Statistics
| Branch: | Revision:

root / block / qed.c @ 384acbf4

History | View | Annotate | Download (43.4 kB)

1
/*
2
 * QEMU Enhanced Disk Format
3
 *
4
 * Copyright IBM, Corp. 2010
5
 *
6
 * Authors:
7
 *  Stefan Hajnoczi   <stefanha@linux.vnet.ibm.com>
8
 *  Anthony Liguori   <aliguori@us.ibm.com>
9
 *
10
 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11
 * See the COPYING.LIB file in the top-level directory.
12
 *
13
 */
14

    
15
#include "qemu-timer.h"
16
#include "trace.h"
17
#include "qed.h"
18
#include "qerror.h"
19

    
20
static void qed_aio_cancel(BlockDriverAIOCB *blockacb)
21
{
22
    QEDAIOCB *acb = (QEDAIOCB *)blockacb;
23
    bool finished = false;
24

    
25
    /* Wait for the request to finish */
26
    acb->finished = &finished;
27
    while (!finished) {
28
        qemu_aio_wait();
29
    }
30
}
31

    
32
static AIOPool qed_aio_pool = {
33
    .aiocb_size         = sizeof(QEDAIOCB),
34
    .cancel             = qed_aio_cancel,
35
};
36

    
37
static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
38
                          const char *filename)
39
{
40
    const QEDHeader *header = (const QEDHeader *)buf;
41

    
42
    if (buf_size < sizeof(*header)) {
43
        return 0;
44
    }
45
    if (le32_to_cpu(header->magic) != QED_MAGIC) {
46
        return 0;
47
    }
48
    return 100;
49
}
50

    
51
/**
52
 * Check whether an image format is raw
53
 *
54
 * @fmt:    Backing file format, may be NULL
55
 */
56
static bool qed_fmt_is_raw(const char *fmt)
57
{
58
    return fmt && strcmp(fmt, "raw") == 0;
59
}
60

    
61
static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
62
{
63
    cpu->magic = le32_to_cpu(le->magic);
64
    cpu->cluster_size = le32_to_cpu(le->cluster_size);
65
    cpu->table_size = le32_to_cpu(le->table_size);
66
    cpu->header_size = le32_to_cpu(le->header_size);
67
    cpu->features = le64_to_cpu(le->features);
68
    cpu->compat_features = le64_to_cpu(le->compat_features);
69
    cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
70
    cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
71
    cpu->image_size = le64_to_cpu(le->image_size);
72
    cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
73
    cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
74
}
75

    
76
static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
77
{
78
    le->magic = cpu_to_le32(cpu->magic);
79
    le->cluster_size = cpu_to_le32(cpu->cluster_size);
80
    le->table_size = cpu_to_le32(cpu->table_size);
81
    le->header_size = cpu_to_le32(cpu->header_size);
82
    le->features = cpu_to_le64(cpu->features);
83
    le->compat_features = cpu_to_le64(cpu->compat_features);
84
    le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
85
    le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
86
    le->image_size = cpu_to_le64(cpu->image_size);
87
    le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
88
    le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
89
}
90

    
91
static int qed_write_header_sync(BDRVQEDState *s)
92
{
93
    QEDHeader le;
94
    int ret;
95

    
96
    qed_header_cpu_to_le(&s->header, &le);
97
    ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
98
    if (ret != sizeof(le)) {
99
        return ret;
100
    }
101
    return 0;
102
}
103

    
104
typedef struct {
105
    GenericCB gencb;
106
    BDRVQEDState *s;
107
    struct iovec iov;
108
    QEMUIOVector qiov;
109
    int nsectors;
110
    uint8_t *buf;
111
} QEDWriteHeaderCB;
112

    
113
static void qed_write_header_cb(void *opaque, int ret)
114
{
115
    QEDWriteHeaderCB *write_header_cb = opaque;
116

    
117
    qemu_vfree(write_header_cb->buf);
118
    gencb_complete(write_header_cb, ret);
119
}
120

    
121
static void qed_write_header_read_cb(void *opaque, int ret)
122
{
123
    QEDWriteHeaderCB *write_header_cb = opaque;
124
    BDRVQEDState *s = write_header_cb->s;
125
    BlockDriverAIOCB *acb;
126

    
127
    if (ret) {
128
        qed_write_header_cb(write_header_cb, ret);
129
        return;
130
    }
131

    
132
    /* Update header */
133
    qed_header_cpu_to_le(&s->header, (QEDHeader *)write_header_cb->buf);
134

    
135
    acb = bdrv_aio_writev(s->bs->file, 0, &write_header_cb->qiov,
136
                          write_header_cb->nsectors, qed_write_header_cb,
137
                          write_header_cb);
138
    if (!acb) {
139
        qed_write_header_cb(write_header_cb, -EIO);
140
    }
141
}
142

    
143
/**
144
 * Update header in-place (does not rewrite backing filename or other strings)
145
 *
146
 * This function only updates known header fields in-place and does not affect
147
 * extra data after the QED header.
148
 */
149
static void qed_write_header(BDRVQEDState *s, BlockDriverCompletionFunc cb,
150
                             void *opaque)
151
{
152
    /* We must write full sectors for O_DIRECT but cannot necessarily generate
153
     * the data following the header if an unrecognized compat feature is
154
     * active.  Therefore, first read the sectors containing the header, update
155
     * them, and write back.
156
     */
157

    
158
    BlockDriverAIOCB *acb;
159
    int nsectors = (sizeof(QEDHeader) + BDRV_SECTOR_SIZE - 1) /
160
                   BDRV_SECTOR_SIZE;
161
    size_t len = nsectors * BDRV_SECTOR_SIZE;
162
    QEDWriteHeaderCB *write_header_cb = gencb_alloc(sizeof(*write_header_cb),
163
                                                    cb, opaque);
164

    
165
    write_header_cb->s = s;
166
    write_header_cb->nsectors = nsectors;
167
    write_header_cb->buf = qemu_blockalign(s->bs, len);
168
    write_header_cb->iov.iov_base = write_header_cb->buf;
169
    write_header_cb->iov.iov_len = len;
170
    qemu_iovec_init_external(&write_header_cb->qiov, &write_header_cb->iov, 1);
171

    
172
    acb = bdrv_aio_readv(s->bs->file, 0, &write_header_cb->qiov, nsectors,
173
                         qed_write_header_read_cb, write_header_cb);
174
    if (!acb) {
175
        qed_write_header_cb(write_header_cb, -EIO);
176
    }
177
}
178

    
179
static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
180
{
181
    uint64_t table_entries;
182
    uint64_t l2_size;
183

    
184
    table_entries = (table_size * cluster_size) / sizeof(uint64_t);
185
    l2_size = table_entries * cluster_size;
186

