
    RETURN();
882
}
883

    
884
void op_msubu (void)
885
{
886
    uint64_t tmp;
887

    
888
    tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
889
    set_HILO(get_HILO() - tmp);
890
    RETURN();
891
}
892
#endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
893

    
894
#ifdef MIPS_HAS_MIPS64
895
void op_dmult (void)
896
{
897
    CALL_FROM_TB0(do_dmult);
898
    RETURN();
899
}
900

    
901
void op_dmultu (void)
902
{
903
    CALL_FROM_TB0(do_dmultu);
904
    RETURN();
905
}
906
#endif
907

    
908
/* Conditional moves */
909
void op_movn (void)
910
{
911
    if (T1 != 0)
912
        env->gpr[PARAM1] = T0;
913
    RETURN();
914
}
915

    
916
void op_movz (void)
917
{
918
    if (T1 == 0)
919
        env->gpr[PARAM1] = T0;
920
    RETURN();
921
}
922

    
923
void op_movf (void)
924
{
925
    if (!(env->fcr31 & PARAM1))
926
        env->gpr[PARAM2] = env->gpr[PARAM3];
927
    RETURN();
928
}
929

    
930
void op_movt (void)
931
{
932
    if (env->fcr31 & PARAM1)
933
        env->gpr[PARAM2] = env->gpr[PARAM3];
934
    RETURN();
935
}
936

    
937
/* Tests */
938
#define OP_COND(name, cond) \
939
void glue(op_, name) (void) \
940
{                           \
941
    if (cond) {             \
942
        T0 = 1;             \
943
    } else {                \
944
        T0 = 0;             \
945
    }                       \
946
    RETURN();               \
947
}
948

    
949
OP_COND(eq, T0 == T1);
950
OP_COND(ne, T0 != T1);
951
OP_COND(ge, (int32_t)T0 >= (int32_t)T1);
952
OP_COND(geu, T0 >= T1);
953
OP_COND(lt, (int32_t)T0 < (int32_t)T1);
954
OP_COND(ltu, T0 < T1);
955
OP_COND(gez, (int32_t)T0 >= 0);
956
OP_COND(gtz, (int32_t)T0 > 0);
957
OP_COND(lez, (int32_t)T0 <= 0);
958
OP_COND(ltz, (int32_t)T0 < 0);
959

    
960
/* Branches */
961
//#undef USE_DIRECT_JUMP
962

    
963
void OPPROTO op_goto_tb0(void)
964
{
965
    GOTO_TB(op_goto_tb0, PARAM1, 0);
966
    RETURN();
967
}
968

    
969
void OPPROTO op_goto_tb1(void)
970
{
971
    GOTO_TB(op_goto_tb1, PARAM1, 1);
972
    RETURN();
973
}
974

    
975
/* Branch to register */
976
void op_save_breg_target (void)
977
{
978
    env->btarget = T2;
979
    RETURN();
980
}
981

    
982
void op_restore_breg_target (void)
983
{
984
    T2 = env->btarget;
985
    RETURN();
986
}
987

    
988
void op_breg (void)
989
{
990
    env->PC = T2;
991
    RETURN();
992
}
993

    
994
void op_save_btarget (void)
995
{
996
    env->btarget = PARAM1;
997
    RETURN();
998
}
999

    
1000
/* Conditional branch */
1001
void op_set_bcond (void)
1002
{
1003
    T2 = T0;
1004
    RETURN();
1005
}
1006

    
1007
void op_save_bcond (void)
1008
{
1009
    env->bcond = T2;
1010
    RETURN();
1011
}
1012

    
1013
void op_restore_bcond (void)
1014
{
1015
    T2 = env->bcond;
1016
    RETURN();
1017
}
1018

    
1019
void op_jnz_T2 (void)
1020
{
1021
    if (T2)
1022
        GOTO_LABEL_PARAM(1);
1023
    RETURN();
1024
}
1025

    
1026
/* CP0 functions */
1027
void op_mfc0_index (void)
1028
{
1029
    T0 = env->CP0_Index;
1030
    RETURN();
1031
}
1032

    
1033
void op_mfc0_random (void)
1034
{
1035
    CALL_FROM_TB0(do_mfc0_random);
1036
    RETURN();
1037
}
1038

    
1039
void op_mfc0_entrylo0 (void)
1040
{
1041
    T0 = (int32_t)env->CP0_EntryLo0;
1042
    RETURN();
1043
}
1044

    
1045
void op_mfc0_entrylo1 (void)
1046
{
1047
    T0 = (int32_t)env->CP0_EntryLo1;
1048
    RETURN();
1049
}
1050

    
1051
void op_mfc0_context (void)
1052
{
1053
    T0 = (int32_t)env->CP0_Context;
1054
    RETURN();
1055
}
1056

    
1057
void op_mfc0_pagemask (void)
1058
{
1059
    T0 = env->CP0_PageMask;
1060
    RETURN();
1061
}
1062

    
1063
void op_mfc0_pagegrain (void)
1064
{
1065
    T0 = env->CP0_PageGrain;
1066
    RETURN();
1067
}
1068

    
1069
void op_mfc0_wired (void)
1070
{
1071
    T0 = env->CP0_Wired;
1072
    RETURN();
1073
}
1074

    
1075
void op_mfc0_hwrena (void)
1076
{
1077
    T0 = env->CP0_HWREna;
1078
    RETURN();
1079
}
1080

    
1081
void op_mfc0_badvaddr (void)
1082
{
1083
    T0 = (int32_t)env->CP0_BadVAddr;
1084
    RETURN();
1085
}
1086

    
1087
void op_mfc0_count (void)
1088
{
1089
    CALL_FROM_TB0(do_mfc0_count);
1090
    RETURN();
1091
}
1092

