Statistics
| Branch: | Revision:

root / hw / m48t59.c @ 3b46e624

History | View | Annotate | Download (16.5 kB)

1
/*
2
 * QEMU M48T59 and M48T08 NVRAM emulation for PPC PREP and Sparc platforms
3
 *
4
 * Copyright (c) 2003-2005, 2007 Jocelyn Mayer
5
 *
6
 * Permission is hereby granted, free of charge, to any person obtaining a copy
7
 * of this software and associated documentation files (the "Software"), to deal
8
 * in the Software without restriction, including without limitation the rights
9
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10
 * copies of the Software, and to permit persons to whom the Software is
11
 * furnished to do so, subject to the following conditions:
12
 *
13
 * The above copyright notice and this permission notice shall be included in
14
 * all copies or substantial portions of the Software.
15
 *
16
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22
 * THE SOFTWARE.
23
 */
24
#include "vl.h"
25
#include "m48t59.h"
26

    
27
//#define DEBUG_NVRAM
28

    
29
#if defined(DEBUG_NVRAM)
30
#define NVRAM_PRINTF(fmt, args...) do { printf(fmt , ##args); } while (0)
31
#else
32
#define NVRAM_PRINTF(fmt, args...) do { } while (0)
33
#endif
34

    
35
/*
36
 * The M48T08 and M48T59 chips are very similar. The newer '59 has
37
 * alarm and a watchdog timer and related control registers. In the
38
 * PPC platform there is also a nvram lock function.
39
 */
40
struct m48t59_t {
41
    /* Model parameters */
42
    int type; // 8 = m48t08, 59 = m48t59
43
    /* Hardware parameters */
44
    qemu_irq IRQ;
45
    int mem_index;
46
    target_phys_addr_t mem_base;
47
    uint32_t io_base;
48
    uint16_t size;
49
    /* RTC management */
50
    time_t   time_offset;
51
    time_t   stop_time;
52
    /* Alarm & watchdog */
53
    time_t   alarm;
54
    struct QEMUTimer *alrm_timer;
55
    struct QEMUTimer *wd_timer;
56
    /* NVRAM storage */
57
    uint8_t  lock;
58
    uint16_t addr;
59
    uint8_t *buffer;
60
};
61

    
62
/* Fake timer functions */
63
/* Generic helpers for BCD */
64
static inline uint8_t toBCD (uint8_t value)
65
{
66
    return (((value / 10) % 10) << 4) | (value % 10);
67
}
68

    
69
static inline uint8_t fromBCD (uint8_t BCD)
70
{
71
    return ((BCD >> 4) * 10) + (BCD & 0x0F);
72
}
73

    
74
/* RTC management helpers */
75
static void get_time (m48t59_t *NVRAM, struct tm *tm)
76
{
77
    time_t t;
78

    
79
    t = time(NULL) + NVRAM->time_offset;
80
#ifdef _WIN32
81
    memcpy(tm,localtime(&t),sizeof(*tm));
82
#else
83
    if (rtc_utc)
84
        gmtime_r (&t, tm);
85
    else
86
        localtime_r (&t, tm) ;
87
#endif
88
}
89

    
90
static void set_time (m48t59_t *NVRAM, struct tm *tm)
91
{
92
    time_t now, new_time;
93

    
94
    new_time = mktime(tm);
95
    now = time(NULL);
96
    NVRAM->time_offset = new_time - now;
97
}
98

    
99
/* Alarm management */
100
static void alarm_cb (void *opaque)
101
{
102
    struct tm tm, tm_now;
103
    uint64_t next_time;
104
    m48t59_t *NVRAM = opaque;
105

