Statistics
| Branch: | Revision:

root / hw / spapr.c @ 39ac8455

History | View | Annotate | Download (12 kB)

1
/*
2
 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3
 *
4
 * Copyright (c) 2004-2007 Fabrice Bellard
5
 * Copyright (c) 2007 Jocelyn Mayer
6
 * Copyright (c) 2010 David Gibson, IBM Corporation.
7
 *
8
 * Permission is hereby granted, free of charge, to any person obtaining a copy
9
 * of this software and associated documentation files (the "Software"), to deal
10
 * in the Software without restriction, including without limitation the rights
11
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12
 * copies of the Software, and to permit persons to whom the Software is
13
 * furnished to do so, subject to the following conditions:
14
 *
15
 * The above copyright notice and this permission notice shall be included in
16
 * all copies or substantial portions of the Software.
17
 *
18
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24
 * THE SOFTWARE.
25
 *
26
 */
27
#include "sysemu.h"
28
#include "hw.h"
29
#include "elf.h"
30

    
31
#include "hw/boards.h"
32
#include "hw/ppc.h"
33
#include "hw/loader.h"
34

    
35
#include "hw/spapr.h"
36
#include "hw/spapr_vio.h"
37

    
38
#include <libfdt.h>
39

    
40
#define KERNEL_LOAD_ADDR        0x00000000
41
#define INITRD_LOAD_ADDR        0x02800000
42
#define FDT_MAX_SIZE            0x10000
43
#define RTAS_MAX_SIZE           0x10000
44

    
45
#define TIMEBASE_FREQ           512000000ULL
46

    
47
#define MAX_CPUS                32
48

    
49
sPAPREnvironment *spapr;
50

    
51
static void *spapr_create_fdt(int *fdt_size, ram_addr_t ramsize,
52
                              const char *cpu_model, CPUState *envs[],
53
                              sPAPREnvironment *spapr,
54
                              target_phys_addr_t initrd_base,
55
                              target_phys_addr_t initrd_size,
56
                              const char *kernel_cmdline,
57
                              target_phys_addr_t rtas_addr,
58
                              target_phys_addr_t rtas_size,
59
                              long hash_shift)
60
{
61
    void *fdt;
62
    uint64_t mem_reg_property[] = { 0, cpu_to_be64(ramsize) };
63
    uint32_t start_prop = cpu_to_be32(initrd_base);
64
    uint32_t end_prop = cpu_to_be32(initrd_base + initrd_size);
65
    uint32_t pft_size_prop[] = {0, cpu_to_be32(hash_shift)};
66
    char hypertas_prop[] = "hcall-pft\0hcall-term";
67
    int i;
68
    char *modelname;
69
    int ret;
70

    
71
#define _FDT(exp) \
72
    do { \
73
        int ret = (exp);                                           \
74
        if (ret < 0) {                                             \
75
            fprintf(stderr, "qemu: error creating device tree: %s: %s\n", \
76
                    #exp, fdt_strerror(ret));                      \
77
            exit(1);                                               \
78
        }                                                          \
79
    } while (0)
80

    
81
    fdt = qemu_mallocz(FDT_MAX_SIZE);
82
    _FDT((fdt_create(fdt, FDT_MAX_SIZE)));
83

    
84
    _FDT((fdt_finish_reservemap(fdt)));
85

    
86
    /* Root node */
87
    _FDT((fdt_begin_node(fdt, "")));
88
    _FDT((fdt_property_string(fdt, "device_type", "chrp")));
89
    _FDT((fdt_property_string(fdt, "model", "qemu,emulated-pSeries-LPAR")));
90

    
91
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x2)));
92
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x2)));
93

    
94
    /* /chosen */
95
    _FDT((fdt_begin_node(fdt, "chosen")));
96

    
97
    _FDT((fdt_property_string(fdt, "bootargs", kernel_cmdline)));
98
    _FDT((fdt_property(fdt, "linux,initrd-start",
99
                       &start_prop, sizeof(start_prop))));
100
    _FDT((fdt_property(fdt, "linux,initrd-end",
101
                       &end_prop, sizeof(end_prop))));
102

    
103
    _FDT((fdt_end_node(fdt)));
104

    
105
    /* memory node */
106
    _FDT((fdt_begin_node(fdt, "memory@0")));
107

    
108
    _FDT((fdt_property_string(fdt, "device_type", "memory")));
109
    _FDT((fdt_property(fdt, "reg",
110
                       mem_reg_property, sizeof(mem_reg_property))));
111

    
112
    _FDT((fdt_end_node(fdt)));
113

    
114
    /* cpus */
115
    _FDT((fdt_begin_node(fdt, "cpus")));
116

    
117
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
118
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
119

    
120
    modelname = qemu_strdup(cpu_model);
121

    
122
    for (i = 0; i < strlen(modelname); i++) {
123
        modelname[i] = toupper(modelname[i]);
124
    }
125

    
126
    for (i = 0; i < smp_cpus; i++) {
127
        CPUState *env = envs[i];
128
        char *nodename;
129
        uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
130
                           0xffffffff, 0xffffffff};
131