    
1093
void op_mfc0_entryhi (void)
1094
{
1095
    T0 = (int32_t)env->CP0_EntryHi;
1096
    RETURN();
1097
}
1098

    
1099
void op_mfc0_compare (void)
1100
{
1101
    T0 = env->CP0_Compare;
1102
    RETURN();
1103
}
1104

    
1105
void op_mfc0_status (void)
1106
{
1107
    T0 = env->CP0_Status;
1108
    if (env->hflags & MIPS_HFLAG_UM)
1109
        T0 |= (1 << CP0St_UM);
1110
    if (env->hflags & MIPS_HFLAG_ERL)
1111
        T0 |= (1 << CP0St_ERL);
1112
    if (env->hflags & MIPS_HFLAG_EXL)
1113
        T0 |= (1 << CP0St_EXL);
1114
    RETURN();
1115
}
1116

    
1117
void op_mfc0_intctl (void)
1118
{
1119
    T0 = env->CP0_IntCtl;
1120
    RETURN();
1121
}
1122

    
1123
void op_mfc0_srsctl (void)
1124
{
1125
    T0 = env->CP0_SRSCtl;
1126
    RETURN();
1127
}
1128

    
1129
void op_mfc0_srsmap (void)
1130
{
1131
    T0 = env->CP0_SRSMap;
1132
    RETURN();
1133
}
1134

    
1135
void op_mfc0_cause (void)
1136
{
1137
    T0 = env->CP0_Cause;
1138
    RETURN();
1139
}
1140

    
1141
void op_mfc0_epc (void)
1142
{
1143
    T0 = (int32_t)env->CP0_EPC;
1144
    RETURN();
1145
}
1146

    
1147
void op_mfc0_prid (void)
1148
{
1149
    T0 = env->CP0_PRid;
1150
    RETURN();
1151
}
1152

    
1153
void op_mfc0_ebase (void)
1154
{
1155
    T0 = env->CP0_EBase;
1156
    RETURN();
1157
}
1158

    
1159
void op_mfc0_config0 (void)
1160
{
1161
    T0 = env->CP0_Config0;
1162
    RETURN();
1163
}
1164

    
1165
void op_mfc0_config1 (void)
1166
{
1167
    T0 = env->CP0_Config1;
1168
    RETURN();
1169
}
1170

    
1171
void op_mfc0_config2 (void)
1172
{
1173
    T0 = env->CP0_Config2;
1174
    RETURN();
1175
}
1176

    
1177
void op_mfc0_config3 (void)
1178
{
1179
    T0 = env->CP0_Config3;
1180
    RETURN();
1181
}
1182

    
1183
void op_mfc0_lladdr (void)
1184
{
1185
    T0 = (int32_t)env->CP0_LLAddr >> 4;
1186
    RETURN();
1187
}
1188

    
1189
void op_mfc0_watchlo0 (void)
1190
{
1191
    T0 = (int32_t)env->CP0_WatchLo;
1192
    RETURN();
1193
}
1194

    
1195
void op_mfc0_watchhi0 (void)
1196
{
1197
    T0 = env->CP0_WatchHi;
1198
    RETURN();
1199
}
1200

    
1201
void op_mfc0_xcontext (void)
1202
{
1203
    T0 = (int32_t)env->CP0_XContext;
1204
    RETURN();
1205
}
1206

    
1207
void op_mfc0_framemask (void)
1208
{
1209
    T0 = env->CP0_Framemask;
1210
    RETURN();
1211
}
1212

    
1213
void op_mfc0_debug (void)
1214
{
1215
    T0 = env->CP0_Debug;
1216
    if (env->hflags & MIPS_HFLAG_DM)
1217
        T0 |= 1 << CP0DB_DM;
1218
    RETURN();
1219
}
1220

    
1221
void op_mfc0_depc (void)
1222
{
1223
    T0 = (int32_t)env->CP0_DEPC;
1224
    RETURN();
1225
}
1226

    
1227
void op_mfc0_performance0 (void)
1228
{
1229
    T0 = env->CP0_Performance0;
1230
    RETURN();
1231
}
1232

    
1233
void op_mfc0_taglo (void)
1234
{
1235
    T0 = env->CP0_TagLo;
1236
    RETURN();
1237
}
1238

    
1239
void op_mfc0_datalo (void)
1240
{
1241
    T0 = env->CP0_DataLo;
1242
    RETURN();
1243
}
1244

    
1245
void op_mfc0_taghi (void)
1246
{
1247
    T0 = env->CP0_TagHi;
1248
    RETURN();
1249
}
1250

    
1251
void op_mfc0_datahi (void)
1252
{
1253
    T0 = env->CP0_DataHi;
1254
    RETURN();
1255
}
1256

    
1257
void op_mfc0_errorepc (void)
1258
{
1259
    T0 = (int32_t)env->CP0_ErrorEPC;
1260
    RETURN();
1261
}
1262

    
1263
void op_mfc0_desave (void)
1264
{
1265
    T0 = env->CP0_DESAVE;
1266
    RETURN();
1267
}
1268

    
1269
void op_mtc0_index (void)
1270
{
1271
    env->CP0_Index = (env->CP0_Index & 0x80000000) | (T0 & (MIPS_TLB_NB - 1));
1272
    RETURN();
1273
}
1274

    
1275
void op_mtc0_entrylo0 (void)
1276
{
1277
    /* Large physaddr not implemented */
1278
    /* 1k pages not implemented */
1279
    env->CP0_EntryLo0 = (int32_t)T0 & 0x3FFFFFFF;
1280
    RETURN();
1281
}
1282