    
106
    qemu_set_irq(NVRAM->IRQ, 1);
107
    if ((NVRAM->buffer[0x1FF5] & 0x80) == 0 &&
108
        (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
109
        (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
110
        (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
111
        /* Repeat once a month */
112
        get_time(NVRAM, &tm_now);
113
        memcpy(&tm, &tm_now, sizeof(struct tm));
114
        tm.tm_mon++;
115
        if (tm.tm_mon == 13) {
116
            tm.tm_mon = 1;
117
            tm.tm_year++;
118
        }
119
        next_time = mktime(&tm);
120
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
121
               (NVRAM->buffer[0x1FF4] & 0x80) == 0 &&
122
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
123
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
124
        /* Repeat once a day */
125
        next_time = 24 * 60 * 60 + mktime(&tm_now);
126
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
127
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
128
               (NVRAM->buffer[0x1FF3] & 0x80) == 0 &&
129
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
130
        /* Repeat once an hour */
131
        next_time = 60 * 60 + mktime(&tm_now);
132
    } else if ((NVRAM->buffer[0x1FF5] & 0x80) != 0 &&
133
               (NVRAM->buffer[0x1FF4] & 0x80) != 0 &&
134
               (NVRAM->buffer[0x1FF3] & 0x80) != 0 &&
135
               (NVRAM->buffer[0x1FF2] & 0x80) == 0) {
136
        /* Repeat once a minute */
137
        next_time = 60 + mktime(&tm_now);
138
    } else {
139
        /* Repeat once a second */
140
        next_time = 1 + mktime(&tm_now);
141
    }
142
    qemu_mod_timer(NVRAM->alrm_timer, next_time * 1000);
143
    qemu_set_irq(NVRAM->IRQ, 0);
144
}
145

    
146

    
147
static void get_alarm (m48t59_t *NVRAM, struct tm *tm)
148
{
149
#ifdef _WIN32
150
    memcpy(tm,localtime(&NVRAM->alarm),sizeof(*tm));
151
#else
152
    if (rtc_utc)
153
        gmtime_r (&NVRAM->alarm, tm);
154
    else
155
        localtime_r (&NVRAM->alarm, tm);
156
#endif
157
}
158

    
159
static void set_alarm (m48t59_t *NVRAM, struct tm *tm)
160
{
161
    NVRAM->alarm = mktime(tm);
162
    if (NVRAM->alrm_timer != NULL) {
163
        qemu_del_timer(NVRAM->alrm_timer);
164
        NVRAM->alrm_timer = NULL;
165
    }
166
    if (NVRAM->alarm - time(NULL) > 0)
167
        qemu_mod_timer(NVRAM->alrm_timer, NVRAM->alarm * 1000);
168
}
169

    
170
/* Watchdog management */
171
static void watchdog_cb (void *opaque)
172
{
173
    m48t59_t *NVRAM = opaque;
174

    
175
    NVRAM->buffer[0x1FF0] |= 0x80;
176
    if (NVRAM->buffer[0x1FF7] & 0x80) {
177
        NVRAM->buffer[0x1FF7] = 0x00;
178
        NVRAM->buffer[0x1FFC] &= ~0x40;
179
        /* May it be a hw CPU Reset instead ? */
180
        qemu_system_reset_request();
181
    } else {
182
        qemu_set_irq(NVRAM->IRQ, 1);
183
        qemu_set_irq(NVRAM->IRQ, 0);
184
    }
185
}
186

    
187
static void set_up_watchdog (m48t59_t *NVRAM, uint8_t value)
188
{
189
    uint64_t interval; /* in 1/16 seconds */
190

    
191
    if (NVRAM->wd_timer != NULL) {
192
        qemu_del_timer(NVRAM->wd_timer);
193
        NVRAM->wd_timer = NULL;
194
    }
195
    NVRAM->buffer[0x1FF0] &= ~0x80;
196
    if (value != 0) {
197
        interval = (1 << (2 * (value & 0x03))) * ((value >> 2) & 0x1F);
198
        qemu_mod_timer(NVRAM->wd_timer, ((uint64_t)time(NULL) * 1000) +
199
                       ((interval * 1000) >> 4));
200
    }
201
}
202

    
203
/* Direct access to NVRAM */
204
void m48t59_write (m48t59_t *NVRAM, uint32_t addr, uint32_t val)
205
{
206
    struct tm tm;
207
    int tmp;
208

