Statistics
| Branch: | Revision:

root / target-ppc / op_helper.c @ 3cd7d1dd

History | View | Annotate | Download (76.3 kB)

1
/*
2
 *  PowerPC emulation helpers for qemu.
3
 *
4
 *  Copyright (c) 2003-2007 Jocelyn Mayer
5
 *
6
 * This library is free software; you can redistribute it and/or
7
 * modify it under the terms of the GNU Lesser General Public
8
 * License as published by the Free Software Foundation; either
9
 * version 2 of the License, or (at your option) any later version.
10
 *
11
 * This library is distributed in the hope that it will be useful,
12
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14
 * Lesser General Public License for more details.
15
 *
16
 * You should have received a copy of the GNU Lesser General Public
17
 * License along with this library; if not, write to the Free Software
18
 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
19
 */
20
#include "exec.h"
21
#include "host-utils.h"
22

    
23
#include "helper_regs.h"
24
#include "op_helper.h"
25

    
26
#define MEMSUFFIX _raw
27
#include "op_helper.h"
28
#include "op_helper_mem.h"
29
#if !defined(CONFIG_USER_ONLY)
30
#define MEMSUFFIX _user
31
#include "op_helper.h"
32
#include "op_helper_mem.h"
33
#define MEMSUFFIX _kernel
34
#include "op_helper.h"
35
#include "op_helper_mem.h"
36
#if defined(TARGET_PPC64H)
37
#define MEMSUFFIX _hypv
38
#include "op_helper.h"
39
#include "op_helper_mem.h"
40
#endif
41
#endif
42

    
43
//#define DEBUG_OP
44
//#define DEBUG_EXCEPTIONS
45
//#define DEBUG_SOFTWARE_TLB
46

    
47
/*****************************************************************************/
48
/* Exceptions processing helpers */
49

    
50
void do_raise_exception_err (uint32_t exception, int error_code)
51
{
52
#if 0
53
    printf("Raise exception %3x code : %d\n", exception, error_code);
54
#endif
55
    env->exception_index = exception;
56
    env->error_code = error_code;
57
    cpu_loop_exit();
58
}
59

    
60
void do_raise_exception (uint32_t exception)
61
{
62
    do_raise_exception_err(exception, 0);
63
}
64

    
65
void cpu_dump_EA (target_ulong EA);
66
void do_print_mem_EA (target_ulong EA)
67
{
68
    cpu_dump_EA(EA);
69
}
70

    
71
/*****************************************************************************/
72
/* Registers load and stores */
73
void do_load_cr (void)
74
{
75
    T0 = (env->crf[0] << 28) |
76
        (env->crf[1] << 24) |
77
        (env->crf[2] << 20) |
78
        (env->crf[3] << 16) |
79
        (env->crf[4] << 12) |
80
        (env->crf[5] << 8) |
81
        (env->crf[6] << 4) |
82
        (env->crf[7] << 0);
83
}
84

    
85
void do_store_cr (uint32_t mask)
86
{
87
    int i, sh;
88

    
89
    for (i = 0, sh = 7; i < 8; i++, sh--) {
90
        if (mask & (1 << sh))
91
            env->crf[i] = (T0 >> (sh * 4)) & 0xFUL;
92
    }
93
}
94

    
95
#if defined(TARGET_PPC64)
96
void do_store_pri (int prio)
97
{
98
    env->spr[SPR_PPR] &= ~0x001C000000000000ULL;
99
    env->spr[SPR_PPR] |= ((uint64_t)prio & 0x7) << 50;
100
}
101
#endif
102

    
103
target_ulong ppc_load_dump_spr (int sprn)
104
{
105
    if (loglevel != 0) {
106
        fprintf(logfile, "Read SPR %d %03x => " ADDRX "\n",
107
                sprn, sprn, env->spr[sprn]);
108
    }
109

    
110
    return env->spr[sprn];
111
}
112

    
113
void ppc_store_dump_spr (int sprn, target_ulong val)
114
{
115
    if (loglevel != 0) {
116
        fprintf(logfile, "Write SPR %d %03x => " ADDRX " <= " ADDRX "\n",
117
                sprn, sprn, env->spr[sprn], val);
118
    }
119
    env->spr[sprn] = val;
120
}
121

    
122
/*****************************************************************************/
123
/* Fixed point operations helpers */
124
void do_adde (void)
125
{
126
    T2 = T0;
127
    T0 += T1 + xer_ca;
128
    if (likely(!((uint32_t)T0 < (uint32_t)T2 ||
129
                 (xer_ca == 1 && (uint32_t)T0 == (uint32_t)T2)))) {
130
        xer_ca = 0;
131
    } else {
132
        xer_ca = 1;
133
    }
134
}
135