    
187
    return l2_size * table_entries;
188
}
189

    
190
static bool qed_is_cluster_size_valid(uint32_t cluster_size)
191
{
192
    if (cluster_size < QED_MIN_CLUSTER_SIZE ||
193
        cluster_size > QED_MAX_CLUSTER_SIZE) {
194
        return false;
195
    }
196
    if (cluster_size & (cluster_size - 1)) {
197
        return false; /* not power of 2 */
198
    }
199
    return true;
200
}
201

    
202
static bool qed_is_table_size_valid(uint32_t table_size)
203
{
204
    if (table_size < QED_MIN_TABLE_SIZE ||
205
        table_size > QED_MAX_TABLE_SIZE) {
206
        return false;
207
    }
208
    if (table_size & (table_size - 1)) {
209
        return false; /* not power of 2 */
210
    }
211
    return true;
212
}
213

    
214
static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
215
                                    uint32_t table_size)
216
{
217
    if (image_size % BDRV_SECTOR_SIZE != 0) {
218
        return false; /* not multiple of sector size */
219
    }
220
    if (image_size > qed_max_image_size(cluster_size, table_size)) {
221
        return false; /* image is too large */
222
    }
223
    return true;
224
}
225

    
226
/**
227
 * Read a string of known length from the image file
228
 *
229
 * @file:       Image file
230
 * @offset:     File offset to start of string, in bytes
231
 * @n:          String length in bytes
232
 * @buf:        Destination buffer
233
 * @buflen:     Destination buffer length in bytes
234
 * @ret:        0 on success, -errno on failure
235
 *
236
 * The string is NUL-terminated.
237
 */
238
static int qed_read_string(BlockDriverState *file, uint64_t offset, size_t n,
239
                           char *buf, size_t buflen)
240
{
241
    int ret;
242
    if (n >= buflen) {
243
        return -EINVAL;
244
    }
245
    ret = bdrv_pread(file, offset, buf, n);
246
    if (ret < 0) {
247
        return ret;
248
    }
249
    buf[n] = '\0';
250
    return 0;
251
}
252

    
253
/**
254
 * Allocate new clusters
255
 *
256
 * @s:          QED state
257
 * @n:          Number of contiguous clusters to allocate
258
 * @ret:        Offset of first allocated cluster
259
 *
260
 * This function only produces the offset where the new clusters should be
261
 * written.  It updates BDRVQEDState but does not make any changes to the image
262
 * file.
263
 */
264
static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
265
{
266
    uint64_t offset = s->file_size;
267
    s->file_size += n * s->header.cluster_size;
268
    return offset;
269
}
270

    
271
QEDTable *qed_alloc_table(BDRVQEDState *s)
272
{
273
    /* Honor O_DIRECT memory alignment requirements */
274
    return qemu_blockalign(s->bs,
275
                           s->header.cluster_size * s->header.table_size);
276
}
277

    
278
/**
279
 * Allocate a new zeroed L2 table
280
 */
281
static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
282
{
283
    CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
284

    
285
    l2_table->table = qed_alloc_table(s);
286
    l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
287

    
288
    memset(l2_table->table->offsets, 0,
289
           s->header.cluster_size * s->header.table_size);
290
    return l2_table;
291
}
292

    
293
static void qed_aio_next_io(void *opaque, int ret);
294

    
295
static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
296
{
297
    assert(!s->allocating_write_reqs_plugged);
298

    
299
    s->allocating_write_reqs_plugged = true;
300
}
301

    
302
static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
303
{
304
    QEDAIOCB *acb;
305

    
306
    assert(s->allocating_write_reqs_plugged);
307

    
308
    s->allocating_write_reqs_plugged = false;
309

    
310
    acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
311
    if (acb) {
312
        qed_aio_next_io(acb, 0);
313
    }
314
}
315

    
316
static void qed_finish_clear_need_check(void *opaque, int ret)
317
{
318
    /* Do nothing */
319
}
320

    
321
static void qed_flush_after_clear_need_check(void *opaque, int ret)
322
{
323
    BDRVQEDState *s = opaque;
324

    
325
    bdrv_aio_flush(s->bs, qed_finish_clear_need_check, s);
326

    
327
    /* No need to wait until flush completes */
328
    qed_unplug_allocating_write_reqs(s);
329
}
330

    
331
static void qed_clear_need_check(void *opaque, int ret)
332
{
333
    BDRVQEDState *s = opaque;
334

    
335
    if (ret) {
336
        qed_unplug_allocating_write_reqs(s);
337
        return;
338
    }
339

    
340
    s->header.features &= ~QED_F_NEED_CHECK;
341
    qed_write_header(s, qed_flush_after_clear_need_check, s);
342
}
343

    
344
static void qed_need_check_timer_cb(void *opaque)
345
{
346
    BDRVQEDState *s = opaque;
347

    
348
    /* The timer should only fire when allocating writes have drained */
349
    assert(!QSIMPLEQ_FIRST(&s->allocating_write_reqs));
350

    
351
    trace_qed_need_check_timer_cb(s);
352

    
353
    qed_plug_allocating_write_reqs(s);
354

    
355
    /* Ensure writes are on disk before clearing flag */
356
    bdrv_aio_flush(s->bs, qed_clear_need_check, s);
357
}
358

    
359
static void qed_start_need_check_timer(BDRVQEDState *s)
360
{
361
    trace_qed_start_need_check_timer(s);
362

    
363
    /* Use vm_clock so we don't alter the image file while suspended for
364
     * migration.
365
     */
366
    qemu_mod_timer(s->need_check_timer, qemu_get_clock_ns(vm_clock) +
367
                   get_ticks_per_sec() * QED_NEED_CHECK_TIMEOUT);
368
}
369

    
370
/* It's okay to call this multiple times or when no timer is started */
371
static void qed_cancel_need_check_timer(BDRVQEDState *s)
372
{
373
    trace_qed_cancel_need_check_timer(s);
374
    qemu_del_timer(s->need_check_timer);
375
}
376

    
377
static int bdrv_qed_open(BlockDriverState *bs, int flags)
378
{
379
    BDRVQEDState *s = bs->opaque;
380
    QEDHeader le_header;
381
    int64_t file_size;
382
    int ret;
383

    
384
    s->bs = bs;
385
    QSIMPLEQ_INIT(&s->allocating_write_reqs);
386

    
387
    ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
388
    if (ret < 0) {
389
        return ret;
390
    }
391
    ret = 0; /* ret should always be 0 or -errno */
392
    qed_header_le_to_cpu(&le_header, &s->header);
393