    
1283
void op_mtc0_entrylo1 (void)
1284
{
1285
    /* Large physaddr not implemented */
1286
    /* 1k pages not implemented */
1287
    env->CP0_EntryLo1 = (int32_t)T0 & 0x3FFFFFFF;
1288
    RETURN();
1289
}
1290

    
1291
void op_mtc0_context (void)
1292
{
1293
    env->CP0_Context = (env->CP0_Context & ~0x007FFFFF) | (T0 & 0x007FFFF0);
1294
    RETURN();
1295
}
1296

    
1297
void op_mtc0_pagemask (void)
1298
{
1299
    /* 1k pages not implemented */
1300
    env->CP0_PageMask = T0 & 0x1FFFE000;
1301
    RETURN();
1302
}
1303

    
1304
void op_mtc0_pagegrain (void)
1305
{
1306
    /* SmartMIPS not implemented */
1307
    /* Large physaddr not implemented */
1308
    /* 1k pages not implemented */
1309
    env->CP0_PageGrain = 0;
1310
    RETURN();
1311
}
1312

    
1313
void op_mtc0_wired (void)
1314
{
1315
    env->CP0_Wired = T0 & (MIPS_TLB_NB - 1);
1316
    RETURN();
1317
}
1318

    
1319
void op_mtc0_hwrena (void)
1320
{
1321
    env->CP0_HWREna = T0 & 0x0000000F;
1322
    RETURN();
1323
}
1324

    
1325
void op_mtc0_count (void)
1326
{
1327
    CALL_FROM_TB2(cpu_mips_store_count, env, T0);
1328
    RETURN();
1329
}
1330

    
1331
void op_mtc0_entryhi (void)
1332
{
1333
    target_ulong old, val;
1334

    
1335
    /* 1k pages not implemented */
1336
    /* Ignore MIPS64 TLB for now */
1337
    val = (target_ulong)(int32_t)T0 & ~(target_ulong)0x1F00;
1338
    old = env->CP0_EntryHi;
1339
    env->CP0_EntryHi = val;
1340
    /* If the ASID changes, flush qemu's TLB.  */
1341
    if ((old & 0xFF) != (val & 0xFF))
1342
        CALL_FROM_TB2(cpu_mips_tlb_flush, env, 1);
1343
    RETURN();
1344
}
1345

    
1346
void op_mtc0_compare (void)
1347
{
1348
    CALL_FROM_TB2(cpu_mips_store_compare, env, T0);
1349
    RETURN();
1350
}
1351

    
1352
void op_mtc0_status (void)
1353
{
1354
    uint32_t val, old;
1355

    
1356
    val = (int32_t)T0 & 0xFA78FF01;
1357
    old = env->CP0_Status;
1358
    if (T0 & (1 << CP0St_UM))
1359
        env->hflags |= MIPS_HFLAG_UM;
1360
    else
1361
        env->hflags &= ~MIPS_HFLAG_UM;
1362
    if (T0 & (1 << CP0St_ERL))
1363
        env->hflags |= MIPS_HFLAG_ERL;
1364
    else
1365
        env->hflags &= ~MIPS_HFLAG_ERL;
1366
    if (T0 & (1 << CP0St_EXL))
1367
        env->hflags |= MIPS_HFLAG_EXL;
1368
    else
1369
        env->hflags &= ~MIPS_HFLAG_EXL;
1370
    env->CP0_Status = val;
1371
    if (loglevel & CPU_LOG_TB_IN_ASM)
1372
       CALL_FROM_TB2(do_mtc0_status_debug, old, val);
1373
    CALL_FROM_TB1(cpu_mips_update_irq, env);
1374
    RETURN();
1375
}
1376

    
1377
void op_mtc0_intctl (void)
1378
{
1379
    /* vectored interrupts not implemented */
1380
    env->CP0_IntCtl = 0;
1381
    RETURN();
1382
}
1383

    
1384
void op_mtc0_srsctl (void)
1385
{
1386
    /* shadow registers not implemented */
1387
    env->CP0_SRSCtl = 0;
1388
    RETURN();
1389
}
1390

    
1391
void op_mtc0_srsmap (void)
1392
{
1393
    /* shadow registers not implemented */
1394
    env->CP0_SRSMap = 0;
1395
    RETURN();
1396
}
1397

    
1398
void op_mtc0_cause (void)
1399
{
1400
    env->CP0_Cause = (env->CP0_Cause & 0xB000F87C) | (T0 & 0x00C00300);
1401

    
1402
    /* Handle the software interrupt as an hardware one, as they
1403
       are very similar */
1404
    if (T0 & CP0Ca_IP_mask) {
1405
        CALL_FROM_TB1(cpu_mips_update_irq, env);
1406
    }
1407
    RETURN();
1408
}
1409

    
1410
void op_mtc0_epc (void)
1411
{
1412
    env->CP0_EPC = (int32_t)T0;
1413
    RETURN();
1414
}
1415

    
1416
void op_mtc0_ebase (void)
1417
{
1418
    /* vectored interrupts not implemented */
1419
    /* Multi-CPU not implemented */
1420
    env->CP0_EBase = 0x80000000 | (T0 & 0x3FFFF000);
1421
    RETURN();
1422
}
1423

    
1424
void op_mtc0_config0 (void)
1425
{
1426
#if defined(MIPS_USES_R4K_TLB)
1427
     /* Fixed mapping MMU not implemented */
1428
    env->CP0_Config0 = (env->CP0_Config0 & 0x8017FF88) | (T0 & 0x00000001);
1429
#else
1430
    env->CP0_Config0 = (env->CP0_Config0 & 0xFE17FF88) | (T0 & 0x00000001);
1431
#endif
1432
    RETURN();
1433
}
1434

    
1435
void op_mtc0_config2 (void)
1436
{
1437
    /* tertiary/secondary caches not implemented */
1438
    env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1439
    RETURN();
1440
}
1441

