Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 379f6698

History | View | Annotate | Download (66.2 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 Beige PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78
@item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit and 64-bit MIPS processors)
80
@item MIPS Magnum (64-bit MIPS processor)
81
@item ARM Integrator/CP (ARM)
82
@item ARM Versatile baseboard (ARM)
83
@item ARM RealView Emulation baseboard (ARM)
84
@item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85
@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86
@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87
@item Freescale MCF5208EVB (ColdFire V2).
88
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
89
@item Palm Tungsten|E PDA (OMAP310 processor)
90
@item N800 and N810 tablets (OMAP2420 processor)
91
@item MusicPal (MV88W8618 ARM processor)
92
@item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93
@item Siemens SX1 smartphone (OMAP310 processor)
94
@item Syborg SVP base model (ARM Cortex-A8).
95
@item AXIS-Devboard88 (CRISv32 ETRAX-FS).
96
@item Petalogix Spartan 3aDSP1800 MMU ref design (MicroBlaze).
97
@end itemize
98

    
99
For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64, ColdFire(m68k), CRISv32 and MicroBlaze CPUs are supported.
100

    
101
@node Installation
102
@chapter Installation
103

    
104
If you want to compile QEMU yourself, see @ref{compilation}.
105

    
106
@menu
107
* install_linux::   Linux
108
* install_windows:: Windows
109
* install_mac::     Macintosh
110
@end menu
111

    
112
@node install_linux
113
@section Linux
114

    
115
If a precompiled package is available for your distribution - you just
116
have to install it. Otherwise, see @ref{compilation}.
117

    
118
@node install_windows
119
@section Windows
120

    
121
Download the experimental binary installer at
122
@url{http://www.free.oszoo.org/@/download.html}.
123

    
124
@node install_mac
125
@section Mac OS X
126

    
127
Download the experimental binary installer at
128
@url{http://www.free.oszoo.org/@/download.html}.
129

    
130
@node QEMU PC System emulator
131
@chapter QEMU PC System emulator
132

    
133
@menu
134
* pcsys_introduction:: Introduction
135
* pcsys_quickstart::   Quick Start
136
* sec_invocation::     Invocation
137
* pcsys_keys::         Keys
138
* pcsys_monitor::      QEMU Monitor
139
* disk_images::        Disk Images
140
* pcsys_network::      Network emulation
141
* direct_linux_boot::  Direct Linux Boot
142
* pcsys_usb::          USB emulation
143
* vnc_security::       VNC security
144
* gdb_usage::          GDB usage
145
* pcsys_os_specific::  Target OS specific information
146
@end menu
147

    
148
@node pcsys_introduction
149
@section Introduction
150

    
151
@c man begin DESCRIPTION
152

    
153
The QEMU PC System emulator simulates the
154
following peripherals:
155

    
156
@itemize @minus
157
@item
158
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
159
@item
160
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
161
extensions (hardware level, including all non standard modes).
162
@item
163
PS/2 mouse and keyboard
164
@item
165
2 PCI IDE interfaces with hard disk and CD-ROM support
166
@item
167
Floppy disk
168
@item
169
PCI and ISA network adapters
170
@item
171
Serial ports
172
@item
173
Creative SoundBlaster 16 sound card
174
@item
175
ENSONIQ AudioPCI ES1370 sound card
176
@item
177
Intel 82801AA AC97 Audio compatible sound card
178
@item
179
Adlib(OPL2) - Yamaha YM3812 compatible chip
180
@item
181
Gravis Ultrasound GF1 sound card
182
@item
183
CS4231A compatible sound card
184
@item
185
PCI UHCI USB controller and a virtual USB hub.
186
@end itemize
187

    
188
SMP is supported with up to 255 CPUs.
189

    
190
Note that adlib, gus and cs4231a are only available when QEMU was
191
configured with --audio-card-list option containing the name(s) of
192
required card(s).
193

    
194
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
195
VGA BIOS.
196

    
197
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
198

    
199
QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
200
by Tibor "TS" Sch?tz.
201

    
202
CS4231A is the chip used in Windows Sound System and GUSMAX products
203

    
204
@c man end
205

    
206
@node pcsys_quickstart
207
@section Quick Start
208

    
209
Download and uncompress the linux image (@file{linux.img}) and type:
210

    
211
@example
212
qemu linux.img
213
@end example
214

    
215
Linux should boot and give you a prompt.
216

    
217
@node sec_invocation
218
@section Invocation
219

    
220
@example
221
@c man begin SYNOPSIS
222
usage: qemu [options] [@var{disk_image}]
223
@c man end
224
@end example
225

    
226
@c man begin OPTIONS
227
@var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
228
targets do not need a disk image.
229

    
230
@include qemu-options.texi
231

    
232
@c man end
233

    
234
@node pcsys_keys
235
@section Keys
236

    
237
@c man begin OPTIONS
238

    
239
During the graphical emulation, you can use the following keys:
240
@table @key
241
@item Ctrl-Alt-f
242
Toggle full screen
243

    
244
@item Ctrl-Alt-n
245
Switch to virtual console 'n'. Standard console mappings are:
246
@table @emph
247
@item 1
248
Target system display
249
@item 2
250
Monitor
251
@item 3
252
Serial port
253
@end table
254

    
255
@item Ctrl-Alt
256
Toggle mouse and keyboard grab.
257
@end table
258

    
259
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
260
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
261

    
262
During emulation, if you are using the @option{-nographic} option, use
263
@key{Ctrl-a h} to get terminal commands:
264

    
265
@table @key
266
@item Ctrl-a h
267
@item Ctrl-a ?
268
Print this help
269
@item Ctrl-a x
270
Exit emulator
271
@item Ctrl-a s
272
Save disk data back to file (if -snapshot)
273
@item Ctrl-a t
274
Toggle console timestamps
275
@item Ctrl-a b
276
Send break (magic sysrq in Linux)
277
@item Ctrl-a c
278
Switch between console and monitor
279
@item Ctrl-a Ctrl-a
280
Send Ctrl-a
281
@end table
282
@c man end
283

    
284
@ignore
285

    
286
@c man begin SEEALSO
287
The HTML documentation of QEMU for more precise information and Linux
288
user mode emulator invocation.
289
@c man end
290

    
291
@c man begin AUTHOR
292
Fabrice Bellard
293
@c man end
294

    
295
@end ignore
296

    
297
@node pcsys_monitor
298
@section QEMU Monitor
299

    
300
The QEMU monitor is used to give complex commands to the QEMU
301
emulator. You can use it to:
302

    
303
@itemize @minus
304

    
305
@item
306
Remove or insert removable media images
307
(such as CD-ROM or floppies).
308

    
309
@item
310
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
311
from a disk file.
312

    
313
@item Inspect the VM state without an external debugger.
314

    
315
@end itemize
316

    
317
@subsection Commands
318

    
319
The following commands are available:
320

    
321
@include qemu-monitor.texi
322

    
323
@subsection Integer expressions
324

    
325
The monitor understands integers expressions for every integer
326
argument. You can use register names to get the value of specifics
327
CPU registers by prefixing them with @emph{$}.
328

    
329
@node disk_images
330
@section Disk Images
331

    
332
Since version 0.6.1, QEMU supports many disk image formats, including
333
growable disk images (their size increase as non empty sectors are
334
written), compressed and encrypted disk images. Version 0.8.3 added
335
the new qcow2 disk image format which is essential to support VM
336
snapshots.
337

    
338
@menu
339
* disk_images_quickstart::    Quick start for disk image creation
340
* disk_images_snapshot_mode:: Snapshot mode
341
* vm_snapshots::              VM snapshots
342
* qemu_img_invocation::       qemu-img Invocation
343
* qemu_nbd_invocation::       qemu-nbd Invocation
344
* host_drives::               Using host drives
345
* disk_images_fat_images::    Virtual FAT disk images
346
* disk_images_nbd::           NBD access
347
@end menu
348

    
349
@node disk_images_quickstart
350
@subsection Quick start for disk image creation
351

    
352
You can create a disk image with the command:
353
@example
354
qemu-img create myimage.img mysize
355
@end example
356
where @var{myimage.img} is the disk image filename and @var{mysize} is its
357
size in kilobytes. You can add an @code{M} suffix to give the size in
358
megabytes and a @code{G} suffix for gigabytes.
359

    
360
See @ref{qemu_img_invocation} for more information.
361

    
362
@node disk_images_snapshot_mode
363
@subsection Snapshot mode
364

    
365
If you use the option @option{-snapshot}, all disk images are
366
considered as read only. When sectors in written, they are written in
367
a temporary file created in @file{/tmp}. You can however force the
368
write back to the raw disk images by using the @code{commit} monitor
369
command (or @key{C-a s} in the serial console).
370