    
394
    if (s->header.magic != QED_MAGIC) {
395
        return -EINVAL;
396
    }
397
    if (s->header.features & ~QED_FEATURE_MASK) {
398
        /* image uses unsupported feature bits */
399
        char buf[64];
400
        snprintf(buf, sizeof(buf), "%" PRIx64,
401
            s->header.features & ~QED_FEATURE_MASK);
402
        qerror_report(QERR_UNKNOWN_BLOCK_FORMAT_FEATURE,
403
            bs->device_name, "QED", buf);
404
        return -ENOTSUP;
405
    }
406
    if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
407
        return -EINVAL;
408
    }
409

    
410
    /* Round down file size to the last cluster */
411
    file_size = bdrv_getlength(bs->file);
412
    if (file_size < 0) {
413
        return file_size;
414
    }
415
    s->file_size = qed_start_of_cluster(s, file_size);
416

    
417
    if (!qed_is_table_size_valid(s->header.table_size)) {
418
        return -EINVAL;
419
    }
420
    if (!qed_is_image_size_valid(s->header.image_size,
421
                                 s->header.cluster_size,
422
                                 s->header.table_size)) {
423
        return -EINVAL;
424
    }
425
    if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
426
        return -EINVAL;
427
    }
428

    
429
    s->table_nelems = (s->header.cluster_size * s->header.table_size) /
430
                      sizeof(uint64_t);
431
    s->l2_shift = ffs(s->header.cluster_size) - 1;
432
    s->l2_mask = s->table_nelems - 1;
433
    s->l1_shift = s->l2_shift + ffs(s->table_nelems) - 1;
434

    
435
    if ((s->header.features & QED_F_BACKING_FILE)) {
436
        if ((uint64_t)s->header.backing_filename_offset +
437
            s->header.backing_filename_size >
438
            s->header.cluster_size * s->header.header_size) {
439
            return -EINVAL;
440
        }
441

    
442
        ret = qed_read_string(bs->file, s->header.backing_filename_offset,
443
                              s->header.backing_filename_size, bs->backing_file,
444
                              sizeof(bs->backing_file));
445
        if (ret < 0) {
446
            return ret;
447
        }
448

    
449
        if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
450
            pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
451
        }
452
    }
453

    
454
    /* Reset unknown autoclear feature bits.  This is a backwards
455
     * compatibility mechanism that allows images to be opened by older
456
     * programs, which "knock out" unknown feature bits.  When an image is
457
     * opened by a newer program again it can detect that the autoclear
458
     * feature is no longer valid.
459
     */
460
    if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
461
        !bdrv_is_read_only(bs->file)) {
462
        s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
463

    
464
        ret = qed_write_header_sync(s);
465
        if (ret) {
466
            return ret;
467
        }
468

    
469
        /* From here on only known autoclear feature bits are valid */
470
        bdrv_flush(bs->file);
471
    }
472

    
473
    s->l1_table = qed_alloc_table(s);
474
    qed_init_l2_cache(&s->l2_cache);
475

    
476
    ret = qed_read_l1_table_sync(s);
477
    if (ret) {
478
        goto out;
479
    }
480

    
481
    /* If image was not closed cleanly, check consistency */
482
    if (s->header.features & QED_F_NEED_CHECK) {
483
        /* Read-only images cannot be fixed.  There is no risk of corruption
484
         * since write operations are not possible.  Therefore, allow
485
         * potentially inconsistent images to be opened read-only.  This can
486
         * aid data recovery from an otherwise inconsistent image.
487
         */
488
        if (!bdrv_is_read_only(bs->file)) {
489
            BdrvCheckResult result = {0};
490

    
491
            ret = qed_check(s, &result, true);
492
            if (ret) {
493
                goto out;
494
            }
495
            if (!result.corruptions && !result.check_errors) {
496
                /* Ensure fixes reach storage before clearing check bit */
497
                bdrv_flush(s->bs);
498

    
499
                s->header.features &= ~QED_F_NEED_CHECK;
500
                qed_write_header_sync(s);
501
            }
502
        }
503
    }
504

    
505
    s->need_check_timer = qemu_new_timer_ns(vm_clock,
506
                                            qed_need_check_timer_cb, s);
507

    
508
out:
509
    if (ret) {
510
        qed_free_l2_cache(&s->l2_cache);
511
        qemu_vfree(s->l1_table);
512
    }
513
    return ret;
514
}
515

    
516
static void bdrv_qed_close(BlockDriverState *bs)
517
{
518
    BDRVQEDState *s = bs->opaque;
519

    
520
    qed_cancel_need_check_timer(s);
521
    qemu_free_timer(s->need_check_timer);
522

    
523
    /* Ensure writes reach stable storage */
524
    bdrv_flush(bs->file);
525

    
526
    /* Clean shutdown, no check required on next open */
527
    if (s->header.features & QED_F_NEED_CHECK) {
528
        s->header.features &= ~QED_F_NEED_CHECK;
529
        qed_write_header_sync(s);
530
    }
531

    
532
    qed_free_l2_cache(&s->l2_cache);
533
    qemu_vfree(s->l1_table);
534
}
535

    
536
static int bdrv_qed_flush(BlockDriverState *bs)
537
{
538
    return bdrv_flush(bs->file);
539
}
540

    
541
static int qed_create(const char *filename, uint32_t cluster_size,
542
                      uint64_t image_size, uint32_t table_size,
543
                      const char *backing_file, const char *backing_fmt)
544
{
545
    QEDHeader header = {
546
        .magic = QED_MAGIC,
547
        .cluster_size = cluster_size,
548
        .table_size = table_size,
549
        .header_size = 1,
550
        .features = 0,
551
        .compat_features = 0,
552
        .l1_table_offset = cluster_size,
553
        .image_size = image_size,
554
    };
555
    QEDHeader le_header;
556
    uint8_t *l1_table = NULL;
557
    size_t l1_size = header.cluster_size * header.table_size;
558
    int ret = 0;
559
    BlockDriverState *bs = NULL;
560

    
561
    ret = bdrv_create_file(filename, NULL);
562
    if (ret < 0) {
563
        return ret;
564
    }
565

    
566
    ret = bdrv_file_open(&bs, filename, BDRV_O_RDWR | BDRV_O_CACHE_WB);
567
    if (ret < 0) {
568
        return ret;
569
    }
570

    
571
    /* File must start empty and grow, check truncate is supported */
572
    ret = bdrv_truncate(bs, 0);
573
    if (ret < 0) {
574
        goto out;
575
    }
576

    
577
    if (backing_file) {
578
        header.features |= QED_F_BACKING_FILE;
579
        header.backing_filename_offset = sizeof(le_header);
580
        header.backing_filename_size = strlen(backing_file);
581

    
582
        if (qed_fmt_is_raw(backing_fmt)) {
583
            header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
584
        }
585
    }
586

