Statistics
| Branch: | Revision:

root / qemu-doc.texi @ 3b46e624

History | View | Annotate | Download (75.5 kB)

1
\input texinfo @c -*- texinfo -*-
2
@c %**start of header
3
@setfilename qemu-doc.info
4
@settitle QEMU Emulator User Documentation
5
@exampleindent 0
6
@paragraphindent 0
7
@c %**end of header
8

    
9
@iftex
10
@titlepage
11
@sp 7
12
@center @titlefont{QEMU Emulator}
13
@sp 1
14
@center @titlefont{User Documentation}
15
@sp 3
16
@end titlepage
17
@end iftex
18

    
19
@ifnottex
20
@node Top
21
@top
22

    
23
@menu
24
* Introduction::
25
* Installation::
26
* QEMU PC System emulator::
27
* QEMU System emulator for non PC targets::
28
* QEMU User space emulator::
29
* compilation:: Compilation from the sources
30
* Index::
31
@end menu
32
@end ifnottex
33

    
34
@contents
35

    
36
@node Introduction
37
@chapter Introduction
38

    
39
@menu
40
* intro_features:: Features
41
@end menu
42

    
43
@node intro_features
44
@section Features
45

    
46
QEMU is a FAST! processor emulator using dynamic translation to
47
achieve good emulation speed.
48

    
49
QEMU has two operating modes:
50

    
51
@itemize @minus
52

    
53
@item
54
Full system emulation. In this mode, QEMU emulates a full system (for
55
example a PC), including one or several processors and various
56
peripherals. It can be used to launch different Operating Systems
57
without rebooting the PC or to debug system code.
58

    
59
@item
60
User mode emulation. In this mode, QEMU can launch
61
processes compiled for one CPU on another CPU. It can be used to
62
launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63
to ease cross-compilation and cross-debugging.
64

    
65
@end itemize
66

    
67
QEMU can run without an host kernel driver and yet gives acceptable
68
performance.
69

    
70
For system emulation, the following hardware targets are supported:
71
@itemize
72
@item PC (x86 or x86_64 processor)
73
@item ISA PC (old style PC without PCI bus)
74
@item PREP (PowerPC processor)
75
@item G3 BW PowerMac (PowerPC processor)
76
@item Mac99 PowerMac (PowerPC processor, in progress)
77
@item Sun4m (32-bit Sparc processor)
78
@item Sun4u (64-bit Sparc processor, in progress)
79
@item Malta board (32-bit MIPS processor)
80
@item ARM Integrator/CP (ARM926E, 1026E or 946E processor)
81
@item ARM Versatile baseboard (ARM926E)
82
@item ARM RealView Emulation baseboard (ARM926EJ-S)
83
@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
84
@item Freescale MCF5208EVB (ColdFire V2).
85
@item Arnewsh MCF5206 evaluation board (ColdFire V2).
86
@end itemize
87

    
88
For user emulation, x86, PowerPC, ARM, MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
89

    
90
@node Installation
91
@chapter Installation
92

    
93
If you want to compile QEMU yourself, see @ref{compilation}.
94

    
95
@menu
96
* install_linux::   Linux
97
* install_windows:: Windows
98
* install_mac::     Macintosh
99
@end menu
100

    
101
@node install_linux
102
@section Linux
103

    
104
If a precompiled package is available for your distribution - you just
105
have to install it. Otherwise, see @ref{compilation}.
106

    
107
@node install_windows
108
@section Windows
109

    
110
Download the experimental binary installer at
111
@url{http://www.free.oszoo.org/@/download.html}.
112

    
113
@node install_mac
114
@section Mac OS X
115

    
116
Download the experimental binary installer at
117
@url{http://www.free.oszoo.org/@/download.html}.
118

    
119
@node QEMU PC System emulator
120
@chapter QEMU PC System emulator
121

    
122
@menu
123
* pcsys_introduction:: Introduction
124
* pcsys_quickstart::   Quick Start
125
* sec_invocation::     Invocation
126
* pcsys_keys::         Keys
127
* pcsys_monitor::      QEMU Monitor
128
* disk_images::        Disk Images
129
* pcsys_network::      Network emulation
130
* direct_linux_boot::  Direct Linux Boot
131
* pcsys_usb::          USB emulation
132
* vnc_security::       VNC security
133
* gdb_usage::          GDB usage
134
* pcsys_os_specific::  Target OS specific information
135
@end menu
136

    
137
@node pcsys_introduction
138
@section Introduction
139

    
140
@c man begin DESCRIPTION
141

    
142
The QEMU PC System emulator simulates the
143
following peripherals:
144

    
145
@itemize @minus
146
@item
147
i440FX host PCI bridge and PIIX3 PCI to ISA bridge
148
@item
149
Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
150
extensions (hardware level, including all non standard modes).
151
@item
152
PS/2 mouse and keyboard
153
@item
154
2 PCI IDE interfaces with hard disk and CD-ROM support
155
@item
156
Floppy disk
157
@item
158
PCI/ISA PCI network adapters
159
@item
160
Serial ports
161
@item
162
Creative SoundBlaster 16 sound card
163
@item
164
ENSONIQ AudioPCI ES1370 sound card
165
@item
166
Adlib(OPL2) - Yamaha YM3812 compatible chip
167
@item
168
PCI UHCI USB controller and a virtual USB hub.
169
@end itemize
170

    
171
SMP is supported with up to 255 CPUs.
172

    
173
Note that adlib is only available when QEMU was configured with
174
-enable-adlib
175

    
176
QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
177
VGA BIOS.
178

    
179
QEMU uses YM3812 emulation by Tatsuyuki Satoh.
180

    
181
@c man end
182

    
183
@node pcsys_quickstart
184
@section Quick Start
185

    
186
Download and uncompress the linux image (@file{linux.img}) and type:
187

    
188
@example
189
qemu linux.img
190
@end example
191

    
192
Linux should boot and give you a prompt.
193

    
194
@node sec_invocation
195
@section Invocation
196

    
197
@example
198
@c man begin SYNOPSIS
199
usage: qemu [options] [disk_image]
200
@c man end
201
@end example
202

    
203
@c man begin OPTIONS
204
@var{disk_image} is a raw hard disk image for IDE hard disk 0.
205

    
206
General options:
207
@table @option
208
@item -M machine
209
Select the emulated machine (@code{-M ?} for list)
210

    
211
@item -fda file
212
@item -fdb file
213
Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
214
use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
215

    
216
@item -hda file
217
@item -hdb file
218
@item -hdc file
219
@item -hdd file
220
Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
221

    
222
@item -cdrom file
223
Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
224
@option{-cdrom} at the same time). You can use the host CD-ROM by
225
using @file{/dev/cdrom} as filename (@pxref{host_drives}).
226

    
227
@item -boot [a|c|d|n]
228
Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
229
is the default.
230

    
231
@item -snapshot
232
Write to temporary files instead of disk image files. In this case,
233
the raw disk image you use is not written back. You can however force
234
the write back by pressing @key{C-a s} (@pxref{disk_images}).
235

    
236
@item -no-fd-bootchk
237
Disable boot signature checking for floppy disks in Bochs BIOS. It may
238
be needed to boot from old floppy disks.
239

    
240
@item -m megs
241
Set virtual RAM size to @var{megs} megabytes. Default is 128 MB.
242

    
243
@item -smp n
244
Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
245
CPUs are supported.
246

    
247
@item -audio-help
248

    
249
Will show the audio subsystem help: list of drivers, tunable
250
parameters.
251

    
252
@item -soundhw card1,card2,... or -soundhw all
253

    
254
Enable audio and selected sound hardware. Use ? to print all
255
available sound hardware.
256

    
257
@example
258
qemu -soundhw sb16,adlib hda
259
qemu -soundhw es1370 hda
260
qemu -soundhw all hda
261
qemu -soundhw ?
262
@end example
263

    
264
@item -localtime
265
Set the real time clock to local time (the default is to UTC
266
time). This option is needed to have correct date in MS-DOS or
267
Windows.
268

    
269
@item -pidfile file
270
Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
271
from a script.
272

    
273
@item -daemonize
274
Daemonize the QEMU process after initialization.  QEMU will not detach from
275
standard IO until it is ready to receive connections on any of its devices.
276
This option is a useful way for external programs to launch QEMU without having
277
to cope with initialization race conditions.
278

    
279
@item -win2k-hack
280
Use it when installing Windows 2000 to avoid a disk full bug. After
281
Windows 2000 is installed, you no longer need this option (this option
282
slows down the IDE transfers).
283

    
284
@item -option-rom file
285
Load the contents of file as an option ROM.  This option is useful to load
286
things like EtherBoot.
287

    
288
@item -name string
289
Sets the name of the guest.  This name will be display in the SDL window
290
caption.  The name will also be used for the VNC server.
291

    
292
@end table
293

    
294
Display options:
295
@table @option
296

    
297
@item -nographic
298

    
299
Normally, QEMU uses SDL to display the VGA output. With this option,
300
you can totally disable graphical output so that QEMU is a simple
301
command line application. The emulated serial port is redirected on
302
the console. Therefore, you can still use QEMU to debug a Linux kernel
303
with a serial console.
304

    
305
@item -no-frame
306

    
307
Do not use decorations for SDL windows and start them using the whole
308
available screen space. This makes the using QEMU in a dedicated desktop
309
workspace more convenient.
310

    
311
@item -full-screen
312
Start in full screen.
313

    
314
@item -vnc display[,option[,option[,...]]]
315

    
316
Normally, QEMU uses SDL to display the VGA output.  With this option,
317
you can have QEMU listen on VNC display @var{display} and redirect the VGA
318
display over the VNC session.  It is very useful to enable the usb
319
tablet device when using this option (option @option{-usbdevice
320
tablet}). When using the VNC display, you must use the @option{-k}
321
parameter to set the keyboard layout if you are not using en-us. Valid
322
syntax for the @var{display} is
323

    
324
@table @code
325

    
326
@item @var{interface:d}
327

    
328
TCP connections will only be allowed from @var{interface} on display @var{d}.
329
By convention the TCP port is 5900+@var{d}. Optionally, @var{interface} can
330
be omitted in which case the server will bind to all interfaces.
331

    
332
@item @var{unix:path}
333

    
334
Connections will be allowed over UNIX domain sockets where @var{path} is the
335
location of a unix socket to listen for connections on.
336

    
337
@item @var{none}
338

    
339
VNC is initialized by not started. The monitor @code{change} command can be used
340
to later start the VNC server.
341