    
371
@node vm_snapshots
372
@subsection VM snapshots
373

    
374
VM snapshots are snapshots of the complete virtual machine including
375
CPU state, RAM, device state and the content of all the writable
376
disks. In order to use VM snapshots, you must have at least one non
377
removable and writable block device using the @code{qcow2} disk image
378
format. Normally this device is the first virtual hard drive.
379

    
380
Use the monitor command @code{savevm} to create a new VM snapshot or
381
replace an existing one. A human readable name can be assigned to each
382
snapshot in addition to its numerical ID.
383

    
384
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
385
a VM snapshot. @code{info snapshots} lists the available snapshots
386
with their associated information:
387

    
388
@example
389
(qemu) info snapshots
390
Snapshot devices: hda
391
Snapshot list (from hda):
392
ID        TAG                 VM SIZE                DATE       VM CLOCK
393
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
394
2                                 40M 2006-08-06 12:43:29   00:00:18.633
395
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
396
@end example
397

    
398
A VM snapshot is made of a VM state info (its size is shown in
399
@code{info snapshots}) and a snapshot of every writable disk image.
400
The VM state info is stored in the first @code{qcow2} non removable
401
and writable block device. The disk image snapshots are stored in
402
every disk image. The size of a snapshot in a disk image is difficult
403
to evaluate and is not shown by @code{info snapshots} because the
404
associated disk sectors are shared among all the snapshots to save
405
disk space (otherwise each snapshot would need a full copy of all the
406
disk images).
407

    
408
When using the (unrelated) @code{-snapshot} option
409
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
410
but they are deleted as soon as you exit QEMU.
411

    
412
VM snapshots currently have the following known limitations:
413
@itemize
414
@item
415
They cannot cope with removable devices if they are removed or
416
inserted after a snapshot is done.
417
@item
418
A few device drivers still have incomplete snapshot support so their
419
state is not saved or restored properly (in particular USB).
420
@end itemize
421

    
422
@node qemu_img_invocation
423
@subsection @code{qemu-img} Invocation
424

    
425
@include qemu-img.texi
426

    
427
@node qemu_nbd_invocation
428
@subsection @code{qemu-nbd} Invocation
429

    
430
@include qemu-nbd.texi
431

    
432
@node host_drives
433
@subsection Using host drives
434

    
435
In addition to disk image files, QEMU can directly access host
436
devices. We describe here the usage for QEMU version >= 0.8.3.
437

    
438
@subsubsection Linux
439

    
440
On Linux, you can directly use the host device filename instead of a
441
disk image filename provided you have enough privileges to access
442
it. For example, use @file{/dev/cdrom} to access to the CDROM or
443
@file{/dev/fd0} for the floppy.
444

    
445
@table @code
446
@item CD
447
You can specify a CDROM device even if no CDROM is loaded. QEMU has
448
specific code to detect CDROM insertion or removal. CDROM ejection by
449
the guest OS is supported. Currently only data CDs are supported.
450
@item Floppy
451
You can specify a floppy device even if no floppy is loaded. Floppy
452
removal is currently not detected accurately (if you change floppy
453
without doing floppy access while the floppy is not loaded, the guest
454
OS will think that the same floppy is loaded).
455
@item Hard disks
456
Hard disks can be used. Normally you must specify the whole disk
457
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
458
see it as a partitioned disk. WARNING: unless you know what you do, it
459
is better to only make READ-ONLY accesses to the hard disk otherwise
460
you may corrupt your host data (use the @option{-snapshot} command
461
line option or modify the device permissions accordingly).
462
@end table
463

    
464
@subsubsection Windows
465

    
466
@table @code
467
@item CD
468
The preferred syntax is the drive letter (e.g. @file{d:}). The
469
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
470
supported as an alias to the first CDROM drive.
471

    
472
Currently there is no specific code to handle removable media, so it
473
is better to use the @code{change} or @code{eject} monitor commands to
474
change or eject media.
475
@item Hard disks
476
Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
477
where @var{N} is the drive number (0 is the first hard disk).
478

    
479
WARNING: unless you know what you do, it is better to only make
480
READ-ONLY accesses to the hard disk otherwise you may corrupt your
481
host data (use the @option{-snapshot} command line so that the
482
modifications are written in a temporary file).
483
@end table
484

    
485

    
486
@subsubsection Mac OS X
487

    
488
@file{/dev/cdrom} is an alias to the first CDROM.
489

    
490
Currently there is no specific code to handle removable media, so it
491
is better to use the @code{change} or @code{eject} monitor commands to
492
change or eject media.
493

    
494
@node disk_images_fat_images
495
@subsection Virtual FAT disk images
496

    
497
QEMU can automatically create a virtual FAT disk image from a
498
directory tree. In order to use it, just type:
499

    
500
@example
501
qemu linux.img -hdb fat:/my_directory
502
@end example
503

    
504
Then you access access to all the files in the @file{/my_directory}
505
directory without having to copy them in a disk image or to export
506
them via SAMBA or NFS. The default access is @emph{read-only}.
507

    
508
Floppies can be emulated with the @code{:floppy:} option:
509

    
510
@example
511
qemu linux.img -fda fat:floppy:/my_directory
512
@end example
513

    
514
A read/write support is available for testing (beta stage) with the
515
@code{:rw:} option:
516

    
517
@example
518
qemu linux.img -fda fat:floppy:rw:/my_directory
519
@end example
520

    
521
What you should @emph{never} do:
522
@itemize
523
@item use non-ASCII filenames ;
524
@item use "-snapshot" together with ":rw:" ;
525
@item expect it to work when loadvm'ing ;
526
@item write to the FAT directory on the host system while accessing it with the guest system.
527
@end itemize
528

    
529
@node disk_images_nbd
530
@subsection NBD access
531

    
532
QEMU can access directly to block device exported using the Network Block Device
533
protocol.
534

    
535
@example
536
qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
537
@end example
538

    
539
If the NBD server is located on the same host, you can use an unix socket instead
540
of an inet socket:
541

    
542
@example
543
qemu linux.img -hdb nbd:unix:/tmp/my_socket
544
@end example
545

    
546
In this case, the block device must be exported using qemu-nbd:
547

    
548
@example
549
qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
550
@end example
551

    
552
The use of qemu-nbd allows to share a disk between several guests:
553
@example
554
qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
555
@end example
556

    
557
and then you can use it with two guests:
558
@example
559
qemu linux1.img -hdb nbd:unix:/tmp/my_socket
560
qemu linux2.img -hdb nbd:unix:/tmp/my_socket
561
@end example
562

    
563
@node pcsys_network
564
@section Network emulation
565

    
566
QEMU can simulate several network cards (PCI or ISA cards on the PC
567
target) and can connect them to an arbitrary number of Virtual Local
568
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
569
VLAN. VLAN can be connected between separate instances of QEMU to
570
simulate large networks. For simpler usage, a non privileged user mode
571
network stack can replace the TAP device to have a basic network
572
connection.
573

    
574
@subsection VLANs
575

    
576
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
577
connection between several network devices. These devices can be for
578
example QEMU virtual Ethernet cards or virtual Host ethernet devices
579
(TAP devices).
580

    
581
@subsection Using TAP network interfaces
582

    
583
This is the standard way to connect QEMU to a real network. QEMU adds
584
a virtual network device on your host (called @code{tapN}), and you
585
can then configure it as if it was a real ethernet card.
586

    
587
@subsubsection Linux host
588

    
589
As an example, you can download the @file{linux-test-xxx.tar.gz}
590
archive and copy the script @file{qemu-ifup} in @file{/etc} and
591
configure properly @code{sudo} so that the command @code{ifconfig}
592
contained in @file{qemu-ifup} can be executed as root. You must verify
593
that your host kernel supports the TAP network interfaces: the
594
device @file{/dev/net/tun} must be present.
595

    
596
See @ref{sec_invocation} to have examples of command lines using the
597
TAP network interfaces.
598

    
599
@subsubsection Windows host
600

    
601
There is a virtual ethernet driver for Windows 2000/XP systems, called
602
TAP-Win32. But it is not included in standard QEMU for Windows,
603
so you will need to get it separately. It is part of OpenVPN package,
604
so download OpenVPN from : @url{http://openvpn.net/}.
605

    
606
@subsection Using the user mode network stack
607

    
608
By using the option @option{-net user} (default configuration if no
609
@option{-net} option is specified), QEMU uses a completely user mode
610
network stack (you don't need root privilege to use the virtual
611
network). The virtual network configuration is the following:
612

    
613
@example
614

    
615
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
616
                           |          (10.0.2.2)
617
                           |
618
                           ---->  DNS server (10.0.2.3)
619
                           |
620
                           ---->  SMB server (10.0.2.4)
621
@end example
622

    
623
The QEMU VM behaves as if it was behind a firewall which blocks all
624
incoming connections. You can use a DHCP client to automatically
625
configure the network in the QEMU VM. The DHCP server assign addresses
626
to the hosts starting from 10.0.2.15.
627