    
136
#if defined(TARGET_PPC64)
137
void do_adde_64 (void)
138
{
139
    T2 = T0;
140
    T0 += T1 + xer_ca;
141
    if (likely(!((uint64_t)T0 < (uint64_t)T2 ||
142
                 (xer_ca == 1 && (uint64_t)T0 == (uint64_t)T2)))) {
143
        xer_ca = 0;
144
    } else {
145
        xer_ca = 1;
146
    }
147
}
148
#endif
149

    
150
void do_addmeo (void)
151
{
152
    T1 = T0;
153
    T0 += xer_ca + (-1);
154
    xer_ov = ((uint32_t)T1 & ((uint32_t)T1 ^ (uint32_t)T0)) >> 31;
155
    xer_so |= xer_ov;
156
    if (likely(T1 != 0))
157
        xer_ca = 1;
158
    else
159
        xer_ca = 0;
160
}
161

    
162
#if defined(TARGET_PPC64)
163
void do_addmeo_64 (void)
164
{
165
    T1 = T0;
166
    T0 += xer_ca + (-1);
167
    xer_ov = ((uint64_t)T1 & ((uint64_t)T1 ^ (uint64_t)T0)) >> 63;
168
    xer_so |= xer_ov;
169
    if (likely(T1 != 0))
170
        xer_ca = 1;
171
    else
172
        xer_ca = 0;
173
}
174
#endif
175

    
176
void do_divwo (void)
177
{
178
    if (likely(!(((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
179
                 (int32_t)T1 == 0))) {
180
        xer_ov = 0;
181
        T0 = (int32_t)T0 / (int32_t)T1;
182
    } else {
183
        xer_ov = 1;
184
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
185
    }
186
    xer_so |= xer_ov;
187
}
188

    
189
#if defined(TARGET_PPC64)
190
void do_divdo (void)
191
{
192
    if (likely(!(((int64_t)T0 == INT64_MIN && (int64_t)T1 == (int64_t)-1LL) ||
193
                 (int64_t)T1 == 0))) {
194
        xer_ov = 0;
195
        T0 = (int64_t)T0 / (int64_t)T1;
196
    } else {
197
        xer_ov = 1;
198
        T0 = UINT64_MAX * ((uint64_t)T0 >> 63);
199
    }
200
    xer_so |= xer_ov;
201
}
202
#endif
203

    
204
void do_divwuo (void)
205
{
206
    if (likely((uint32_t)T1 != 0)) {
207
        xer_ov = 0;
208
        T0 = (uint32_t)T0 / (uint32_t)T1;
209
    } else {
210
        xer_ov = 1;
211
        xer_so = 1;
212
        T0 = 0;
213
    }
214
}
215

    
216
#if defined(TARGET_PPC64)
217
void do_divduo (void)
218
{
219
    if (likely((uint64_t)T1 != 0)) {
220
        xer_ov = 0;
221
        T0 = (uint64_t)T0 / (uint64_t)T1;
222
    } else {
223
        xer_ov = 1;
224
        xer_so = 1;
225
        T0 = 0;
226
    }
227
}
228
#endif
229

    
230
void do_mullwo (void)
231
{
232
    int64_t res = (int64_t)T0 * (int64_t)T1;
233

    
234
    if (likely((int32_t)res == res)) {
235
        xer_ov = 0;
236
    } else {
237
        xer_ov = 1;
238
        xer_so = 1;
239
    }
240
    T0 = (int32_t)res;
241
}
242

    
243
#if defined(TARGET_PPC64)
244
void do_mulldo (void)
245
{
246
    int64_t th;
247
    uint64_t tl;
248

    
249
    muls64(&tl, &th, T0, T1);
250
    T0 = (int64_t)tl;
251
    /* If th != 0 && th != -1, then we had an overflow */
252
    if (likely((uint64_t)(th + 1) <= 1)) {
253
        xer_ov = 0;
254
    } else {
255
        xer_ov = 1;
256
    }
257
    xer_so |= xer_ov;
258
}
259
#endif
260

    
261
void do_nego (void)
262
{
263
    if (likely((int32_t)T0 != INT32_MIN)) {
264
        xer_ov = 0;
265
        T0 = -(int32_t)T0;
266
    } else {
267
        xer_ov = 1;
268
        xer_so = 1;
269
    }
270
}
271

    
272
#if defined(TARGET_PPC64)
273
void do_nego_64 (void)
274
{
275
    if (likely((int64_t)T0 != INT64_MIN)) {
276
        xer_ov = 0;
277
        T0 = -(int64_t)T0;
278
    } else {
279
        xer_ov = 1;
280
        xer_so = 1;
281
    }
282
}
283
#endif
284