    
342
@end table
343

    
344
Following the @var{display} value there may be one or more @var{option} flags
345
separated by commas. Valid options are
346

    
347
@table @code
348

    
349
@item @var{password}
350

    
351
Require that password based authentication is used for client connections.
352
The password must be set separately using the @code{change} command in the
353
@ref{pcsys_monitor}
354

    
355
@item @var{tls}
356

    
357
Require that client use TLS when communicating with the VNC server. This
358
uses anonymous TLS credentials so is susceptible to a man-in-the-middle
359
attack. It is recommended that this option be combined with either the
360
@var{x509} or @var{x509verify} options.
361

    
362
@item @var{x509=/path/to/certificate/dir}
363

    
364
Valid if @var{tls} is specified. Require that x509 credentials are used
365
for negotiating the TLS session. The server will send its x509 certificate
366
to the client. It is recommended that a password be set on the VNC server
367
to provide authentication of the client when this is used. The path following
368
this option specifies where the x509 certificates are to be loaded from.
369
See the @ref{vnc_security} section for details on generating certificates.
370

    
371
@item @var{x509verify=/path/to/certificate/dir}
372

    
373
Valid if @var{tls} is specified. Require that x509 credentials are used
374
for negotiating the TLS session. The server will send its x509 certificate
375
to the client, and request that the client send its own x509 certificate.
376
The server will validate the client's certificate against the CA certificate,
377
and reject clients when validation fails. If the certificate authority is
378
trusted, this is a sufficient authentication mechanism. You may still wish
379
to set a password on the VNC server as a second authentication layer. The
380
path following this option specifies where the x509 certificates are to
381
be loaded from. See the @ref{vnc_security} section for details on generating
382
certificates.
383

    
384
@end table
385

    
386
@item -k language
387

    
388
Use keyboard layout @var{language} (for example @code{fr} for
389
French). This option is only needed where it is not easy to get raw PC
390
keycodes (e.g. on Macs, with some X11 servers or with a VNC
391
display). You don't normally need to use it on PC/Linux or PC/Windows
392
hosts.
393

    
394
The available layouts are:
395
@example
396
ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
397
da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
398
de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
399
@end example
400

    
401
The default is @code{en-us}.
402

    
403
@end table
404

    
405
USB options:
406
@table @option
407

    
408
@item -usb
409
Enable the USB driver (will be the default soon)
410

    
411
@item -usbdevice devname
412
Add the USB device @var{devname}. @xref{usb_devices}.
413
@end table
414

    
415
Network options:
416

    
417
@table @option
418

    
419
@item -net nic[,vlan=n][,macaddr=addr][,model=type]
420
Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
421
= 0 is the default). The NIC is an ne2k_pci by default on the PC
422
target. Optionally, the MAC address can be changed. If no
423
@option{-net} option is specified, a single NIC is created.
424
Qemu can emulate several different models of network card.
425
Valid values for @var{type} are
426
@code{i82551}, @code{i82557b}, @code{i82559er},
427
@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
428
@code{smc91c111}, @code{lance} and @code{mcf_fec}.
429
Not all devices are supported on all targets.  Use -net nic,model=?
430
for a list of available devices for your target.
431

    
432
@item -net user[,vlan=n][,hostname=name]
433
Use the user mode network stack which requires no administrator
434
privilege to run.  @option{hostname=name} can be used to specify the client
435
hostname reported by the builtin DHCP server.
436

    
437
@item -net tap[,vlan=n][,fd=h][,ifname=name][,script=file]
438
Connect the host TAP network interface @var{name} to VLAN @var{n} and
439
use the network script @var{file} to configure it. The default
440
network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
441
disable script execution. If @var{name} is not
442
provided, the OS automatically provides one.  @option{fd=h} can be
443
used to specify the handle of an already opened host TAP interface. Example:
444

    
445
@example
446
qemu linux.img -net nic -net tap
447
@end example
448

    
449
More complicated example (two NICs, each one connected to a TAP device)
450
@example
451
qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
452
               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
453
@end example
454

    
455

    
456
@item -net socket[,vlan=n][,fd=h][,listen=[host]:port][,connect=host:port]
457

    
458
Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
459
machine using a TCP socket connection. If @option{listen} is
460
specified, QEMU waits for incoming connections on @var{port}
461
(@var{host} is optional). @option{connect} is used to connect to
462
another QEMU instance using the @option{listen} option. @option{fd=h}
463
specifies an already opened TCP socket.
464

    
465
Example:
466
@example
467
# launch a first QEMU instance
468
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
469
               -net socket,listen=:1234
470
# connect the VLAN 0 of this instance to the VLAN 0
471
# of the first instance
472
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
473
               -net socket,connect=127.0.0.1:1234
474
@end example
475

    
476
@item -net socket[,vlan=n][,fd=h][,mcast=maddr:port]
477

    
478
Create a VLAN @var{n} shared with another QEMU virtual
479
machines using a UDP multicast socket, effectively making a bus for
480
every QEMU with same multicast address @var{maddr} and @var{port}.
481
NOTES:
482
@enumerate
483
@item
484
Several QEMU can be running on different hosts and share same bus (assuming
485
correct multicast setup for these hosts).
486
@item
487
mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
488
@url{http://user-mode-linux.sf.net}.
489
@item
490
Use @option{fd=h} to specify an already opened UDP multicast socket.
491
@end enumerate
492

    
493
Example:
494
@example
495
# launch one QEMU instance
496
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
497
               -net socket,mcast=230.0.0.1:1234
498
# launch another QEMU instance on same "bus"
499
qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
500
               -net socket,mcast=230.0.0.1:1234
501
# launch yet another QEMU instance on same "bus"
502
qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
503
               -net socket,mcast=230.0.0.1:1234
504
@end example
505

    
506
Example (User Mode Linux compat.):
507
@example
508
# launch QEMU instance (note mcast address selected
509
# is UML's default)
510
qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
511
               -net socket,mcast=239.192.168.1:1102
512
# launch UML
513
/path/to/linux ubd0=/path/to/root_fs eth0=mcast
514
@end example
515

    
516
@item -net none
517
Indicate that no network devices should be configured. It is used to
518
override the default configuration (@option{-net nic -net user}) which
519
is activated if no @option{-net} options are provided.
520

    
521
@item -tftp dir
522
When using the user mode network stack, activate a built-in TFTP
523
server. The files in @var{dir} will be exposed as the root of a TFTP server.
524
The TFTP client on the guest must be configured in binary mode (use the command
525
@code{bin} of the Unix TFTP client). The host IP address on the guest is as
526
usual 10.0.2.2.
527

    
528
@item -bootp file
529
When using the user mode network stack, broadcast @var{file} as the BOOTP
530
filename.  In conjunction with @option{-tftp}, this can be used to network boot
531
a guest from a local directory.
532

    
533
Example (using pxelinux):
534
@example
535
qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
536
@end example
537

    
538
@item -smb dir
539
When using the user mode network stack, activate a built-in SMB
540
server so that Windows OSes can access to the host files in @file{dir}
541
transparently.
542

    
543
In the guest Windows OS, the line:
544
@example
545
10.0.2.4 smbserver
546
@end example
547
must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
548
or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
549

    
550
Then @file{dir} can be accessed in @file{\\smbserver\qemu}.
551

    
552
Note that a SAMBA server must be installed on the host OS in
553
@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
554
2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
555

    
556
@item -redir [tcp|udp]:host-port:[guest-host]:guest-port
557

    
558
When using the user mode network stack, redirect incoming TCP or UDP
559
connections to the host port @var{host-port} to the guest
560
@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
561
is not specified, its value is 10.0.2.15 (default address given by the
562
built-in DHCP server).
563

    
564
For example, to redirect host X11 connection from screen 1 to guest
565
screen 0, use the following:
566

    
567
@example
568
# on the host
569
qemu -redir tcp:6001::6000 [...]
570
# this host xterm should open in the guest X11 server
571
xterm -display :1
572
@end example
573

    
574
To redirect telnet connections from host port 5555 to telnet port on
575
the guest, use the following:
576

    
577
@example
578
# on the host
579
qemu -redir tcp:5555::23 [...]
580
telnet localhost 5555
581
@end example
582

    
583
Then when you use on the host @code{telnet localhost 5555}, you
584
connect to the guest telnet server.
585

    
586
@end table
587

    
588
Linux boot specific: When using these options, you can use a given
589
Linux kernel without installing it in the disk image. It can be useful
590
for easier testing of various kernels.
591

    
592
@table @option
593

    
594
@item -kernel bzImage
595
Use @var{bzImage} as kernel image.
596

    
597
@item -append cmdline
598
Use @var{cmdline} as kernel command line
599

    
600
@item -initrd file
601
Use @var{file} as initial ram disk.
602

    
603
@end table
604

    
605
Debug/Expert options:
606
@table @option
607

    
608
@item -serial dev
609
Redirect the virtual serial port to host character device
610
@var{dev}. The default device is @code{vc} in graphical mode and
611
@code{stdio} in non graphical mode.
612

    
613
This option can be used several times to simulate up to 4 serials
614
ports.
615

    
616
Use @code{-serial none} to disable all serial ports.
617

    
618
Available character devices are:
619
@table @code
620
@item vc[:WxH]
621
Virtual console. Optionally, a width and height can be given in pixel with
622
@example
623
vc:800x600
624
@end example
625
It is also possible to specify width or height in characters:
626
@example
627
vc:80Cx24C
628
@end example
629
@item pty
630
[Linux only] Pseudo TTY (a new PTY is automatically allocated)
631
@item none
632
No device is allocated.
633
@item null
634
void device
635
@item /dev/XXX
636
[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
637
parameters are set according to the emulated ones.
638
@item /dev/parportN
639
[Linux only, parallel port only] Use host parallel port
640
@var{N}. Currently SPP and EPP parallel port features can be used.
641
@item file:filename
642
Write output to filename. No character can be read.
643
@item stdio
644
[Unix only] standard input/output
645
@item pipe:filename
646
name pipe @var{filename}
647
@item COMn
648
[Windows only] Use host serial port @var{n}
649
@item udp:[remote_host]:remote_port[@@[src_ip]:src_port]
650
This implements UDP Net Console.  When @var{remote_host} or @var{src_ip} are not specified they default to @code{0.0.0.0}.  When not using a specified @var{src_port} a random port is automatically chosen.
651

    
652
If you just want a simple readonly console you can use @code{netcat} or
653
@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
654
@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
655
will appear in the netconsole session.
656