    
587
    qed_header_cpu_to_le(&header, &le_header);
588
    ret = bdrv_pwrite(bs, 0, &le_header, sizeof(le_header));
589
    if (ret < 0) {
590
        goto out;
591
    }
592
    ret = bdrv_pwrite(bs, sizeof(le_header), backing_file,
593
                      header.backing_filename_size);
594
    if (ret < 0) {
595
        goto out;
596
    }
597

    
598
    l1_table = qemu_mallocz(l1_size);
599
    ret = bdrv_pwrite(bs, header.l1_table_offset, l1_table, l1_size);
600
    if (ret < 0) {
601
        goto out;
602
    }
603

    
604
    ret = 0; /* success */
605
out:
606
    qemu_free(l1_table);
607
    bdrv_delete(bs);
608
    return ret;
609
}
610

    
611
static int bdrv_qed_create(const char *filename, QEMUOptionParameter *options)
612
{
613
    uint64_t image_size = 0;
614
    uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
615
    uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
616
    const char *backing_file = NULL;
617
    const char *backing_fmt = NULL;
618

    
619
    while (options && options->name) {
620
        if (!strcmp(options->name, BLOCK_OPT_SIZE)) {
621
            image_size = options->value.n;
622
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FILE)) {
623
            backing_file = options->value.s;
624
        } else if (!strcmp(options->name, BLOCK_OPT_BACKING_FMT)) {
625
            backing_fmt = options->value.s;
626
        } else if (!strcmp(options->name, BLOCK_OPT_CLUSTER_SIZE)) {
627
            if (options->value.n) {
628
                cluster_size = options->value.n;
629
            }
630
        } else if (!strcmp(options->name, BLOCK_OPT_TABLE_SIZE)) {
631
            if (options->value.n) {
632
                table_size = options->value.n;
633
            }
634
        }
635
        options++;
636
    }
637

    
638
    if (!qed_is_cluster_size_valid(cluster_size)) {
639
        fprintf(stderr, "QED cluster size must be within range [%u, %u] and power of 2\n",
640
                QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
641
        return -EINVAL;
642
    }
643
    if (!qed_is_table_size_valid(table_size)) {
644
        fprintf(stderr, "QED table size must be within range [%u, %u] and power of 2\n",
645
                QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
646
        return -EINVAL;
647
    }
648
    if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
649
        fprintf(stderr, "QED image size must be a non-zero multiple of "
650
                        "cluster size and less than %" PRIu64 " bytes\n",
651
                qed_max_image_size(cluster_size, table_size));
652
        return -EINVAL;
653
    }
654

    
655
    return qed_create(filename, cluster_size, image_size, table_size,
656
                      backing_file, backing_fmt);
657
}
658

    
659
typedef struct {
660
    int is_allocated;
661
    int *pnum;
662
} QEDIsAllocatedCB;
663

    
664
static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
665
{
666
    QEDIsAllocatedCB *cb = opaque;
667
    *cb->pnum = len / BDRV_SECTOR_SIZE;
668
    cb->is_allocated = (ret == QED_CLUSTER_FOUND || ret == QED_CLUSTER_ZERO);
669
}
670

    
671
static int bdrv_qed_is_allocated(BlockDriverState *bs, int64_t sector_num,
672
                                  int nb_sectors, int *pnum)
673
{
674
    BDRVQEDState *s = bs->opaque;
675
    uint64_t pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
676
    size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
677
    QEDIsAllocatedCB cb = {
678
        .is_allocated = -1,
679
        .pnum = pnum,
680
    };
681
    QEDRequest request = { .l2_table = NULL };
682

    
683
    qed_find_cluster(s, &request, pos, len, qed_is_allocated_cb, &cb);
684

    
685
    while (cb.is_allocated == -1) {
686
        qemu_aio_wait();
687
    }
688

    
689
    qed_unref_l2_cache_entry(request.l2_table);
690

    
691
    return cb.is_allocated;
692
}
693

    
694
static int bdrv_qed_make_empty(BlockDriverState *bs)
695
{
696
    return -ENOTSUP;
697
}
698

    
699
static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
700
{
701
    return acb->common.bs->opaque;
702
}
703

    
704
/**
705
 * Read from the backing file or zero-fill if no backing file
706
 *
707
 * @s:          QED state
708
 * @pos:        Byte position in device
709
 * @qiov:       Destination I/O vector
710
 * @cb:         Completion function
711
 * @opaque:     User data for completion function
712
 *
713
 * This function reads qiov->size bytes starting at pos from the backing file.
714
 * If there is no backing file then zeroes are read.
715
 */
716
static void qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
717
                                  QEMUIOVector *qiov,
718
                                  BlockDriverCompletionFunc *cb, void *opaque)
719
{
720
    BlockDriverAIOCB *aiocb;
721
    uint64_t backing_length = 0;
722
    size_t size;
723

    
724
    /* If there is a backing file, get its length.  Treat the absence of a
725
     * backing file like a zero length backing file.
726
     */
727
    if (s->bs->backing_hd) {
728
        int64_t l = bdrv_getlength(s->bs->backing_hd);
729
        if (l < 0) {
730
            cb(opaque, l);
731
            return;
732
        }
733
        backing_length = l;
734
    }
735

    
736
    /* Zero all sectors if reading beyond the end of the backing file */
737
    if (pos >= backing_length ||
738
        pos + qiov->size > backing_length) {
739
        qemu_iovec_memset(qiov, 0, qiov->size);
740
    }
741

    
742
    /* Complete now if there are no backing file sectors to read */
743
    if (pos >= backing_length) {
744
        cb(opaque, 0);
745
        return;
746
    }
747

    
748
    /* If the read straddles the end of the backing file, shorten it */
749
    size = MIN((uint64_t)backing_length - pos, qiov->size);
750

    
751
    BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING);
752
    aiocb = bdrv_aio_readv(s->bs->backing_hd, pos / BDRV_SECTOR_SIZE,
753
                           qiov, size / BDRV_SECTOR_SIZE, cb, opaque);
754
    if (!aiocb) {
755
        cb(opaque, -EIO);
756
    }
757
}
758

    
759
typedef struct {
760
    GenericCB gencb;
761
    BDRVQEDState *s;
762
    QEMUIOVector qiov;
763
    struct iovec iov;
764
    uint64_t offset;
765
} CopyFromBackingFileCB;
766

    
767
static void qed_copy_from_backing_file_cb(void *opaque, int ret)
768
{
769
    CopyFromBackingFileCB *copy_cb = opaque;
770
    qemu_vfree(copy_cb->iov.iov_base);
771
    gencb_complete(&copy_cb->gencb, ret);
772
}
773

