Statistics
| Branch: | Revision:

root / cpu-exec.c @ 3b21e03e

History | View | Annotate | Download (46.9 kB)

1
/*
2
 *  i386 emulator main execution loop
3
 * 
4
 *  Copyright (c) 2003-2005 Fabrice Bellard
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "config.h"
21
#include "exec.h"
22
#include "disas.h"
23

    
24
#if !defined(CONFIG_SOFTMMU)
25
#undef EAX
26
#undef ECX
27
#undef EDX
28
#undef EBX
29
#undef ESP
30
#undef EBP
31
#undef ESI
32
#undef EDI
33
#undef EIP
34
#include <signal.h>
35
#include <sys/ucontext.h>
36
#endif
37

    
38
int tb_invalidated_flag;
39

    
40
//#define DEBUG_EXEC
41
//#define DEBUG_SIGNAL
42

    
43
#if defined(TARGET_ARM) || defined(TARGET_SPARC)
44
/* XXX: unify with i386 target */
45
void cpu_loop_exit(void)
46
{
47
    longjmp(env->jmp_env, 1);
48
}
49
#endif
50
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4))
51
#define reg_T2
52
#endif
53

    
54
/* exit the current TB from a signal handler. The host registers are
55
   restored in a state compatible with the CPU emulator
56
 */
57
void cpu_resume_from_signal(CPUState *env1, void *puc) 
58
{
59
#if !defined(CONFIG_SOFTMMU)
60
    struct ucontext *uc = puc;
61
#endif
62

    
63
    env = env1;
64

    
65
    /* XXX: restore cpu registers saved in host registers */
66

    
67
#if !defined(CONFIG_SOFTMMU)
68
    if (puc) {
69
        /* XXX: use siglongjmp ? */
70
        sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
71
    }
72
#endif
73
    longjmp(env->jmp_env, 1);
74
}
75

    
76

    
77
static TranslationBlock *tb_find_slow(target_ulong pc,
78
                                      target_ulong cs_base,
79
                                      unsigned int flags)
80
{
81
    TranslationBlock *tb, **ptb1;
82
    int code_gen_size;
83
    unsigned int h;
84
    target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
85
    uint8_t *tc_ptr;
86
    
87
    spin_lock(&tb_lock);
88

    
89
    tb_invalidated_flag = 0;
90
    
91
    regs_to_env(); /* XXX: do it just before cpu_gen_code() */
92
    
93
    /* find translated block using physical mappings */
94
    phys_pc = get_phys_addr_code(env, pc);
95
    phys_page1 = phys_pc & TARGET_PAGE_MASK;
96
    phys_page2 = -1;
97
    h = tb_phys_hash_func(phys_pc);
98
    ptb1 = &tb_phys_hash[h];
99
    for(;;) {
100
        tb = *ptb1;
101
        if (!tb)
102
            goto not_found;
103
        if (tb->pc == pc && 
104
            tb->page_addr[0] == phys_page1 &&
105
            tb->cs_base == cs_base && 
106
            tb->flags == flags) {
107
            /* check next page if needed */
108
            if (tb->page_addr[1] != -1) {
109
                virt_page2 = (pc & TARGET_PAGE_MASK) + 
110
                    TARGET_PAGE_SIZE;
111
                phys_page2 = get_phys_addr_code(env, virt_page2);
112
                if (tb->page_addr[1] == phys_page2)
113
                    goto found;
114
            } else {
115
                goto found;
116
            }
117
        }
118
        ptb1 = &tb->phys_hash_next;
119
    }
120
 not_found:
121
    /* if no translated code available, then translate it now */
122
    tb = tb_alloc(pc);
123
    if (!tb) {
124
        /* flush must be done */
125
        tb_flush(env);
126
        /* cannot fail at this point */
127
        tb = tb_alloc(pc);
128
        /* don't forget to invalidate previous TB info */
129
        tb_invalidated_flag = 1;
130
    }
131
    tc_ptr = code_gen_ptr;
132
    tb->tc_ptr = tc_ptr;
133
    tb->cs_base = cs_base;
134
    tb->flags = flags;
135
    cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
136
    code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
137
    
138
    /* check next page if needed */
139
    virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
140
    phys_page2 = -1;
141
    if ((pc & TARGET_PAGE_MASK) != virt_page2) {
142
        phys_page2 = get_phys_addr_code(env, virt_page2);
143
    }
144
    tb_link_phys(tb, phys_pc, phys_page2);
145
    
146
 found:
147
    /* we add the TB in the virtual pc hash table */
148
    env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
149
    spin_unlock(&tb_lock);
150
    return tb;
151
}
152

    
153
static inline TranslationBlock *tb_find_fast(void)
154
{
155
    TranslationBlock *tb;
156
    target_ulong cs_base, pc;
157
    unsigned int flags;
158

    
159
    /* we record a subset of the CPU state. It will
160
       always be the same before a given translated block
161
       is executed. */
162
#if defined(TARGET_I386)
163
    flags = env->hflags;
164
    flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
165
    cs_base = env->segs[R_CS].base;
166
    pc = cs_base + env->eip;
167
#elif defined(TARGET_ARM)
168
    flags = env->thumb | (env->vfp.vec_len << 1)
169
            | (env->vfp.vec_stride << 4);
170
    if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
171
        flags |= (1 << 6);
172
    if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
173
        flags |= (1 << 7);
174
    cs_base = 0;
175
    pc = env->regs[15];
176
#elif defined(TARGET_SPARC)
177
#ifdef TARGET_SPARC64
178
    // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
179
    flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
180
        | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
181
#else
182
    // FPU enable . MMU enabled . MMU no-fault . Supervisor
183
    flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
184
        | env->psrs;
185
#endif
186
    cs_base = env->npc;
187
    pc = env->pc;
188
#elif defined(TARGET_PPC)
189
    flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
190
        (msr_se << MSR_SE) | (msr_le << MSR_LE);
191
    cs_base = 0;
192
    pc = env->nip;
193
#elif defined(TARGET_MIPS)
194
    flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
195
    cs_base = 0;
196
    pc = env->PC;
197
#elif defined(TARGET_SH4)
198
    flags = env->sr & (SR_MD | SR_RB);
199
    cs_base = 0;         /* XXXXX */
200
    pc = env->pc;
201
#else
202
#error unsupported CPU
203
#endif
204
    tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
205
    if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
206
                         tb->flags != flags, 0)) {
207
        tb = tb_find_slow(pc, cs_base, flags);
208
        /* Note: we do it here to avoid a gcc bug on Mac OS X when
209
           doing it in tb_find_slow */
210
        if (tb_invalidated_flag) {
211
            /* as some TB could have been invalidated because
212
               of memory exceptions while generating the code, we
213
               must recompute the hash index here */
214
            T0 = 0;
215
        }
216
    }
217
    return tb;
218
}
219