    
657
If you plan to send characters back via netconsole or you want to stop
658
and start qemu a lot of times, you should have qemu use the same
659
source port each time by using something like @code{-serial
660
udp::4555@@:4556} to qemu. Another approach is to use a patched
661
version of netcat which can listen to a TCP port and send and receive
662
characters via udp.  If you have a patched version of netcat which
663
activates telnet remote echo and single char transfer, then you can
664
use the following options to step up a netcat redirector to allow
665
telnet on port 5555 to access the qemu port.
666
@table @code
667
@item Qemu Options:
668
-serial udp::4555@@:4556
669
@item netcat options:
670
-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
671
@item telnet options:
672
localhost 5555
673
@end table
674

    
675

    
676
@item tcp:[host]:port[,server][,nowait][,nodelay]
677
The TCP Net Console has two modes of operation.  It can send the serial
678
I/O to a location or wait for a connection from a location.  By default
679
the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
680
the @var{server} option QEMU will wait for a client socket application
681
to connect to the port before continuing, unless the @code{nowait}
682
option was specified.  The @code{nodelay} option disables the Nagle buffering
683
algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
684
one TCP connection at a time is accepted. You can use @code{telnet} to
685
connect to the corresponding character device.
686
@table @code
687
@item Example to send tcp console to 192.168.0.2 port 4444
688
-serial tcp:192.168.0.2:4444
689
@item Example to listen and wait on port 4444 for connection
690
-serial tcp::4444,server
691
@item Example to not wait and listen on ip 192.168.0.100 port 4444
692
-serial tcp:192.168.0.100:4444,server,nowait
693
@end table
694

    
695
@item telnet:host:port[,server][,nowait][,nodelay]
696
The telnet protocol is used instead of raw tcp sockets.  The options
697
work the same as if you had specified @code{-serial tcp}.  The
698
difference is that the port acts like a telnet server or client using
699
telnet option negotiation.  This will also allow you to send the
700
MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
701
sequence.  Typically in unix telnet you do it with Control-] and then
702
type "send break" followed by pressing the enter key.
703

    
704
@item unix:path[,server][,nowait]
705
A unix domain socket is used instead of a tcp socket.  The option works the
706
same as if you had specified @code{-serial tcp} except the unix domain socket
707
@var{path} is used for connections.
708

    
709
@item mon:dev_string
710
This is a special option to allow the monitor to be multiplexed onto
711
another serial port.  The monitor is accessed with key sequence of
712
@key{Control-a} and then pressing @key{c}. See monitor access
713
@ref{pcsys_keys} in the -nographic section for more keys.
714
@var{dev_string} should be any one of the serial devices specified
715
above.  An example to multiplex the monitor onto a telnet server
716
listening on port 4444 would be:
717
@table @code
718
@item -serial mon:telnet::4444,server,nowait
719
@end table
720

    
721
@end table
722

    
723
@item -parallel dev
724
Redirect the virtual parallel port to host device @var{dev} (same
725
devices as the serial port). On Linux hosts, @file{/dev/parportN} can
726
be used to use hardware devices connected on the corresponding host
727
parallel port.
728

    
729
This option can be used several times to simulate up to 3 parallel
730
ports.
731

    
732
Use @code{-parallel none} to disable all parallel ports.
733

    
734
@item -monitor dev
735
Redirect the monitor to host device @var{dev} (same devices as the
736
serial port).
737
The default device is @code{vc} in graphical mode and @code{stdio} in
738
non graphical mode.
739

    
740
@item -echr numeric_ascii_value
741
Change the escape character used for switching to the monitor when using
742
monitor and serial sharing.  The default is @code{0x01} when using the
743
@code{-nographic} option.  @code{0x01} is equal to pressing
744
@code{Control-a}.  You can select a different character from the ascii
745
control keys where 1 through 26 map to Control-a through Control-z.  For
746
instance you could use the either of the following to change the escape
747
character to Control-t.
748
@table @code
749
@item -echr 0x14
750
@item -echr 20
751
@end table
752

    
753
@item -s
754
Wait gdb connection to port 1234 (@pxref{gdb_usage}).
755
@item -p port
756
Change gdb connection port.  @var{port} can be either a decimal number
757
to specify a TCP port, or a host device (same devices as the serial port).
758
@item -S
759
Do not start CPU at startup (you must type 'c' in the monitor).
760
@item -d
761
Output log in /tmp/qemu.log
762
@item -hdachs c,h,s,[,t]
763
Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
764
@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
765
translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
766
all those parameters. This option is useful for old MS-DOS disk
767
images.
768

    
769
@item -L path
770
Set the directory for the BIOS, VGA BIOS and keymaps.
771

    
772
@item -std-vga
773
Simulate a standard VGA card with Bochs VBE extensions (default is
774
Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
775
VBE extensions (e.g. Windows XP) and if you want to use high
776
resolution modes (>= 1280x1024x16) then you should use this option.
777

    
778
@item -no-acpi
779
Disable ACPI (Advanced Configuration and Power Interface) support. Use
780
it if your guest OS complains about ACPI problems (PC target machine
781
only).
782

    
783
@item -no-reboot
784
Exit instead of rebooting.
785

    
786
@item -loadvm file
787
Start right away with a saved state (@code{loadvm} in monitor)
788

    
789
@item -semihosting
790
Enable semihosting syscall emulation (ARM and M68K target machines only).
791

    
792
On ARM this implements the "Angel" interface.
793
On M68K this implements the "ColdFire GDB" interface used by libgloss.
794

    
795
Note that this allows guest direct access to the host filesystem,
796
so should only be used with trusted guest OS.
797
@end table
798

    
799
@c man end
800

    
801
@node pcsys_keys
802
@section Keys
803

    
804
@c man begin OPTIONS
805

    
806
During the graphical emulation, you can use the following keys:
807
@table @key
808
@item Ctrl-Alt-f
809
Toggle full screen
810

    
811
@item Ctrl-Alt-n
812
Switch to virtual console 'n'. Standard console mappings are:
813
@table @emph
814
@item 1
815
Target system display
816
@item 2
817
Monitor
818
@item 3
819
Serial port
820
@end table
821

    
822
@item Ctrl-Alt
823
Toggle mouse and keyboard grab.
824
@end table
825

    
826
In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
827
@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
828

    
829
During emulation, if you are using the @option{-nographic} option, use
830
@key{Ctrl-a h} to get terminal commands:
831

    
832
@table @key
833
@item Ctrl-a h
834
Print this help
835
@item Ctrl-a x
836
Exit emulator
837
@item Ctrl-a s
838
Save disk data back to file (if -snapshot)
839
@item Ctrl-a t
840
toggle console timestamps
841
@item Ctrl-a b
842
Send break (magic sysrq in Linux)
843
@item Ctrl-a c
844
Switch between console and monitor
845
@item Ctrl-a Ctrl-a
846
Send Ctrl-a
847
@end table
848
@c man end
849

    
850
@ignore
851

    
852
@c man begin SEEALSO
853
The HTML documentation of QEMU for more precise information and Linux
854
user mode emulator invocation.
855
@c man end
856

    
857
@c man begin AUTHOR
858
Fabrice Bellard
859
@c man end
860

    
861
@end ignore
862

    
863
@node pcsys_monitor
864
@section QEMU Monitor
865

    
866
The QEMU monitor is used to give complex commands to the QEMU
867
emulator. You can use it to:
868

    
869
@itemize @minus
870

    
871
@item
872
Remove or insert removable media images
873
(such as CD-ROM or floppies)
874

    
875
@item
876
Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
877
from a disk file.
878

    
879
@item Inspect the VM state without an external debugger.
880

    
881
@end itemize
882

    
883
@subsection Commands
884

    
885
The following commands are available:
886

    
887
@table @option
888

    
889
@item help or ? [cmd]
890
Show the help for all commands or just for command @var{cmd}.
891

    
892
@item commit
893
Commit changes to the disk images (if -snapshot is used)
894

    
895
@item info subcommand
896
show various information about the system state
897

    
898
@table @option
899
@item info network
900
show the various VLANs and the associated devices
901
@item info block
902
show the block devices
903
@item info registers
904
show the cpu registers
905
@item info history
906
show the command line history
907
@item info pci
908
show emulated PCI device
909
@item info usb
910
show USB devices plugged on the virtual USB hub
911
@item info usbhost
912
show all USB host devices
913
@item info capture
914
show information about active capturing
915
@item info snapshots
916
show list of VM snapshots
917
@item info mice
918
show which guest mouse is receiving events
919
@end table
920

    
921
@item q or quit
922
Quit the emulator.
923

    
924
@item eject [-f] device
925
Eject a removable medium (use -f to force it).
926

    
927
@item change device setting
928

    
929
Change the configuration of a device
930

    
931
@table @option
932
@item change @var{diskdevice} @var{filename}
933
Change the medium for a removable disk device to point to @var{filename}. eg
934

    
935
@example
936
(qemu) change cdrom /path/to/some.iso
937
@end example
938

    
939
@item change vnc @var{display,options}
940
Change the configuration of the VNC server. The valid syntax for @var{display}
941
and @var{options} are described at @ref{sec_invocation}. eg
942

    
943
@example
944
(qemu) change vnc localhost:1
945
@end example
946

    
947
@item change vnc password
948

    
949
Change the password associated with the VNC server. The monitor will prompt for
950
the new password to be entered. VNC passwords are only significant upto 8 letters.
951
eg.
952

    
953
@example
954
(qemu) change vnc password
955
Password: ********
956
@end example
957

    
958
@end table
959

    
960
@item screendump filename
961
Save screen into PPM image @var{filename}.
962

    
963
@item mouse_move dx dy [dz]
964
Move the active mouse to the specified coordinates @var{dx} @var{dy}
965
with optional scroll axis @var{dz}.
966

    
967
@item mouse_button val
968
Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
969

    
970
@item mouse_set index
971
Set which mouse device receives events at given @var{index}, index
972
can be obtained with
973
@example
974
info mice
975
@end example
976

    
977
@item wavcapture filename [frequency [bits [channels]]]
978
Capture audio into @var{filename}. Using sample rate @var{frequency}
979
bits per sample @var{bits} and number of channels @var{channels}.
980

    
981
Defaults:
982
@itemize @minus
983
@item Sample rate = 44100 Hz - CD quality
984
@item Bits = 16
985
@item Number of channels = 2 - Stereo
986
@end itemize
987