    
209
    if (addr > 0x1FF8 && addr < 0x2000)
210
        NVRAM_PRINTF("%s: 0x%08x => 0x%08x\n", __func__, addr, val);
211
    if (NVRAM->type == 8 &&
212
        (addr >= 0x1ff0 && addr <= 0x1ff7))
213
        goto do_write;
214
    switch (addr) {
215
    case 0x1FF0:
216
        /* flags register : read-only */
217
        break;
218
    case 0x1FF1:
219
        /* unused */
220
        break;
221
    case 0x1FF2:
222
        /* alarm seconds */
223
        tmp = fromBCD(val & 0x7F);
224
        if (tmp >= 0 && tmp <= 59) {
225
            get_alarm(NVRAM, &tm);
226
            tm.tm_sec = tmp;
227
            NVRAM->buffer[0x1FF2] = val;
228
            set_alarm(NVRAM, &tm);
229
        }
230
        break;
231
    case 0x1FF3:
232
        /* alarm minutes */
233
        tmp = fromBCD(val & 0x7F);
234
        if (tmp >= 0 && tmp <= 59) {
235
            get_alarm(NVRAM, &tm);
236
            tm.tm_min = tmp;
237
            NVRAM->buffer[0x1FF3] = val;
238
            set_alarm(NVRAM, &tm);
239
        }
240
        break;
241
    case 0x1FF4:
242
        /* alarm hours */
243
        tmp = fromBCD(val & 0x3F);
244
        if (tmp >= 0 && tmp <= 23) {
245
            get_alarm(NVRAM, &tm);
246
            tm.tm_hour = tmp;
247
            NVRAM->buffer[0x1FF4] = val;
248
            set_alarm(NVRAM, &tm);
249
        }
250
        break;
251
    case 0x1FF5:
252
        /* alarm date */
253
        tmp = fromBCD(val & 0x1F);
254
        if (tmp != 0) {
255
            get_alarm(NVRAM, &tm);
256
            tm.tm_mday = tmp;
257
            NVRAM->buffer[0x1FF5] = val;
258
            set_alarm(NVRAM, &tm);
259
        }
260
        break;
261
    case 0x1FF6:
262
        /* interrupts */
263
        NVRAM->buffer[0x1FF6] = val;
264
        break;
265
    case 0x1FF7:
266
        /* watchdog */
267
        NVRAM->buffer[0x1FF7] = val;
268
        set_up_watchdog(NVRAM, val);
269
        break;
270
    case 0x1FF8:
271
        /* control */
272
        NVRAM->buffer[0x1FF8] = (val & ~0xA0) | 0x90;
273
        break;
274
    case 0x1FF9:
275
        /* seconds (BCD) */
276
        tmp = fromBCD(val & 0x7F);
277
        if (tmp >= 0 && tmp <= 59) {
278
            get_time(NVRAM, &tm);
279
            tm.tm_sec = tmp;
280
            set_time(NVRAM, &tm);
281
        }
282
        if ((val & 0x80) ^ (NVRAM->buffer[0x1FF9] & 0x80)) {
283
            if (val & 0x80) {
284
                NVRAM->stop_time = time(NULL);
285
            } else {
286
                NVRAM->time_offset += NVRAM->stop_time - time(NULL);
287
                NVRAM->stop_time = 0;
288
            }
289
        }
290
        NVRAM->buffer[0x1FF9] = val & 0x80;
291
        break;
292
    case 0x1FFA:
293
        /* minutes (BCD) */
294
        tmp = fromBCD(val & 0x7F);
295
        if (tmp >= 0 && tmp <= 59) {
296
            get_time(NVRAM, &tm);
297
            tm.tm_min = tmp;
298
            set_time(NVRAM, &tm);
299
        }
300
        break;
301
    case 0x1FFB:
302
        /* hours (BCD) */
303
        tmp = fromBCD(val & 0x3F);
304
        if (tmp >= 0 && tmp <= 23) {
305
            get_time(NVRAM, &tm);
306
            tm.tm_hour = tmp;
307
            set_time(NVRAM, &tm);
308
        }
309
        break;
310
    case 0x1FFC:
311
        /* day of the week / century */
312
        tmp = fromBCD(val & 0x07);
313
        get_time(NVRAM, &tm);
314
        tm.tm_wday = tmp;
315
        set_time(NVRAM, &tm);
316
        NVRAM->buffer[0x1FFC] = val & 0x40;
317
        break;
318
    case 0x1FFD:
319
        /* date */
320
        tmp = fromBCD(val & 0x1F);
321
        if (tmp != 0) {
322
            get_time(NVRAM, &tm);
323
            tm.tm_mday = tmp;
324
            set_time(NVRAM, &tm);
325
        }
326
        break;
327
    case 0x1FFE:
328
        /* month */
329
        tmp = fromBCD(val & 0x1F);
330
        if (tmp >= 1 && tmp <= 12) {
331
            get_time(NVRAM, &tm);
332
            tm.tm_mon = tmp - 1;
333
            set_time(NVRAM, &tm);
334
        }
335
        break;
336
    case 0x1FFF:
337
        /* year */
338
        tmp = fromBCD(val);
339
        if (tmp >= 0 && tmp <= 99) {
340
            get_time(NVRAM, &tm);
341
            if (NVRAM->type == 8)
342
                tm.tm_year = fromBCD(val) + 68; // Base year is 1968
343
            else
344
                tm.tm_year = fromBCD(val);
345
            set_time(NVRAM, &tm);
346
        }
347
        break;
348
    default:
349
        /* Check lock registers state */
350
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
351
            break;
352
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
353
            break;
354
    do_write:
355
        if (addr < NVRAM->size) {
356
            NVRAM->buffer[addr] = val & 0xFF;
357
        }
358
        break;
359
    }
360
}
361