    
285
void do_subfe (void)
286
{
287
    T0 = T1 + ~T0 + xer_ca;
288
    if (likely((uint32_t)T0 >= (uint32_t)T1 &&
289
               (xer_ca == 0 || (uint32_t)T0 != (uint32_t)T1))) {
290
        xer_ca = 0;
291
    } else {
292
        xer_ca = 1;
293
    }
294
}
295

    
296
#if defined(TARGET_PPC64)
297
void do_subfe_64 (void)
298
{
299
    T0 = T1 + ~T0 + xer_ca;
300
    if (likely((uint64_t)T0 >= (uint64_t)T1 &&
301
               (xer_ca == 0 || (uint64_t)T0 != (uint64_t)T1))) {
302
        xer_ca = 0;
303
    } else {
304
        xer_ca = 1;
305
    }
306
}
307
#endif
308

    
309
void do_subfmeo (void)
310
{
311
    T1 = T0;
312
    T0 = ~T0 + xer_ca - 1;
313
    xer_ov = ((uint32_t)~T1 & ((uint32_t)~T1 ^ (uint32_t)T0)) >> 31;
314
    xer_so |= xer_ov;
315
    if (likely((uint32_t)T1 != UINT32_MAX))
316
        xer_ca = 1;
317
    else
318
        xer_ca = 0;
319
}
320

    
321
#if defined(TARGET_PPC64)
322
void do_subfmeo_64 (void)
323
{
324
    T1 = T0;
325
    T0 = ~T0 + xer_ca - 1;
326
    xer_ov = ((uint64_t)~T1 & ((uint64_t)~T1 ^ (uint64_t)T0)) >> 63;
327
    xer_so |= xer_ov;
328
    if (likely((uint64_t)T1 != UINT64_MAX))
329
        xer_ca = 1;
330
    else
331
        xer_ca = 0;
332
}
333
#endif
334

    
335
void do_subfzeo (void)
336
{
337
    T1 = T0;
338
    T0 = ~T0 + xer_ca;
339
    xer_ov = (((uint32_t)~T1 ^ UINT32_MAX) &
340
              ((uint32_t)(~T1) ^ (uint32_t)T0)) >> 31;
341
    xer_so |= xer_ov;
342
    if (likely((uint32_t)T0 >= (uint32_t)~T1)) {
343
        xer_ca = 0;
344
    } else {
345
        xer_ca = 1;
346
    }
347
}
348

    
349
#if defined(TARGET_PPC64)
350
void do_subfzeo_64 (void)
351
{
352
    T1 = T0;
353
    T0 = ~T0 + xer_ca;
354
    xer_ov = (((uint64_t)~T1 ^  UINT64_MAX) &
355
              ((uint64_t)(~T1) ^ (uint64_t)T0)) >> 63;
356
    xer_so |= xer_ov;
357
    if (likely((uint64_t)T0 >= (uint64_t)~T1)) {
358
        xer_ca = 0;
359
    } else {
360
        xer_ca = 1;
361
    }
362
}
363
#endif
364

    
365
void do_cntlzw (void)
366
{
367
    T0 = clz32(T0);
368
}
369

    
370
#if defined(TARGET_PPC64)
371
void do_cntlzd (void)
372
{
373
    T0 = clz64(T0);
374
}
375
#endif
376

    
377
/* shift right arithmetic helper */
378
void do_sraw (void)
379
{
380
    int32_t ret;
381

    
382
    if (likely(!(T1 & 0x20UL))) {
383
        if (likely((uint32_t)T1 != 0)) {
384
            ret = (int32_t)T0 >> (T1 & 0x1fUL);
385
            if (likely(ret >= 0 || ((int32_t)T0 & ((1 << T1) - 1)) == 0)) {
386
                xer_ca = 0;
387
            } else {
388
                xer_ca = 1;
389
            }
390
        } else {
391
            ret = T0;
392
            xer_ca = 0;
393
        }
394
    } else {
395
        ret = UINT32_MAX * ((uint32_t)T0 >> 31);
396
        if (likely(ret >= 0 || ((uint32_t)T0 & ~0x80000000UL) == 0)) {
397
            xer_ca = 0;
398
        } else {
399
            xer_ca = 1;
400
        }
401
    }
402
    T0 = ret;
403
}
404

    
405
#if defined(TARGET_PPC64)
406
void do_srad (void)
407
{
408
    int64_t ret;
409