    
1442
void op_mtc0_watchlo0 (void)
1443
{
1444
    env->CP0_WatchLo = (int32_t)T0;
1445
    RETURN();
1446
}
1447

    
1448
void op_mtc0_watchhi0 (void)
1449
{
1450
    env->CP0_WatchHi = T0 & 0x40FF0FF8;
1451
    RETURN();
1452
}
1453

    
1454
void op_mtc0_xcontext (void)
1455
{
1456
    env->CP0_XContext = (int32_t)T0; /* XXX */
1457
    RETURN();
1458
}
1459

    
1460
void op_mtc0_framemask (void)
1461
{
1462
    env->CP0_Framemask = T0; /* XXX */
1463
    RETURN();
1464
}
1465

    
1466
void op_mtc0_debug (void)
1467
{
1468
    env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (T0 & 0x13300120);
1469
    if (T0 & (1 << CP0DB_DM))
1470
        env->hflags |= MIPS_HFLAG_DM;
1471
    else
1472
        env->hflags &= ~MIPS_HFLAG_DM;
1473
    RETURN();
1474
}
1475

    
1476
void op_mtc0_depc (void)
1477
{
1478
    env->CP0_DEPC = (int32_t)T0;
1479
    RETURN();
1480
}
1481

    
1482
void op_mtc0_performance0 (void)
1483
{
1484
    env->CP0_Performance0 = T0; /* XXX */
1485
    RETURN();
1486
}
1487

    
1488
void op_mtc0_taglo (void)
1489
{
1490
    env->CP0_TagLo = T0 & 0xFFFFFCF6;
1491
    RETURN();
1492
}
1493

    
1494
void op_mtc0_datalo (void)
1495
{
1496
    env->CP0_DataLo = T0; /* XXX */
1497
    RETURN();
1498
}
1499

    
1500
void op_mtc0_taghi (void)
1501
{
1502
    env->CP0_TagHi = T0; /* XXX */
1503
    RETURN();
1504
}
1505

    
1506
void op_mtc0_datahi (void)
1507
{
1508
    env->CP0_DataHi = T0; /* XXX */
1509
    RETURN();
1510
}
1511

    
1512
void op_mtc0_errorepc (void)
1513
{
1514
    env->CP0_ErrorEPC = (int32_t)T0;
1515
    RETURN();
1516
}
1517

    
1518
void op_mtc0_desave (void)
1519
{
1520
    env->CP0_DESAVE = T0;
1521
    RETURN();
1522
}
1523

    
1524
void op_dmfc0_entrylo0 (void)
1525
{
1526
    T0 = env->CP0_EntryLo0;
1527
    RETURN();
1528
}
1529

    
1530
void op_dmfc0_entrylo1 (void)
1531
{
1532
    T0 = env->CP0_EntryLo1;
1533
    RETURN();
1534
}
1535

    
1536
void op_dmfc0_context (void)
1537
{
1538
    T0 = env->CP0_Context;
1539
    RETURN();
1540
}
1541

    
1542
void op_dmfc0_badvaddr (void)
1543
{
1544
    T0 = env->CP0_BadVAddr;
1545
    RETURN();
1546
}
1547

    
1548
void op_dmfc0_entryhi (void)
1549
{
1550
    T0 = env->CP0_EntryHi;
1551
    RETURN();
1552
}
1553

    
1554
void op_dmfc0_epc (void)
1555
{
1556
    T0 = env->CP0_EPC;
1557
    RETURN();
1558
}
1559

    
1560
void op_dmfc0_lladdr (void)
1561
{
1562
    T0 = env->CP0_LLAddr >> 4;
1563
    RETURN();
1564
}
1565

    
1566
void op_dmfc0_watchlo0 (void)
1567
{
1568
    T0 = env->CP0_WatchLo;
1569
    RETURN();
1570
}
1571

    
1572
void op_dmfc0_xcontext (void)
1573
{
1574
    T0 = env->CP0_XContext;
1575
    RETURN();
1576
}
1577

    
1578
void op_dmfc0_depc (void)
1579
{
1580
    T0 = env->CP0_DEPC;
1581
    RETURN();
1582
}
1583

    
1584
void op_dmfc0_errorepc (void)
1585
{
1586
    T0 = env->CP0_ErrorEPC;
1587
    RETURN();
1588
}
1589

    
1590
void op_dmtc0_entrylo0 (void)
1591
{
1592
    /* Large physaddr not implemented */
1593
    /* 1k pages not implemented */
1594
    env->CP0_EntryLo0 = T0 & 0x3FFFFFFF;
1595
    RETURN();
1596
}
1597

    
1598
void op_dmtc0_entrylo1 (void)
1599
{
1600
    /* Large physaddr not implemented */
1601
    /* 1k pages not implemented */
1602
    env->CP0_EntryLo1 = T0 & 0x3FFFFFFF;
1603
    RETURN();
1604
}
1605

    
1606
void op_dmtc0_context (void)
1607
{
1608
    env->CP0_Context = (env->CP0_Context & ~0x007FFFFF) | (T0 & 0x007FFFF0);
1609
    RETURN();
1610
}
1611

    
1612
void op_dmtc0_epc (void)
1613
{
1614
    env->CP0_EPC = T0;
1615
    RETURN();
1616
}
1617

    
1618
void op_dmtc0_watchlo0 (void)
1619
{
1620
    env->CP0_WatchLo = T0;
1621
    RETURN();
1622
}
1623

    
1624
void op_dmtc0_xcontext (void)
1625
{
1626
    env->CP0_XContext = T0; /* XXX */
1627
    RETURN();
1628
}
1629

    
1630
void op_dmtc0_depc (void)
1631
{
1632
    env->CP0_DEPC = T0;
1633
    RETURN();
1634
}
1635