    
362
uint32_t m48t59_read (m48t59_t *NVRAM, uint32_t addr)
363
{
364
    struct tm tm;
365
    uint32_t retval = 0xFF;
366

    
367
    if (NVRAM->type == 8 &&
368
        (addr >= 0x1ff0 && addr <= 0x1ff7))
369
        goto do_read;
370
    switch (addr) {
371
    case 0x1FF0:
372
        /* flags register */
373
        goto do_read;
374
    case 0x1FF1:
375
        /* unused */
376
        retval = 0;
377
        break;
378
    case 0x1FF2:
379
        /* alarm seconds */
380
        goto do_read;
381
    case 0x1FF3:
382
        /* alarm minutes */
383
        goto do_read;
384
    case 0x1FF4:
385
        /* alarm hours */
386
        goto do_read;
387
    case 0x1FF5:
388
        /* alarm date */
389
        goto do_read;
390
    case 0x1FF6:
391
        /* interrupts */
392
        goto do_read;
393
    case 0x1FF7:
394
        /* A read resets the watchdog */
395
        set_up_watchdog(NVRAM, NVRAM->buffer[0x1FF7]);
396
        goto do_read;
397
    case 0x1FF8:
398
        /* control */
399
        goto do_read;
400
    case 0x1FF9:
401
        /* seconds (BCD) */
402
        get_time(NVRAM, &tm);
403
        retval = (NVRAM->buffer[0x1FF9] & 0x80) | toBCD(tm.tm_sec);
404
        break;
405
    case 0x1FFA:
406
        /* minutes (BCD) */
407
        get_time(NVRAM, &tm);
408
        retval = toBCD(tm.tm_min);
409
        break;
410
    case 0x1FFB:
411
        /* hours (BCD) */
412
        get_time(NVRAM, &tm);
413
        retval = toBCD(tm.tm_hour);
414
        break;
415
    case 0x1FFC:
416
        /* day of the week / century */
417
        get_time(NVRAM, &tm);
418
        retval = NVRAM->buffer[0x1FFC] | tm.tm_wday;
419
        break;
420
    case 0x1FFD:
421
        /* date */
422
        get_time(NVRAM, &tm);
423
        retval = toBCD(tm.tm_mday);
424
        break;
425
    case 0x1FFE:
426
        /* month */
427
        get_time(NVRAM, &tm);
428
        retval = toBCD(tm.tm_mon + 1);
429
        break;
430
    case 0x1FFF:
431
        /* year */
432
        get_time(NVRAM, &tm);
433
        if (NVRAM->type == 8)
434
            retval = toBCD(tm.tm_year - 68); // Base year is 1968
435
        else
436
            retval = toBCD(tm.tm_year);
437
        break;
438
    default:
439
        /* Check lock registers state */
440
        if (addr >= 0x20 && addr <= 0x2F && (NVRAM->lock & 1))
441
            break;
442
        if (addr >= 0x30 && addr <= 0x3F && (NVRAM->lock & 2))
443
            break;
444
    do_read:
445
        if (addr < NVRAM->size) {
446
            retval = NVRAM->buffer[addr];
447
        }
448
        break;
449
    }
450
    if (addr > 0x1FF9 && addr < 0x2000)
451
        NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
452