    
410
    if (likely(!(T1 & 0x40UL))) {
411
        if (likely((uint64_t)T1 != 0)) {
412
            ret = (int64_t)T0 >> (T1 & 0x3FUL);
413
            if (likely(ret >= 0 || ((int64_t)T0 & ((1 << T1) - 1)) == 0)) {
414
                xer_ca = 0;
415
            } else {
416
                xer_ca = 1;
417
            }
418
        } else {
419
            ret = T0;
420
            xer_ca = 0;
421
        }
422
    } else {
423
        ret = UINT64_MAX * ((uint64_t)T0 >> 63);
424
        if (likely(ret >= 0 || ((uint64_t)T0 & ~0x8000000000000000ULL) == 0)) {
425
            xer_ca = 0;
426
        } else {
427
            xer_ca = 1;
428
        }
429
    }
430
    T0 = ret;
431
}
432
#endif
433

    
434
void do_popcntb (void)
435
{
436
    uint32_t ret;
437
    int i;
438

    
439
    ret = 0;
440
    for (i = 0; i < 32; i += 8)
441
        ret |= ctpop8((T0 >> i) & 0xFF) << i;
442
    T0 = ret;
443
}
444

    
445
#if defined(TARGET_PPC64)
446
void do_popcntb_64 (void)
447
{
448
    uint64_t ret;
449
    int i;
450

    
451
    ret = 0;
452
    for (i = 0; i < 64; i += 8)
453
        ret |= ctpop8((T0 >> i) & 0xFF) << i;
454
    T0 = ret;
455
}
456
#endif
457

    
458
/*****************************************************************************/
459
/* Floating point operations helpers */
460
static always_inline int fpisneg (float64 f)
461
{
462
    union {
463
        float64 f;
464
        uint64_t u;
465
    } u;
466

    
467
    u.f = f;
468

    
469
    return u.u >> 63 != 0;
470
}
471

    
472
static always_inline int isden (float f)
473
{
474
    union {
475
        float64 f;
476
        uint64_t u;
477
    } u;
478

    
479
    u.f = f;
480

    
481
    return ((u.u >> 52) & 0x7FF) == 0;
482
}
483

    
484
static always_inline int iszero (float64 f)
485
{
486
    union {
487
        float64 f;
488
        uint64_t u;
489
    } u;
490

    
491
    u.f = f;
492

    
493
    return (u.u & ~0x8000000000000000ULL) == 0;
494
}
495

    
496
static always_inline int isinfinity (float64 f)
497
{
498
    union {
499
        float64 f;
500
        uint64_t u;
501
    } u;
502

    
503
    u.f = f;
504

    
505
    return ((u.u >> 52) & 0x7FF) == 0x7FF &&
506
        (u.u & 0x000FFFFFFFFFFFFFULL) == 0;
507
}
508

    
509
void do_compute_fprf (int set_fprf)
510
{
511
    int isneg;
512

    
513
    isneg = fpisneg(FT0);
514
    if (unlikely(float64_is_nan(FT0))) {
515
        if (float64_is_signaling_nan(FT0)) {
516
            /* Signaling NaN: flags are undefined */
517
            T0 = 0x00;
518
        } else {
519
            /* Quiet NaN */
520
            T0 = 0x11;
521
        }
522
    } else if (unlikely(isinfinity(FT0))) {
523
        /* +/- infinity */
524
        if (isneg)
525
            T0 = 0x09;
526
        else
527
            T0 = 0x05;
528
    } else {
529
        if (iszero(FT0)) {
530
            /* +/- zero */
531
            if (isneg)
532
                T0 = 0x12;
533
            else
534
                T0 = 0x02;
535
        } else {
536
            if (isden(FT0)) {
537
                /* Denormalized numbers */
538
                T0 = 0x10;
539
            } else {
540
                /* Normalized numbers */
541
                T0 = 0x00;
542
            }
543
            if (isneg) {
544
                T0 |= 0x08;
545
            } else {
546
                T0 |= 0x04;
547
            }
548
        }
549
    }
550
    if (set_fprf) {
551
        /* We update FPSCR_FPRF */
552
        env->fpscr &= ~(0x1F << FPSCR_FPRF);
553
        env->fpscr |= T0 << FPSCR_FPRF;
554
    }
555
    /* We just need fpcc to update Rc1 */
556
    T0 &= 0xF;
557
}
558

    
559
/* Floating-point invalid operations exception */
560
static always_inline void fload_invalid_op_excp (int op)
561
{
562
    int ve;
563