    
628
In order to check that the user mode network is working, you can ping
629
the address 10.0.2.2 and verify that you got an address in the range
630
10.0.2.x from the QEMU virtual DHCP server.
631

    
632
Note that @code{ping} is not supported reliably to the internet as it
633
would require root privileges. It means you can only ping the local
634
router (10.0.2.2).
635

    
636
When using the built-in TFTP server, the router is also the TFTP
637
server.
638

    
639
When using the @option{-redir} option, TCP or UDP connections can be
640
redirected from the host to the guest. It allows for example to
641
redirect X11, telnet or SSH connections.
642

    
643
@subsection Connecting VLANs between QEMU instances
644

    
645
Using the @option{-net socket} option, it is possible to make VLANs
646
that span several QEMU instances. See @ref{sec_invocation} to have a
647
basic example.
648

    
649
@node direct_linux_boot
650
@section Direct Linux Boot
651

    
652
This section explains how to launch a Linux kernel inside QEMU without
653
having to make a full bootable image. It is very useful for fast Linux
654
kernel testing.
655

    
656
The syntax is:
657
@example
658
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
659
@end example
660

    
661
Use @option{-kernel} to provide the Linux kernel image and
662
@option{-append} to give the kernel command line arguments. The
663
@option{-initrd} option can be used to provide an INITRD image.
664

    
665
When using the direct Linux boot, a disk image for the first hard disk
666
@file{hda} is required because its boot sector is used to launch the
667
Linux kernel.
668

    
669
If you do not need graphical output, you can disable it and redirect
670
the virtual serial port and the QEMU monitor to the console with the
671
@option{-nographic} option. The typical command line is:
672
@example
673
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
674
     -append "root=/dev/hda console=ttyS0" -nographic
675
@end example
676

    
677
Use @key{Ctrl-a c} to switch between the serial console and the
678
monitor (@pxref{pcsys_keys}).
679

    
680
@node pcsys_usb
681
@section USB emulation
682

    
683
QEMU emulates a PCI UHCI USB controller. You can virtually plug
684
virtual USB devices or real host USB devices (experimental, works only
685
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
686
as necessary to connect multiple USB devices.
687

    
688
@menu
689
* usb_devices::
690
* host_usb_devices::
691
@end menu
692
@node usb_devices
693
@subsection Connecting USB devices
694

    
695
USB devices can be connected with the @option{-usbdevice} commandline option
696
or the @code{usb_add} monitor command.  Available devices are:
697

    
698
@table @code
699
@item mouse
700
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
701
@item tablet
702
Pointer device that uses absolute coordinates (like a touchscreen).
703
This means qemu is able to report the mouse position without having
704
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
705
@item disk:@var{file}
706
Mass storage device based on @var{file} (@pxref{disk_images})
707
@item host:@var{bus.addr}
708
Pass through the host device identified by @var{bus.addr}
709
(Linux only)
710
@item host:@var{vendor_id:product_id}
711
Pass through the host device identified by @var{vendor_id:product_id}
712
(Linux only)
713
@item wacom-tablet
714
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
715
above but it can be used with the tslib library because in addition to touch
716
coordinates it reports touch pressure.
717
@item keyboard
718
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
719
@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
720
Serial converter. This emulates an FTDI FT232BM chip connected to host character
721
device @var{dev}. The available character devices are the same as for the
722
@code{-serial} option. The @code{vendorid} and @code{productid} options can be
723
used to override the default 0403:6001. For instance, 
724
@example
725
usb_add serial:productid=FA00:tcp:192.168.0.2:4444
726
@end example
727
will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
728
serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
729
@item braille
730
Braille device.  This will use BrlAPI to display the braille output on a real
731
or fake device.
732
@item net:@var{options}
733
Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
734
specifies NIC options as with @code{-net nic,}@var{options} (see description).
735
For instance, user-mode networking can be used with
736
@example
737
qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
738
@end example
739
Currently this cannot be used in machines that support PCI NICs.
740
@item bt[:@var{hci-type}]
741
Bluetooth dongle whose type is specified in the same format as with
742
the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
743
no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
744
This USB device implements the USB Transport Layer of HCI.  Example
745
usage:
746
@example
747
qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
748
@end example
749
@end table
750

    
751
@node host_usb_devices
752
@subsection Using host USB devices on a Linux host
753

    
754
WARNING: this is an experimental feature. QEMU will slow down when
755
using it. USB devices requiring real time streaming (i.e. USB Video
756
Cameras) are not supported yet.
757

    
758
@enumerate
759
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
760
is actually using the USB device. A simple way to do that is simply to
761
disable the corresponding kernel module by renaming it from @file{mydriver.o}
762
to @file{mydriver.o.disabled}.
763

    
764
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
765
@example
766
ls /proc/bus/usb
767
001  devices  drivers
768
@end example
769

    
770
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
771
@example
772
chown -R myuid /proc/bus/usb
773
@end example
774

    
775
@item Launch QEMU and do in the monitor:
776
@example
777
info usbhost
778
  Device 1.2, speed 480 Mb/s
779
    Class 00: USB device 1234:5678, USB DISK
780
@end example
781
You should see the list of the devices you can use (Never try to use
782
hubs, it won't work).
783

    
784
@item Add the device in QEMU by using:
785
@example
786
usb_add host:1234:5678
787
@end example
788

    
789
Normally the guest OS should report that a new USB device is
790
plugged. You can use the option @option{-usbdevice} to do the same.
791

    
792
@item Now you can try to use the host USB device in QEMU.
793

    
794
@end enumerate
795

    
796
When relaunching QEMU, you may have to unplug and plug again the USB
797
device to make it work again (this is a bug).
798

    
799
@node vnc_security
800
@section VNC security
801

    
802
The VNC server capability provides access to the graphical console
803
of the guest VM across the network. This has a number of security
804
considerations depending on the deployment scenarios.
805

    
806
@menu
807
* vnc_sec_none::
808
* vnc_sec_password::
809
* vnc_sec_certificate::
810
* vnc_sec_certificate_verify::
811
* vnc_sec_certificate_pw::
812
* vnc_sec_sasl::
813
* vnc_sec_certificate_sasl::
814
* vnc_generate_cert::
815
* vnc_setup_sasl::
816
@end menu
817
@node vnc_sec_none
818
@subsection Without passwords
819

    
820
The simplest VNC server setup does not include any form of authentication.
821
For this setup it is recommended to restrict it to listen on a UNIX domain
822
socket only. For example
823

    
824
@example
825
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
826
@end example
827

    
828
This ensures that only users on local box with read/write access to that
829
path can access the VNC server. To securely access the VNC server from a
830
remote machine, a combination of netcat+ssh can be used to provide a secure
831
tunnel.
832

    
833
@node vnc_sec_password
834
@subsection With passwords
835

    
836
The VNC protocol has limited support for password based authentication. Since
837
the protocol limits passwords to 8 characters it should not be considered
838
to provide high security. The password can be fairly easily brute-forced by
839
a client making repeat connections. For this reason, a VNC server using password
840
authentication should be restricted to only listen on the loopback interface
841
or UNIX domain sockets. Password authentication is requested with the @code{password}
842
option, and then once QEMU is running the password is set with the monitor. Until
843
the monitor is used to set the password all clients will be rejected.
844

    
845
@example
846
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
847
(qemu) change vnc password
848
Password: ********
849
(qemu)
850
@end example
851

    
852
@node vnc_sec_certificate
853
@subsection With x509 certificates
854

    
855
The QEMU VNC server also implements the VeNCrypt extension allowing use of
856
TLS for encryption of the session, and x509 certificates for authentication.
857
The use of x509 certificates is strongly recommended, because TLS on its
858
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
859
support provides a secure session, but no authentication. This allows any
860
client to connect, and provides an encrypted session.
861

    
862
@example
863
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
864
@end example
865

    
866
In the above example @code{/etc/pki/qemu} should contain at least three files,
867
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
868
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
869
NB the @code{server-key.pem} file should be protected with file mode 0600 to
870
only be readable by the user owning it.
871

    
872
@node vnc_sec_certificate_verify
873
@subsection With x509 certificates and client verification
874

    
875
Certificates can also provide a means to authenticate the client connecting.
876
The server will request that the client provide a certificate, which it will
877
then validate against the CA certificate. This is a good choice if deploying
878
in an environment with a private internal certificate authority.
879

    
880
@example
881
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
882
@end example
883

    
884

    
885
@node vnc_sec_certificate_pw
886
@subsection With x509 certificates, client verification and passwords
887

    
888
Finally, the previous method can be combined with VNC password authentication
889
to provide two layers of authentication for clients.
890

    
891
@example
892
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
893
(qemu) change vnc password
894
Password: ********
895
(qemu)
896
@end example
897