    
988
@item stopcapture index
989
Stop capture with a given @var{index}, index can be obtained with
990
@example
991
info capture
992
@end example
993

    
994
@item log item1[,...]
995
Activate logging of the specified items to @file{/tmp/qemu.log}.
996

    
997
@item savevm [tag|id]
998
Create a snapshot of the whole virtual machine. If @var{tag} is
999
provided, it is used as human readable identifier. If there is already
1000
a snapshot with the same tag or ID, it is replaced. More info at
1001
@ref{vm_snapshots}.
1002

    
1003
@item loadvm tag|id
1004
Set the whole virtual machine to the snapshot identified by the tag
1005
@var{tag} or the unique snapshot ID @var{id}.
1006

    
1007
@item delvm tag|id
1008
Delete the snapshot identified by @var{tag} or @var{id}.
1009

    
1010
@item stop
1011
Stop emulation.
1012

    
1013
@item c or cont
1014
Resume emulation.
1015

    
1016
@item gdbserver [port]
1017
Start gdbserver session (default port=1234)
1018

    
1019
@item x/fmt addr
1020
Virtual memory dump starting at @var{addr}.
1021

    
1022
@item xp /fmt addr
1023
Physical memory dump starting at @var{addr}.
1024

    
1025
@var{fmt} is a format which tells the command how to format the
1026
data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1027

    
1028
@table @var
1029
@item count
1030
is the number of items to be dumped.
1031

    
1032
@item format
1033
can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1034
c (char) or i (asm instruction).
1035

    
1036
@item size
1037
can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1038
@code{h} or @code{w} can be specified with the @code{i} format to
1039
respectively select 16 or 32 bit code instruction size.
1040

    
1041
@end table
1042

    
1043
Examples:
1044
@itemize
1045
@item
1046
Dump 10 instructions at the current instruction pointer:
1047
@example
1048
(qemu) x/10i $eip
1049
0x90107063:  ret
1050
0x90107064:  sti
1051
0x90107065:  lea    0x0(%esi,1),%esi
1052
0x90107069:  lea    0x0(%edi,1),%edi
1053
0x90107070:  ret
1054
0x90107071:  jmp    0x90107080
1055
0x90107073:  nop
1056
0x90107074:  nop
1057
0x90107075:  nop
1058
0x90107076:  nop
1059
@end example
1060

    
1061
@item
1062
Dump 80 16 bit values at the start of the video memory.
1063
@smallexample
1064
(qemu) xp/80hx 0xb8000
1065
0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1066
0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1067
0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1068
0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1069
0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1070
0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1071
0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1072
0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1073
0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1074
0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1075
@end smallexample
1076
@end itemize
1077

    
1078
@item p or print/fmt expr
1079

    
1080
Print expression value. Only the @var{format} part of @var{fmt} is
1081
used.
1082

    
1083
@item sendkey keys
1084

    
1085
Send @var{keys} to the emulator. Use @code{-} to press several keys
1086
simultaneously. Example:
1087
@example
1088
sendkey ctrl-alt-f1
1089
@end example
1090

    
1091
This command is useful to send keys that your graphical user interface
1092
intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1093

    
1094
@item system_reset
1095

    
1096
Reset the system.
1097

    
1098
@item usb_add devname
1099

    
1100
Add the USB device @var{devname}.  For details of available devices see
1101
@ref{usb_devices}
1102

    
1103
@item usb_del devname
1104

    
1105
Remove the USB device @var{devname} from the QEMU virtual USB
1106
hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1107
command @code{info usb} to see the devices you can remove.
1108

    
1109
@end table
1110

    
1111
@subsection Integer expressions
1112

    
1113
The monitor understands integers expressions for every integer
1114
argument. You can use register names to get the value of specifics
1115
CPU registers by prefixing them with @emph{$}.
1116

    
1117
@node disk_images
1118
@section Disk Images
1119

    
1120
Since version 0.6.1, QEMU supports many disk image formats, including
1121
growable disk images (their size increase as non empty sectors are
1122
written), compressed and encrypted disk images. Version 0.8.3 added
1123
the new qcow2 disk image format which is essential to support VM
1124
snapshots.
1125

    
1126
@menu
1127
* disk_images_quickstart::    Quick start for disk image creation
1128
* disk_images_snapshot_mode:: Snapshot mode
1129
* vm_snapshots::              VM snapshots
1130
* qemu_img_invocation::       qemu-img Invocation
1131
* host_drives::               Using host drives
1132
* disk_images_fat_images::    Virtual FAT disk images
1133
@end menu
1134

    
1135
@node disk_images_quickstart
1136
@subsection Quick start for disk image creation
1137

    
1138
You can create a disk image with the command:
1139
@example
1140
qemu-img create myimage.img mysize
1141
@end example
1142
where @var{myimage.img} is the disk image filename and @var{mysize} is its
1143
size in kilobytes. You can add an @code{M} suffix to give the size in
1144
megabytes and a @code{G} suffix for gigabytes.
1145

    
1146
See @ref{qemu_img_invocation} for more information.
1147

    
1148
@node disk_images_snapshot_mode
1149
@subsection Snapshot mode
1150

    
1151
If you use the option @option{-snapshot}, all disk images are
1152
considered as read only. When sectors in written, they are written in
1153
a temporary file created in @file{/tmp}. You can however force the
1154
write back to the raw disk images by using the @code{commit} monitor
1155
command (or @key{C-a s} in the serial console).
1156

    
1157
@node vm_snapshots
1158
@subsection VM snapshots
1159

    
1160
VM snapshots are snapshots of the complete virtual machine including
1161
CPU state, RAM, device state and the content of all the writable
1162
disks. In order to use VM snapshots, you must have at least one non
1163
removable and writable block device using the @code{qcow2} disk image
1164
format. Normally this device is the first virtual hard drive.
1165

    
1166
Use the monitor command @code{savevm} to create a new VM snapshot or
1167
replace an existing one. A human readable name can be assigned to each
1168
snapshot in addition to its numerical ID.
1169

    
1170
Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1171
a VM snapshot. @code{info snapshots} lists the available snapshots
1172
with their associated information:
1173

    
1174
@example
1175
(qemu) info snapshots
1176
Snapshot devices: hda
1177
Snapshot list (from hda):
1178
ID        TAG                 VM SIZE                DATE       VM CLOCK
1179
1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1180
2                                 40M 2006-08-06 12:43:29   00:00:18.633
1181
3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1182
@end example
1183

    
1184
A VM snapshot is made of a VM state info (its size is shown in
1185
@code{info snapshots}) and a snapshot of every writable disk image.
1186
The VM state info is stored in the first @code{qcow2} non removable
1187
and writable block device. The disk image snapshots are stored in
1188
every disk image. The size of a snapshot in a disk image is difficult
1189
to evaluate and is not shown by @code{info snapshots} because the
1190
associated disk sectors are shared among all the snapshots to save
1191
disk space (otherwise each snapshot would need a full copy of all the
1192
disk images).
1193

    
1194
When using the (unrelated) @code{-snapshot} option
1195
(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1196
but they are deleted as soon as you exit QEMU.
1197

    
1198
VM snapshots currently have the following known limitations:
1199
@itemize
1200
@item
1201
They cannot cope with removable devices if they are removed or
1202
inserted after a snapshot is done.
1203
@item
1204
A few device drivers still have incomplete snapshot support so their
1205
state is not saved or restored properly (in particular USB).
1206
@end itemize
1207

    
1208
@node qemu_img_invocation
1209
@subsection @code{qemu-img} Invocation
1210

    
1211
@include qemu-img.texi
1212

    
1213
@node host_drives
1214
@subsection Using host drives
1215

    
1216
In addition to disk image files, QEMU can directly access host
1217
devices. We describe here the usage for QEMU version >= 0.8.3.
1218

    
1219
@subsubsection Linux
1220

    
1221
On Linux, you can directly use the host device filename instead of a
1222
disk image filename provided you have enough privileges to access
1223
it. For example, use @file{/dev/cdrom} to access to the CDROM or
1224
@file{/dev/fd0} for the floppy.
1225

    
1226
@table @code
1227
@item CD
1228
You can specify a CDROM device even if no CDROM is loaded. QEMU has
1229
specific code to detect CDROM insertion or removal. CDROM ejection by
1230
the guest OS is supported. Currently only data CDs are supported.
1231
@item Floppy
1232
You can specify a floppy device even if no floppy is loaded. Floppy
1233
removal is currently not detected accurately (if you change floppy
1234
without doing floppy access while the floppy is not loaded, the guest
1235
OS will think that the same floppy is loaded).
1236
@item Hard disks
1237
Hard disks can be used. Normally you must specify the whole disk
1238
(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1239
see it as a partitioned disk. WARNING: unless you know what you do, it
1240
is better to only make READ-ONLY accesses to the hard disk otherwise
1241
you may corrupt your host data (use the @option{-snapshot} command
1242
line option or modify the device permissions accordingly).
1243
@end table
1244

    
1245
@subsubsection Windows
1246

    
1247
@table @code
1248
@item CD
1249
The preferred syntax is the drive letter (e.g. @file{d:}). The
1250
alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1251
supported as an alias to the first CDROM drive.
1252

    
1253
Currently there is no specific code to handle removable media, so it
1254
is better to use the @code{change} or @code{eject} monitor commands to
1255
change or eject media.
1256
@item Hard disks
1257
Hard disks can be used with the syntax: @file{\\.\PhysicalDriveN}
1258
where @var{N} is the drive number (0 is the first hard disk).
1259

    
1260
WARNING: unless you know what you do, it is better to only make
1261
READ-ONLY accesses to the hard disk otherwise you may corrupt your
1262
host data (use the @option{-snapshot} command line so that the
1263
modifications are written in a temporary file).
1264
@end table
1265

    
1266

    
1267
@subsubsection Mac OS X
1268

    
1269
@file{/dev/cdrom} is an alias to the first CDROM.
1270

    
1271
Currently there is no specific code to handle removable media, so it
1272
is better to use the @code{change} or @code{eject} monitor commands to
1273
change or eject media.
1274

    
1275
@node disk_images_fat_images
1276
@subsection Virtual FAT disk images
1277

    
1278
QEMU can automatically create a virtual FAT disk image from a
1279
directory tree. In order to use it, just type:
1280

    
1281
@example
1282
qemu linux.img -hdb fat:/my_directory
1283
@end example
1284

    
1285
Then you access access to all the files in the @file{/my_directory}
1286
directory without having to copy them in a disk image or to export
1287
them via SAMBA or NFS. The default access is @emph{read-only}.
1288