    
220

    
221
/* main execution loop */
222

    
223
int cpu_exec(CPUState *env1)
224
{
225
    int saved_T0, saved_T1;
226
#if defined(reg_T2)
227
    int saved_T2;
228
#endif
229
    CPUState *saved_env;
230
#if defined(TARGET_I386)
231
#ifdef reg_EAX
232
    int saved_EAX;
233
#endif
234
#ifdef reg_ECX
235
    int saved_ECX;
236
#endif
237
#ifdef reg_EDX
238
    int saved_EDX;
239
#endif
240
#ifdef reg_EBX
241
    int saved_EBX;
242
#endif
243
#ifdef reg_ESP
244
    int saved_ESP;
245
#endif
246
#ifdef reg_EBP
247
    int saved_EBP;
248
#endif
249
#ifdef reg_ESI
250
    int saved_ESI;
251
#endif
252
#ifdef reg_EDI
253
    int saved_EDI;
254
#endif
255
#elif defined(TARGET_SPARC)
256
#if defined(reg_REGWPTR)
257
    uint32_t *saved_regwptr;
258
#endif
259
#endif
260
#if defined(__sparc__) && !defined(HOST_SOLARIS)
261
    int saved_i7, tmp_T0;
262
#endif
263
    int ret, interrupt_request;
264
    void (*gen_func)(void);
265
    TranslationBlock *tb;
266
    uint8_t *tc_ptr;
267

    
268
#if defined(TARGET_I386)
269
    /* handle exit of HALTED state */
270
    if (env1->hflags & HF_HALTED_MASK) {
271
        /* disable halt condition */
272
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
273
            (env1->eflags & IF_MASK)) {
274
            env1->hflags &= ~HF_HALTED_MASK;
275
        } else {
276
            return EXCP_HALTED;
277
        }
278
    }
279
#elif defined(TARGET_PPC)
280
    if (env1->halted) {
281
        if (env1->msr[MSR_EE] && 
282
            (env1->interrupt_request & 
283
             (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER))) {
284
            env1->halted = 0;
285
        } else {
286
            return EXCP_HALTED;
287
        }
288
    }
289
#elif defined(TARGET_SPARC)
290
    if (env1->halted) {
291
        if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
292
            (env1->psret != 0)) {
293
            env1->halted = 0;
294
        } else {
295
            return EXCP_HALTED;
296
        }
297
    }
298
#elif defined(TARGET_ARM)
299
    if (env1->halted) {
300
        /* An interrupt wakes the CPU even if the I and F CPSR bits are
301
           set.  */
302
        if (env1->interrupt_request
303
            & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
304
            env1->halted = 0;
305
        } else {
306
            return EXCP_HALTED;
307
        }
308
    }
309
#elif defined(TARGET_MIPS)
310
    if (env1->halted) {
311
        if (env1->interrupt_request &
312
            (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
313
            env1->halted = 0;
314
        } else {
315
            return EXCP_HALTED;
316
        }
317
    }
318
#endif
319

    
320
    cpu_single_env = env1; 
321

    
322
    /* first we save global registers */
323
    saved_env = env;
324
    env = env1;
325
    saved_T0 = T0;
326
    saved_T1 = T1;
327
#if defined(reg_T2)
328
    saved_T2 = T2;
329
#endif
330
#if defined(__sparc__) && !defined(HOST_SOLARIS)
331
    /* we also save i7 because longjmp may not restore it */
332
    asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
333
#endif
334

    
335
#if defined(TARGET_I386)
336
#ifdef reg_EAX
337
    saved_EAX = EAX;
338
#endif
339
#ifdef reg_ECX
340
    saved_ECX = ECX;
341
#endif
342
#ifdef reg_EDX
343
    saved_EDX = EDX;
344
#endif
345
#ifdef reg_EBX
346
    saved_EBX = EBX;
347
#endif
348
#ifdef reg_ESP
349
    saved_ESP = ESP;
350
#endif
351
#ifdef reg_EBP
352
    saved_EBP = EBP;
353
#endif
354
#ifdef reg_ESI
355
    saved_ESI = ESI;
356
#endif
357
#ifdef reg_EDI
358
    saved_EDI = EDI;
359
#endif
360

    
361
    env_to_regs();
362
    /* put eflags in CPU temporary format */
363
    CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
364
    DF = 1 - (2 * ((env->eflags >> 10) & 1));
365
    CC_OP = CC_OP_EFLAGS;
366
    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
367
#elif defined(TARGET_ARM)
368
#elif defined(TARGET_SPARC)
369
#if defined(reg_REGWPTR)
370
    saved_regwptr = REGWPTR;
371
#endif
372
#elif defined(TARGET_PPC)
373
#elif defined(TARGET_MIPS)
374
#elif defined(TARGET_SH4)
375
    /* XXXXX */
376
#else
377
#error unsupported target CPU
378
#endif
379
    env->exception_index = -1;
380

    
381
    /* prepare setjmp context for exception handling */
382
    for(;;) {
383
        if (setjmp(env->jmp_env) == 0) {
384
            env->current_tb = NULL;
385
            /* if an exception is pending, we execute it here */
386
            if (env->exception_index >= 0) {
387
                if (env->exception_index >= EXCP_INTERRUPT) {
388
                    /* exit request from the cpu execution loop */
389
                    ret = env->exception_index;
390
                    break;
391
                } else if (env->user_mode_only) {
392
                    /* if user mode only, we simulate a fake exception
393
                       which will be hanlded outside the cpu execution
394
                       loop */
395
#if defined(TARGET_I386)
396
                    do_interrupt_user(env->exception_index, 
397
                                      env->exception_is_int, 
398
                                      env->error_code, 
399
                                      env->exception_next_eip);
400
#endif
401
                    ret = env->exception_index;
402
                    break;
403
                } else {
404
#if defined(TARGET_I386)
405
                    /* simulate a real cpu exception. On i386, it can
406
                       trigger new exceptions, but we do not handle
407
                       double or triple faults yet. */
408
                    do_interrupt(env->exception_index, 
409
                                 env->exception_is_int, 
410
                                 env->error_code, 
411
                                 env->exception_next_eip, 0);
412
#elif defined(TARGET_PPC)
413
                    do_interrupt(env);
414
#elif defined(TARGET_MIPS)
415
                    do_interrupt(env);
416
#elif defined(TARGET_SPARC)
417
                    do_interrupt(env->exception_index);
418
#elif defined(TARGET_ARM)
419
                    do_interrupt(env);
420
#elif defined(TARGET_SH4)
421
                    do_interrupt(env);
422
#endif
423
                }
424
                env->exception_index = -1;
425
            } 
426
#ifdef USE_KQEMU
427
            if (kqemu_is_ok(env) && env->interrupt_request == 0) {
428
                int ret;
429
                env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
430
                ret = kqemu_cpu_exec(env);
431
                /* put eflags in CPU temporary format */
432
                CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
433
                DF = 1 - (2 * ((env->eflags >> 10) & 1));
434
                CC_OP = CC_OP_EFLAGS;
435
                env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
436
                if (ret == 1) {
437
                    /* exception */
438
                    longjmp(env->jmp_env, 1);
439
                } else if (ret == 2) {
440
                    /* softmmu execution needed */
441
                } else {
442
                    if (env->interrupt_request != 0) {
443
                        /* hardware interrupt will be executed just after */
444
                    } else {
445
                        /* otherwise, we restart */
446
                        longjmp(env->jmp_env, 1);
447
                    }
448
                }
449
            }
450
#endif
451