    
132
        if (asprintf(&nodename, "%s@%x", modelname, i) < 0) {
133
            fprintf(stderr, "Allocation failure\n");
134
            exit(1);
135
        }
136

    
137
        _FDT((fdt_begin_node(fdt, nodename)));
138

    
139
        free(nodename);
140

    
141
        _FDT((fdt_property_cell(fdt, "reg", i)));
142
        _FDT((fdt_property_string(fdt, "device_type", "cpu")));
143

    
144
        _FDT((fdt_property_cell(fdt, "cpu-version", env->spr[SPR_PVR])));
145
        _FDT((fdt_property_cell(fdt, "dcache-block-size",
146
                                env->dcache_line_size)));
147
        _FDT((fdt_property_cell(fdt, "icache-block-size",
148
                                env->icache_line_size)));
149
        _FDT((fdt_property_cell(fdt, "timebase-frequency", TIMEBASE_FREQ)));
150
        /* Hardcode CPU frequency for now.  It's kind of arbitrary on
151
         * full emu, for kvm we should copy it from the host */
152
        _FDT((fdt_property_cell(fdt, "clock-frequency", 1000000000)));
153
        _FDT((fdt_property_cell(fdt, "ibm,slb-size", env->slb_nr)));
154
        _FDT((fdt_property(fdt, "ibm,pft-size",
155
                           pft_size_prop, sizeof(pft_size_prop))));
156
        _FDT((fdt_property_string(fdt, "status", "okay")));
157
        _FDT((fdt_property(fdt, "64-bit", NULL, 0)));
158

    
159
        if (envs[i]->mmu_model & POWERPC_MMU_1TSEG) {
160
            _FDT((fdt_property(fdt, "ibm,processor-segment-sizes",
161
                               segs, sizeof(segs))));
162
        }
163

    
164
        _FDT((fdt_end_node(fdt)));
165
    }
166

    
167
    qemu_free(modelname);
168

    
169
    _FDT((fdt_end_node(fdt)));
170

    
171
    /* RTAS */
172
    _FDT((fdt_begin_node(fdt, "rtas")));
173

    
174
    _FDT((fdt_property(fdt, "ibm,hypertas-functions", hypertas_prop,
175
                       sizeof(hypertas_prop))));
176

    
177
    _FDT((fdt_end_node(fdt)));
178

    
179
    /* vdevice */
180
    _FDT((fdt_begin_node(fdt, "vdevice")));
181

    
182
    _FDT((fdt_property_string(fdt, "device_type", "vdevice")));
183
    _FDT((fdt_property_string(fdt, "compatible", "IBM,vdevice")));
184
    _FDT((fdt_property_cell(fdt, "#address-cells", 0x1)));
185
    _FDT((fdt_property_cell(fdt, "#size-cells", 0x0)));
186

    
187
    _FDT((fdt_end_node(fdt)));
188

    
189
    _FDT((fdt_end_node(fdt))); /* close root node */
190
    _FDT((fdt_finish(fdt)));
191

    
192
    /* re-expand to allow for further tweaks */
193
    _FDT((fdt_open_into(fdt, fdt, FDT_MAX_SIZE)));
194

    
195
    ret = spapr_populate_vdevice(spapr->vio_bus, fdt);
196
    if (ret < 0) {
197
        fprintf(stderr, "couldn't setup vio devices in fdt\n");
198
        exit(1);
199
    }
200

    
201
    /* RTAS */
202
    ret = spapr_rtas_device_tree_setup(fdt, rtas_addr, rtas_size);
203
    if (ret < 0) {
204
        fprintf(stderr, "Couldn't set up RTAS device tree properties\n");
205
    }
206

    
207
    _FDT((fdt_pack(fdt)));
208

    
209
    *fdt_size = fdt_totalsize(fdt);
210

    
211
    return fdt;
212
}
213

    
214
static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
215
{
216
    return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
217
}
218

    
219
static void emulate_spapr_hypercall(CPUState *env)
220
{
221
    env->gpr[3] = spapr_hypercall(env, env->gpr[3], &env->gpr[4]);
222
}
223

    
224
/* pSeries LPAR / sPAPR hardware init */
225
static void ppc_spapr_init(ram_addr_t ram_size,
226
                           const char *boot_device,
227
                           const char *kernel_filename,
228
                           const char *kernel_cmdline,
229
                           const char *initrd_filename,
230
                           const char *cpu_model)
231
{
232
    CPUState *envs[MAX_CPUS];
233
    void *fdt, *htab;
234
    int i;
235
    ram_addr_t ram_offset;
236
    target_phys_addr_t fdt_addr, rtas_addr;
237
    uint32_t kernel_base, initrd_base;
238
    long kernel_size, initrd_size, htab_size, rtas_size;
239
    long pteg_shift = 17;
240
    int fdt_size;
241
    char *filename;
242

    
243
    spapr = qemu_malloc(sizeof(*spapr));
244
    cpu_ppc_hypercall = emulate_spapr_hypercall;
245