    
453
    return retval;
454
}
455

    
456
void m48t59_set_addr (m48t59_t *NVRAM, uint32_t addr)
457
{
458
    NVRAM->addr = addr;
459
}
460

    
461
void m48t59_toggle_lock (m48t59_t *NVRAM, int lock)
462
{
463
    NVRAM->lock ^= 1 << lock;
464
}
465

    
466
/* IO access to NVRAM */
467
static void NVRAM_writeb (void *opaque, uint32_t addr, uint32_t val)
468
{
469
    m48t59_t *NVRAM = opaque;
470

    
471
    addr -= NVRAM->io_base;
472
    NVRAM_PRINTF("0x%08x => 0x%08x\n", addr, val);
473
    switch (addr) {
474
    case 0:
475
        NVRAM->addr &= ~0x00FF;
476
        NVRAM->addr |= val;
477
        break;
478
    case 1:
479
        NVRAM->addr &= ~0xFF00;
480
        NVRAM->addr |= val << 8;
481
        break;
482
    case 3:
483
        m48t59_write(NVRAM, val, NVRAM->addr);
484
        NVRAM->addr = 0x0000;
485
        break;
486
    default:
487
        break;
488
    }
489
}
490

    
491
static uint32_t NVRAM_readb (void *opaque, uint32_t addr)
492
{
493
    m48t59_t *NVRAM = opaque;
494
    uint32_t retval;
495

    
496
    addr -= NVRAM->io_base;
497
    switch (addr) {
498
    case 3:
499
        retval = m48t59_read(NVRAM, NVRAM->addr);
500
        break;
501
    default:
502
        retval = -1;
503
        break;
504
    }
505
    NVRAM_PRINTF("0x%08x <= 0x%08x\n", addr, retval);
506

    
507
    return retval;
508
}
509

    
510
static void nvram_writeb (void *opaque, target_phys_addr_t addr, uint32_t value)
511
{
512
    m48t59_t *NVRAM = opaque;
513

    
514
    addr -= NVRAM->mem_base;
515
    m48t59_write(NVRAM, addr, value & 0xff);
516
}
517

    
518
static void nvram_writew (void *opaque, target_phys_addr_t addr, uint32_t value)
519
{
520
    m48t59_t *NVRAM = opaque;
521

    
522
    addr -= NVRAM->mem_base;
523
    m48t59_write(NVRAM, addr, (value >> 8) & 0xff);
524
    m48t59_write(NVRAM, addr + 1, value & 0xff);
525
}
526

    
527
static void nvram_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
528
{
529
    m48t59_t *NVRAM = opaque;
530

    
531
    addr -= NVRAM->mem_base;
532
    m48t59_write(NVRAM, addr, (value >> 24) & 0xff);
533
    m48t59_write(NVRAM, addr + 1, (value >> 16) & 0xff);
534
    m48t59_write(NVRAM, addr + 2, (value >> 8) & 0xff);
535
    m48t59_write(NVRAM, addr + 3, value & 0xff);
536
}
537

    
538
static uint32_t nvram_readb (void *opaque, target_phys_addr_t addr)
539
{
540
    m48t59_t *NVRAM = opaque;
541
    uint32_t retval;
542

    
543
    addr -= NVRAM->mem_base;
544
    retval = m48t59_read(NVRAM, addr);
545
    return retval;
546
}
547

    
548
static uint32_t nvram_readw (void *opaque, target_phys_addr_t addr)
549
{
550
    m48t59_t *NVRAM = opaque;
551
    uint32_t retval;
552