    
1289
Floppies can be emulated with the @code{:floppy:} option:
1290

    
1291
@example
1292
qemu linux.img -fda fat:floppy:/my_directory
1293
@end example
1294

    
1295
A read/write support is available for testing (beta stage) with the
1296
@code{:rw:} option:
1297

    
1298
@example
1299
qemu linux.img -fda fat:floppy:rw:/my_directory
1300
@end example
1301

    
1302
What you should @emph{never} do:
1303
@itemize
1304
@item use non-ASCII filenames ;
1305
@item use "-snapshot" together with ":rw:" ;
1306
@item expect it to work when loadvm'ing ;
1307
@item write to the FAT directory on the host system while accessing it with the guest system.
1308
@end itemize
1309

    
1310
@node pcsys_network
1311
@section Network emulation
1312

    
1313
QEMU can simulate several network cards (PCI or ISA cards on the PC
1314
target) and can connect them to an arbitrary number of Virtual Local
1315
Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1316
VLAN. VLAN can be connected between separate instances of QEMU to
1317
simulate large networks. For simpler usage, a non privileged user mode
1318
network stack can replace the TAP device to have a basic network
1319
connection.
1320

    
1321
@subsection VLANs
1322

    
1323
QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1324
connection between several network devices. These devices can be for
1325
example QEMU virtual Ethernet cards or virtual Host ethernet devices
1326
(TAP devices).
1327

    
1328
@subsection Using TAP network interfaces
1329

    
1330
This is the standard way to connect QEMU to a real network. QEMU adds
1331
a virtual network device on your host (called @code{tapN}), and you
1332
can then configure it as if it was a real ethernet card.
1333

    
1334
@subsubsection Linux host
1335

    
1336
As an example, you can download the @file{linux-test-xxx.tar.gz}
1337
archive and copy the script @file{qemu-ifup} in @file{/etc} and
1338
configure properly @code{sudo} so that the command @code{ifconfig}
1339
contained in @file{qemu-ifup} can be executed as root. You must verify
1340
that your host kernel supports the TAP network interfaces: the
1341
device @file{/dev/net/tun} must be present.
1342

    
1343
See @ref{sec_invocation} to have examples of command lines using the
1344
TAP network interfaces.
1345

    
1346
@subsubsection Windows host
1347

    
1348
There is a virtual ethernet driver for Windows 2000/XP systems, called
1349
TAP-Win32. But it is not included in standard QEMU for Windows,
1350
so you will need to get it separately. It is part of OpenVPN package,
1351
so download OpenVPN from : @url{http://openvpn.net/}.
1352

    
1353
@subsection Using the user mode network stack
1354

    
1355
By using the option @option{-net user} (default configuration if no
1356
@option{-net} option is specified), QEMU uses a completely user mode
1357
network stack (you don't need root privilege to use the virtual
1358
network). The virtual network configuration is the following:
1359

    
1360
@example
1361

    
1362
         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1363
                           |          (10.0.2.2)
1364
                           |
1365
                           ---->  DNS server (10.0.2.3)
1366
                           |
1367
                           ---->  SMB server (10.0.2.4)
1368
@end example
1369

    
1370
The QEMU VM behaves as if it was behind a firewall which blocks all
1371
incoming connections. You can use a DHCP client to automatically
1372
configure the network in the QEMU VM. The DHCP server assign addresses
1373
to the hosts starting from 10.0.2.15.
1374

    
1375
In order to check that the user mode network is working, you can ping
1376
the address 10.0.2.2 and verify that you got an address in the range
1377
10.0.2.x from the QEMU virtual DHCP server.
1378

    
1379
Note that @code{ping} is not supported reliably to the internet as it
1380
would require root privileges. It means you can only ping the local
1381
router (10.0.2.2).
1382

    
1383
When using the built-in TFTP server, the router is also the TFTP
1384
server.
1385

    
1386
When using the @option{-redir} option, TCP or UDP connections can be
1387
redirected from the host to the guest. It allows for example to
1388
redirect X11, telnet or SSH connections.
1389

    
1390
@subsection Connecting VLANs between QEMU instances
1391

    
1392
Using the @option{-net socket} option, it is possible to make VLANs
1393
that span several QEMU instances. See @ref{sec_invocation} to have a
1394
basic example.
1395

    
1396
@node direct_linux_boot
1397
@section Direct Linux Boot
1398

    
1399
This section explains how to launch a Linux kernel inside QEMU without
1400
having to make a full bootable image. It is very useful for fast Linux
1401
kernel testing.
1402

    
1403
The syntax is:
1404
@example
1405
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1406
@end example
1407

    
1408
Use @option{-kernel} to provide the Linux kernel image and
1409
@option{-append} to give the kernel command line arguments. The
1410
@option{-initrd} option can be used to provide an INITRD image.
1411

    
1412
When using the direct Linux boot, a disk image for the first hard disk
1413
@file{hda} is required because its boot sector is used to launch the
1414
Linux kernel.
1415

    
1416
If you do not need graphical output, you can disable it and redirect
1417
the virtual serial port and the QEMU monitor to the console with the
1418
@option{-nographic} option. The typical command line is:
1419
@example
1420
qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1421
     -append "root=/dev/hda console=ttyS0" -nographic
1422
@end example
1423

    
1424
Use @key{Ctrl-a c} to switch between the serial console and the
1425
monitor (@pxref{pcsys_keys}).
1426

    
1427
@node pcsys_usb
1428
@section USB emulation
1429

    
1430
QEMU emulates a PCI UHCI USB controller. You can virtually plug
1431
virtual USB devices or real host USB devices (experimental, works only
1432
on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1433
as necessary to connect multiple USB devices.
1434

    
1435
@menu
1436
* usb_devices::
1437
* host_usb_devices::
1438
@end menu
1439
@node usb_devices
1440
@subsection Connecting USB devices
1441

    
1442
USB devices can be connected with the @option{-usbdevice} commandline option
1443
or the @code{usb_add} monitor command.  Available devices are:
1444

    
1445
@table @var
1446
@item @code{mouse}
1447
Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1448
@item @code{tablet}
1449
Pointer device that uses absolute coordinates (like a touchscreen).
1450
This means qemu is able to report the mouse position without having
1451
to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1452
@item @code{disk:file}
1453
Mass storage device based on @var{file} (@pxref{disk_images})
1454
@item @code{host:bus.addr}
1455
Pass through the host device identified by @var{bus.addr}
1456
(Linux only)
1457
@item @code{host:vendor_id:product_id}
1458
Pass through the host device identified by @var{vendor_id:product_id}
1459
(Linux only)
1460
@item @code{wacom-tablet}
1461
Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1462
above but it can be used with the tslib library because in addition to touch
1463
coordinates it reports touch pressure.
1464
@item @code{keyboard}
1465
Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1466
@end table
1467

    
1468
@node host_usb_devices
1469
@subsection Using host USB devices on a Linux host
1470

    
1471
WARNING: this is an experimental feature. QEMU will slow down when
1472
using it. USB devices requiring real time streaming (i.e. USB Video
1473
Cameras) are not supported yet.
1474

    
1475
@enumerate
1476
@item If you use an early Linux 2.4 kernel, verify that no Linux driver
1477
is actually using the USB device. A simple way to do that is simply to
1478
disable the corresponding kernel module by renaming it from @file{mydriver.o}
1479
to @file{mydriver.o.disabled}.
1480

    
1481
@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
1482
@example
1483
ls /proc/bus/usb
1484
001  devices  drivers
1485
@end example
1486

    
1487
@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
1488
@example
1489
chown -R myuid /proc/bus/usb
1490
@end example
1491

    
1492
@item Launch QEMU and do in the monitor:
1493
@example
1494
info usbhost
1495
  Device 1.2, speed 480 Mb/s
1496
    Class 00: USB device 1234:5678, USB DISK
1497
@end example
1498
You should see the list of the devices you can use (Never try to use
1499
hubs, it won't work).
1500

    
1501
@item Add the device in QEMU by using:
1502
@example
1503
usb_add host:1234:5678
1504
@end example
1505

    
1506
Normally the guest OS should report that a new USB device is
1507
plugged. You can use the option @option{-usbdevice} to do the same.
1508

    
1509
@item Now you can try to use the host USB device in QEMU.
1510

    
1511
@end enumerate
1512

    
1513
When relaunching QEMU, you may have to unplug and plug again the USB
1514
device to make it work again (this is a bug).
1515

    
1516
@node vnc_security
1517
@section VNC security
1518

    
1519
The VNC server capability provides access to the graphical console
1520
of the guest VM across the network. This has a number of security
1521
considerations depending on the deployment scenarios.
1522

    
1523
@menu
1524
* vnc_sec_none::
1525
* vnc_sec_password::
1526
* vnc_sec_certificate::
1527
* vnc_sec_certificate_verify::
1528
* vnc_sec_certificate_pw::
1529
* vnc_generate_cert::
1530
@end menu
1531
@node vnc_sec_none
1532
@subsection Without passwords
1533

    
1534
The simplest VNC server setup does not include any form of authentication.
1535
For this setup it is recommended to restrict it to listen on a UNIX domain
1536
socket only. For example
1537

    
1538
@example
1539
qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
1540
@end example
1541

    
1542
This ensures that only users on local box with read/write access to that
1543
path can access the VNC server. To securely access the VNC server from a
1544
remote machine, a combination of netcat+ssh can be used to provide a secure
1545
tunnel.
1546

    
1547
@node vnc_sec_password
1548
@subsection With passwords
1549

    
1550
The VNC protocol has limited support for password based authentication. Since
1551
the protocol limits passwords to 8 characters it should not be considered
1552
to provide high security. The password can be fairly easily brute-forced by
1553
a client making repeat connections. For this reason, a VNC server using password
1554
authentication should be restricted to only listen on the loopback interface
1555
or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
1556
option, and then once QEMU is running the password is set with the monitor. Until
1557
the monitor is used to set the password all clients will be rejected.
1558

    
1559
@example
1560
qemu [...OPTIONS...] -vnc :1,password -monitor stdio
1561
(qemu) change vnc password
1562
Password: ********
1563
(qemu)
1564
@end example
1565