    
774
static void qed_copy_from_backing_file_write(void *opaque, int ret)
775
{
776
    CopyFromBackingFileCB *copy_cb = opaque;
777
    BDRVQEDState *s = copy_cb->s;
778
    BlockDriverAIOCB *aiocb;
779

    
780
    if (ret) {
781
        qed_copy_from_backing_file_cb(copy_cb, ret);
782
        return;
783
    }
784

    
785
    BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
786
    aiocb = bdrv_aio_writev(s->bs->file, copy_cb->offset / BDRV_SECTOR_SIZE,
787
                            &copy_cb->qiov,
788
                            copy_cb->qiov.size / BDRV_SECTOR_SIZE,
789
                            qed_copy_from_backing_file_cb, copy_cb);
790
    if (!aiocb) {
791
        qed_copy_from_backing_file_cb(copy_cb, -EIO);
792
    }
793
}
794

    
795
/**
796
 * Copy data from backing file into the image
797
 *
798
 * @s:          QED state
799
 * @pos:        Byte position in device
800
 * @len:        Number of bytes
801
 * @offset:     Byte offset in image file
802
 * @cb:         Completion function
803
 * @opaque:     User data for completion function
804
 */
805
static void qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
806
                                       uint64_t len, uint64_t offset,
807
                                       BlockDriverCompletionFunc *cb,
808
                                       void *opaque)
809
{
810
    CopyFromBackingFileCB *copy_cb;
811

    
812
    /* Skip copy entirely if there is no work to do */
813
    if (len == 0) {
814
        cb(opaque, 0);
815
        return;
816
    }
817

    
818
    copy_cb = gencb_alloc(sizeof(*copy_cb), cb, opaque);
819
    copy_cb->s = s;
820
    copy_cb->offset = offset;
821
    copy_cb->iov.iov_base = qemu_blockalign(s->bs, len);
822
    copy_cb->iov.iov_len = len;
823
    qemu_iovec_init_external(&copy_cb->qiov, &copy_cb->iov, 1);
824

    
825
    qed_read_backing_file(s, pos, &copy_cb->qiov,
826
                          qed_copy_from_backing_file_write, copy_cb);
827
}
828

    
829
/**
830
 * Link one or more contiguous clusters into a table
831
 *
832
 * @s:              QED state
833
 * @table:          L2 table
834
 * @index:          First cluster index
835
 * @n:              Number of contiguous clusters
836
 * @cluster:        First cluster offset
837
 *
838
 * The cluster offset may be an allocated byte offset in the image file, the
839
 * zero cluster marker, or the unallocated cluster marker.
840
 */
841
static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
842
                                unsigned int n, uint64_t cluster)
843
{
844
    int i;
845
    for (i = index; i < index + n; i++) {
846
        table->offsets[i] = cluster;
847
        if (!qed_offset_is_unalloc_cluster(cluster) &&
848
            !qed_offset_is_zero_cluster(cluster)) {
849
            cluster += s->header.cluster_size;
850
        }
851
    }
852
}
853

    
854
static void qed_aio_complete_bh(void *opaque)
855
{
856
    QEDAIOCB *acb = opaque;
857
    BlockDriverCompletionFunc *cb = acb->common.cb;
858
    void *user_opaque = acb->common.opaque;
859
    int ret = acb->bh_ret;
860
    bool *finished = acb->finished;
861

    
862
    qemu_bh_delete(acb->bh);
863
    qemu_aio_release(acb);
864

    
865
    /* Invoke callback */
866
    cb(user_opaque, ret);
867

    
868
    /* Signal cancel completion */
869
    if (finished) {
870
        *finished = true;
871
    }
872
}
873

    
874
static void qed_aio_complete(QEDAIOCB *acb, int ret)
875
{
876
    BDRVQEDState *s = acb_to_s(acb);
877

    
878
    trace_qed_aio_complete(s, acb, ret);
879

    
880
    /* Free resources */
881
    qemu_iovec_destroy(&acb->cur_qiov);
882
    qed_unref_l2_cache_entry(acb->request.l2_table);
883

    
884
    /* Arrange for a bh to invoke the completion function */
885
    acb->bh_ret = ret;
886
    acb->bh = qemu_bh_new(qed_aio_complete_bh, acb);
887
    qemu_bh_schedule(acb->bh);
888

    
889
    /* Start next allocating write request waiting behind this one.  Note that
890
     * requests enqueue themselves when they first hit an unallocated cluster
891
     * but they wait until the entire request is finished before waking up the
892
     * next request in the queue.  This ensures that we don't cycle through
893
     * requests multiple times but rather finish one at a time completely.
894
     */
895
    if (acb == QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
896
        QSIMPLEQ_REMOVE_HEAD(&s->allocating_write_reqs, next);
897
        acb = QSIMPLEQ_FIRST(&s->allocating_write_reqs);
898
        if (acb) {
899
            qed_aio_next_io(acb, 0);
900
        } else if (s->header.features & QED_F_NEED_CHECK) {
901
            qed_start_need_check_timer(s);
902
        }
903
    }
904
}
905

    
906
/**
907
 * Commit the current L2 table to the cache
908
 */
909
static void qed_commit_l2_update(void *opaque, int ret)
910
{
911
    QEDAIOCB *acb = opaque;
912
    BDRVQEDState *s = acb_to_s(acb);
913
    CachedL2Table *l2_table = acb->request.l2_table;
914

    
915
    qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
916

    
917
    /* This is guaranteed to succeed because we just committed the entry to the
918
     * cache.
919
     */
920
    acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache,
921
                                                    l2_table->offset);
922
    assert(acb->request.l2_table != NULL);
923

    
924
    qed_aio_next_io(opaque, ret);
925
}
926

    
927
/**
928
 * Update L1 table with new L2 table offset and write it out
929
 */
930
static void qed_aio_write_l1_update(void *opaque, int ret)
931
{
932
    QEDAIOCB *acb = opaque;
933
    BDRVQEDState *s = acb_to_s(acb);
934
    int index;
935

    
936
    if (ret) {
937
        qed_aio_complete(acb, ret);
938
        return;
939
    }
940

    
941
    index = qed_l1_index(s, acb->cur_pos);
942
    s->l1_table->offsets[index] = acb->request.l2_table->offset;
943

    
944
    qed_write_l1_table(s, index, 1, qed_commit_l2_update, acb);
945
}
946

    
947
/**
948
 * Update L2 table with new cluster offsets and write them out
949
 */
950
static void qed_aio_write_l2_update(void *opaque, int ret)
951
{
952
    QEDAIOCB *acb = opaque;
953
    BDRVQEDState *s = acb_to_s(acb);
954
    bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
955
    int index;
956