    
898

    
899
@node vnc_sec_sasl
900
@subsection With SASL authentication
901

    
902
The SASL authentication method is a VNC extension, that provides an
903
easily extendable, pluggable authentication method. This allows for
904
integration with a wide range of authentication mechanisms, such as
905
PAM, GSSAPI/Kerberos, LDAP, SQL databases, one-time keys and more.
906
The strength of the authentication depends on the exact mechanism
907
configured. If the chosen mechanism also provides a SSF layer, then
908
it will encrypt the datastream as well.
909

    
910
Refer to the later docs on how to choose the exact SASL mechanism
911
used for authentication, but assuming use of one supporting SSF,
912
then QEMU can be launched with:
913

    
914
@example
915
qemu [...OPTIONS...] -vnc :1,sasl -monitor stdio
916
@end example
917

    
918
@node vnc_sec_certificate_sasl
919
@subsection With x509 certificates and SASL authentication
920

    
921
If the desired SASL authentication mechanism does not supported
922
SSF layers, then it is strongly advised to run it in combination
923
with TLS and x509 certificates. This provides securely encrypted
924
data stream, avoiding risk of compromising of the security
925
credentials. This can be enabled, by combining the 'sasl' option
926
with the aforementioned TLS + x509 options:
927

    
928
@example
929
qemu [...OPTIONS...] -vnc :1,tls,x509,sasl -monitor stdio
930
@end example
931

    
932

    
933
@node vnc_generate_cert
934
@subsection Generating certificates for VNC
935

    
936
The GNU TLS packages provides a command called @code{certtool} which can
937
be used to generate certificates and keys in PEM format. At a minimum it
938
is neccessary to setup a certificate authority, and issue certificates to
939
each server. If using certificates for authentication, then each client
940
will also need to be issued a certificate. The recommendation is for the
941
server to keep its certificates in either @code{/etc/pki/qemu} or for
942
unprivileged users in @code{$HOME/.pki/qemu}.
943

    
944
@menu
945
* vnc_generate_ca::
946
* vnc_generate_server::
947
* vnc_generate_client::
948
@end menu
949
@node vnc_generate_ca
950
@subsubsection Setup the Certificate Authority
951

    
952
This step only needs to be performed once per organization / organizational
953
unit. First the CA needs a private key. This key must be kept VERY secret
954
and secure. If this key is compromised the entire trust chain of the certificates
955
issued with it is lost.
956

    
957
@example
958
# certtool --generate-privkey > ca-key.pem
959
@end example
960

    
961
A CA needs to have a public certificate. For simplicity it can be a self-signed
962
certificate, or one issue by a commercial certificate issuing authority. To
963
generate a self-signed certificate requires one core piece of information, the
964
name of the organization.
965

    
966
@example
967
# cat > ca.info <<EOF
968
cn = Name of your organization
969
ca
970
cert_signing_key
971
EOF
972
# certtool --generate-self-signed \
973
           --load-privkey ca-key.pem
974
           --template ca.info \
975
           --outfile ca-cert.pem
976
@end example
977

    
978
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
979
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
980

    
981
@node vnc_generate_server
982
@subsubsection Issuing server certificates
983

    
984
Each server (or host) needs to be issued with a key and certificate. When connecting
985
the certificate is sent to the client which validates it against the CA certificate.
986
The core piece of information for a server certificate is the hostname. This should
987
be the fully qualified hostname that the client will connect with, since the client
988
will typically also verify the hostname in the certificate. On the host holding the
989
secure CA private key:
990

    
991
@example
992
# cat > server.info <<EOF
993
organization = Name  of your organization
994
cn = server.foo.example.com
995
tls_www_server
996
encryption_key
997
signing_key
998
EOF
999
# certtool --generate-privkey > server-key.pem
1000
# certtool --generate-certificate \
1001
           --load-ca-certificate ca-cert.pem \
1002
           --load-ca-privkey ca-key.pem \
1003
           --load-privkey server server-key.pem \
1004
           --template server.info \
1005
           --outfile server-cert.pem
1006
@end example
1007

    
1008
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1009
to the server for which they were generated. The @code{server-key.pem} is security
1010
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1011

    
1012
@node vnc_generate_client
1013
@subsubsection Issuing client certificates
1014

    
1015
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1016
certificates as its authentication mechanism, each client also needs to be issued
1017
a certificate. The client certificate contains enough metadata to uniquely identify
1018
the client, typically organization, state, city, building, etc. On the host holding
1019
the secure CA private key:
1020

    
1021
@example
1022
# cat > client.info <<EOF
1023
country = GB
1024
state = London
1025
locality = London
1026
organiazation = Name of your organization
1027
cn = client.foo.example.com
1028
tls_www_client
1029
encryption_key
1030
signing_key
1031
EOF
1032
# certtool --generate-privkey > client-key.pem
1033
# certtool --generate-certificate \
1034
           --load-ca-certificate ca-cert.pem \
1035
           --load-ca-privkey ca-key.pem \
1036
           --load-privkey client-key.pem \
1037
           --template client.info \
1038
           --outfile client-cert.pem
1039
@end example
1040

    
1041
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1042
copied to the client for which they were generated.
1043

    
1044

    
1045
@node vnc_setup_sasl
1046

    
1047
@subsection Configuring SASL mechanisms
1048

    
1049
The following documentation assumes use of the Cyrus SASL implementation on a
1050
Linux host, but the principals should apply to any other SASL impl. When SASL
1051
is enabled, the mechanism configuration will be loaded from system default
1052
SASL service config /etc/sasl2/qemu.conf. If running QEMU as an
1053
unprivileged user, an environment variable SASL_CONF_PATH can be used
1054
to make it search alternate locations for the service config.
1055

    
1056
The default configuration might contain
1057

    
1058
@example
1059
mech_list: digest-md5
1060
sasldb_path: /etc/qemu/passwd.db
1061
@end example
1062

    
1063
This says to use the 'Digest MD5' mechanism, which is similar to the HTTP
1064
Digest-MD5 mechanism. The list of valid usernames & passwords is maintained
1065
in the /etc/qemu/passwd.db file, and can be updated using the saslpasswd2
1066
command. While this mechanism is easy to configure and use, it is not
1067
considered secure by modern standards, so only suitable for developers /
1068
ad-hoc testing.
1069

    
1070
A more serious deployment might use Kerberos, which is done with the 'gssapi'
1071
mechanism
1072

    
1073
@example
1074
mech_list: gssapi
1075
keytab: /etc/qemu/krb5.tab
1076
@end example
1077

    
1078
For this to work the administrator of your KDC must generate a Kerberos
1079
principal for the server, with a name of  'qemu/somehost.example.com@@EXAMPLE.COM'
1080
replacing 'somehost.example.com' with the fully qualified host name of the
1081
machine running QEMU, and 'EXAMPLE.COM' with the Keberos Realm.
1082

    
1083
Other configurations will be left as an exercise for the reader. It should
1084
be noted that only Digest-MD5 and GSSAPI provides a SSF layer for data
1085
encryption. For all other mechanisms, VNC should always be configured to
1086
use TLS and x509 certificates to protect security credentials from snooping.
1087

    
1088
@node gdb_usage
1089
@section GDB usage
1090

    
1091
QEMU has a primitive support to work with gdb, so that you can do
1092
'Ctrl-C' while the virtual machine is running and inspect its state.
1093

    
1094
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1095
gdb connection:
1096
@example
1097
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1098
       -append "root=/dev/hda"
1099
Connected to host network interface: tun0
1100
Waiting gdb connection on port 1234
1101
@end example
1102

    
1103
Then launch gdb on the 'vmlinux' executable:
1104
@example
1105
> gdb vmlinux
1106
@end example
1107

    
1108
In gdb, connect to QEMU:
1109
@example
1110
(gdb) target remote localhost:1234
1111
@end example
1112

    
1113
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1114
@example
1115
(gdb) c
1116
@end example
1117

    
1118
Here are some useful tips in order to use gdb on system code:
1119

    
1120
@enumerate
1121
@item
1122
Use @code{info reg} to display all the CPU registers.
1123
@item
1124
Use @code{x/10i $eip} to display the code at the PC position.
1125
@item
1126
Use @code{set architecture i8086} to dump 16 bit code. Then use
1127
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1128
@end enumerate
1129

    
1130
Advanced debugging options:
1131

    
1132
The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
1133
@table @code
1134
@item maintenance packet qqemu.sstepbits
1135

    
1136
This will display the MASK bits used to control the single stepping IE:
1137
@example
1138
(gdb) maintenance packet qqemu.sstepbits
1139
sending: "qqemu.sstepbits"
1140
received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
1141
@end example
1142
@item maintenance packet qqemu.sstep
1143