    
1566
@node vnc_sec_certificate
1567
@subsection With x509 certificates
1568

    
1569
The QEMU VNC server also implements the VeNCrypt extension allowing use of
1570
TLS for encryption of the session, and x509 certificates for authentication.
1571
The use of x509 certificates is strongly recommended, because TLS on its
1572
own is susceptible to man-in-the-middle attacks. Basic x509 certificate
1573
support provides a secure session, but no authentication. This allows any
1574
client to connect, and provides an encrypted session.
1575

    
1576
@example
1577
qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
1578
@end example
1579

    
1580
In the above example @code{/etc/pki/qemu} should contain at least three files,
1581
@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
1582
users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
1583
NB the @code{server-key.pem} file should be protected with file mode 0600 to
1584
only be readable by the user owning it.
1585

    
1586
@node vnc_sec_certificate_verify
1587
@subsection With x509 certificates and client verification
1588

    
1589
Certificates can also provide a means to authenticate the client connecting.
1590
The server will request that the client provide a certificate, which it will
1591
then validate against the CA certificate. This is a good choice if deploying
1592
in an environment with a private internal certificate authority.
1593

    
1594
@example
1595
qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
1596
@end example
1597

    
1598

    
1599
@node vnc_sec_certificate_pw
1600
@subsection With x509 certificates, client verification and passwords
1601

    
1602
Finally, the previous method can be combined with VNC password authentication
1603
to provide two layers of authentication for clients.
1604

    
1605
@example
1606
qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
1607
(qemu) change vnc password
1608
Password: ********
1609
(qemu)
1610
@end example
1611

    
1612
@node vnc_generate_cert
1613
@subsection Generating certificates for VNC
1614

    
1615
The GNU TLS packages provides a command called @code{certtool} which can
1616
be used to generate certificates and keys in PEM format. At a minimum it
1617
is neccessary to setup a certificate authority, and issue certificates to
1618
each server. If using certificates for authentication, then each client
1619
will also need to be issued a certificate. The recommendation is for the
1620
server to keep its certificates in either @code{/etc/pki/qemu} or for
1621
unprivileged users in @code{$HOME/.pki/qemu}.
1622

    
1623
@menu
1624
* vnc_generate_ca::
1625
* vnc_generate_server::
1626
* vnc_generate_client::
1627
@end menu
1628
@node vnc_generate_ca
1629
@subsubsection Setup the Certificate Authority
1630

    
1631
This step only needs to be performed once per organization / organizational
1632
unit. First the CA needs a private key. This key must be kept VERY secret
1633
and secure. If this key is compromised the entire trust chain of the certificates
1634
issued with it is lost.
1635

    
1636
@example
1637
# certtool --generate-privkey > ca-key.pem
1638
@end example
1639

    
1640
A CA needs to have a public certificate. For simplicity it can be a self-signed
1641
certificate, or one issue by a commercial certificate issuing authority. To
1642
generate a self-signed certificate requires one core piece of information, the
1643
name of the organization.
1644

    
1645
@example
1646
# cat > ca.info <<EOF
1647
cn = Name of your organization
1648
ca
1649
cert_signing_key
1650
EOF
1651
# certtool --generate-self-signed \
1652
           --load-privkey ca-key.pem
1653
           --template ca.info \
1654
           --outfile ca-cert.pem
1655
@end example
1656

    
1657
The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
1658
TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
1659

    
1660
@node vnc_generate_server
1661
@subsubsection Issuing server certificates
1662

    
1663
Each server (or host) needs to be issued with a key and certificate. When connecting
1664
the certificate is sent to the client which validates it against the CA certificate.
1665
The core piece of information for a server certificate is the hostname. This should
1666
be the fully qualified hostname that the client will connect with, since the client
1667
will typically also verify the hostname in the certificate. On the host holding the
1668
secure CA private key:
1669

    
1670
@example
1671
# cat > server.info <<EOF
1672
organization = Name  of your organization
1673
cn = server.foo.example.com
1674
tls_www_server
1675
encryption_key
1676
signing_key
1677
EOF
1678
# certtool --generate-privkey > server-key.pem
1679
# certtool --generate-certificate \
1680
           --load-ca-certificate ca-cert.pem \
1681
           --load-ca-privkey ca-key.pem \
1682
           --load-privkey server server-key.pem \
1683
           --template server.info \
1684
           --outfile server-cert.pem
1685
@end example
1686

    
1687
The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
1688
to the server for which they were generated. The @code{server-key.pem} is security
1689
sensitive and should be kept protected with file mode 0600 to prevent disclosure.
1690

    
1691
@node vnc_generate_client
1692
@subsubsection Issuing client certificates
1693

    
1694
If the QEMU VNC server is to use the @code{x509verify} option to validate client
1695
certificates as its authentication mechanism, each client also needs to be issued
1696
a certificate. The client certificate contains enough metadata to uniquely identify
1697
the client, typically organization, state, city, building, etc. On the host holding
1698
the secure CA private key:
1699

    
1700
@example
1701
# cat > client.info <<EOF
1702
country = GB
1703
state = London
1704
locality = London
1705
organiazation = Name of your organization
1706
cn = client.foo.example.com
1707
tls_www_client
1708
encryption_key
1709
signing_key
1710
EOF
1711
# certtool --generate-privkey > client-key.pem
1712
# certtool --generate-certificate \
1713
           --load-ca-certificate ca-cert.pem \
1714
           --load-ca-privkey ca-key.pem \
1715
           --load-privkey client-key.pem \
1716
           --template client.info \
1717
           --outfile client-cert.pem
1718
@end example
1719

    
1720
The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
1721
copied to the client for which they were generated.
1722

    
1723
@node gdb_usage
1724
@section GDB usage
1725

    
1726
QEMU has a primitive support to work with gdb, so that you can do
1727
'Ctrl-C' while the virtual machine is running and inspect its state.
1728

    
1729
In order to use gdb, launch qemu with the '-s' option. It will wait for a
1730
gdb connection:
1731
@example
1732
> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1733
       -append "root=/dev/hda"
1734
Connected to host network interface: tun0
1735
Waiting gdb connection on port 1234
1736
@end example
1737

    
1738
Then launch gdb on the 'vmlinux' executable:
1739
@example
1740
> gdb vmlinux
1741
@end example
1742

    
1743
In gdb, connect to QEMU:
1744
@example
1745
(gdb) target remote localhost:1234
1746
@end example
1747

    
1748
Then you can use gdb normally. For example, type 'c' to launch the kernel:
1749
@example
1750
(gdb) c
1751
@end example
1752

    
1753
Here are some useful tips in order to use gdb on system code:
1754

    
1755
@enumerate
1756
@item
1757
Use @code{info reg} to display all the CPU registers.
1758
@item
1759
Use @code{x/10i $eip} to display the code at the PC position.
1760
@item
1761
Use @code{set architecture i8086} to dump 16 bit code. Then use
1762
@code{x/10i $cs*16+$eip} to dump the code at the PC position.
1763
@end enumerate
1764

    
1765
@node pcsys_os_specific
1766
@section Target OS specific information
1767

    
1768
@subsection Linux
1769

    
1770
To have access to SVGA graphic modes under X11, use the @code{vesa} or
1771
the @code{cirrus} X11 driver. For optimal performances, use 16 bit
1772
color depth in the guest and the host OS.
1773

    
1774
When using a 2.6 guest Linux kernel, you should add the option
1775
@code{clock=pit} on the kernel command line because the 2.6 Linux
1776
kernels make very strict real time clock checks by default that QEMU
1777
cannot simulate exactly.
1778

    
1779
When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
1780
not activated because QEMU is slower with this patch. The QEMU
1781
Accelerator Module is also much slower in this case. Earlier Fedora
1782
Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
1783
patch by default. Newer kernels don't have it.
1784

    
1785
@subsection Windows
1786

    
1787
If you have a slow host, using Windows 95 is better as it gives the
1788
best speed. Windows 2000 is also a good choice.
1789

    
1790
@subsubsection SVGA graphic modes support
1791

    
1792
QEMU emulates a Cirrus Logic GD5446 Video
1793
card. All Windows versions starting from Windows 95 should recognize
1794
and use this graphic card. For optimal performances, use 16 bit color
1795
depth in the guest and the host OS.
1796

    
1797
If you are using Windows XP as guest OS and if you want to use high
1798
resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
1799
1280x1024x16), then you should use the VESA VBE virtual graphic card
1800
(option @option{-std-vga}).
1801

    
1802
@subsubsection CPU usage reduction
1803

    
1804
Windows 9x does not correctly use the CPU HLT
1805
instruction. The result is that it takes host CPU cycles even when
1806
idle. You can install the utility from
1807
@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
1808
problem. Note that no such tool is needed for NT, 2000 or XP.
1809

    
1810
@subsubsection Windows 2000 disk full problem
1811

    
1812
Windows 2000 has a bug which gives a disk full problem during its
1813
installation. When installing it, use the @option{-win2k-hack} QEMU
1814
option to enable a specific workaround. After Windows 2000 is
1815
installed, you no longer need this option (this option slows down the
1816
IDE transfers).
1817

    
1818
@subsubsection Windows 2000 shutdown
1819

    
1820
Windows 2000 cannot automatically shutdown in QEMU although Windows 98
1821
can. It comes from the fact that Windows 2000 does not automatically
1822
use the APM driver provided by the BIOS.
1823

    
1824
In order to correct that, do the following (thanks to Struan
1825
Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
1826
Add/Troubleshoot a device => Add a new device & Next => No, select the
1827
hardware from a list & Next => NT Apm/Legacy Support & Next => Next
1828
(again) a few times. Now the driver is installed and Windows 2000 now
1829
correctly instructs QEMU to shutdown at the appropriate moment.
1830

    
1831
@subsubsection Share a directory between Unix and Windows
1832

    
1833
See @ref{sec_invocation} about the help of the option @option{-smb}.
1834

    
1835
@subsubsection Windows XP security problem
1836

    
1837
Some releases of Windows XP install correctly but give a security
1838
error when booting:
1839
@example
1840
A problem is preventing Windows from accurately checking the
1841
license for this computer. Error code: 0x800703e6.
1842
@end example
1843

    
1844
The workaround is to install a service pack for XP after a boot in safe
1845
mode. Then reboot, and the problem should go away. Since there is no
1846
network while in safe mode, its recommended to download the full
1847
installation of SP1 or SP2 and transfer that via an ISO or using the
1848
vvfat block device ("-hdb fat:directory_which_holds_the_SP").
1849

    
1850
@subsection MS-DOS and FreeDOS
1851

    
1852
@subsubsection CPU usage reduction
1853

    
1854
DOS does not correctly use the CPU HLT instruction. The result is that
1855
it takes host CPU cycles even when idle. You can install the utility
1856
from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
1857
problem.
1858