    
564
    ve = fpscr_ve;
565
    if (op & POWERPC_EXCP_FP_VXSNAN) {
566
        /* Operation on signaling NaN */
567
        env->fpscr |= 1 << FPSCR_VXSNAN;
568
    }
569
    if (op & POWERPC_EXCP_FP_VXSOFT) {
570
        /* Software-defined condition */
571
        env->fpscr |= 1 << FPSCR_VXSOFT;
572
    }
573
    switch (op & ~(POWERPC_EXCP_FP_VXSOFT | POWERPC_EXCP_FP_VXSNAN)) {
574
    case POWERPC_EXCP_FP_VXISI:
575
        /* Magnitude subtraction of infinities */
576
        env->fpscr |= 1 << FPSCR_VXISI;
577
        goto update_arith;
578
    case POWERPC_EXCP_FP_VXIDI:
579
        /* Division of infinity by infinity */
580
        env->fpscr |= 1 << FPSCR_VXIDI;
581
        goto update_arith;
582
    case POWERPC_EXCP_FP_VXZDZ:
583
        /* Division of zero by zero */
584
        env->fpscr |= 1 << FPSCR_VXZDZ;
585
        goto update_arith;
586
    case POWERPC_EXCP_FP_VXIMZ:
587
        /* Multiplication of zero by infinity */
588
        env->fpscr |= 1 << FPSCR_VXIMZ;
589
        goto update_arith;
590
    case POWERPC_EXCP_FP_VXVC:
591
        /* Ordered comparison of NaN */
592
        env->fpscr |= 1 << FPSCR_VXVC;
593
        env->fpscr &= ~(0xF << FPSCR_FPCC);
594
        env->fpscr |= 0x11 << FPSCR_FPCC;
595
        /* We must update the target FPR before raising the exception */
596
        if (ve != 0) {
597
            env->exception_index = POWERPC_EXCP_PROGRAM;
598
            env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
599
            /* Update the floating-point enabled exception summary */
600
            env->fpscr |= 1 << FPSCR_FEX;
601
            /* Exception is differed */
602
            ve = 0;
603
        }
604
        break;
605
    case POWERPC_EXCP_FP_VXSQRT:
606
        /* Square root of a negative number */
607
        env->fpscr |= 1 << FPSCR_VXSQRT;
608
    update_arith:
609
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
610
        if (ve == 0) {
611
            /* Set the result to quiet NaN */
612
            FT0 = UINT64_MAX;
613
            env->fpscr &= ~(0xF << FPSCR_FPCC);
614
            env->fpscr |= 0x11 << FPSCR_FPCC;
615
        }
616
        break;
617
    case POWERPC_EXCP_FP_VXCVI:
618
        /* Invalid conversion */
619
        env->fpscr |= 1 << FPSCR_VXCVI;
620
        env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
621
        if (ve == 0) {
622
            /* Set the result to quiet NaN */
623
            FT0 = UINT64_MAX;
624
            env->fpscr &= ~(0xF << FPSCR_FPCC);
625
            env->fpscr |= 0x11 << FPSCR_FPCC;
626
        }
627
        break;
628
    }
629
    /* Update the floating-point invalid operation summary */
630
    env->fpscr |= 1 << FPSCR_VX;
631
    /* Update the floating-point exception summary */
632
    env->fpscr |= 1 << FPSCR_FX;
633
    if (ve != 0) {
634
        /* Update the floating-point enabled exception summary */
635
        env->fpscr |= 1 << FPSCR_FEX;
636
        if (msr_fe0 != 0 || msr_fe1 != 0)
637
            do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_FP | op);
638
    }
639
}
640

    
641
static always_inline void float_zero_divide_excp (void)
642
{
643
    union {
644
        float64 f;
645
        uint64_t u;
646
    } u0, u1;
647

    
648
    env->fpscr |= 1 << FPSCR_ZX;
649
    env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
650
    /* Update the floating-point exception summary */
651
    env->fpscr |= 1 << FPSCR_FX;
652
    if (fpscr_ze != 0) {
653
        /* Update the floating-point enabled exception summary */
654
        env->fpscr |= 1 << FPSCR_FEX;
655
        if (msr_fe0 != 0 || msr_fe1 != 0) {
656
            do_raise_exception_err(POWERPC_EXCP_PROGRAM,
657
                                   POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
658
        }
659
    } else {
660
        /* Set the result to infinity */
661
        u0.f = FT0;
662
        u1.f = FT1;
663
        u0.u = ((u0.u ^ u1.u) & 0x8000000000000000ULL);
664
        u0.u |= 0x7FFULL << 52;
665
        FT0 = u0.f;
666
    }
667
}
668

    
669
static always_inline void float_overflow_excp (void)
670
{
671
    env->fpscr |= 1 << FPSCR_OX;
672
    /* Update the floating-point exception summary */
673
    env->fpscr |= 1 << FPSCR_FX;
674
    if (fpscr_oe != 0) {
675
        /* XXX: should adjust the result */
676
        /* Update the floating-point enabled exception summary */
677
        env->fpscr |= 1 << FPSCR_FEX;
678
        /* We must update the target FPR before raising the exception */
679
        env->exception_index = POWERPC_EXCP_PROGRAM;
680
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
681
    } else {
682
        env->fpscr |= 1 << FPSCR_XX;
683
        env->fpscr |= 1 << FPSCR_FI;
684
    }
685
}
686