    
1636
void op_dmtc0_errorepc (void)
1637
{
1638
    env->CP0_ErrorEPC = T0;
1639
    RETURN();
1640
}
1641

    
1642
#if 0
1643
# define DEBUG_FPU_STATE() CALL_FROM_TB1(dump_fpu, env)
1644
#else
1645
# define DEBUG_FPU_STATE() do { } while(0)
1646
#endif
1647

    
1648
void op_cp1_enabled(void)
1649
{
1650
    if (!(env->CP0_Status & (1 << CP0St_CU1))) {
1651
        CALL_FROM_TB2(do_raise_exception_err, EXCP_CpU, 1);
1652
    }
1653
    RETURN();
1654
}
1655

    
1656
/* CP1 functions */
1657
void op_cfc1 (void)
1658
{
1659
    if (T1 == 0) {
1660
        T0 = env->fcr0;
1661
    }
1662
    else {
1663
        /* fetch fcr31, masking unused bits */
1664
        T0 = env->fcr31 & 0x0183FFFF;
1665
    }
1666
    DEBUG_FPU_STATE();
1667
    RETURN();
1668
}
1669

    
1670
/* convert MIPS rounding mode in FCR31 to IEEE library */
1671
unsigned int ieee_rm[] = { 
1672
    float_round_nearest_even,
1673
    float_round_to_zero,
1674
    float_round_up,
1675
    float_round_down
1676
};
1677

    
1678
#define RESTORE_ROUNDING_MODE \
1679
    set_float_rounding_mode(ieee_rm[env->fcr31 & 3], &env->fp_status)
1680

    
1681
void op_ctc1 (void)
1682
{
1683
    if (T1 == 0) {
1684
        /* XXX should this throw an exception?
1685
         * don't write to FCR0.
1686
         * env->fcr0 = T0; 
1687
         */
1688
    }
1689
    else {
1690
        /* store new fcr31, masking unused bits */  
1691
        env->fcr31 = T0 & 0x0183FFFF;
1692

    
1693
        /* set rounding mode */
1694
        RESTORE_ROUNDING_MODE;
1695

    
1696
#ifndef CONFIG_SOFTFLOAT
1697
        /* no floating point exception for native float */
1698
        SET_FP_ENABLE(env->fcr31, 0);
1699
#endif
1700
    }
1701
    DEBUG_FPU_STATE();
1702
    RETURN();
1703
}
1704

    
1705
void op_mfc1 (void)
1706
{
1707
    T0 = WT0;
1708
    DEBUG_FPU_STATE();
1709
    RETURN();
1710
}
1711

    
1712
void op_mtc1 (void)
1713
{
1714
    WT0 = T0;
1715
    DEBUG_FPU_STATE();
1716
    RETURN();
1717
}
1718

    
1719
/* Float support.
1720
   Single precition routines have a "s" suffix, double precision a
1721
   "d" suffix.  */
1722

    
1723
#define FLOAT_OP(name, p) void OPPROTO op_float_##name##_##p(void)
1724

    
1725
FLOAT_OP(cvtd, s)
1726
{
1727
    FDT2 = float32_to_float64(FST0, &env->fp_status);
1728
    DEBUG_FPU_STATE();
1729
    RETURN();
1730
}
1731
FLOAT_OP(cvtd, w)
1732
{
1733
    FDT2 = int32_to_float64(WT0, &env->fp_status);
1734
    DEBUG_FPU_STATE();
1735
    RETURN();
1736
}
1737
FLOAT_OP(cvts, d)
1738
{
1739
    FST2 = float64_to_float32(FDT0, &env->fp_status);
1740
    DEBUG_FPU_STATE();
1741
    RETURN();
1742
}
1743
FLOAT_OP(cvts, w)
1744
{
1745
    FST2 = int32_to_float32(WT0, &env->fp_status);
1746
    DEBUG_FPU_STATE();
1747
    RETURN();
1748
}
1749
FLOAT_OP(cvtw, s)
1750
{
1751
    WT2 = float32_to_int32(FST0, &env->fp_status);
1752
    DEBUG_FPU_STATE();
1753
    RETURN();
1754
}
1755
FLOAT_OP(cvtw, d)
1756
{
1757
    WT2 = float64_to_int32(FDT0, &env->fp_status);
1758
    DEBUG_FPU_STATE();
1759
    RETURN();
1760
}
1761

    
1762
FLOAT_OP(roundw, d)
1763
{
1764
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
1765
    WT2 = float64_round_to_int(FDT0, &env->fp_status);
1766
    RESTORE_ROUNDING_MODE;
1767

    
1768
    DEBUG_FPU_STATE();
1769
    RETURN();
1770
}
1771
FLOAT_OP(roundw, s)
1772
{
1773
    set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
1774
    WT2 = float32_round_to_int(FST0, &env->fp_status);
1775
    RESTORE_ROUNDING_MODE;
1776
    DEBUG_FPU_STATE();
1777
    RETURN();
1778
}
1779

    
1780
FLOAT_OP(truncw, d)
1781
{
1782
    WT2 = float64_to_int32_round_to_zero(FDT0, &env->fp_status);
1783
    DEBUG_FPU_STATE();
1784
    RETURN();
1785
}
1786
FLOAT_OP(truncw, s)
1787
{
1788
    WT2 = float32_to_int32_round_to_zero(FST0, &env->fp_status);
1789
    DEBUG_FPU_STATE();
1790
    RETURN();
1791
}
1792

    
1793
FLOAT_OP(ceilw, d)
1794
{
1795
    set_float_rounding_mode(float_round_up, &env->fp_status);
1796
    WT2 = float64_round_to_int(FDT0, &env->fp_status);
1797
    RESTORE_ROUNDING_MODE;
1798