    
452
            T0 = 0; /* force lookup of first TB */
453
            for(;;) {
454
#if defined(__sparc__) && !defined(HOST_SOLARIS)
455
                /* g1 can be modified by some libc? functions */ 
456
                tmp_T0 = T0;
457
#endif            
458
                interrupt_request = env->interrupt_request;
459
                if (__builtin_expect(interrupt_request, 0)) {
460
#if defined(TARGET_I386)
461
                    if ((interrupt_request & CPU_INTERRUPT_SMI) &&
462
                        !(env->hflags & HF_SMM_MASK)) {
463
                        env->interrupt_request &= ~CPU_INTERRUPT_SMI;
464
                        do_smm_enter();
465
#if defined(__sparc__) && !defined(HOST_SOLARIS)
466
                        tmp_T0 = 0;
467
#else
468
                        T0 = 0;
469
#endif
470
                    } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
471
                        (env->eflags & IF_MASK) && 
472
                        !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
473
                        int intno;
474
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
475
                        intno = cpu_get_pic_interrupt(env);
476
                        if (loglevel & CPU_LOG_TB_IN_ASM) {
477
                            fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
478
                        }
479
                        do_interrupt(intno, 0, 0, 0, 1);
480
                        /* ensure that no TB jump will be modified as
481
                           the program flow was changed */
482
#if defined(__sparc__) && !defined(HOST_SOLARIS)
483
                        tmp_T0 = 0;
484
#else
485
                        T0 = 0;
486
#endif
487
                    }
488
#elif defined(TARGET_PPC)
489
#if 0
490
                    if ((interrupt_request & CPU_INTERRUPT_RESET)) {
491
                        cpu_ppc_reset(env);
492
                    }
493
#endif
494
                    if (msr_ee != 0) {
495
                        if ((interrupt_request & CPU_INTERRUPT_HARD)) {
496
                            /* Raise it */
497
                            env->exception_index = EXCP_EXTERNAL;
498
                            env->error_code = 0;
499
                            do_interrupt(env);
500
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
501
#if defined(__sparc__) && !defined(HOST_SOLARIS)
502
                            tmp_T0 = 0;
503
#else
504
                            T0 = 0;
505
#endif
506
                        } else if ((interrupt_request & CPU_INTERRUPT_TIMER)) {
507
                            /* Raise it */
508
                            env->exception_index = EXCP_DECR;
509
                            env->error_code = 0;
510
                            do_interrupt(env);
511
                            env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
512
#if defined(__sparc__) && !defined(HOST_SOLARIS)
513
                            tmp_T0 = 0;
514
#else
515
                            T0 = 0;
516
#endif
517
                        }
518
                    }
519
#elif defined(TARGET_MIPS)
520
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
521
                        (env->CP0_Status & (1 << CP0St_IE)) &&
522
                        (env->CP0_Status & env->CP0_Cause & 0x0000FF00) &&
523
                        !(env->hflags & MIPS_HFLAG_EXL) &&
524
                        !(env->hflags & MIPS_HFLAG_ERL) &&
525
                        !(env->hflags & MIPS_HFLAG_DM)) {
526
                        /* Raise it */
527
                        env->exception_index = EXCP_EXT_INTERRUPT;
528
                        env->error_code = 0;
529
                        do_interrupt(env);
530
                        env->interrupt_request &= ~CPU_INTERRUPT_HARD;
531
#if defined(__sparc__) && !defined(HOST_SOLARIS)
532
                        tmp_T0 = 0;
533
#else
534
                        T0 = 0;
535
#endif
536
                    }
537
#elif defined(TARGET_SPARC)
538
                    if ((interrupt_request & CPU_INTERRUPT_HARD) &&
539
                        (env->psret != 0)) {
540
                        int pil = env->interrupt_index & 15;
541
                        int type = env->interrupt_index & 0xf0;
542