    
687
static always_inline void float_underflow_excp (void)
688
{
689
    env->fpscr |= 1 << FPSCR_UX;
690
    /* Update the floating-point exception summary */
691
    env->fpscr |= 1 << FPSCR_FX;
692
    if (fpscr_ue != 0) {
693
        /* XXX: should adjust the result */
694
        /* Update the floating-point enabled exception summary */
695
        env->fpscr |= 1 << FPSCR_FEX;
696
        /* We must update the target FPR before raising the exception */
697
        env->exception_index = POWERPC_EXCP_PROGRAM;
698
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
699
    }
700
}
701

    
702
static always_inline void float_inexact_excp (void)
703
{
704
    env->fpscr |= 1 << FPSCR_XX;
705
    /* Update the floating-point exception summary */
706
    env->fpscr |= 1 << FPSCR_FX;
707
    if (fpscr_xe != 0) {
708
        /* Update the floating-point enabled exception summary */
709
        env->fpscr |= 1 << FPSCR_FEX;
710
        /* We must update the target FPR before raising the exception */
711
        env->exception_index = POWERPC_EXCP_PROGRAM;
712
        env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
713
    }
714
}
715

    
716
static always_inline void fpscr_set_rounding_mode (void)
717
{
718
    int rnd_type;
719

    
720
    /* Set rounding mode */
721
    switch (fpscr_rn) {
722
    case 0:
723
        /* Best approximation (round to nearest) */
724
        rnd_type = float_round_nearest_even;
725
        break;
726
    case 1:
727
        /* Smaller magnitude (round toward zero) */
728
        rnd_type = float_round_to_zero;
729
        break;
730
    case 2:
731
        /* Round toward +infinite */
732
        rnd_type = float_round_up;
733
        break;
734
    default:
735
    case 3:
736
        /* Round toward -infinite */
737
        rnd_type = float_round_down;
738
        break;
739
    }
740
    set_float_rounding_mode(rnd_type, &env->fp_status);
741
}
742

    
743
void do_fpscr_setbit (int bit)
744
{
745
    int prev;
746

    
747
    prev = (env->fpscr >> bit) & 1;
748
    env->fpscr |= 1 << bit;
749
    if (prev == 0) {
750
        switch (bit) {
751
        case FPSCR_VX:
752
            env->fpscr |= 1 << FPSCR_FX;
753
            if (fpscr_ve)
754
                goto raise_ve;
755
        case FPSCR_OX:
756
            env->fpscr |= 1 << FPSCR_FX;
757
            if (fpscr_oe)
758
                goto raise_oe;
759
            break;
760
        case FPSCR_UX:
761
            env->fpscr |= 1 << FPSCR_FX;
762
            if (fpscr_ue)
763
                goto raise_ue;
764
            break;
765
        case FPSCR_ZX:
766
            env->fpscr |= 1 << FPSCR_FX;
767
            if (fpscr_ze)
768
                goto raise_ze;
769
            break;
770
        case FPSCR_XX:
771
            env->fpscr |= 1 << FPSCR_FX;
772
            if (fpscr_xe)
773
                goto raise_xe;
774
            break;
775
        case FPSCR_VXSNAN:
776
        case FPSCR_VXISI:
777
        case FPSCR_VXIDI:
778
        case FPSCR_VXZDZ:
779
        case FPSCR_VXIMZ:
780
        case FPSCR_VXVC:
781
        case FPSCR_VXSOFT:
782
        case FPSCR_VXSQRT:
783
        case FPSCR_VXCVI:
784
            env->fpscr |= 1 << FPSCR_VX;
785
            env->fpscr |= 1 << FPSCR_FX;
786
            if (fpscr_ve != 0)
787
                goto raise_ve;
788
            break;
789
        case FPSCR_VE:
790
            if (fpscr_vx != 0) {
791
            raise_ve:
792
                env->error_code = POWERPC_EXCP_FP;
793
                if (fpscr_vxsnan)
794
                    env->error_code |= POWERPC_EXCP_FP_VXSNAN;
795
                if (fpscr_vxisi)
796
                    env->error_code |= POWERPC_EXCP_FP_VXISI;
797
                if (fpscr_vxidi)
798
                    env->error_code |= POWERPC_EXCP_FP_VXIDI;
799
                if (fpscr_vxzdz)
800
                    env->error_code |= POWERPC_EXCP_FP_VXZDZ;
801
                if (fpscr_vximz)
802
                    env->error_code |= POWERPC_EXCP_FP_VXIMZ;
803
                if (fpscr_vxvc)
804
                    env->error_code |= POWERPC_EXCP_FP_VXVC;
805
                if (fpscr_vxsoft)
806
                    env->error_code |= POWERPC_EXCP_FP_VXSOFT;
807
                if (fpscr_vxsqrt)
808
                    env->error_code |= POWERPC_EXCP_FP_VXSQRT;
809
                if (fpscr_vxcvi)
810
                    env->error_code |= POWERPC_EXCP_FP_VXCVI;
811
                goto raise_excp;
812
            }
813
            break;
814
        case FPSCR_OE:
815
            if (fpscr_ox != 0) {
816
            raise_oe:
817
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
818
                goto raise_excp;
819
            }
820
            break;
821
        case FPSCR_UE:
822
            if (fpscr_ux != 0) {
823
            raise_ue:
824
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
825
                goto raise_excp;
826
            }
827
            break;
828
        case FPSCR_ZE:
829
            if (fpscr_zx != 0) {
830
            raise_ze:
831
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
832
                goto raise_excp;
833
            }
834
            break;
835
        case FPSCR_XE:
836
            if (fpscr_xx != 0) {
837
            raise_xe:
838
                env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
839
                goto raise_excp;
840
            }
841
            break;
842
        case FPSCR_RN1:
843
        case FPSCR_RN:
844
            fpscr_set_rounding_mode();
845
            break;
846
        default:
847
            break;
848
        raise_excp:
849
            /* Update the floating-point enabled exception summary */
850
            env->fpscr |= 1 << FPSCR_FEX;
851
                /* We have to update Rc1 before raising the exception */
852
            env->exception_index = POWERPC_EXCP_PROGRAM;
853
            break;
854
        }
855
    }
856
}
857