    
1799
    DEBUG_FPU_STATE();
1800
    RETURN();
1801
}
1802
FLOAT_OP(ceilw, s)
1803
{
1804
    set_float_rounding_mode(float_round_up, &env->fp_status);
1805
    WT2 = float32_round_to_int(FST0, &env->fp_status);
1806
    RESTORE_ROUNDING_MODE;
1807
    DEBUG_FPU_STATE();
1808
    RETURN();
1809
}
1810

    
1811
FLOAT_OP(floorw, d)
1812
{
1813
    set_float_rounding_mode(float_round_down, &env->fp_status);
1814
    WT2 = float64_round_to_int(FDT0, &env->fp_status);
1815
    RESTORE_ROUNDING_MODE;
1816

    
1817
    DEBUG_FPU_STATE();
1818
    RETURN();
1819
}
1820
FLOAT_OP(floorw, s)
1821
{
1822
    set_float_rounding_mode(float_round_down, &env->fp_status);
1823
    WT2 = float32_round_to_int(FST0, &env->fp_status);
1824
    RESTORE_ROUNDING_MODE;
1825
    DEBUG_FPU_STATE();
1826
    RETURN();
1827
}
1828

    
1829
/* binary operations */
1830
#define FLOAT_BINOP(name) \
1831
FLOAT_OP(name, d)         \
1832
{                         \
1833
    FDT2 = float64_ ## name (FDT0, FDT1, &env->fp_status);    \
1834
    DEBUG_FPU_STATE();    \
1835
}                         \
1836
FLOAT_OP(name, s)         \
1837
{                         \
1838
    FST2 = float32_ ## name (FST0, FST1, &env->fp_status);    \
1839
    DEBUG_FPU_STATE();    \
1840
}
1841
FLOAT_BINOP(add)
1842
FLOAT_BINOP(sub)
1843
FLOAT_BINOP(mul)
1844
FLOAT_BINOP(div)
1845
#undef FLOAT_BINOP
1846

    
1847
/* unary operations, modifying fp status  */
1848
#define FLOAT_UNOP(name)  \
1849
FLOAT_OP(name, d)         \
1850
{                         \
1851
    FDT2 = float64_ ## name(FDT0, &env->fp_status);   \
1852
    DEBUG_FPU_STATE();    \
1853
}                         \
1854
FLOAT_OP(name, s)         \
1855
{                         \
1856
    FST2 = float32_ ## name(FST0, &env->fp_status);   \
1857
    DEBUG_FPU_STATE();    \
1858
}
1859
FLOAT_UNOP(sqrt)
1860
#undef FLOAT_UNOP
1861

    
1862
/* unary operations, not modifying fp status  */
1863
#define FLOAT_UNOP(name)  \
1864
FLOAT_OP(name, d)         \
1865
{                         \
1866
    FDT2 = float64_ ## name(FDT0);   \
1867
    DEBUG_FPU_STATE();    \
1868
}                         \
1869
FLOAT_OP(name, s)         \
1870
{                         \
1871
    FST2 = float32_ ## name(FST0);   \
1872
    DEBUG_FPU_STATE();    \
1873
}
1874
FLOAT_UNOP(abs)
1875
FLOAT_UNOP(chs)
1876
#undef FLOAT_UNOP
1877

    
1878
FLOAT_OP(mov, d)
1879
{
1880
    FDT2 = FDT0;
1881
    DEBUG_FPU_STATE();
1882
    RETURN();
1883
}
1884
FLOAT_OP(mov, s)
1885
{
1886
    FST2 = FST0;
1887
    DEBUG_FPU_STATE();
1888
    RETURN();
1889
}
1890

    
1891
#ifdef CONFIG_SOFTFLOAT
1892
#define clear_invalid() do {                                \
1893
    int flags = get_float_exception_flags(&env->fp_status); \
1894
    flags &= ~float_flag_invalid;                           \
1895
    set_float_exception_flags(flags, &env->fp_status);      \
1896
} while(0)
1897
#else
1898
#define clear_invalid() do { } while(0)
1899
#endif
1900

    
1901
extern void dump_fpu_s(CPUState *env);
1902

    
1903
#define FOP_COND(fmt, op, sig, cond)           \
1904
void op_cmp_ ## fmt ## _ ## op (void)          \
1905
{                                              \
1906
    if (cond)                                  \
1907
        SET_FP_COND(env->fcr31);               \
1908
    else                                       \
1909
        CLEAR_FP_COND(env->fcr31);             \
1910
    if (!sig)                                  \
1911
        clear_invalid();                       \
1912
    /*CALL_FROM_TB1(dump_fpu_s, env);*/ \
1913
    DEBUG_FPU_STATE();                         \
1914
    RETURN();                                  \
1915
}
1916

    
1917
int float64_is_unordered(float64 a, float64 b STATUS_PARAM)
1918
{
1919
    if (float64_is_nan(a) || float64_is_nan(b)) {
1920
        float_raise(float_flag_invalid, status);
1921
        return 1;
1922
    }
1923
    else {
1924
        return 0;
1925
    }
1926
}
1927