    
543
                        if (((type == TT_EXTINT) &&
544
                             (pil == 15 || pil > env->psrpil)) ||
545
                            type != TT_EXTINT) {
546
                            env->interrupt_request &= ~CPU_INTERRUPT_HARD;
547
                            do_interrupt(env->interrupt_index);
548
                            env->interrupt_index = 0;
549
#if defined(__sparc__) && !defined(HOST_SOLARIS)
550
                            tmp_T0 = 0;
551
#else
552
                            T0 = 0;
553
#endif
554
                        }
555
                    } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
556
                        //do_interrupt(0, 0, 0, 0, 0);
557
                        env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
558
                    } else if (interrupt_request & CPU_INTERRUPT_HALT) {
559
                        env->interrupt_request &= ~CPU_INTERRUPT_HALT;
560
                        env->halted = 1;
561
                        env->exception_index = EXCP_HLT;
562
                        cpu_loop_exit();
563
                    }
564
#elif defined(TARGET_ARM)
565
                    if (interrupt_request & CPU_INTERRUPT_FIQ
566
                        && !(env->uncached_cpsr & CPSR_F)) {
567
                        env->exception_index = EXCP_FIQ;
568
                        do_interrupt(env);
569
                    }
570
                    if (interrupt_request & CPU_INTERRUPT_HARD
571
                        && !(env->uncached_cpsr & CPSR_I)) {
572
                        env->exception_index = EXCP_IRQ;
573
                        do_interrupt(env);
574
                    }
575
#elif defined(TARGET_SH4)
576
                    /* XXXXX */
577
#endif
578
                   /* Don't use the cached interupt_request value,
579
                      do_interrupt may have updated the EXITTB flag. */
580
                    if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
581
                        env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
582
                        /* ensure that no TB jump will be modified as
583
                           the program flow was changed */
584
#if defined(__sparc__) && !defined(HOST_SOLARIS)
585
                        tmp_T0 = 0;
586
#else
587
                        T0 = 0;
588
#endif
589
                    }
590
                    if (interrupt_request & CPU_INTERRUPT_EXIT) {
591
                        env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
592
                        env->exception_index = EXCP_INTERRUPT;
593
                        cpu_loop_exit();
594
                    }
595
                }
596
#ifdef DEBUG_EXEC
597
                if ((loglevel & CPU_LOG_TB_CPU)) {
598
#if defined(TARGET_I386)
599
                    /* restore flags in standard format */
600
#ifdef reg_EAX
601
                    env->regs[R_EAX] = EAX;
602
#endif
603
#ifdef reg_EBX
604
                    env->regs[R_EBX] = EBX;
605
#endif
606
#ifdef reg_ECX
607
                    env->regs[R_ECX] = ECX;
608
#endif
609
#ifdef reg_EDX
610
                    env->regs[R_EDX] = EDX;
611
#endif
612
#ifdef reg_ESI
613
                    env->regs[R_ESI] = ESI;
614
#endif
615
#ifdef reg_EDI
616
                    env->regs[R_EDI] = EDI;
617
#endif
618
#ifdef reg_EBP
619
                    env->regs[R_EBP] = EBP;
620
#endif
621
#ifdef reg_ESP
622
                    env->regs[R_ESP] = ESP;
623
#endif
624
                    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
625
                    cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
626
                    env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
627
#elif defined(TARGET_ARM)
628
                    cpu_dump_state(env, logfile, fprintf, 0);
629
#elif defined(TARGET_SPARC)
630
                    REGWPTR = env->regbase + (env->cwp * 16);
631
                    env->regwptr = REGWPTR;
632
                    cpu_dump_state(env, logfile, fprintf, 0);
633
#elif defined(TARGET_PPC)
634
                    cpu_dump_state(env, logfile, fprintf, 0);
635
#elif defined(TARGET_MIPS)
636
                    cpu_dump_state(env, logfile, fprintf, 0);
637
#elif defined(TARGET_SH4)
638
                    cpu_dump_state(env, logfile, fprintf, 0);
639
#else
640
#error unsupported target CPU 
641
#endif
642
                }
643
#endif
644
                tb = tb_find_fast();
645
#ifdef DEBUG_EXEC
646
                if ((loglevel & CPU_LOG_EXEC)) {
647
                    fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
648
                            (long)tb->tc_ptr, tb->pc,
649
                            lookup_symbol(tb->pc));
650
                }
651
#endif
652
#if defined(__sparc__) && !defined(HOST_SOLARIS)
653
                T0 = tmp_T0;
654
#endif            
655
                /* see if we can patch the calling TB. When the TB
656
                   spans two pages, we cannot safely do a direct
657
                   jump. */
658
                {
659
                    if (T0 != 0 &&
660
#if USE_KQEMU
661
                        (env->kqemu_enabled != 2) &&
662
#endif
663
                        tb->page_addr[1] == -1
664
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
665
                    && (tb->cflags & CF_CODE_COPY) == 
666
                    (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
667
#endif
668
                    ) {
669
                    spin_lock(&tb_lock);
670
                    tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
671
#if defined(USE_CODE_COPY)
672
                    /* propagates the FP use info */
673
                    ((TranslationBlock *)(T0 & ~3))->cflags |= 
674
                        (tb->cflags & CF_FP_USED);
675
#endif
676
                    spin_unlock(&tb_lock);
677
                }
678
                }
679
                tc_ptr = tb->tc_ptr;
680
                env->current_tb = tb;
681
                /* execute the generated code */
682
                gen_func = (void *)tc_ptr;
683
#if defined(__sparc__)
684
                __asm__ __volatile__("call        %0\n\t"
685
                                     "mov        %%o7,%%i0"
686
                                     : /* no outputs */
687
                                     : "r" (gen_func) 
688
                                     : "i0", "i1", "i2", "i3", "i4", "i5",
689
                                       "l0", "l1", "l2", "l3", "l4", "l5",
690
                                       "l6", "l7");
691
#elif defined(__arm__)
692
                asm volatile ("mov pc, %0\n\t"
693
                              ".global exec_loop\n\t"
694
                              "exec_loop:\n\t"
695
                              : /* no outputs */
696
                              : "r" (gen_func)
697
                              : "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
698
#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
699
{
700
    if (!(tb->cflags & CF_CODE_COPY)) {
701
        if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
702
            save_native_fp_state(env);
703
        }
704
        gen_func();
705
    } else {
706
        if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
707
            restore_native_fp_state(env);
708
        }
709
        /* we work with native eflags */
710
        CC_SRC = cc_table[CC_OP].compute_all();
711
        CC_OP = CC_OP_EFLAGS;
712
        asm(".globl exec_loop\n"
713
            "\n"
714
            "debug1:\n"
715
            "    pushl %%ebp\n"
716
            "    fs movl %10, %9\n"
717
            "    fs movl %11, %%eax\n"
718
            "    andl $0x400, %%eax\n"
719
            "    fs orl %8, %%eax\n"
720
            "    pushl %%eax\n"
721
            "    popf\n"
722
            "    fs movl %%esp, %12\n"
723
            "    fs movl %0, %%eax\n"
724
            "    fs movl %1, %%ecx\n"
725
            "    fs movl %2, %%edx\n"
726
            "    fs movl %3, %%ebx\n"
727
            "    fs movl %4, %%esp\n"
728
            "    fs movl %5, %%ebp\n"
729
            "    fs movl %6, %%esi\n"
730
            "    fs movl %7, %%edi\n"
731
            "    fs jmp *%9\n"
732
            "exec_loop:\n"
733
            "    fs movl %%esp, %4\n"
734
            "    fs movl %12, %%esp\n"
735
            "    fs movl %%eax, %0\n"
736
            "    fs movl %%ecx, %1\n"
737
            "    fs movl %%edx, %2\n"
738
            "    fs movl %%ebx, %3\n"
739
            "    fs movl %%ebp, %5\n"
740
            "    fs movl %%esi, %6\n"
741
            "    fs movl %%edi, %7\n"
742
            "    pushf\n"
743
            "    popl %%eax\n"
744
            "    movl %%eax, %%ecx\n"
745
            "    andl $0x400, %%ecx\n"
746
            "    shrl $9, %%ecx\n"
747
            "    andl $0x8d5, %%eax\n"
748
            "    fs movl %%eax, %8\n"
749
            "    movl $1, %%eax\n"
750
            "    subl %%ecx, %%eax\n"
751
            "    fs movl %%eax, %11\n"
752
            "    fs movl %9, %%ebx\n" /* get T0 value */
753
            "    popl %%ebp\n"
754
            :
755
            : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
756
            "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
757
            "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
758
            "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
759
            "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
760
            "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
761
            "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
762
            "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
763
            "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
764
            "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
765
            "a" (gen_func),
766
            "m" (*(uint8_t *)offsetof(CPUState, df)),
767
            "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
768
            : "%ecx", "%edx"
769
            );
770
    }
771
}
772
#elif defined(__ia64)
773
                struct fptr {
774
                        void *ip;
775
                        void *gp;
776
                } fp;
777