    
858
#if defined(WORDS_BIGENDIAN)
859
#define WORD0 0
860
#define WORD1 1
861
#else
862
#define WORD0 1
863
#define WORD1 0
864
#endif
865
void do_store_fpscr (uint32_t mask)
866
{
867
    /*
868
     * We use only the 32 LSB of the incoming fpr
869
     */
870
    union {
871
        double d;
872
        struct {
873
            uint32_t u[2];
874
        } s;
875
    } u;
876
    uint32_t prev, new;
877
    int i;
878

    
879
    u.d = FT0;
880
    prev = env->fpscr;
881
    new = u.s.u[WORD1];
882
    new &= ~0x90000000;
883
    new |= prev & 0x90000000;
884
    for (i = 0; i < 7; i++) {
885
        if (mask & (1 << i)) {
886
            env->fpscr &= ~(0xF << (4 * i));
887
            env->fpscr |= new & (0xF << (4 * i));
888
        }
889
    }
890
    /* Update VX and FEX */
891
    if (fpscr_ix != 0)
892
        env->fpscr |= 1 << FPSCR_VX;
893
    if ((fpscr_ex & fpscr_eex) != 0) {
894
        env->fpscr |= 1 << FPSCR_FEX;
895
        env->exception_index = POWERPC_EXCP_PROGRAM;
896
        /* XXX: we should compute it properly */
897
        env->error_code = POWERPC_EXCP_FP;
898
    }
899
    fpscr_set_rounding_mode();
900
}
901
#undef WORD0
902
#undef WORD1
903

    
904
#ifdef CONFIG_SOFTFLOAT
905
void do_float_check_status (void)
906
{
907
    if (env->exception_index == POWERPC_EXCP_PROGRAM &&
908
        (env->error_code & POWERPC_EXCP_FP)) {
909
        /* Differred floating-point exception after target FPR update */
910
        if (msr_fe0 != 0 || msr_fe1 != 0)
911
            do_raise_exception_err(env->exception_index, env->error_code);
912
    } else if (env->fp_status.float_exception_flags & float_flag_overflow) {
913
        float_overflow_excp();
914
    } else if (env->fp_status.float_exception_flags & float_flag_underflow) {
915
        float_underflow_excp();
916
    } else if (env->fp_status.float_exception_flags & float_flag_inexact) {
917
        float_inexact_excp();
918
    }
919
}
920
#endif
921

    
922
#if USE_PRECISE_EMULATION
923
void do_fadd (void)
924
{
925
    if (unlikely(float64_is_signaling_nan(FT0) ||
926
                 float64_is_signaling_nan(FT1))) {
927
        /* sNaN addition */
928
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
929
    } else if (likely(isfinite(FT0) || isfinite(FT1) ||
930
                      fpisneg(FT0) == fpisneg(FT1))) {
931
        FT0 = float64_add(FT0, FT1, &env->fp_status);
932
    } else {
933
        /* Magnitude subtraction of infinities */
934
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
935
    }
936
}
937