    
1144
This will display the current value of the mask used when single stepping IE:
1145
@example
1146
(gdb) maintenance packet qqemu.sstep
1147
sending: "qqemu.sstep"
1148
received: "0x7"
1149
@end example
1150
@item maintenance packet Qqemu.sstep=HEX_VALUE
1151

    
1152
This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
1153
@example
1154
(gdb) maintenance packet Qqemu.sstep=0x5
1155
sending: "qemu.sstep=0x5"
1156
received: "OK"
1157
@end example
1158
@end table
1159

    
1160
@node pcsys_os_specific
1161
@section Target OS specific information
1162

    
1163
@subsection Linux
1164

    
1165
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1166
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1167
color depth in the guest and the host OS.
1168

    
1169
When using a 2.6 guest Linux kernel, you should add the option
1170
@code{clock=pit} on the kernel command line because the 2.6 Linux
1171
kernels make very strict real time clock checks by default that QEMU
1172
cannot simulate exactly.
1173

    
1174
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1175
not activated because QEMU is slower with this patch. The QEMU
1176
Accelerator Module is also much slower in this case. Earlier Fedora
1177
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1178
patch by default. Newer kernels don't have it.
1179

    
1180
@subsection Windows
1181

    
1182
If you have a slow host, using Windows 95 is better as it gives the
1183
best speed. Windows 2000 is also a good choice.
1184

    
1185
@subsubsection SVGA graphic modes support
1186

    
1187
QEMU emulates a Cirrus Logic GD5446 Video
1188
card. All Windows versions starting from Windows 95 should recognize
1189
and use this graphic card. For optimal performances, use 16 bit color
1190
depth in the guest and the host OS.
1191

    
1192
If you are using Windows XP as guest OS and if you want to use high
1193
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1194
1280x1024x16), then you should use the VESA VBE virtual graphic card
1195
(option @option{-std-vga}).
1196

    
1197
@subsubsection CPU usage reduction
1198

    
1199
Windows 9x does not correctly use the CPU HLT
1200
instruction. The result is that it takes host CPU cycles even when
1201
idle. You can install the utility from
1202
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1203
problem. Note that no such tool is needed for NT, 2000 or XP.
1204

    
1205
@subsubsection Windows 2000 disk full problem
1206

    
1207
Windows 2000 has a bug which gives a disk full problem during its
1208
installation. When installing it, use the @option{-win2k-hack} QEMU
1209
option to enable a specific workaround. After Windows 2000 is
1210
installed, you no longer need this option (this option slows down the
1211
IDE transfers).
1212

    
1213
@subsubsection Windows 2000 shutdown
1214

    
1215
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1216
can. It comes from the fact that Windows 2000 does not automatically
1217
use the APM driver provided by the BIOS.
1218

    
1219
In order to correct that, do the following (thanks to Struan
1220
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1221
Add/Troubleshoot a device => Add a new device & Next => No, select the
1222
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1223
(again) a few times. Now the driver is installed and Windows 2000 now
1224
correctly instructs QEMU to shutdown at the appropriate moment.
1225

    
1226
@subsubsection Share a directory between Unix and Windows
1227

    
1228
See @ref{sec_invocation} about the help of the option @option{-smb}.
1229

    
1230
@subsubsection Windows XP security problem
1231

    
1232
Some releases of Windows XP install correctly but give a security
1233
error when booting:
1234
@example
1235
A problem is preventing Windows from accurately checking the
1236
license for this computer. Error code: 0x800703e6.
1237
@end example
1238

    
1239
The workaround is to install a service pack for XP after a boot in safe
1240
mode. Then reboot, and the problem should go away. Since there is no
1241
network while in safe mode, its recommended to download the full
1242
installation of SP1 or SP2 and transfer that via an ISO or using the
1243
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1244

    
1245
@subsection MS-DOS and FreeDOS
1246

    
1247
@subsubsection CPU usage reduction
1248

    
1249
DOS does not correctly use the CPU HLT instruction. The result is that
1250
it takes host CPU cycles even when idle. You can install the utility
1251
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1252
problem.
1253

    
1254
@node QEMU System emulator for non PC targets
1255
@chapter QEMU System emulator for non PC targets
1256

    
1257
QEMU is a generic emulator and it emulates many non PC
1258
machines. Most of the options are similar to the PC emulator. The
1259
differences are mentioned in the following sections.
1260

    
1261
@menu
1262
* QEMU PowerPC System emulator::
1263
* Sparc32 System emulator::
1264
* Sparc64 System emulator::
1265
* MIPS System emulator::
1266
* ARM System emulator::
1267
* ColdFire System emulator::
1268
@end menu
1269

    
1270
@node QEMU PowerPC System emulator
1271
@section QEMU PowerPC System emulator
1272

    
1273
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1274
or PowerMac PowerPC system.
1275

    
1276
QEMU emulates the following PowerMac peripherals:
1277

    
1278
@itemize @minus
1279
@item
1280
UniNorth or Grackle PCI Bridge
1281
@item
1282
PCI VGA compatible card with VESA Bochs Extensions
1283
@item
1284
2 PMAC IDE interfaces with hard disk and CD-ROM support
1285
@item
1286
NE2000 PCI adapters
1287
@item
1288
Non Volatile RAM
1289
@item
1290
VIA-CUDA with ADB keyboard and mouse.
1291
@end itemize
1292

    
1293
QEMU emulates the following PREP peripherals:
1294

    
1295
@itemize @minus
1296
@item
1297
PCI Bridge
1298
@item
1299
PCI VGA compatible card with VESA Bochs Extensions
1300
@item
1301
2 IDE interfaces with hard disk and CD-ROM support
1302
@item
1303
Floppy disk
1304
@item
1305
NE2000 network adapters
1306
@item
1307
Serial port
1308
@item
1309
PREP Non Volatile RAM
1310
@item
1311
PC compatible keyboard and mouse.
1312
@end itemize
1313

    
1314
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1315
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1316

    
1317
Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
1318
for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
1319
v2) portable firmware implementation. The goal is to implement a 100%
1320
IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
1321

    
1322
@c man begin OPTIONS
1323

    
1324
The following options are specific to the PowerPC emulation:
1325

    
1326
@table @option
1327

    
1328
@item -g WxH[xDEPTH]
1329

    
1330
Set the initial VGA graphic mode. The default is 800x600x15.
1331

    
1332
@item -prom-env string
1333

    
1334
Set OpenBIOS variables in NVRAM, for example:
1335

    
1336
@example
1337
qemu-system-ppc -prom-env 'auto-boot?=false' \
1338
 -prom-env 'boot-device=hd:2,\yaboot' \
1339
 -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
1340
@end example
1341

    
1342
These variables are not used by Open Hack'Ware.
1343

    
1344
@end table
1345

    
1346
@c man end
1347

    
1348

    
1349
More information is available at
1350
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1351

    
1352
@node Sparc32 System emulator
1353
@section Sparc32 System emulator
1354

    
1355
Use the executable @file{qemu-system-sparc} to simulate the following
1356
Sun4m architecture machines:
1357
@itemize @minus
1358
@item
1359
SPARCstation 4
1360
@item
1361
SPARCstation 5
1362
@item
1363
SPARCstation 10
1364
@item
1365
SPARCstation 20
1366
@item
1367
SPARCserver 600MP
1368
@item
1369
SPARCstation LX
1370
@item
1371
SPARCstation Voyager
1372
@item
1373
SPARCclassic
1374
@item
1375
SPARCbook
1376
@end itemize
1377

    
1378
The emulation is somewhat complete. SMP up to 16 CPUs is supported,
1379
but Linux limits the number of usable CPUs to 4.
1380

    
1381
It's also possible to simulate a SPARCstation 2 (sun4c architecture),
1382
SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
1383
emulators are not usable yet.
1384

    
1385
QEMU emulates the following sun4m/sun4c/sun4d peripherals:
1386

    
1387
@itemize @minus
1388
@item
1389
IOMMU or IO-UNITs
1390
@item
1391
TCX Frame buffer
1392
@item
1393
Lance (Am7990) Ethernet
1394
@item
1395
Non Volatile RAM M48T02/M48T08
1396
@item
1397
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1398
and power/reset logic
1399
@item
1400
ESP SCSI controller with hard disk and CD-ROM support
1401
@item
1402
Floppy drive (not on SS-600MP)
1403
@item
1404
CS4231 sound device (only on SS-5, not working yet)
1405
@end itemize
1406

    
1407
The number of peripherals is fixed in the architecture.  Maximum
1408
memory size depends on the machine type, for SS-5 it is 256MB and for
1409
others 2047MB.
1410

    
1411
Since version 0.8.2, QEMU uses OpenBIOS
1412
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1413
firmware implementation. The goal is to implement a 100% IEEE
1414
1275-1994 (referred to as Open Firmware) compliant firmware.
1415