    
246
    /* We place the device tree just below either the top of RAM, or
247
     * 2GB, so that it can be processed with 32-bit code if
248
     * necessary */
249
    fdt_addr = MIN(ram_size, 0x80000000) - FDT_MAX_SIZE;
250
    /* RTAS goes just below that */
251
    rtas_addr = fdt_addr - RTAS_MAX_SIZE;
252

    
253
    /* init CPUs */
254
    if (cpu_model == NULL) {
255
        cpu_model = "POWER7";
256
    }
257
    for (i = 0; i < smp_cpus; i++) {
258
        CPUState *env = cpu_init(cpu_model);
259

    
260
        if (!env) {
261
            fprintf(stderr, "Unable to find PowerPC CPU definition\n");
262
            exit(1);
263
        }
264
        /* Set time-base frequency to 512 MHz */
265
        cpu_ppc_tb_init(env, TIMEBASE_FREQ);
266
        qemu_register_reset((QEMUResetHandler *)&cpu_reset, env);
267

    
268
        env->hreset_vector = 0x60;
269
        env->hreset_excp_prefix = 0;
270
        env->gpr[3] = i;
271

    
272
        envs[i] = env;
273
    }
274

    
275
    /* allocate RAM */
276
    ram_offset = qemu_ram_alloc(NULL, "ppc_spapr.ram", ram_size);
277
    cpu_register_physical_memory(0, ram_size, ram_offset);
278

    
279
    /* allocate hash page table.  For now we always make this 16mb,
280
     * later we should probably make it scale to the size of guest
281
     * RAM */
282
    htab_size = 1ULL << (pteg_shift + 7);
283
    htab = qemu_mallocz(htab_size);
284

    
285
    for (i = 0; i < smp_cpus; i++) {
286
        envs[i]->external_htab = htab;
287
        envs[i]->htab_base = -1;
288
        envs[i]->htab_mask = htab_size - 1;
289
    }
290

    
291
    filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
292
    rtas_size = load_image_targphys(filename, rtas_addr, ram_size - rtas_addr);
293
    if (rtas_size < 0) {
294
        hw_error("qemu: could not load LPAR rtas '%s'\n", filename);
295
        exit(1);
296
    }
297
    qemu_free(filename);
298

    
299
    spapr->vio_bus = spapr_vio_bus_init();
300

    
301
    for (i = 0; i < MAX_SERIAL_PORTS; i++) {
302
        if (serial_hds[i]) {
303
            spapr_vty_create(spapr->vio_bus, i, serial_hds[i]);
304
        }
305
    }
306

    
307
    if (kernel_filename) {
308
        uint64_t lowaddr = 0;
309

    
310
        kernel_base = KERNEL_LOAD_ADDR;
311

    
312
        kernel_size = load_elf(kernel_filename, translate_kernel_address, NULL,
313
                               NULL, &lowaddr, NULL, 1, ELF_MACHINE, 0);
314
        if (kernel_size < 0) {
315
            kernel_size = load_image_targphys(kernel_filename, kernel_base,
316
                                              ram_size - kernel_base);
317
        }
318
        if (kernel_size < 0) {
319
            fprintf(stderr, "qemu: could not load kernel '%s'\n",
320
                    kernel_filename);
321
            exit(1);
322
        }
323

    
324
        /* load initrd */
325
        if (initrd_filename) {
326
            initrd_base = INITRD_LOAD_ADDR;
327
            initrd_size = load_image_targphys(initrd_filename, initrd_base,
328
                                              ram_size - initrd_base);
329
            if (initrd_size < 0) {
330
                fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
331
                        initrd_filename);
332
                exit(1);
333
            }
334
        } else {
335
            initrd_base = 0;
336
            initrd_size = 0;
337
        }
338
    } else {
339
        fprintf(stderr, "pSeries machine needs -kernel for now");
340
        exit(1);
341
    }
342

    
343
    /* Prepare the device tree */
344
    fdt = spapr_create_fdt(&fdt_size, ram_size, cpu_model, envs, spapr,
345
                           initrd_base, initrd_size, kernel_cmdline,
346
                           rtas_addr, rtas_size, pteg_shift + 7);
347
    assert(fdt != NULL);
348

    
349
    cpu_physical_memory_write(fdt_addr, fdt, fdt_size);
350

    
351
    qemu_free(fdt);
352

    
353
    envs[0]->gpr[3] = fdt_addr;
354
    envs[0]->gpr[5] = 0;
355
    envs[0]->hreset_vector = kernel_base;
356
}
357

    
358
static QEMUMachine spapr_machine = {
359
    .name = "pseries",
360
    .desc = "pSeries Logical Partition (PAPR compliant)",
361
    .init = ppc_spapr_init,
362
    .max_cpus = MAX_CPUS,
363
    .no_vga = 1,
364
    .no_parallel = 1,
365
};
366

    
367
static void spapr_machine_init(void)
368
{
369
    qemu_register_machine(&spapr_machine);
370
}
371

    
372
machine_init(spapr_machine_init);