    
957
    if (ret) {
958
        goto err;
959
    }
960

    
961
    if (need_alloc) {
962
        qed_unref_l2_cache_entry(acb->request.l2_table);
963
        acb->request.l2_table = qed_new_l2_table(s);
964
    }
965

    
966
    index = qed_l2_index(s, acb->cur_pos);
967
    qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
968
                         acb->cur_cluster);
969

    
970
    if (need_alloc) {
971
        /* Write out the whole new L2 table */
972
        qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true,
973
                            qed_aio_write_l1_update, acb);
974
    } else {
975
        /* Write out only the updated part of the L2 table */
976
        qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters, false,
977
                            qed_aio_next_io, acb);
978
    }
979
    return;
980

    
981
err:
982
    qed_aio_complete(acb, ret);
983
}
984

    
985
/**
986
 * Flush new data clusters before updating the L2 table
987
 *
988
 * This flush is necessary when a backing file is in use.  A crash during an
989
 * allocating write could result in empty clusters in the image.  If the write
990
 * only touched a subregion of the cluster, then backing image sectors have
991
 * been lost in the untouched region.  The solution is to flush after writing a
992
 * new data cluster and before updating the L2 table.
993
 */
994
static void qed_aio_write_flush_before_l2_update(void *opaque, int ret)
995
{
996
    QEDAIOCB *acb = opaque;
997
    BDRVQEDState *s = acb_to_s(acb);
998

    
999
    if (!bdrv_aio_flush(s->bs->file, qed_aio_write_l2_update, opaque)) {
1000
        qed_aio_complete(acb, -EIO);
1001
    }
1002
}
1003

    
1004
/**
1005
 * Write data to the image file
1006
 */
1007
static void qed_aio_write_main(void *opaque, int ret)
1008
{
1009
    QEDAIOCB *acb = opaque;
1010
    BDRVQEDState *s = acb_to_s(acb);
1011
    uint64_t offset = acb->cur_cluster +
1012
                      qed_offset_into_cluster(s, acb->cur_pos);
1013
    BlockDriverCompletionFunc *next_fn;
1014
    BlockDriverAIOCB *file_acb;
1015

    
1016
    trace_qed_aio_write_main(s, acb, ret, offset, acb->cur_qiov.size);
1017

    
1018
    if (ret) {
1019
        qed_aio_complete(acb, ret);
1020
        return;
1021
    }
1022

    
1023
    if (acb->find_cluster_ret == QED_CLUSTER_FOUND) {
1024
        next_fn = qed_aio_next_io;
1025
    } else {
1026
        if (s->bs->backing_hd) {
1027
            next_fn = qed_aio_write_flush_before_l2_update;
1028
        } else {
1029
            next_fn = qed_aio_write_l2_update;
1030
        }
1031
    }
1032

    
1033
    BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1034
    file_acb = bdrv_aio_writev(s->bs->file, offset / BDRV_SECTOR_SIZE,
1035
                               &acb->cur_qiov,
1036
                               acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1037
                               next_fn, acb);
1038
    if (!file_acb) {
1039
        qed_aio_complete(acb, -EIO);
1040
    }
1041
}
1042

    
1043
/**
1044
 * Populate back untouched region of new data cluster
1045
 */
1046
static void qed_aio_write_postfill(void *opaque, int ret)
1047
{
1048
    QEDAIOCB *acb = opaque;
1049
    BDRVQEDState *s = acb_to_s(acb);
1050
    uint64_t start = acb->cur_pos + acb->cur_qiov.size;
1051
    uint64_t len =
1052
        qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1053
    uint64_t offset = acb->cur_cluster +
1054
                      qed_offset_into_cluster(s, acb->cur_pos) +
1055
                      acb->cur_qiov.size;
1056

    
1057
    if (ret) {
1058
        qed_aio_complete(acb, ret);
1059
        return;
1060
    }
1061

    
1062
    trace_qed_aio_write_postfill(s, acb, start, len, offset);
1063
    qed_copy_from_backing_file(s, start, len, offset,
1064
                                qed_aio_write_main, acb);
1065
}
1066

    
1067
/**
1068
 * Populate front untouched region of new data cluster
1069
 */
1070
static void qed_aio_write_prefill(void *opaque, int ret)
1071
{
1072
    QEDAIOCB *acb = opaque;
1073
    BDRVQEDState *s = acb_to_s(acb);
1074
    uint64_t start = qed_start_of_cluster(s, acb->cur_pos);
1075
    uint64_t len = qed_offset_into_cluster(s, acb->cur_pos);
1076

    
1077
    trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1078
    qed_copy_from_backing_file(s, start, len, acb->cur_cluster,
1079
                                qed_aio_write_postfill, acb);
1080
}
1081

    
1082
/**
1083
 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1084
 */
1085
static bool qed_should_set_need_check(BDRVQEDState *s)
1086
{
1087
    /* The flush before L2 update path ensures consistency */
1088
    if (s->bs->backing_hd) {
1089
        return false;
1090
    }
1091

    
1092
    return !(s->header.features & QED_F_NEED_CHECK);
1093
}
1094

    
1095
/**
1096
 * Write new data cluster
1097
 *
1098
 * @acb:        Write request
1099
 * @len:        Length in bytes
1100
 *
1101
 * This path is taken when writing to previously unallocated clusters.
1102
 */
1103
static void qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1104
{
1105
    BDRVQEDState *s = acb_to_s(acb);
1106

    
1107
    /* Cancel timer when the first allocating request comes in */
1108
    if (QSIMPLEQ_EMPTY(&s->allocating_write_reqs)) {
1109
        qed_cancel_need_check_timer(s);
1110
    }
1111

    
1112
    /* Freeze this request if another allocating write is in progress */
1113
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs)) {
1114
        QSIMPLEQ_INSERT_TAIL(&s->allocating_write_reqs, acb, next);
1115
    }
1116
    if (acb != QSIMPLEQ_FIRST(&s->allocating_write_reqs) ||
1117
        s->allocating_write_reqs_plugged) {
1118
        return; /* wait for existing request to finish */
1119
    }
1120

    
1121
    acb->cur_nclusters = qed_bytes_to_clusters(s,
1122
            qed_offset_into_cluster(s, acb->cur_pos) + len);
1123
    acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1124
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1125

    
1126
    if (qed_should_set_need_check(s)) {
1127
        s->header.features |= QED_F_NEED_CHECK;
1128
        qed_write_header(s, qed_aio_write_prefill, acb);
1129
    } else {
1130
        qed_aio_write_prefill(acb, 0);
1131
    }
1132
}
1133

    
1134
/**
1135
 * Write data cluster in place
1136
 *
1137
 * @acb:        Write request
1138
 * @offset:     Cluster offset in bytes
1139
 * @len:        Length in bytes
1140
 *
1141
 * This path is taken when writing to already allocated clusters.
1142
 */
1143
static void qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1144
{
1145
    /* Calculate the I/O vector */
1146
    acb->cur_cluster = offset;
1147
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1148