    
778
                fp.ip = tc_ptr;
779
                fp.gp = code_gen_buffer + 2 * (1 << 20);
780
                (*(void (*)(void)) &fp)();
781
#else
782
                gen_func();
783
#endif
784
                env->current_tb = NULL;
785
                /* reset soft MMU for next block (it can currently
786
                   only be set by a memory fault) */
787
#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
788
                if (env->hflags & HF_SOFTMMU_MASK) {
789
                    env->hflags &= ~HF_SOFTMMU_MASK;
790
                    /* do not allow linking to another block */
791
                    T0 = 0;
792
                }
793
#endif
794
#if defined(USE_KQEMU)
795
#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
796
                if (kqemu_is_ok(env) &&
797
                    (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
798
                    cpu_loop_exit();
799
                }
800
#endif
801
            }
802
        } else {
803
            env_to_regs();
804
        }
805
    } /* for(;;) */
806

    
807

    
808
#if defined(TARGET_I386)
809
#if defined(USE_CODE_COPY)
810
    if (env->native_fp_regs) {
811
        save_native_fp_state(env);
812
    }
813
#endif
814
    /* restore flags in standard format */
815
    env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
816

    
817
    /* restore global registers */
818
#ifdef reg_EAX
819
    EAX = saved_EAX;
820
#endif
821
#ifdef reg_ECX
822
    ECX = saved_ECX;
823
#endif
824
#ifdef reg_EDX
825
    EDX = saved_EDX;
826
#endif
827
#ifdef reg_EBX
828
    EBX = saved_EBX;
829
#endif
830
#ifdef reg_ESP
831
    ESP = saved_ESP;
832
#endif
833
#ifdef reg_EBP
834
    EBP = saved_EBP;
835
#endif
836
#ifdef reg_ESI
837
    ESI = saved_ESI;
838
#endif
839
#ifdef reg_EDI
840
    EDI = saved_EDI;
841
#endif
842
#elif defined(TARGET_ARM)
843
    /* XXX: Save/restore host fpu exception state?.  */
844
#elif defined(TARGET_SPARC)
845
#if defined(reg_REGWPTR)
846
    REGWPTR = saved_regwptr;
847
#endif
848
#elif defined(TARGET_PPC)
849
#elif defined(TARGET_MIPS)
850
#elif defined(TARGET_SH4)
851
    /* XXXXX */
852
#else
853
#error unsupported target CPU
854
#endif
855
#if defined(__sparc__) && !defined(HOST_SOLARIS)
856
    asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
857
#endif
858
    T0 = saved_T0;
859
    T1 = saved_T1;
860
#if defined(reg_T2)
861
    T2 = saved_T2;
862
#endif
863
    env = saved_env;
864
    /* fail safe : never use cpu_single_env outside cpu_exec() */
865
    cpu_single_env = NULL; 
866
    return ret;
867
}
868

    
869
/* must only be called from the generated code as an exception can be
870
   generated */
871
void tb_invalidate_page_range(target_ulong start, target_ulong end)
872
{
873
    /* XXX: cannot enable it yet because it yields to MMU exception
874
       where NIP != read address on PowerPC */
875
#if 0
876
    target_ulong phys_addr;
877
    phys_addr = get_phys_addr_code(env, start);
878
    tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
879
#endif
880
}
881

    
882
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
883

    
884
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
885
{
886
    CPUX86State *saved_env;
887

    
888
    saved_env = env;
889
    env = s;
890
    if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
891
        selector &= 0xffff;
892
        cpu_x86_load_seg_cache(env, seg_reg, selector, 
893
                               (selector << 4), 0xffff, 0);
894
    } else {
895
        load_seg(seg_reg, selector);
896
    }
897
    env = saved_env;
898
}
899

    
900
void cpu_x86_fsave(CPUX86State *s, uint8_t *ptr, int data32)
901
{
902
    CPUX86State *saved_env;
903

    
904
    saved_env = env;
905
    env = s;
906
    
907
    helper_fsave((target_ulong)ptr, data32);
908

    
909
    env = saved_env;
910
}
911

    
912
void cpu_x86_frstor(CPUX86State *s, uint8_t *ptr, int data32)
913
{
914
    CPUX86State *saved_env;
915

    
916
    saved_env = env;
917
    env = s;
918
    
919
    helper_frstor((target_ulong)ptr, data32);
920

    
921
    env = saved_env;
922
}
923

    
924
#endif /* TARGET_I386 */
925

    
926
#if !defined(CONFIG_SOFTMMU)
927

    
928
#if defined(TARGET_I386)
929

    
930
/* 'pc' is the host PC at which the exception was raised. 'address' is
931
   the effective address of the memory exception. 'is_write' is 1 if a
932
   write caused the exception and otherwise 0'. 'old_set' is the
933
   signal set which should be restored */
934
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
935
                                    int is_write, sigset_t *old_set, 
936
                                    void *puc)
937
{
938
    TranslationBlock *tb;
939
    int ret;
940

    
941
    if (cpu_single_env)
942
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
943
#if defined(DEBUG_SIGNAL)
944
    qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
945
                pc, address, is_write, *(unsigned long *)old_set);
946
#endif
947
    /* XXX: locking issue */
948
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
949
        return 1;
950
    }
951