    
1416
A sample Linux 2.6 series kernel and ram disk image are available on
1417
the QEMU web site. There are still issues with NetBSD and OpenBSD, but
1418
some kernel versions work. Please note that currently Solaris kernels
1419
don't work probably due to interface issues between OpenBIOS and
1420
Solaris.
1421

    
1422
@c man begin OPTIONS
1423

    
1424
The following options are specific to the Sparc32 emulation:
1425

    
1426
@table @option
1427

    
1428
@item -g WxHx[xDEPTH]
1429

    
1430
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1431
the only other possible mode is 1024x768x24.
1432

    
1433
@item -prom-env string
1434

    
1435
Set OpenBIOS variables in NVRAM, for example:
1436

    
1437
@example
1438
qemu-system-sparc -prom-env 'auto-boot?=false' \
1439
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1440
@end example
1441

    
1442
@item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
1443

    
1444
Set the emulated machine type. Default is SS-5.
1445

    
1446
@end table
1447

    
1448
@c man end
1449

    
1450
@node Sparc64 System emulator
1451
@section Sparc64 System emulator
1452

    
1453
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
1454
(UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
1455
Niagara (T1) machine. The emulator is not usable for anything yet, but
1456
it can launch some kernels.
1457

    
1458
QEMU emulates the following peripherals:
1459

    
1460
@itemize @minus
1461
@item
1462
UltraSparc IIi APB PCI Bridge
1463
@item
1464
PCI VGA compatible card with VESA Bochs Extensions
1465
@item
1466
PS/2 mouse and keyboard
1467
@item
1468
Non Volatile RAM M48T59
1469
@item
1470
PC-compatible serial ports
1471
@item
1472
2 PCI IDE interfaces with hard disk and CD-ROM support
1473
@item
1474
Floppy disk
1475
@end itemize
1476

    
1477
@c man begin OPTIONS
1478

    
1479
The following options are specific to the Sparc64 emulation:
1480

    
1481
@table @option
1482

    
1483
@item -prom-env string
1484

    
1485
Set OpenBIOS variables in NVRAM, for example:
1486

    
1487
@example
1488
qemu-system-sparc64 -prom-env 'auto-boot?=false'
1489
@end example
1490

    
1491
@item -M [sun4u|sun4v|Niagara]
1492

    
1493
Set the emulated machine type. The default is sun4u.
1494

    
1495
@end table
1496

    
1497
@c man end
1498

    
1499
@node MIPS System emulator
1500
@section MIPS System emulator
1501

    
1502
Four executables cover simulation of 32 and 64-bit MIPS systems in
1503
both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
1504
@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
1505
Five different machine types are emulated:
1506

    
1507
@itemize @minus
1508
@item
1509
A generic ISA PC-like machine "mips"
1510
@item
1511
The MIPS Malta prototype board "malta"
1512
@item
1513
An ACER Pica "pica61". This machine needs the 64-bit emulator.
1514
@item
1515
MIPS emulator pseudo board "mipssim"
1516
@item
1517
A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
1518
@end itemize
1519

    
1520
The generic emulation is supported by Debian 'Etch' and is able to
1521
install Debian into a virtual disk image. The following devices are
1522
emulated:
1523

    
1524
@itemize @minus
1525
@item
1526
A range of MIPS CPUs, default is the 24Kf
1527
@item
1528
PC style serial port
1529
@item
1530
PC style IDE disk
1531
@item
1532
NE2000 network card
1533
@end itemize
1534

    
1535
The Malta emulation supports the following devices:
1536

    
1537
@itemize @minus
1538
@item
1539
Core board with MIPS 24Kf CPU and Galileo system controller
1540
@item
1541
PIIX4 PCI/USB/SMbus controller
1542
@item
1543
The Multi-I/O chip's serial device
1544
@item
1545
PCI network cards (PCnet32 and others)
1546
@item
1547
Malta FPGA serial device
1548
@item
1549
Cirrus (default) or any other PCI VGA graphics card
1550
@end itemize
1551

    
1552
The ACER Pica emulation supports:
1553

    
1554
@itemize @minus
1555
@item
1556
MIPS R4000 CPU
1557
@item
1558
PC-style IRQ and DMA controllers
1559
@item
1560
PC Keyboard
1561
@item
1562
IDE controller
1563
@end itemize
1564

    
1565
The mipssim pseudo board emulation provides an environment similiar
1566
to what the proprietary MIPS emulator uses for running Linux.
1567
It supports:
1568

    
1569
@itemize @minus
1570
@item
1571
A range of MIPS CPUs, default is the 24Kf
1572
@item
1573
PC style serial port
1574
@item
1575
MIPSnet network emulation
1576
@end itemize
1577

    
1578
The MIPS Magnum R4000 emulation supports:
1579

    
1580
@itemize @minus
1581
@item
1582
MIPS R4000 CPU
1583
@item
1584
PC-style IRQ controller
1585
@item
1586
PC Keyboard
1587
@item
1588
SCSI controller
1589
@item
1590
G364 framebuffer
1591
@end itemize
1592

    
1593

    
1594
@node ARM System emulator
1595
@section ARM System emulator
1596

    
1597
Use the executable @file{qemu-system-arm} to simulate a ARM
1598
machine. The ARM Integrator/CP board is emulated with the following
1599
devices:
1600

    
1601
@itemize @minus
1602
@item
1603
ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
1604
@item
1605
Two PL011 UARTs
1606
@item
1607
SMC 91c111 Ethernet adapter
1608
@item
1609
PL110 LCD controller
1610
@item
1611
PL050 KMI with PS/2 keyboard and mouse.
1612
@item
1613
PL181 MultiMedia Card Interface with SD card.
1614
@end itemize
1615

    
1616
The ARM Versatile baseboard is emulated with the following devices:
1617

    
1618
@itemize @minus
1619
@item
1620
ARM926E, ARM1136 or Cortex-A8 CPU
1621
@item
1622
PL190 Vectored Interrupt Controller
1623
@item
1624
Four PL011 UARTs
1625
@item
1626
SMC 91c111 Ethernet adapter
1627
@item
1628
PL110 LCD controller
1629
@item
1630
PL050 KMI with PS/2 keyboard and mouse.
1631
@item
1632
PCI host bridge.  Note the emulated PCI bridge only provides access to
1633
PCI memory space.  It does not provide access to PCI IO space.
1634
This means some devices (eg. ne2k_pci NIC) are not usable, and others
1635
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
1636
mapped control registers.
1637
@item
1638
PCI OHCI USB controller.
1639
@item
1640
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
1641
@item
1642
PL181 MultiMedia Card Interface with SD card.
1643
@end itemize
1644

    
1645
The ARM RealView Emulation baseboard is emulated with the following devices:
1646

    
1647
@itemize @minus
1648
@item
1649
ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
1650
@item
1651
ARM AMBA Generic/Distributed Interrupt Controller
1652
@item
1653
Four PL011 UARTs
1654
@item
1655
SMC 91c111 Ethernet adapter
1656
@item
1657
PL110 LCD controller
1658
@item
1659
PL050 KMI with PS/2 keyboard and mouse
1660
@item
1661
PCI host bridge
1662
@item
1663
PCI OHCI USB controller
1664
@item
1665
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
1666
@item
1667
PL181 MultiMedia Card Interface with SD card.
1668
@end itemize
1669

    
1670
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
1671
and "Terrier") emulation includes the following peripherals:
1672

    
1673
@itemize @minus
1674
@item
1675
Intel PXA270 System-on-chip (ARM V5TE core)
1676
@item
1677
NAND Flash memory
1678
@item
1679
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
1680
@item
1681
On-chip OHCI USB controller
1682
@item
1683
On-chip LCD controller
1684
@item
1685
On-chip Real Time Clock
1686
@item
1687
TI ADS7846 touchscreen controller on SSP bus
1688
@item
1689
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
1690
@item
1691
GPIO-connected keyboard controller and LEDs
1692
@item
1693
Secure Digital card connected to PXA MMC/SD host
1694
@item
1695
Three on-chip UARTs
1696
@item
1697
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
1698
@end itemize
1699

    
1700
The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
1701
following elements:
1702

    
1703
@itemize @minus
1704
@item
1705
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1706
@item
1707
ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
1708
@item
1709
On-chip LCD controller
1710
@item
1711
On-chip Real Time Clock
1712
@item
1713
TI TSC2102i touchscreen controller / analog-digital converter / Audio
1714
CODEC, connected through MicroWire and I@math{^2}S busses
1715
@item
1716
GPIO-connected matrix keypad
1717
@item
1718
Secure Digital card connected to OMAP MMC/SD host
1719
@item
1720
Three on-chip UARTs
1721
@end itemize
1722

    
1723
Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
1724
emulation supports the following elements:
1725