    
1149
    /* Do the actual write */
1150
    qed_aio_write_main(acb, 0);
1151
}
1152

    
1153
/**
1154
 * Write data cluster
1155
 *
1156
 * @opaque:     Write request
1157
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1158
 *              or -errno
1159
 * @offset:     Cluster offset in bytes
1160
 * @len:        Length in bytes
1161
 *
1162
 * Callback from qed_find_cluster().
1163
 */
1164
static void qed_aio_write_data(void *opaque, int ret,
1165
                               uint64_t offset, size_t len)
1166
{
1167
    QEDAIOCB *acb = opaque;
1168

    
1169
    trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1170

    
1171
    acb->find_cluster_ret = ret;
1172

    
1173
    switch (ret) {
1174
    case QED_CLUSTER_FOUND:
1175
        qed_aio_write_inplace(acb, offset, len);
1176
        break;
1177

    
1178
    case QED_CLUSTER_L2:
1179
    case QED_CLUSTER_L1:
1180
    case QED_CLUSTER_ZERO:
1181
        qed_aio_write_alloc(acb, len);
1182
        break;
1183

    
1184
    default:
1185
        qed_aio_complete(acb, ret);
1186
        break;
1187
    }
1188
}
1189

    
1190
/**
1191
 * Read data cluster
1192
 *
1193
 * @opaque:     Read request
1194
 * @ret:        QED_CLUSTER_FOUND, QED_CLUSTER_L2, QED_CLUSTER_L1,
1195
 *              or -errno
1196
 * @offset:     Cluster offset in bytes
1197
 * @len:        Length in bytes
1198
 *
1199
 * Callback from qed_find_cluster().
1200
 */
1201
static void qed_aio_read_data(void *opaque, int ret,
1202
                              uint64_t offset, size_t len)
1203
{
1204
    QEDAIOCB *acb = opaque;
1205
    BDRVQEDState *s = acb_to_s(acb);
1206
    BlockDriverState *bs = acb->common.bs;
1207
    BlockDriverAIOCB *file_acb;
1208

    
1209
    /* Adjust offset into cluster */
1210
    offset += qed_offset_into_cluster(s, acb->cur_pos);
1211

    
1212
    trace_qed_aio_read_data(s, acb, ret, offset, len);
1213

    
1214
    if (ret < 0) {
1215
        goto err;
1216
    }
1217

    
1218
    qemu_iovec_copy(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1219

    
1220
    /* Handle zero cluster and backing file reads */
1221
    if (ret == QED_CLUSTER_ZERO) {
1222
        qemu_iovec_memset(&acb->cur_qiov, 0, acb->cur_qiov.size);
1223
        qed_aio_next_io(acb, 0);
1224
        return;
1225
    } else if (ret != QED_CLUSTER_FOUND) {
1226
        qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1227
                              qed_aio_next_io, acb);
1228
        return;
1229
    }
1230

    
1231
    BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1232
    file_acb = bdrv_aio_readv(bs->file, offset / BDRV_SECTOR_SIZE,
1233
                              &acb->cur_qiov,
1234
                              acb->cur_qiov.size / BDRV_SECTOR_SIZE,
1235
                              qed_aio_next_io, acb);
1236
    if (!file_acb) {
1237
        ret = -EIO;
1238
        goto err;
1239
    }
1240
    return;
1241

    
1242
err:
1243
    qed_aio_complete(acb, ret);
1244
}
1245

    
1246
/**
1247
 * Begin next I/O or complete the request
1248
 */
1249
static void qed_aio_next_io(void *opaque, int ret)
1250
{
1251
    QEDAIOCB *acb = opaque;
1252
    BDRVQEDState *s = acb_to_s(acb);
1253
    QEDFindClusterFunc *io_fn =
1254
        acb->is_write ? qed_aio_write_data : qed_aio_read_data;
1255

    
1256
    trace_qed_aio_next_io(s, acb, ret, acb->cur_pos + acb->cur_qiov.size);
1257

    
1258
    /* Handle I/O error */
1259
    if (ret) {
1260
        qed_aio_complete(acb, ret);
1261
        return;
1262
    }
1263

    
1264
    acb->qiov_offset += acb->cur_qiov.size;
1265
    acb->cur_pos += acb->cur_qiov.size;
1266
    qemu_iovec_reset(&acb->cur_qiov);
1267

    
1268
    /* Complete request */
1269
    if (acb->cur_pos >= acb->end_pos) {
1270
        qed_aio_complete(acb, 0);
1271
        return;
1272
    }
1273

    
1274
    /* Find next cluster and start I/O */
1275
    qed_find_cluster(s, &acb->request,
1276
                      acb->cur_pos, acb->end_pos - acb->cur_pos,
1277
                      io_fn, acb);
1278
}
1279

    
1280
static BlockDriverAIOCB *qed_aio_setup(BlockDriverState *bs,
1281
                                       int64_t sector_num,
1282
                                       QEMUIOVector *qiov, int nb_sectors,
1283
                                       BlockDriverCompletionFunc *cb,
1284
                                       void *opaque, bool is_write)
1285
{
1286
    QEDAIOCB *acb = qemu_aio_get(&qed_aio_pool, bs, cb, opaque);
1287

    
1288
    trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors,
1289
                         opaque, is_write);
1290

    
1291
    acb->is_write = is_write;
1292
    acb->finished = NULL;
1293
    acb->qiov = qiov;
1294
    acb->qiov_offset = 0;
1295
    acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1296
    acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1297
    acb->request.l2_table = NULL;
1298
    qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1299

    
1300
    /* Start request */
1301
    qed_aio_next_io(acb, 0);
1302
    return &acb->common;
1303
}
1304

    
1305
static BlockDriverAIOCB *bdrv_qed_aio_readv(BlockDriverState *bs,
1306
                                            int64_t sector_num,
1307
                                            QEMUIOVector *qiov, int nb_sectors,
1308
                                            BlockDriverCompletionFunc *cb,
1309
                                            void *opaque)
1310
{
1311
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, false);
1312
}
1313

    
1314
static BlockDriverAIOCB *bdrv_qed_aio_writev(BlockDriverState *bs,
1315
                                             int64_t sector_num,
1316
                                             QEMUIOVector *qiov, int nb_sectors,
1317
                                             BlockDriverCompletionFunc *cb,
1318
                                             void *opaque)
1319
{
1320
    return qed_aio_setup(bs, sector_num, qiov, nb_sectors, cb, opaque, true);
1321
}
1322