    
952
    /* see if it is an MMU fault */
953
    ret = cpu_x86_handle_mmu_fault(env, address, is_write, 
954
                                   ((env->hflags & HF_CPL_MASK) == 3), 0);
955
    if (ret < 0)
956
        return 0; /* not an MMU fault */
957
    if (ret == 0)
958
        return 1; /* the MMU fault was handled without causing real CPU fault */
959
    /* now we have a real cpu fault */
960
    tb = tb_find_pc(pc);
961
    if (tb) {
962
        /* the PC is inside the translated code. It means that we have
963
           a virtual CPU fault */
964
        cpu_restore_state(tb, env, pc, puc);
965
    }
966
    if (ret == 1) {
967
#if 0
968
        printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n", 
969
               env->eip, env->cr[2], env->error_code);
970
#endif
971
        /* we restore the process signal mask as the sigreturn should
972
           do it (XXX: use sigsetjmp) */
973
        sigprocmask(SIG_SETMASK, old_set, NULL);
974
        raise_exception_err(env->exception_index, env->error_code);
975
    } else {
976
        /* activate soft MMU for this block */
977
        env->hflags |= HF_SOFTMMU_MASK;
978
        cpu_resume_from_signal(env, puc);
979
    }
980
    /* never comes here */
981
    return 1;
982
}
983

    
984
#elif defined(TARGET_ARM)
985
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
986
                                    int is_write, sigset_t *old_set,
987
                                    void *puc)
988
{
989
    TranslationBlock *tb;
990
    int ret;
991

    
992
    if (cpu_single_env)
993
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
994
#if defined(DEBUG_SIGNAL)
995
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
996
           pc, address, is_write, *(unsigned long *)old_set);
997
#endif
998
    /* XXX: locking issue */
999
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1000
        return 1;
1001
    }
1002
    /* see if it is an MMU fault */
1003
    ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
1004
    if (ret < 0)
1005
        return 0; /* not an MMU fault */
1006
    if (ret == 0)
1007
        return 1; /* the MMU fault was handled without causing real CPU fault */
1008
    /* now we have a real cpu fault */
1009
    tb = tb_find_pc(pc);
1010
    if (tb) {
1011
        /* the PC is inside the translated code. It means that we have
1012
           a virtual CPU fault */
1013
        cpu_restore_state(tb, env, pc, puc);
1014
    }
1015
    /* we restore the process signal mask as the sigreturn should
1016
       do it (XXX: use sigsetjmp) */
1017
    sigprocmask(SIG_SETMASK, old_set, NULL);
1018
    cpu_loop_exit();
1019
}
1020
#elif defined(TARGET_SPARC)
1021
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1022
                                    int is_write, sigset_t *old_set,
1023
                                    void *puc)
1024
{
1025
    TranslationBlock *tb;
1026
    int ret;
1027

    
1028
    if (cpu_single_env)
1029
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1030
#if defined(DEBUG_SIGNAL)
1031
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1032
           pc, address, is_write, *(unsigned long *)old_set);
1033
#endif
1034
    /* XXX: locking issue */
1035
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1036
        return 1;
1037
    }
1038
    /* see if it is an MMU fault */
1039
    ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
1040
    if (ret < 0)
1041
        return 0; /* not an MMU fault */
1042
    if (ret == 0)
1043
        return 1; /* the MMU fault was handled without causing real CPU fault */
1044
    /* now we have a real cpu fault */
1045
    tb = tb_find_pc(pc);
1046
    if (tb) {
1047
        /* the PC is inside the translated code. It means that we have
1048
           a virtual CPU fault */
1049
        cpu_restore_state(tb, env, pc, puc);
1050
    }
1051
    /* we restore the process signal mask as the sigreturn should
1052
       do it (XXX: use sigsetjmp) */
1053
    sigprocmask(SIG_SETMASK, old_set, NULL);
1054
    cpu_loop_exit();
1055
}
1056
#elif defined (TARGET_PPC)
1057
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1058
                                    int is_write, sigset_t *old_set,
1059
                                    void *puc)
1060
{
1061
    TranslationBlock *tb;
1062
    int ret;
1063
    
1064
    if (cpu_single_env)
1065
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1066
#if defined(DEBUG_SIGNAL)
1067
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1068
           pc, address, is_write, *(unsigned long *)old_set);
1069
#endif
1070
    /* XXX: locking issue */
1071
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1072
        return 1;
1073
    }
1074

    
1075
    /* see if it is an MMU fault */
1076
    ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
1077
    if (ret < 0)
1078
        return 0; /* not an MMU fault */
1079
    if (ret == 0)
1080
        return 1; /* the MMU fault was handled without causing real CPU fault */
1081

    
1082
    /* now we have a real cpu fault */
1083
    tb = tb_find_pc(pc);
1084
    if (tb) {
1085
        /* the PC is inside the translated code. It means that we have
1086
           a virtual CPU fault */
1087
        cpu_restore_state(tb, env, pc, puc);
1088
    }
1089
    if (ret == 1) {
1090
#if 0
1091
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1092
               env->nip, env->error_code, tb);
1093
#endif
1094
    /* we restore the process signal mask as the sigreturn should
1095
       do it (XXX: use sigsetjmp) */
1096
        sigprocmask(SIG_SETMASK, old_set, NULL);
1097
        do_raise_exception_err(env->exception_index, env->error_code);
1098
    } else {
1099
        /* activate soft MMU for this block */
1100
        cpu_resume_from_signal(env, puc);
1101
    }
1102
    /* never comes here */
1103
    return 1;
1104
}
1105

    
1106
#elif defined (TARGET_MIPS)
1107
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1108
                                    int is_write, sigset_t *old_set,
1109
                                    void *puc)
1110
{
1111
    TranslationBlock *tb;
1112
    int ret;
1113
    
1114
    if (cpu_single_env)
1115
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1116
#if defined(DEBUG_SIGNAL)
1117
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1118
           pc, address, is_write, *(unsigned long *)old_set);
1119
#endif
1120
    /* XXX: locking issue */
1121
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1122
        return 1;
1123
    }
1124

    
1125
    /* see if it is an MMU fault */
1126
    ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
1127
    if (ret < 0)
1128
        return 0; /* not an MMU fault */
1129
    if (ret == 0)
1130
        return 1; /* the MMU fault was handled without causing real CPU fault */
1131

    
1132
    /* now we have a real cpu fault */
1133
    tb = tb_find_pc(pc);
1134
    if (tb) {
1135
        /* the PC is inside the translated code. It means that we have
1136
           a virtual CPU fault */
1137
        cpu_restore_state(tb, env, pc, puc);
1138
    }
1139
    if (ret == 1) {
1140
#if 0
1141
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1142
               env->nip, env->error_code, tb);
1143
#endif
1144
    /* we restore the process signal mask as the sigreturn should
1145
       do it (XXX: use sigsetjmp) */
1146
        sigprocmask(SIG_SETMASK, old_set, NULL);
1147
        do_raise_exception_err(env->exception_index, env->error_code);
1148
    } else {
1149
        /* activate soft MMU for this block */
1150
        cpu_resume_from_signal(env, puc);
1151
    }
1152
    /* never comes here */
1153
    return 1;
1154
}
1155