    
1726
@itemize @minus
1727
@item
1728
Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
1729
@item
1730
RAM and non-volatile OneNAND Flash memories
1731
@item
1732
Display connected to EPSON remote framebuffer chip and OMAP on-chip
1733
display controller and a LS041y3 MIPI DBI-C controller
1734
@item
1735
TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
1736
driven through SPI bus
1737
@item
1738
National Semiconductor LM8323-controlled qwerty keyboard driven
1739
through I@math{^2}C bus
1740
@item
1741
Secure Digital card connected to OMAP MMC/SD host
1742
@item
1743
Three OMAP on-chip UARTs and on-chip STI debugging console
1744
@item
1745
A Bluetooth(R) transciever and HCI connected to an UART
1746
@item
1747
Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
1748
TUSB6010 chip - only USB host mode is supported
1749
@item
1750
TI TMP105 temperature sensor driven through I@math{^2}C bus
1751
@item
1752
TI TWL92230C power management companion with an RTC on I@math{^2}C bus
1753
@item
1754
Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
1755
through CBUS
1756
@end itemize
1757

    
1758
The Luminary Micro Stellaris LM3S811EVB emulation includes the following
1759
devices:
1760

    
1761
@itemize @minus
1762
@item
1763
Cortex-M3 CPU core.
1764
@item
1765
64k Flash and 8k SRAM.
1766
@item
1767
Timers, UARTs, ADC and I@math{^2}C interface.
1768
@item
1769
OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
1770
@end itemize
1771

    
1772
The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
1773
devices:
1774

    
1775
@itemize @minus
1776
@item
1777
Cortex-M3 CPU core.
1778
@item
1779
256k Flash and 64k SRAM.
1780
@item
1781
Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
1782
@item
1783
OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
1784
@end itemize
1785

    
1786
The Freecom MusicPal internet radio emulation includes the following
1787
elements:
1788

    
1789
@itemize @minus
1790
@item
1791
Marvell MV88W8618 ARM core.
1792
@item
1793
32 MB RAM, 256 KB SRAM, 8 MB flash.
1794
@item
1795
Up to 2 16550 UARTs
1796
@item
1797
MV88W8xx8 Ethernet controller
1798
@item
1799
MV88W8618 audio controller, WM8750 CODEC and mixer
1800
@item
1801
128?64 display with brightness control
1802
@item
1803
2 buttons, 2 navigation wheels with button function
1804
@end itemize
1805

    
1806
The Siemens SX1 models v1 and v2 (default) basic emulation.
1807
The emulaton includes the following elements:
1808

    
1809
@itemize @minus
1810
@item
1811
Texas Instruments OMAP310 System-on-chip (ARM 925T core)
1812
@item
1813
ROM and RAM memories (ROM firmware image can be loaded with -pflash)
1814
V1
1815
1 Flash of 16MB and 1 Flash of 8MB
1816
V2
1817
1 Flash of 32MB
1818
@item
1819
On-chip LCD controller
1820
@item
1821
On-chip Real Time Clock
1822
@item
1823
Secure Digital card connected to OMAP MMC/SD host
1824
@item
1825
Three on-chip UARTs
1826
@end itemize
1827

    
1828
The "Syborg" Symbian Virtual Platform base model includes the following
1829
elements:
1830

    
1831
@itemize @minus
1832
@item
1833
ARM Cortex-A8 CPU
1834
@item
1835
Interrupt controller
1836
@item
1837
Timer
1838
@item
1839
Real Time Clock
1840
@item
1841
Keyboard
1842
@item
1843
Framebuffer
1844
@item
1845
Touchscreen
1846
@item
1847
UARTs
1848
@end itemize
1849

    
1850
A Linux 2.6 test image is available on the QEMU web site. More
1851
information is available in the QEMU mailing-list archive.
1852

    
1853
@c man begin OPTIONS
1854

    
1855
The following options are specific to the ARM emulation:
1856

    
1857
@table @option
1858

    
1859
@item -semihosting
1860
Enable semihosting syscall emulation.
1861

    
1862
On ARM this implements the "Angel" interface.
1863

    
1864
Note that this allows guest direct access to the host filesystem,
1865
so should only be used with trusted guest OS.
1866

    
1867
@end table
1868

    
1869
@node ColdFire System emulator
1870
@section ColdFire System emulator
1871

    
1872
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
1873
The emulator is able to boot a uClinux kernel.
1874

    
1875
The M5208EVB emulation includes the following devices:
1876

    
1877
@itemize @minus
1878
@item
1879
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
1880
@item
1881
Three Two on-chip UARTs.
1882
@item
1883
Fast Ethernet Controller (FEC)
1884
@end itemize
1885

    
1886
The AN5206 emulation includes the following devices:
1887

    
1888
@itemize @minus
1889
@item
1890
MCF5206 ColdFire V2 Microprocessor.
1891
@item
1892
Two on-chip UARTs.
1893
@end itemize
1894

    
1895
@c man begin OPTIONS
1896

    
1897
The following options are specific to the ARM emulation:
1898

    
1899
@table @option
1900

    
1901
@item -semihosting
1902
Enable semihosting syscall emulation.
1903

    
1904
On M68K this implements the "ColdFire GDB" interface used by libgloss.
1905

    
1906
Note that this allows guest direct access to the host filesystem,
1907
so should only be used with trusted guest OS.
1908

    
1909
@end table
1910

    
1911
@node QEMU User space emulator
1912
@chapter QEMU User space emulator
1913

    
1914
@menu
1915
* Supported Operating Systems ::
1916
* Linux User space emulator::
1917
* Mac OS X/Darwin User space emulator ::
1918
* BSD User space emulator ::
1919
@end menu
1920

    
1921
@node Supported Operating Systems
1922
@section Supported Operating Systems
1923

    
1924
The following OS are supported in user space emulation:
1925

    
1926
@itemize @minus
1927
@item
1928
Linux (referred as qemu-linux-user)
1929
@item
1930
Mac OS X/Darwin (referred as qemu-darwin-user)
1931
@item
1932
BSD (referred as qemu-bsd-user)
1933
@end itemize
1934

    
1935
@node Linux User space emulator
1936
@section Linux User space emulator
1937

    
1938
@menu
1939
* Quick Start::
1940
* Wine launch::
1941
* Command line options::
1942
* Other binaries::
1943
@end menu
1944

    
1945
@node Quick Start
1946
@subsection Quick Start
1947

    
1948
In order to launch a Linux process, QEMU needs the process executable
1949
itself and all the target (x86) dynamic libraries used by it.
1950

    
1951
@itemize
1952

    
1953
@item On x86, you can just try to launch any process by using the native
1954
libraries:
1955

    
1956
@example
1957
qemu-i386 -L / /bin/ls
1958
@end example
1959

    
1960
@code{-L /} tells that the x86 dynamic linker must be searched with a
1961
@file{/} prefix.
1962

    
1963
@item Since QEMU is also a linux process, you can launch qemu with
1964
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
1965

    
1966
@example
1967
qemu-i386 -L / qemu-i386 -L / /bin/ls
1968
@end example
1969

    
1970
@item On non x86 CPUs, you need first to download at least an x86 glibc
1971
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
1972
@code{LD_LIBRARY_PATH} is not set:
1973

    
1974
@example
1975
unset LD_LIBRARY_PATH
1976
@end example
1977

    
1978
Then you can launch the precompiled @file{ls} x86 executable:
1979

    
1980
@example
1981
qemu-i386 tests/i386/ls
1982
@end example
1983
You can look at @file{qemu-binfmt-conf.sh} so that
1984
QEMU is automatically launched by the Linux kernel when you try to
1985
launch x86 executables. It requires the @code{binfmt_misc} module in the
1986
Linux kernel.
1987

    
1988
@item The x86 version of QEMU is also included. You can try weird things such as:
1989
@example
1990
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
1991
          /usr/local/qemu-i386/bin/ls-i386
1992
@end example
1993

    
1994
@end itemize
1995

    
1996
@node Wine launch
1997
@subsection Wine launch
1998

    
1999
@itemize
2000

    
2001
@item Ensure that you have a working QEMU with the x86 glibc
2002
distribution (see previous section). In order to verify it, you must be
2003
able to do:
2004

    
2005
@example
2006
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2007
@end example
2008

    
2009
@item Download the binary x86 Wine install
2010
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2011

    
2012
@item Configure Wine on your account. Look at the provided script
2013
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2014
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2015

    
2016
@item Then you can try the example @file{putty.exe}:
2017

    
2018
@example
2019
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2020
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2021
@end example
2022

    
2023
@end itemize
2024

    
2025
@node Command line options
2026
@subsection Command line options
2027

    
2028
@example
2029
usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] [-B offset] program [arguments...]
2030
@end example
2031