    
1859
@node QEMU System emulator for non PC targets
1860
@chapter QEMU System emulator for non PC targets
1861

    
1862
QEMU is a generic emulator and it emulates many non PC
1863
machines. Most of the options are similar to the PC emulator. The
1864
differences are mentioned in the following sections.
1865

    
1866
@menu
1867
* QEMU PowerPC System emulator::
1868
* Sparc32 System emulator::
1869
* Sparc64 System emulator::
1870
* MIPS System emulator::
1871
* ARM System emulator::
1872
* ColdFire System emulator::
1873
@end menu
1874

    
1875
@node QEMU PowerPC System emulator
1876
@section QEMU PowerPC System emulator
1877

    
1878
Use the executable @file{qemu-system-ppc} to simulate a complete PREP
1879
or PowerMac PowerPC system.
1880

    
1881
QEMU emulates the following PowerMac peripherals:
1882

    
1883
@itemize @minus
1884
@item
1885
UniNorth PCI Bridge
1886
@item
1887
PCI VGA compatible card with VESA Bochs Extensions
1888
@item
1889
2 PMAC IDE interfaces with hard disk and CD-ROM support
1890
@item
1891
NE2000 PCI adapters
1892
@item
1893
Non Volatile RAM
1894
@item
1895
VIA-CUDA with ADB keyboard and mouse.
1896
@end itemize
1897

    
1898
QEMU emulates the following PREP peripherals:
1899

    
1900
@itemize @minus
1901
@item
1902
PCI Bridge
1903
@item
1904
PCI VGA compatible card with VESA Bochs Extensions
1905
@item
1906
2 IDE interfaces with hard disk and CD-ROM support
1907
@item
1908
Floppy disk
1909
@item
1910
NE2000 network adapters
1911
@item
1912
Serial port
1913
@item
1914
PREP Non Volatile RAM
1915
@item
1916
PC compatible keyboard and mouse.
1917
@end itemize
1918

    
1919
QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
1920
@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
1921

    
1922
@c man begin OPTIONS
1923

    
1924
The following options are specific to the PowerPC emulation:
1925

    
1926
@table @option
1927

    
1928
@item -g WxH[xDEPTH]
1929

    
1930
Set the initial VGA graphic mode. The default is 800x600x15.
1931

    
1932
@end table
1933

    
1934
@c man end
1935

    
1936

    
1937
More information is available at
1938
@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
1939

    
1940
@node Sparc32 System emulator
1941
@section Sparc32 System emulator
1942

    
1943
Use the executable @file{qemu-system-sparc} to simulate a SparcStation 5
1944
or SparcStation 10 (sun4m architecture). The emulation is somewhat complete.
1945

    
1946
QEMU emulates the following sun4m peripherals:
1947

    
1948
@itemize @minus
1949
@item
1950
IOMMU
1951
@item
1952
TCX Frame buffer
1953
@item
1954
Lance (Am7990) Ethernet
1955
@item
1956
Non Volatile RAM M48T08
1957
@item
1958
Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
1959
and power/reset logic
1960
@item
1961
ESP SCSI controller with hard disk and CD-ROM support
1962
@item
1963
Floppy drive
1964
@item
1965
CS4231 sound device (only on SS-5, not working yet)
1966
@end itemize
1967

    
1968
The number of peripherals is fixed in the architecture.
1969

    
1970
Since version 0.8.2, QEMU uses OpenBIOS
1971
@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
1972
firmware implementation. The goal is to implement a 100% IEEE
1973
1275-1994 (referred to as Open Firmware) compliant firmware.
1974

    
1975
A sample Linux 2.6 series kernel and ram disk image are available on
1976
the QEMU web site. Please note that currently NetBSD, OpenBSD or
1977
Solaris kernels don't work.
1978

    
1979
@c man begin OPTIONS
1980

    
1981
The following options are specific to the Sparc32 emulation:
1982

    
1983
@table @option
1984

    
1985
@item -g WxHx[xDEPTH]
1986

    
1987
Set the initial TCX graphic mode. The default is 1024x768x8, currently
1988
the only other possible mode is 1024x768x24.
1989

    
1990
@item -prom-env string
1991

    
1992
Set OpenBIOS variables in NVRAM, for example:
1993

    
1994
@example
1995
qemu-system-sparc -prom-env 'auto-boot?=false' \
1996
 -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
1997
@end example
1998

    
1999
@item -M [SS-5|SS-10]
2000

    
2001
Set the emulated machine type. Default is SS-5.
2002

    
2003
@end table
2004

    
2005
@c man end
2006

    
2007
@node Sparc64 System emulator
2008
@section Sparc64 System emulator
2009

    
2010
Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
2011
The emulator is not usable for anything yet.
2012

    
2013
QEMU emulates the following sun4u peripherals:
2014

    
2015
@itemize @minus
2016
@item
2017
UltraSparc IIi APB PCI Bridge
2018
@item
2019
PCI VGA compatible card with VESA Bochs Extensions
2020
@item
2021
Non Volatile RAM M48T59
2022
@item
2023
PC-compatible serial ports
2024
@end itemize
2025

    
2026
@node MIPS System emulator
2027
@section MIPS System emulator
2028

    
2029
Use the executable @file{qemu-system-mips} to simulate a MIPS machine.
2030
Three different machine types are emulated:
2031

    
2032
@itemize @minus
2033
@item
2034
A generic ISA PC-like machine "mips"
2035
@item
2036
The MIPS Malta prototype board "malta"
2037
@item
2038
An ACER Pica "pica61"
2039
@end itemize
2040

    
2041
The generic emulation is supported by Debian 'Etch' and is able to
2042
install Debian into a virtual disk image. The following devices are
2043
emulated:
2044

    
2045
@itemize @minus
2046
@item
2047
MIPS 24Kf CPU
2048
@item
2049
PC style serial port
2050
@item
2051
PC style IDE disk
2052
@item
2053
NE2000 network card
2054
@end itemize
2055

    
2056
The Malta emulation supports the following devices:
2057

    
2058
@itemize @minus
2059
@item
2060
Core board with MIPS 24Kf CPU and Galileo system controller
2061
@item
2062
PIIX4 PCI/USB/SMbus controller
2063
@item
2064
The Multi-I/O chip's serial device
2065
@item
2066
PCnet32 PCI network card
2067
@item
2068
Malta FPGA serial device
2069
@item
2070
Cirrus VGA graphics card
2071
@end itemize
2072

    
2073
The ACER Pica emulation supports:
2074

    
2075
@itemize @minus
2076
@item
2077
MIPS R4000 CPU
2078
@item
2079
PC-style IRQ and DMA controllers
2080
@item
2081
PC Keyboard
2082
@item
2083
IDE controller
2084
@end itemize
2085

    
2086
@node ARM System emulator
2087
@section ARM System emulator
2088

    
2089
Use the executable @file{qemu-system-arm} to simulate a ARM
2090
machine. The ARM Integrator/CP board is emulated with the following
2091
devices:
2092

    
2093
@itemize @minus
2094
@item
2095
ARM926E, ARM1026E or ARM946E CPU
2096
@item
2097
Two PL011 UARTs
2098
@item
2099
SMC 91c111 Ethernet adapter
2100
@item
2101
PL110 LCD controller
2102
@item
2103
PL050 KMI with PS/2 keyboard and mouse.
2104
@item
2105
PL181 MultiMedia Card Interface with SD card.
2106
@end itemize
2107

    
2108
The ARM Versatile baseboard is emulated with the following devices:
2109

    
2110
@itemize @minus
2111
@item
2112
ARM926E CPU
2113
@item
2114
PL190 Vectored Interrupt Controller
2115
@item
2116
Four PL011 UARTs
2117
@item
2118
SMC 91c111 Ethernet adapter
2119
@item
2120
PL110 LCD controller
2121
@item
2122
PL050 KMI with PS/2 keyboard and mouse.
2123
@item
2124
PCI host bridge.  Note the emulated PCI bridge only provides access to
2125
PCI memory space.  It does not provide access to PCI IO space.
2126
This means some devices (eg. ne2k_pci NIC) are not usable, and others
2127
(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2128
mapped control registers.
2129
@item
2130
PCI OHCI USB controller.
2131
@item
2132
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2133
@item
2134
PL181 MultiMedia Card Interface with SD card.
2135
@end itemize
2136

    
2137
The ARM RealView Emulation baseboard is emulated with the following devices:
2138

    
2139
@itemize @minus
2140
@item
2141
ARM926E CPU
2142
@item
2143
ARM AMBA Generic/Distributed Interrupt Controller
2144
@item
2145
Four PL011 UARTs
2146
@item
2147
SMC 91c111 Ethernet adapter
2148
@item
2149
PL110 LCD controller
2150
@item
2151
PL050 KMI with PS/2 keyboard and mouse
2152
@item
2153
PCI host bridge
2154
@item
2155
PCI OHCI USB controller
2156
@item
2157
LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2158
@item
2159
PL181 MultiMedia Card Interface with SD card.
2160
@end itemize
2161

    
2162
The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2163
and "Terrier") emulation includes the following peripherals:
2164

    
2165
@itemize @minus
2166
@item
2167
Intel PXA270 System-on-chip (ARM V5TE core)
2168
@item
2169
NAND Flash memory
2170
@item
2171
IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2172
@item
2173
On-chip OHCI USB controller
2174
@item
2175
On-chip LCD controller
2176
@item
2177
On-chip Real Time Clock
2178
@item
2179
TI ADS7846 touchscreen controller on SSP bus
2180
@item
2181
Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2182
@item
2183
GPIO-connected keyboard controller and LEDs
2184
@item
2185
Secure Digital card connected to PXA MMC/SD host
2186
@item
2187
Three on-chip UARTs
2188
@item
2189
WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2190
@end itemize
2191

    
2192
A Linux 2.6 test image is available on the QEMU web site. More
2193
information is available in the QEMU mailing-list archive.
2194

    
2195
@node ColdFire System emulator
2196
@section ColdFire System emulator
2197

    
2198
Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
2199
The emulator is able to boot a uClinux kernel.
2200

    
2201
The M5208EVB emulation includes the following devices:
2202

    
2203
@itemize @minus
2204
@item
2205
MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
2206
@item
2207
Three Two on-chip UARTs.
2208
@item
2209
Fast Ethernet Controller (FEC)
2210
@end itemize
2211