    
1156
#elif defined (TARGET_SH4)
1157
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
1158
                                    int is_write, sigset_t *old_set,
1159
                                    void *puc)
1160
{
1161
    TranslationBlock *tb;
1162
    int ret;
1163
    
1164
    if (cpu_single_env)
1165
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1166
#if defined(DEBUG_SIGNAL)
1167
    printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n", 
1168
           pc, address, is_write, *(unsigned long *)old_set);
1169
#endif
1170
    /* XXX: locking issue */
1171
    if (is_write && page_unprotect(h2g(address), pc, puc)) {
1172
        return 1;
1173
    }
1174

    
1175
    /* see if it is an MMU fault */
1176
    ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
1177
    if (ret < 0)
1178
        return 0; /* not an MMU fault */
1179
    if (ret == 0)
1180
        return 1; /* the MMU fault was handled without causing real CPU fault */
1181

    
1182
    /* now we have a real cpu fault */
1183
    tb = tb_find_pc(pc);
1184
    if (tb) {
1185
        /* the PC is inside the translated code. It means that we have
1186
           a virtual CPU fault */
1187
        cpu_restore_state(tb, env, pc, puc);
1188
    }
1189
#if 0
1190
        printf("PF exception: NIP=0x%08x error=0x%x %p\n", 
1191
               env->nip, env->error_code, tb);
1192
#endif
1193
    /* we restore the process signal mask as the sigreturn should
1194
       do it (XXX: use sigsetjmp) */
1195
    sigprocmask(SIG_SETMASK, old_set, NULL);
1196
    cpu_loop_exit();
1197
    /* never comes here */
1198
    return 1;
1199
}
1200
#else
1201
#error unsupported target CPU
1202
#endif
1203

    
1204
#if defined(__i386__)
1205

    
1206
#if defined(USE_CODE_COPY)
1207
static void cpu_send_trap(unsigned long pc, int trap, 
1208
                          struct ucontext *uc)
1209
{
1210
    TranslationBlock *tb;
1211

    
1212
    if (cpu_single_env)
1213
        env = cpu_single_env; /* XXX: find a correct solution for multithread */
1214
    /* now we have a real cpu fault */
1215
    tb = tb_find_pc(pc);
1216
    if (tb) {
1217
        /* the PC is inside the translated code. It means that we have
1218
           a virtual CPU fault */
1219
        cpu_restore_state(tb, env, pc, uc);
1220
    }
1221
    sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
1222
    raise_exception_err(trap, env->error_code);
1223
}
1224
#endif
1225

    
1226
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1227
                       void *puc)
1228
{
1229
    struct ucontext *uc = puc;
1230
    unsigned long pc;
1231
    int trapno;
1232

    
1233
#ifndef REG_EIP
1234
/* for glibc 2.1 */
1235
#define REG_EIP    EIP
1236
#define REG_ERR    ERR
1237
#define REG_TRAPNO TRAPNO
1238
#endif
1239
    pc = uc->uc_mcontext.gregs[REG_EIP];
1240
    trapno = uc->uc_mcontext.gregs[REG_TRAPNO];
1241
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
1242
    if (trapno == 0x00 || trapno == 0x05) {
1243
        /* send division by zero or bound exception */
1244
        cpu_send_trap(pc, trapno, uc);
1245
        return 1;
1246
    } else
1247
#endif
1248
        return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1249
                                 trapno == 0xe ? 
1250
                                 (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1251
                                 &uc->uc_sigmask, puc);
1252
}
1253

    
1254
#elif defined(__x86_64__)
1255

    
1256
int cpu_signal_handler(int host_signum, struct siginfo *info,
1257
                       void *puc)
1258
{
1259
    struct ucontext *uc = puc;
1260
    unsigned long pc;
1261

    
1262
    pc = uc->uc_mcontext.gregs[REG_RIP];
1263
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1264
                             uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ? 
1265
                             (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
1266
                             &uc->uc_sigmask, puc);
1267
}
1268

    
1269
#elif defined(__powerpc__)
1270

    
1271
/***********************************************************************
1272
 * signal context platform-specific definitions
1273
 * From Wine
1274
 */
1275
#ifdef linux
1276
/* All Registers access - only for local access */
1277
# define REG_sig(reg_name, context)                ((context)->uc_mcontext.regs->reg_name)
1278
/* Gpr Registers access  */
1279
# define GPR_sig(reg_num, context)                REG_sig(gpr[reg_num], context)
1280
# define IAR_sig(context)                        REG_sig(nip, context)        /* Program counter */
1281
# define MSR_sig(context)                        REG_sig(msr, context)   /* Machine State Register (Supervisor) */
1282
# define CTR_sig(context)                        REG_sig(ctr, context)   /* Count register */
1283
# define XER_sig(context)                        REG_sig(xer, context) /* User's integer exception register */
1284
# define LR_sig(context)                        REG_sig(link, context) /* Link register */
1285
# define CR_sig(context)                        REG_sig(ccr, context) /* Condition register */
1286
/* Float Registers access  */
1287
# define FLOAT_sig(reg_num, context)                (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
1288
# define FPSCR_sig(context)                        (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
1289
/* Exception Registers access */
1290
# define DAR_sig(context)                        REG_sig(dar, context)
1291
# define DSISR_sig(context)                        REG_sig(dsisr, context)
1292
# define TRAP_sig(context)                        REG_sig(trap, context)
1293
#endif /* linux */
1294