    
1928
FOP_COND(d, f,   0,                                                      0) 
1929
FOP_COND(d, un,  0, float64_is_unordered(FDT1, FDT0, &env->fp_status))
1930
FOP_COND(d, eq,  0,                                                      float64_eq(FDT0, FDT1, &env->fp_status))
1931
FOP_COND(d, ueq, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
1932
FOP_COND(d, olt, 0,                                                      float64_lt(FDT0, FDT1, &env->fp_status))
1933
FOP_COND(d, ult, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
1934
FOP_COND(d, ole, 0,                                                      float64_le(FDT0, FDT1, &env->fp_status))
1935
FOP_COND(d, ule, 0, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
1936
/* NOTE: the comma operator will make "cond" to eval to false,
1937
 * but float*_is_unordered() is still called
1938
 */
1939
FOP_COND(d, sf,  1,                                                      (float64_is_unordered(FDT0, FDT1, &env->fp_status), 0))
1940
FOP_COND(d, ngle,1, float64_is_unordered(FDT1, FDT0, &env->fp_status))
1941
FOP_COND(d, seq, 1,                                                      float64_eq(FDT0, FDT1, &env->fp_status))
1942
FOP_COND(d, ngl, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_eq(FDT0, FDT1, &env->fp_status))
1943
FOP_COND(d, lt,  1,                                                      float64_lt(FDT0, FDT1, &env->fp_status))
1944
FOP_COND(d, nge, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_lt(FDT0, FDT1, &env->fp_status))
1945
FOP_COND(d, le,  1,                                                      float64_le(FDT0, FDT1, &env->fp_status))
1946
FOP_COND(d, ngt, 1, float64_is_unordered(FDT1, FDT0, &env->fp_status) || float64_le(FDT0, FDT1, &env->fp_status))
1947

    
1948
flag float32_is_unordered(float32 a, float32 b STATUS_PARAM)
1949
{
1950
    extern flag float32_is_nan( float32 a );
1951
    if (float32_is_nan(a) || float32_is_nan(b)) {
1952
        float_raise(float_flag_invalid, status);
1953
        return 1;
1954
    }
1955
    else {
1956
        return 0;
1957
    }
1958
}
1959

    
1960
/* NOTE: the comma operator will make "cond" to eval to false,
1961
 * but float*_is_unordered() is still called
1962
 */
1963
FOP_COND(s, f,   0,                                                      0) 
1964
FOP_COND(s, un,  0, float32_is_unordered(FST1, FST0, &env->fp_status))
1965
FOP_COND(s, eq,  0,                                                      float32_eq(FST0, FST1, &env->fp_status))
1966
FOP_COND(s, ueq, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
1967
FOP_COND(s, olt, 0,                                                      float32_lt(FST0, FST1, &env->fp_status))
1968
FOP_COND(s, ult, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
1969
FOP_COND(s, ole, 0,                                                      float32_le(FST0, FST1, &env->fp_status))
1970
FOP_COND(s, ule, 0, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
1971
/* NOTE: the comma operator will make "cond" to eval to false,
1972
 * but float*_is_unordered() is still called
1973
 */
1974
FOP_COND(s, sf,  1,                                                      (float32_is_unordered(FST0, FST1, &env->fp_status), 0))
1975
FOP_COND(s, ngle,1, float32_is_unordered(FST1, FST0, &env->fp_status))
1976
FOP_COND(s, seq, 1,                                                      float32_eq(FST0, FST1, &env->fp_status))
1977
FOP_COND(s, ngl, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_eq(FST0, FST1, &env->fp_status))
1978
FOP_COND(s, lt,  1,                                                      float32_lt(FST0, FST1, &env->fp_status))
1979
FOP_COND(s, nge, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_lt(FST0, FST1, &env->fp_status))
1980
FOP_COND(s, le,  1,                                                      float32_le(FST0, FST1, &env->fp_status))
1981
FOP_COND(s, ngt, 1, float32_is_unordered(FST1, FST0, &env->fp_status) || float32_le(FST0, FST1, &env->fp_status))
1982

    
1983
void op_bc1f (void)
1984
{
1985
    T0 = ! IS_FP_COND_SET(env->fcr31);
1986
    DEBUG_FPU_STATE();
1987
    RETURN();
1988
}
1989

    
1990
void op_bc1t (void)
1991
{
1992
    T0 = IS_FP_COND_SET(env->fcr31);
1993
    DEBUG_FPU_STATE();
1994
    RETURN();
1995
}
1996

    
1997
#if defined(MIPS_USES_R4K_TLB)
1998
void op_tlbwi (void)
1999
{
2000
    CALL_FROM_TB0(do_tlbwi);
2001
    RETURN();
2002
}
2003

    
2004
void op_tlbwr (void)
2005
{
2006
    CALL_FROM_TB0(do_tlbwr);
2007
    RETURN();
2008
}
2009

    
2010
void op_tlbp (void)
2011
{
2012
    CALL_FROM_TB0(do_tlbp);
2013
    RETURN();
2014
}
2015

    
2016
void op_tlbr (void)
2017
{
2018
    CALL_FROM_TB0(do_tlbr);
2019
    RETURN();
2020
}
2021
#endif
2022

    
2023
/* Specials */
2024
void op_pmon (void)
2025
{
2026
    CALL_FROM_TB1(do_pmon, PARAM1);
2027
    RETURN();
2028
}
2029

    
2030
void op_di (void)
2031
{
2032
    T0 = env->CP0_Status;
2033
    env->CP0_Status = T0 & ~(1 << CP0St_IE);
2034
    CALL_FROM_TB1(cpu_mips_update_irq, env);
2035
    RETURN();
2036
}
2037

    
2038
void op_ei (void)
2039
{
2040
    T0 = env->CP0_Status;
2041
    env->CP0_Status = T0 | (1 << CP0St_IE);
2042
    CALL_FROM_TB1(cpu_mips_update_irq, env);
2043
    RETURN();
2044
}
2045

    
2046
void op_trap (void)
2047
{
2048
    if (T0) {
2049
        CALL_FROM_TB1(do_raise_exception_direct, EXCP_TRAP);
2050
    }
2051
    RETURN();
2052
}
2053

    
2054
void op_debug (void)
2055
{
2056
    CALL_FROM_TB1(do_raise_exception, EXCP_DEBUG);
2057
    RETURN();
2058
}
2059