    
2212
The AN5206 emulation includes the following devices:
2213

    
2214
@itemize @minus
2215
@item
2216
MCF5206 ColdFire V2 Microprocessor.
2217
@item
2218
Two on-chip UARTs.
2219
@end itemize
2220

    
2221
@node QEMU User space emulator
2222
@chapter QEMU User space emulator
2223

    
2224
@menu
2225
* Supported Operating Systems ::
2226
* Linux User space emulator::
2227
* Mac OS X/Darwin User space emulator ::
2228
@end menu
2229

    
2230
@node Supported Operating Systems
2231
@section Supported Operating Systems
2232

    
2233
The following OS are supported in user space emulation:
2234

    
2235
@itemize @minus
2236
@item
2237
Linux (referred as qemu-linux-user)
2238
@item
2239
Mac OS X/Darwin (referred as qemu-darwin-user)
2240
@end itemize
2241

    
2242
@node Linux User space emulator
2243
@section Linux User space emulator
2244

    
2245
@menu
2246
* Quick Start::
2247
* Wine launch::
2248
* Command line options::
2249
* Other binaries::
2250
@end menu
2251

    
2252
@node Quick Start
2253
@subsection Quick Start
2254

    
2255
In order to launch a Linux process, QEMU needs the process executable
2256
itself and all the target (x86) dynamic libraries used by it.
2257

    
2258
@itemize
2259

    
2260
@item On x86, you can just try to launch any process by using the native
2261
libraries:
2262

    
2263
@example
2264
qemu-i386 -L / /bin/ls
2265
@end example
2266

    
2267
@code{-L /} tells that the x86 dynamic linker must be searched with a
2268
@file{/} prefix.
2269

    
2270
@item Since QEMU is also a linux process, you can launch qemu with
2271
qemu (NOTE: you can only do that if you compiled QEMU from the sources):
2272

    
2273
@example
2274
qemu-i386 -L / qemu-i386 -L / /bin/ls
2275
@end example
2276

    
2277
@item On non x86 CPUs, you need first to download at least an x86 glibc
2278
(@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
2279
@code{LD_LIBRARY_PATH} is not set:
2280

    
2281
@example
2282
unset LD_LIBRARY_PATH
2283
@end example
2284

    
2285
Then you can launch the precompiled @file{ls} x86 executable:
2286

    
2287
@example
2288
qemu-i386 tests/i386/ls
2289
@end example
2290
You can look at @file{qemu-binfmt-conf.sh} so that
2291
QEMU is automatically launched by the Linux kernel when you try to
2292
launch x86 executables. It requires the @code{binfmt_misc} module in the
2293
Linux kernel.
2294

    
2295
@item The x86 version of QEMU is also included. You can try weird things such as:
2296
@example
2297
qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
2298
          /usr/local/qemu-i386/bin/ls-i386
2299
@end example
2300

    
2301
@end itemize
2302

    
2303
@node Wine launch
2304
@subsection Wine launch
2305

    
2306
@itemize
2307

    
2308
@item Ensure that you have a working QEMU with the x86 glibc
2309
distribution (see previous section). In order to verify it, you must be
2310
able to do:
2311

    
2312
@example
2313
qemu-i386 /usr/local/qemu-i386/bin/ls-i386
2314
@end example
2315

    
2316
@item Download the binary x86 Wine install
2317
(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
2318

    
2319
@item Configure Wine on your account. Look at the provided script
2320
@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
2321
@code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
2322

    
2323
@item Then you can try the example @file{putty.exe}:
2324

    
2325
@example
2326
qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
2327
          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
2328
@end example
2329

    
2330
@end itemize
2331

    
2332
@node Command line options
2333
@subsection Command line options
2334

    
2335
@example
2336
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2337
@end example
2338

    
2339
@table @option
2340
@item -h
2341
Print the help
2342
@item -L path
2343
Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
2344
@item -s size
2345
Set the x86 stack size in bytes (default=524288)
2346
@end table
2347

    
2348
Debug options:
2349

    
2350
@table @option
2351
@item -d
2352
Activate log (logfile=/tmp/qemu.log)
2353
@item -p pagesize
2354
Act as if the host page size was 'pagesize' bytes
2355
@end table
2356

    
2357
@node Other binaries
2358
@subsection Other binaries
2359

    
2360
@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
2361
binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
2362
configurations), and arm-uclinux bFLT format binaries.
2363

    
2364
@command{qemu-m68k} is capable of running semihosted binaries using the BDM
2365
(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
2366
coldfire uClinux bFLT format binaries.
2367

    
2368
The binary format is detected automatically.
2369

    
2370
@node Mac OS X/Darwin User space emulator
2371
@section Mac OS X/Darwin User space emulator
2372

    
2373
@menu
2374
* Mac OS X/Darwin Status::
2375
* Mac OS X/Darwin Quick Start::
2376
* Mac OS X/Darwin Command line options::
2377
@end menu
2378

    
2379
@node Mac OS X/Darwin Status
2380
@subsection Mac OS X/Darwin Status
2381

    
2382
@itemize @minus
2383
@item
2384
target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
2385
@item
2386
target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
2387
@item
2388
target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
2389
@item
2390
target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
2391
@end itemize
2392

    
2393
[1] If you're host commpage can be executed by qemu.
2394

    
2395
@node Mac OS X/Darwin Quick Start
2396
@subsection Quick Start
2397

    
2398
In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
2399
itself and all the target dynamic libraries used by it. If you don't have the FAT
2400
libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
2401
CD or compile them by hand.
2402

    
2403
@itemize
2404

    
2405
@item On x86, you can just try to launch any process by using the native
2406
libraries:
2407

    
2408
@example
2409
qemu-i386 /bin/ls
2410
@end example
2411

    
2412
or to run the ppc version of the executable:
2413

    
2414
@example
2415
qemu-ppc /bin/ls
2416
@end example
2417

    
2418
@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
2419
are installed:
2420

    
2421
@example
2422
qemu-i386 -L /opt/x86_root/ /bin/ls
2423
@end example
2424

    
2425
@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
2426
@file{/opt/x86_root/usr/bin/dyld}.
2427

    
2428
@end itemize
2429

    
2430
@node Mac OS X/Darwin Command line options
2431
@subsection Command line options
2432

    
2433
@example
2434
usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
2435
@end example
2436

    
2437
@table @option
2438
@item -h
2439
Print the help
2440
@item -L path
2441
Set the library root path (default=/)
2442
@item -s size
2443
Set the stack size in bytes (default=524288)
2444
@end table
2445

    
2446
Debug options:
2447

    
2448
@table @option
2449
@item -d
2450
Activate log (logfile=/tmp/qemu.log)
2451
@item -p pagesize
2452
Act as if the host page size was 'pagesize' bytes
2453
@end table
2454

    
2455
@node compilation
2456
@chapter Compilation from the sources
2457

    
2458
@menu
2459
* Linux/Unix::
2460
* Windows::
2461
* Cross compilation for Windows with Linux::
2462
* Mac OS X::
2463
@end menu
2464

    
2465
@node Linux/Unix
2466
@section Linux/Unix
2467

    
2468
@subsection Compilation
2469

    
2470
First you must decompress the sources:
2471
@example
2472
cd /tmp
2473
tar zxvf qemu-x.y.z.tar.gz
2474
cd qemu-x.y.z
2475
@end example
2476

    
2477
Then you configure QEMU and build it (usually no options are needed):
2478
@example
2479
./configure
2480
make
2481
@end example
2482

    
2483
Then type as root user:
2484
@example
2485
make install
2486
@end example
2487
to install QEMU in @file{/usr/local}.
2488

    
2489
@subsection GCC version
2490

    
2491
In order to compile QEMU successfully, it is very important that you
2492
have the right tools. The most important one is gcc. On most hosts and
2493
in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
2494
Linux distribution includes a gcc 4.x compiler, you can usually
2495
install an older version (it is invoked by @code{gcc32} or
2496
@code{gcc34}). The QEMU configure script automatically probes for
2497
these older versions so that usually you don't have to do anything.
2498

    
2499
@node Windows
2500
@section Windows
2501

    
2502
@itemize
2503
@item Install the current versions of MSYS and MinGW from
2504
@url{http://www.mingw.org/}. You can find detailed installation
2505
instructions in the download section and the FAQ.
2506

    
2507
@item Download
2508
the MinGW development library of SDL 1.2.x
2509
(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
2510
@url{http://www.libsdl.org}. Unpack it in a temporary place, and
2511
unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
2512
directory. Edit the @file{sdl-config} script so that it gives the
2513
correct SDL directory when invoked.
2514

    
2515
@item Extract the current version of QEMU.
2516

    
2517
@item Start the MSYS shell (file @file{msys.bat}).
2518

    
2519
@item Change to the QEMU directory. Launch @file{./configure} and
2520
@file{make}.  If you have problems using SDL, verify that
2521
@file{sdl-config} can be launched from the MSYS command line.
2522

    
2523
@item You can install QEMU in @file{Program Files/Qemu} by typing
2524
@file{make install}. Don't forget to copy @file{SDL.dll} in
2525
@file{Program Files/Qemu}.
2526

    
2527
@end itemize
2528

    
2529
@node Cross compilation for Windows with Linux
2530
@section Cross compilation for Windows with Linux
2531

    
2532
@itemize
2533
@item
2534
Install the MinGW cross compilation tools available at
2535
@url{http://www.mingw.org/}.
2536

    
2537
@item
2538
Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
2539
unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
2540
variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
2541
the QEMU configuration script.
2542

    
2543
@item
2544
Configure QEMU for Windows cross compilation:
2545
@example
2546
./configure --enable-mingw32
2547
@end example
2548
If necessary, you can change the cross-prefix according to the prefix
2549
chosen for the MinGW tools with --cross-prefix. You can also use
2550
--prefix to set the Win32 install path.
2551

    
2552
@item You can install QEMU in the installation directory by typing
2553
@file{make install}. Don't forget to copy @file{SDL.dll} in the
2554
installation directory.
2555

    
2556
@end itemize
2557

    
2558
Note: Currently, Wine does not seem able to launch
2559
QEMU for Win32.
2560

    
2561
@node Mac OS X
2562
@section Mac OS X
2563

    
2564
The Mac OS X patches are not fully merged in QEMU, so you should look
2565
at the QEMU mailing list archive to have all the necessary
2566
information.
2567

    
2568
@node Index
2569
@chapter Index
2570
@printindex cp
2571

    
2572
@bye