    
1323
static BlockDriverAIOCB *bdrv_qed_aio_flush(BlockDriverState *bs,
1324
                                            BlockDriverCompletionFunc *cb,
1325
                                            void *opaque)
1326
{
1327
    return bdrv_aio_flush(bs->file, cb, opaque);
1328
}
1329

    
1330
static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset)
1331
{
1332
    BDRVQEDState *s = bs->opaque;
1333
    uint64_t old_image_size;
1334
    int ret;
1335

    
1336
    if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1337
                                 s->header.table_size)) {
1338
        return -EINVAL;
1339
    }
1340

    
1341
    /* Shrinking is currently not supported */
1342
    if ((uint64_t)offset < s->header.image_size) {
1343
        return -ENOTSUP;
1344
    }
1345

    
1346
    old_image_size = s->header.image_size;
1347
    s->header.image_size = offset;
1348
    ret = qed_write_header_sync(s);
1349
    if (ret < 0) {
1350
        s->header.image_size = old_image_size;
1351
    }
1352
    return ret;
1353
}
1354

    
1355
static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1356
{
1357
    BDRVQEDState *s = bs->opaque;
1358
    return s->header.image_size;
1359
}
1360

    
1361
static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1362
{
1363
    BDRVQEDState *s = bs->opaque;
1364

    
1365
    memset(bdi, 0, sizeof(*bdi));
1366
    bdi->cluster_size = s->header.cluster_size;
1367
    return 0;
1368
}
1369

    
1370
static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1371
                                        const char *backing_file,
1372
                                        const char *backing_fmt)
1373
{
1374
    BDRVQEDState *s = bs->opaque;
1375
    QEDHeader new_header, le_header;
1376
    void *buffer;
1377
    size_t buffer_len, backing_file_len;
1378
    int ret;
1379

    
1380
    /* Refuse to set backing filename if unknown compat feature bits are
1381
     * active.  If the image uses an unknown compat feature then we may not
1382
     * know the layout of data following the header structure and cannot safely
1383
     * add a new string.
1384
     */
1385
    if (backing_file && (s->header.compat_features &
1386
                         ~QED_COMPAT_FEATURE_MASK)) {
1387
        return -ENOTSUP;
1388
    }
1389

    
1390
    memcpy(&new_header, &s->header, sizeof(new_header));
1391

    
1392
    new_header.features &= ~(QED_F_BACKING_FILE |
1393
                             QED_F_BACKING_FORMAT_NO_PROBE);
1394

    
1395
    /* Adjust feature flags */
1396
    if (backing_file) {
1397
        new_header.features |= QED_F_BACKING_FILE;
1398

    
1399
        if (qed_fmt_is_raw(backing_fmt)) {
1400
            new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1401
        }
1402
    }
1403

    
1404
    /* Calculate new header size */
1405
    backing_file_len = 0;
1406

    
1407
    if (backing_file) {
1408
        backing_file_len = strlen(backing_file);
1409
    }
1410

    
1411
    buffer_len = sizeof(new_header);
1412
    new_header.backing_filename_offset = buffer_len;
1413
    new_header.backing_filename_size = backing_file_len;
1414
    buffer_len += backing_file_len;
1415

    
1416
    /* Make sure we can rewrite header without failing */
1417
    if (buffer_len > new_header.header_size * new_header.cluster_size) {
1418
        return -ENOSPC;
1419
    }
1420

    
1421
    /* Prepare new header */
1422
    buffer = qemu_malloc(buffer_len);
1423

    
1424
    qed_header_cpu_to_le(&new_header, &le_header);
1425
    memcpy(buffer, &le_header, sizeof(le_header));
1426
    buffer_len = sizeof(le_header);
1427

    
1428
    memcpy(buffer + buffer_len, backing_file, backing_file_len);
1429
    buffer_len += backing_file_len;
1430

    
1431
    /* Write new header */
1432
    ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1433
    qemu_free(buffer);
1434
    if (ret == 0) {
1435
        memcpy(&s->header, &new_header, sizeof(new_header));
1436
    }
1437
    return ret;
1438
}
1439

    
1440
static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result)
1441
{
1442
    BDRVQEDState *s = bs->opaque;
1443

    
1444
    return qed_check(s, result, false);
1445
}
1446

    
1447
static QEMUOptionParameter qed_create_options[] = {
1448
    {
1449
        .name = BLOCK_OPT_SIZE,
1450
        .type = OPT_SIZE,
1451
        .help = "Virtual disk size (in bytes)"
1452
    }, {
1453
        .name = BLOCK_OPT_BACKING_FILE,
1454
        .type = OPT_STRING,
1455
        .help = "File name of a base image"
1456
    }, {
1457
        .name = BLOCK_OPT_BACKING_FMT,
1458
        .type = OPT_STRING,
1459
        .help = "Image format of the base image"
1460
    }, {
1461
        .name = BLOCK_OPT_CLUSTER_SIZE,
1462
        .type = OPT_SIZE,
1463
        .help = "Cluster size (in bytes)",
1464
        .value = { .n = QED_DEFAULT_CLUSTER_SIZE },
1465
    }, {
1466
        .name = BLOCK_OPT_TABLE_SIZE,
1467
        .type = OPT_SIZE,
1468
        .help = "L1/L2 table size (in clusters)"
1469
    },
1470
    { /* end of list */ }
1471
};
1472

    
1473
static BlockDriver bdrv_qed = {
1474
    .format_name              = "qed",
1475
    .instance_size            = sizeof(BDRVQEDState),
1476
    .create_options           = qed_create_options,
1477

    
1478
    .bdrv_probe               = bdrv_qed_probe,
1479
    .bdrv_open                = bdrv_qed_open,
1480
    .bdrv_close               = bdrv_qed_close,
1481
    .bdrv_create              = bdrv_qed_create,
1482
    .bdrv_flush               = bdrv_qed_flush,
1483
    .bdrv_is_allocated        = bdrv_qed_is_allocated,
1484
    .bdrv_make_empty          = bdrv_qed_make_empty,
1485
    .bdrv_aio_readv           = bdrv_qed_aio_readv,
1486
    .bdrv_aio_writev          = bdrv_qed_aio_writev,
1487
    .bdrv_aio_flush           = bdrv_qed_aio_flush,
1488
    .bdrv_truncate            = bdrv_qed_truncate,
1489
    .bdrv_getlength           = bdrv_qed_getlength,
1490
    .bdrv_get_info            = bdrv_qed_get_info,
1491
    .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1492
    .bdrv_check               = bdrv_qed_check,
1493
};
1494

    
1495
static void bdrv_qed_init(void)
1496
{
1497
    bdrv_register(&bdrv_qed);
1498
}
1499

    
1500
block_init(bdrv_qed_init);