    
1295
#ifdef __APPLE__
1296
# include <sys/ucontext.h>
1297
typedef struct ucontext SIGCONTEXT;
1298
/* All Registers access - only for local access */
1299
# define REG_sig(reg_name, context)                ((context)->uc_mcontext->ss.reg_name)
1300
# define FLOATREG_sig(reg_name, context)        ((context)->uc_mcontext->fs.reg_name)
1301
# define EXCEPREG_sig(reg_name, context)        ((context)->uc_mcontext->es.reg_name)
1302
# define VECREG_sig(reg_name, context)                ((context)->uc_mcontext->vs.reg_name)
1303
/* Gpr Registers access */
1304
# define GPR_sig(reg_num, context)                REG_sig(r##reg_num, context)
1305
# define IAR_sig(context)                        REG_sig(srr0, context)        /* Program counter */
1306
# define MSR_sig(context)                        REG_sig(srr1, context)  /* Machine State Register (Supervisor) */
1307
# define CTR_sig(context)                        REG_sig(ctr, context)
1308
# define XER_sig(context)                        REG_sig(xer, context) /* Link register */
1309
# define LR_sig(context)                        REG_sig(lr, context)  /* User's integer exception register */
1310
# define CR_sig(context)                        REG_sig(cr, context)  /* Condition register */
1311
/* Float Registers access */
1312
# define FLOAT_sig(reg_num, context)                FLOATREG_sig(fpregs[reg_num], context)
1313
# define FPSCR_sig(context)                        ((double)FLOATREG_sig(fpscr, context))
1314
/* Exception Registers access */
1315
# define DAR_sig(context)                        EXCEPREG_sig(dar, context)     /* Fault registers for coredump */
1316
# define DSISR_sig(context)                        EXCEPREG_sig(dsisr, context)
1317
# define TRAP_sig(context)                        EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
1318
#endif /* __APPLE__ */
1319

    
1320
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1321
                       void *puc)
1322
{
1323
    struct ucontext *uc = puc;
1324
    unsigned long pc;
1325
    int is_write;
1326

    
1327
    pc = IAR_sig(uc);
1328
    is_write = 0;
1329
#if 0
1330
    /* ppc 4xx case */
1331
    if (DSISR_sig(uc) & 0x00800000)
1332
        is_write = 1;
1333
#else
1334
    if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
1335
        is_write = 1;
1336
#endif
1337
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1338
                             is_write, &uc->uc_sigmask, puc);
1339
}
1340

    
1341
#elif defined(__alpha__)
1342

    
1343
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1344
                           void *puc)
1345
{
1346
    struct ucontext *uc = puc;
1347
    uint32_t *pc = uc->uc_mcontext.sc_pc;
1348
    uint32_t insn = *pc;
1349
    int is_write = 0;
1350

    
1351
    /* XXX: need kernel patch to get write flag faster */
1352
    switch (insn >> 26) {
1353
    case 0x0d: // stw
1354
    case 0x0e: // stb
1355
    case 0x0f: // stq_u
1356
    case 0x24: // stf
1357
    case 0x25: // stg
1358
    case 0x26: // sts
1359
    case 0x27: // stt
1360
    case 0x2c: // stl
1361
    case 0x2d: // stq
1362
    case 0x2e: // stl_c
1363
    case 0x2f: // stq_c
1364
        is_write = 1;
1365
    }
1366

    
1367
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1368
                             is_write, &uc->uc_sigmask, puc);
1369
}
1370
#elif defined(__sparc__)
1371

    
1372
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1373
                       void *puc)
1374
{
1375
    uint32_t *regs = (uint32_t *)(info + 1);
1376
    void *sigmask = (regs + 20);
1377
    unsigned long pc;
1378
    int is_write;
1379
    uint32_t insn;
1380
    
1381
    /* XXX: is there a standard glibc define ? */
1382
    pc = regs[1];
1383
    /* XXX: need kernel patch to get write flag faster */
1384
    is_write = 0;
1385
    insn = *(uint32_t *)pc;
1386
    if ((insn >> 30) == 3) {
1387
      switch((insn >> 19) & 0x3f) {
1388
      case 0x05: // stb
1389
      case 0x06: // sth
1390
      case 0x04: // st
1391
      case 0x07: // std
1392
      case 0x24: // stf
1393
      case 0x27: // stdf
1394
      case 0x25: // stfsr
1395
        is_write = 1;
1396
        break;
1397
      }
1398
    }
1399
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1400
                             is_write, sigmask, NULL);
1401
}
1402

    
1403
#elif defined(__arm__)
1404

    
1405
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1406
                       void *puc)
1407
{
1408
    struct ucontext *uc = puc;
1409
    unsigned long pc;
1410
    int is_write;
1411
    
1412
    pc = uc->uc_mcontext.gregs[R15];
1413
    /* XXX: compute is_write */
1414
    is_write = 0;
1415
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1416
                             is_write,
1417
                             &uc->uc_sigmask, puc);
1418
}
1419

    
1420
#elif defined(__mc68000)
1421

    
1422
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1423
                       void *puc)
1424
{
1425
    struct ucontext *uc = puc;
1426
    unsigned long pc;
1427
    int is_write;
1428
    
1429
    pc = uc->uc_mcontext.gregs[16];
1430
    /* XXX: compute is_write */
1431
    is_write = 0;
1432
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1433
                             is_write,
1434
                             &uc->uc_sigmask, puc);
1435
}
1436

    
1437
#elif defined(__ia64)
1438

    
1439
#ifndef __ISR_VALID
1440
  /* This ought to be in <bits/siginfo.h>... */
1441
# define __ISR_VALID        1
1442
#endif
1443

    
1444
int cpu_signal_handler(int host_signum, struct siginfo *info, void *puc)
1445
{
1446
    struct ucontext *uc = puc;
1447
    unsigned long ip;
1448
    int is_write = 0;
1449

    
1450
    ip = uc->uc_mcontext.sc_ip;
1451
    switch (host_signum) {
1452
      case SIGILL:
1453
      case SIGFPE:
1454
      case SIGSEGV:
1455
      case SIGBUS:
1456
      case SIGTRAP:
1457
          if (info->si_code && (info->si_segvflags & __ISR_VALID))
1458
              /* ISR.W (write-access) is bit 33:  */
1459
              is_write = (info->si_isr >> 33) & 1;
1460
          break;
1461

    
1462
      default:
1463
          break;
1464
    }
1465
    return handle_cpu_signal(ip, (unsigned long)info->si_addr,
1466
                             is_write,
1467
                             &uc->uc_sigmask, puc);
1468
}
1469

    
1470
#elif defined(__s390__)
1471

    
1472
int cpu_signal_handler(int host_signum, struct siginfo *info, 
1473
                       void *puc)
1474
{
1475
    struct ucontext *uc = puc;
1476
    unsigned long pc;
1477
    int is_write;
1478
    
1479
    pc = uc->uc_mcontext.psw.addr;
1480
    /* XXX: compute is_write */
1481
    is_write = 0;
1482
    return handle_cpu_signal(pc, (unsigned long)info->si_addr, 
1483
                             is_write,
1484
                             &uc->uc_sigmask, puc);
1485
}
1486

    
1487
#else
1488

    
1489
#error host CPU specific signal handler needed
1490

    
1491
#endif
1492

    
1493
#endif /* !defined(CONFIG_SOFTMMU) */