    
2060
void op_set_lladdr (void)
2061
{
2062
    env->CP0_LLAddr = T2;
2063
    RETURN();
2064
}
2065

    
2066
void debug_eret (void);
2067
void op_eret (void)
2068
{
2069
    CALL_FROM_TB0(debug_eret);
2070
    if (env->hflags & MIPS_HFLAG_ERL) {
2071
        env->PC = env->CP0_ErrorEPC;
2072
        env->hflags &= ~MIPS_HFLAG_ERL;
2073
        env->CP0_Status &= ~(1 << CP0St_ERL);
2074
    } else {
2075
        env->PC = env->CP0_EPC;
2076
        env->hflags &= ~MIPS_HFLAG_EXL;
2077
        env->CP0_Status &= ~(1 << CP0St_EXL);
2078
    }
2079
    env->CP0_LLAddr = 1;
2080
    RETURN();
2081
}
2082

    
2083
void op_deret (void)
2084
{
2085
    CALL_FROM_TB0(debug_eret);
2086
    env->PC = env->CP0_DEPC;
2087
    RETURN();
2088
}
2089

    
2090
void op_rdhwr_cpunum(void)
2091
{
2092
    if (env->CP0_HWREna & (1 << 0))
2093
       T0 = env->CP0_EBase & 0x2ff;
2094
    else
2095
       CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI);
2096
    RETURN();
2097
}
2098

    
2099
void op_rdhwr_synci_step(void)
2100
{
2101
    if (env->CP0_HWREna & (1 << 1))
2102
       T0 = env->SYNCI_Step;
2103
    else
2104
       CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI);
2105
    RETURN();
2106
}
2107

    
2108
void op_rdhwr_cc(void)
2109
{
2110
    if (env->CP0_HWREna & (1 << 2))
2111
       T0 = env->CP0_Count;
2112
    else
2113
       CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI);
2114
    RETURN();
2115
}
2116

    
2117
void op_rdhwr_ccres(void)
2118
{
2119
    if (env->CP0_HWREna & (1 << 3))
2120
       T0 = env->CCRes;
2121
    else
2122
       CALL_FROM_TB1(do_raise_exception_direct, EXCP_RI);
2123
    RETURN();
2124
}
2125

    
2126
void op_save_state (void)
2127
{
2128
    env->hflags = PARAM1;
2129
    RETURN();
2130
}
2131

    
2132
void op_save_pc (void)
2133
{
2134
    env->PC = PARAM1;
2135
    RETURN();
2136
}
2137

    
2138
void op_raise_exception (void)
2139
{
2140
    CALL_FROM_TB1(do_raise_exception, PARAM1);
2141
    RETURN();
2142
}
2143

    
2144
void op_raise_exception_err (void)
2145
{
2146
    CALL_FROM_TB2(do_raise_exception_err, PARAM1, PARAM2);
2147
    RETURN();
2148
}
2149

    
2150
void op_exit_tb (void)
2151
{
2152
    EXIT_TB();
2153
    RETURN();
2154
}
2155

    
2156
void op_wait (void)
2157
{
2158
    env->halted = 1;
2159
    CALL_FROM_TB1(do_raise_exception, EXCP_HLT);
2160
    RETURN();
2161
}
2162

    
2163
/* Bitfield operations. */
2164
void op_ext(void)
2165
{
2166
    unsigned int pos = PARAM1;
2167
    unsigned int size = PARAM2;
2168

    
2169
    T0 = ((uint32_t)T1 >> pos) & ((1 << size) - 1);
2170
    RETURN();
2171
}
2172

    
2173
void op_ins(void)
2174
{
2175
    unsigned int pos = PARAM1;
2176
    unsigned int size = PARAM2;
2177
    target_ulong mask = ((1 << size) - 1) << pos;
2178

    
2179
    T0 = (T2 & ~mask) | (((uint32_t)T1 << pos) & mask);
2180
    RETURN();
2181
}
2182

    
2183
void op_wsbh(void)
2184
{
2185
    T0 = ((T1 << 8) & ~0x00FF00FF) | ((T1 >> 8) & 0x00FF00FF);
2186
    RETURN();
2187
}
2188

    
2189
#ifdef MIPS_HAS_MIPS64
2190
void op_dext(void)
2191
{
2192
    unsigned int pos = PARAM1;
2193
    unsigned int size = PARAM2;
2194

    
2195
    T0 = (T1 >> pos) & ((1 << size) - 1);
2196
    RETURN();
2197
}
2198

    
2199
void op_dins(void)
2200
{
2201
    unsigned int pos = PARAM1;
2202
    unsigned int size = PARAM2;
2203
    target_ulong mask = ((1 << size) - 1) << pos;
2204

    
2205
    T0 = (T2 & ~mask) | ((T1 << pos) & mask);
2206
    RETURN();
2207
}
2208

    
2209
void op_dsbh(void)
2210
{
2211
    T0 = ((T1 << 8) & ~0x00FF00FF00FF00FFULL) | ((T1 >> 8) & 0x00FF00FF00FF00FFULL);
2212
    RETURN();
2213
}
2214

    
2215
void op_dshd(void)
2216
{
2217
    T0 = ((T1 << 16) & ~0x0000FFFF0000FFFFULL) | ((T1 >> 16) & 0x0000FFFF0000FFFFULL);
2218
    RETURN();
2219
}
2220
#endif
2221

    
2222
void op_seb(void)
2223
{
2224
    T0 = ((T1 & 0xFF) ^ 0x80) - 0x80;
2225
    RETURN();
2226
}
2227

    
2228
void op_seh(void)
2229
{
2230
    T0 = ((T1 & 0xFFFF) ^ 0x8000) - 0x8000;
2231
    RETURN();
2232
}