    
553
    addr -= NVRAM->mem_base;
554
    retval = m48t59_read(NVRAM, addr) << 8;
555
    retval |= m48t59_read(NVRAM, addr + 1);
556
    return retval;
557
}
558

    
559
static uint32_t nvram_readl (void *opaque, target_phys_addr_t addr)
560
{
561
    m48t59_t *NVRAM = opaque;
562
    uint32_t retval;
563

    
564
    addr -= NVRAM->mem_base;
565
    retval = m48t59_read(NVRAM, addr) << 24;
566
    retval |= m48t59_read(NVRAM, addr + 1) << 16;
567
    retval |= m48t59_read(NVRAM, addr + 2) << 8;
568
    retval |= m48t59_read(NVRAM, addr + 3);
569
    return retval;
570
}
571

    
572
static CPUWriteMemoryFunc *nvram_write[] = {
573
    &nvram_writeb,
574
    &nvram_writew,
575
    &nvram_writel,
576
};
577

    
578
static CPUReadMemoryFunc *nvram_read[] = {
579
    &nvram_readb,
580
    &nvram_readw,
581
    &nvram_readl,
582
};
583

    
584
static void m48t59_save(QEMUFile *f, void *opaque)
585
{
586
    m48t59_t *s = opaque;
587

    
588
    qemu_put_8s(f, &s->lock);
589
    qemu_put_be16s(f, &s->addr);
590
    qemu_put_buffer(f, s->buffer, s->size);
591
}
592

    
593
static int m48t59_load(QEMUFile *f, void *opaque, int version_id)
594
{
595
    m48t59_t *s = opaque;
596

    
597
    if (version_id != 1)
598
        return -EINVAL;
599

    
600
    qemu_get_8s(f, &s->lock);
601
    qemu_get_be16s(f, &s->addr);
602
    qemu_get_buffer(f, s->buffer, s->size);
603

    
604
    return 0;
605
}
606

    
607
static void m48t59_reset(void *opaque)
608
{
609
    m48t59_t *NVRAM = opaque;
610

    
611
    if (NVRAM->alrm_timer != NULL)
612
        qemu_del_timer(NVRAM->alrm_timer);
613

    
614
    if (NVRAM->wd_timer != NULL)
615
        qemu_del_timer(NVRAM->wd_timer);
616
}
617

    
618
/* Initialisation routine */
619
m48t59_t *m48t59_init (qemu_irq IRQ, target_phys_addr_t mem_base,
620
                       uint32_t io_base, uint16_t size,
621
                       int type)
622
{
623
    m48t59_t *s;
624
    target_phys_addr_t save_base;
625

    
626
    s = qemu_mallocz(sizeof(m48t59_t));
627
    if (!s)
628
        return NULL;
629
    s->buffer = qemu_mallocz(size);
630
    if (!s->buffer) {
631
        qemu_free(s);
632
        return NULL;
633
    }
634
    s->IRQ = IRQ;
635
    s->size = size;
636
    s->mem_base = mem_base;
637
    s->io_base = io_base;
638
    s->addr = 0;
639
    s->type = type;
640
    if (io_base != 0) {
641
        register_ioport_read(io_base, 0x04, 1, NVRAM_readb, s);
642
        register_ioport_write(io_base, 0x04, 1, NVRAM_writeb, s);
643
    }
644
    if (mem_base != 0) {
645
        s->mem_index = cpu_register_io_memory(0, nvram_read, nvram_write, s);
646
        cpu_register_physical_memory(mem_base, 0x4000, s->mem_index);
647
    }
648
    if (type == 59) {
649
        s->alrm_timer = qemu_new_timer(vm_clock, &alarm_cb, s);
650
        s->wd_timer = qemu_new_timer(vm_clock, &watchdog_cb, s);
651
    }
652
    s->lock = 0;
653

    
654
    qemu_register_reset(m48t59_reset, s);
655
    save_base = mem_base ? mem_base : io_base;
656
    register_savevm("m48t59", save_base, 1, m48t59_save, m48t59_load, s);
657

    
658
    return s;
659
}