    
2032
@table @option
2033
@item -h
2034
Print the help
2035
@item -L path
2036
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2037
@item -s size
2038
Set the x86 stack size in bytes (default=524288)
2039
@item -cpu model
2040
Select CPU model (-cpu ? for list and additional feature selection)
2041
@item -B offset
2042
Offset guest address by the specified number of bytes.  This is useful when
2043
the address region rewuired by guest applications is reserved on the host.
2044
Ths option is currently only supported on some hosts.
2045
@end table
2046

    
2047
Debug options:
2048

    
2049
@table @option
2050
@item -d
2051
Activate log (logfile=/tmp/qemu.log)
2052
@item -p pagesize
2053
Act as if the host page size was 'pagesize' bytes
2054
@item -g port
2055
Wait gdb connection to port
2056
@item -singlestep
2057
Run the emulation in single step mode.
2058
@end table
2059

    
2060
Environment variables:
2061

    
2062
@table @env
2063
@item QEMU_STRACE
2064
Print system calls and arguments similar to the 'strace' program
2065
(NOTE: the actual 'strace' program will not work because the user
2066
space emulator hasn't implemented ptrace).  At the moment this is
2067
incomplete.  All system calls that don't have a specific argument
2068
format are printed with information for six arguments.  Many
2069
flag-style arguments don't have decoders and will show up as numbers.
2070
@end table
2071

    
2072
@node Other binaries
2073
@subsection Other binaries
2074

    
2075
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2076
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2077
configurations), and arm-uclinux bFLT format binaries.
2078

    
2079
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2080
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2081
coldfire uClinux bFLT format binaries.
2082

    
2083
The binary format is detected automatically.
2084

    
2085
@command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
2086

    
2087
@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
2088
(Sparc64 CPU, 32 bit ABI).
2089

    
2090
@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
2091
SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
2092

    
2093
@node Mac OS X/Darwin User space emulator
2094
@section Mac OS X/Darwin User space emulator
2095

    
2096
@menu
2097
* Mac OS X/Darwin Status::
2098
* Mac OS X/Darwin Quick Start::
2099
* Mac OS X/Darwin Command line options::
2100
@end menu
2101

    
2102
@node Mac OS X/Darwin Status
2103
@subsection Mac OS X/Darwin Status
2104

    
2105
@itemize @minus
2106
@item
2107
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2108
@item
2109
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2110
@item
2111
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2112
@item
2113
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2114
@end itemize
2115

    
2116
[1] If you're host commpage can be executed by qemu.
2117

    
2118
@node Mac OS X/Darwin Quick Start
2119
@subsection Quick Start
2120

    
2121
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2122
itself and all the target dynamic libraries used by it. If you don't have the FAT
2123
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2124
CD or compile them by hand.
2125

    
2126
@itemize
2127

    
2128
@item On x86, you can just try to launch any process by using the native
2129
libraries:
2130

    
2131
@example
2132
qemu-i386 /bin/ls
2133
@end example
2134

    
2135
or to run the ppc version of the executable:
2136

    
2137
@example
2138
qemu-ppc /bin/ls
2139
@end example
2140

    
2141
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2142
are installed:
2143

    
2144
@example
2145
qemu-i386 -L /opt/x86_root/ /bin/ls
2146
@end example
2147

    
2148
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2149
@file{/opt/x86_root/usr/bin/dyld}.
2150

    
2151
@end itemize
2152

    
2153
@node Mac OS X/Darwin Command line options
2154
@subsection Command line options
2155

    
2156
@example
2157
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2158
@end example
2159

    
2160
@table @option
2161
@item -h
2162
Print the help
2163
@item -L path
2164
Set the library root path (default=/)
2165
@item -s size
2166
Set the stack size in bytes (default=524288)
2167
@end table
2168

    
2169
Debug options:
2170

    
2171
@table @option
2172
@item -d
2173
Activate log (logfile=/tmp/qemu.log)
2174
@item -p pagesize
2175
Act as if the host page size was 'pagesize' bytes
2176
@item -singlestep
2177
Run the emulation in single step mode.
2178
@end table
2179

    
2180
@node BSD User space emulator
2181
@section BSD User space emulator
2182

    
2183
@menu
2184
* BSD Status::
2185
* BSD Quick Start::
2186
* BSD Command line options::
2187
@end menu
2188

    
2189
@node BSD Status
2190
@subsection BSD Status
2191

    
2192
@itemize @minus
2193
@item
2194
target Sparc64 on Sparc64: Some trivial programs work.
2195
@end itemize
2196

    
2197
@node BSD Quick Start
2198
@subsection Quick Start
2199

    
2200
In order to launch a BSD process, QEMU needs the process executable
2201
itself and all the target dynamic libraries used by it.
2202

    
2203
@itemize
2204

    
2205
@item On Sparc64, you can just try to launch any process by using the native
2206
libraries:
2207

    
2208
@example
2209
qemu-sparc64 /bin/ls
2210
@end example
2211

    
2212
@end itemize
2213

    
2214
@node BSD Command line options
2215
@subsection Command line options
2216

    
2217
@example
2218
usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
2219
@end example
2220

    
2221
@table @option
2222
@item -h
2223
Print the help
2224
@item -L path
2225
Set the library root path (default=/)
2226
@item -s size
2227
Set the stack size in bytes (default=524288)
2228
@item -bsd type
2229
Set the type of the emulated BSD Operating system. Valid values are
2230
FreeBSD, NetBSD and OpenBSD (default).
2231
@end table
2232

    
2233
Debug options:
2234

    
2235
@table @option
2236
@item -d
2237
Activate log (logfile=/tmp/qemu.log)
2238
@item -p pagesize
2239
Act as if the host page size was 'pagesize' bytes
2240
@item -singlestep
2241
Run the emulation in single step mode.
2242
@end table
2243

    
2244
@node compilation
2245
@chapter Compilation from the sources
2246

    
2247
@menu
2248
* Linux/Unix::
2249
* Windows::
2250
* Cross compilation for Windows with Linux::
2251
* Mac OS X::
2252
@end menu
2253

    
2254
@node Linux/Unix
2255
@section Linux/Unix
2256

    
2257
@subsection Compilation
2258

    
2259
First you must decompress the sources:
2260
@example
2261
cd /tmp
2262
tar zxvf qemu-x.y.z.tar.gz
2263
cd qemu-x.y.z
2264
@end example
2265

    
2266
Then you configure QEMU and build it (usually no options are needed):
2267
@example
2268
./configure
2269
make
2270
@end example
2271

    
2272
Then type as root user:
2273
@example
2274
make install
2275
@end example
2276
to install QEMU in @file{/usr/local}.
2277

    
2278
@node Windows
2279
@section Windows
2280

    
2281
@itemize
2282
@item Install the current versions of MSYS and MinGW from
2283
@url{http://www.mingw.org/}. You can find detailed installation
2284
instructions in the download section and the FAQ.
2285

    
2286
@item Download
2287
the MinGW development library of SDL 1.2.x
2288
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2289
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2290
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2291
directory. Edit the @file{sdl-config} script so that it gives the
2292
correct SDL directory when invoked.
2293

    
2294
@item Extract the current version of QEMU.
2295

    
2296
@item Start the MSYS shell (file @file{msys.bat}).
2297

    
2298
@item Change to the QEMU directory. Launch @file{./configure} and
2299
@file{make}.  If you have problems using SDL, verify that
2300
@file{sdl-config} can be launched from the MSYS command line.
2301

    
2302
@item You can install QEMU in @file{Program Files/Qemu} by typing
2303
@file{make install}. Don't forget to copy @file{SDL.dll} in
2304
@file{Program Files/Qemu}.
2305

    
2306
@end itemize
2307

    
2308
@node Cross compilation for Windows with Linux
2309
@section Cross compilation for Windows with Linux
2310

    
2311
@itemize
2312
@item
2313
Install the MinGW cross compilation tools available at
2314
@url{http://www.mingw.org/}.
2315

    
2316
@item
2317
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2318
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2319
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2320
the QEMU configuration script.
2321

    
2322
@item
2323
Configure QEMU for Windows cross compilation:
2324
@example
2325
./configure --enable-mingw32
2326
@end example
2327
If necessary, you can change the cross-prefix according to the prefix
2328
chosen for the MinGW tools with --cross-prefix. You can also use
2329
--prefix to set the Win32 install path.
2330

    
2331
@item You can install QEMU in the installation directory by typing
2332
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2333
installation directory.
2334

    
2335
@end itemize
2336

    
2337
Note: Currently, Wine does not seem able to launch
2338
QEMU for Win32.
2339

    
2340
@node Mac OS X
2341
@section Mac OS X
2342

    
2343
The Mac OS X patches are not fully merged in QEMU, so you should look
2344
at the QEMU mailing list archive to have all the necessary
2345
information.
2346

    
2347
@node Index
2348
@chapter Index
2349
@printindex cp
2350

    
2351
@bye