    
938
void do_fsub (void)
939
{
940
    if (unlikely(float64_is_signaling_nan(FT0) ||
941
                 float64_is_signaling_nan(FT1))) {
942
        /* sNaN subtraction */
943
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
944
    } else if (likely(isfinite(FT0) || isfinite(FT1) ||
945
                      fpisneg(FT0) != fpisneg(FT1))) {
946
        FT0 = float64_sub(FT0, FT1, &env->fp_status);
947
    } else {
948
        /* Magnitude subtraction of infinities */
949
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXISI);
950
    }
951
}
952

    
953
void do_fmul (void)
954
{
955
    if (unlikely(float64_is_signaling_nan(FT0) ||
956
                 float64_is_signaling_nan(FT1))) {
957
        /* sNaN multiplication */
958
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
959
    } else if (unlikely((isinfinity(FT0) && iszero(FT1)) ||
960
                        (iszero(FT0) && isinfinity(FT1)))) {
961
        /* Multiplication of zero by infinity */
962
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXIMZ);
963
    } else {
964
        FT0 = float64_mul(FT0, FT1, &env->fp_status);
965
    }
966
}
967

    
968
void do_fdiv (void)
969
{
970
    if (unlikely(float64_is_signaling_nan(FT0) ||
971
                 float64_is_signaling_nan(FT1))) {
972
        /* sNaN division */
973
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
974
    } else if (unlikely(isinfinity(FT0) && isinfinity(FT1))) {
975
        /* Division of infinity by infinity */
976
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXIDI);
977
    } else if (unlikely(iszero(FT1))) {
978
        if (iszero(FT0)) {
979
            /* Division of zero by zero */
980
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXZDZ);
981
        } else {
982
            /* Division by zero */
983
            float_zero_divide_excp();
984
        }
985
    } else {
986
        FT0 = float64_div(FT0, FT1, &env->fp_status);
987
    }
988
}
989
#endif /* USE_PRECISE_EMULATION */
990

    
991
void do_fctiw (void)
992
{
993
    union {
994
        double d;
995
        uint64_t i;
996
    } p;
997

    
998
    if (unlikely(float64_is_signaling_nan(FT0))) {
999
        /* sNaN conversion */
1000
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1001
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1002
        /* qNan / infinity conversion */
1003
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1004
    } else {
1005
        p.i = float64_to_int32(FT0, &env->fp_status);
1006
#if USE_PRECISE_EMULATION
1007
        /* XXX: higher bits are not supposed to be significant.
1008
         *     to make tests easier, return the same as a real PowerPC 750
1009
         */
1010
        p.i |= 0xFFF80000ULL << 32;
1011
#endif
1012
        FT0 = p.d;
1013
    }
1014
}
1015

    
1016
void do_fctiwz (void)
1017
{
1018
    union {
1019
        double d;
1020
        uint64_t i;
1021
    } p;
1022

    
1023
    if (unlikely(float64_is_signaling_nan(FT0))) {
1024
        /* sNaN conversion */
1025
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1026
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1027
        /* qNan / infinity conversion */
1028
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1029
    } else {
1030
        p.i = float64_to_int32_round_to_zero(FT0, &env->fp_status);
1031
#if USE_PRECISE_EMULATION
1032
        /* XXX: higher bits are not supposed to be significant.
1033
         *     to make tests easier, return the same as a real PowerPC 750
1034
         */
1035
        p.i |= 0xFFF80000ULL << 32;
1036
#endif
1037
        FT0 = p.d;
1038
    }
1039
}
1040

    
1041
#if defined(TARGET_PPC64)
1042
void do_fcfid (void)
1043
{
1044
    union {
1045
        double d;
1046
        uint64_t i;
1047
    } p;
1048

    
1049
    p.d = FT0;
1050
    FT0 = int64_to_float64(p.i, &env->fp_status);
1051
}
1052

    
1053
void do_fctid (void)
1054
{
1055
    union {
1056
        double d;
1057
        uint64_t i;
1058
    } p;
1059

    
1060
    if (unlikely(float64_is_signaling_nan(FT0))) {
1061
        /* sNaN conversion */
1062
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1063
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1064
        /* qNan / infinity conversion */
1065
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1066
    } else {
1067
        p.i = float64_to_int64(FT0, &env->fp_status);
1068
        FT0 = p.d;
1069
    }
1070
}
1071

    
1072
void do_fctidz (void)
1073
{
1074
    union {
1075
        double d;
1076
        uint64_t i;
1077
    } p;
1078

    
1079
    if (unlikely(float64_is_signaling_nan(FT0))) {
1080
        /* sNaN conversion */
1081
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1082
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1083
        /* qNan / infinity conversion */
1084
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1085
    } else {
1086
        p.i = float64_to_int64_round_to_zero(FT0, &env->fp_status);
1087
        FT0 = p.d;
1088
    }
1089
}
1090

    
1091
#endif
1092

    
1093
static always_inline void do_fri (int rounding_mode)
1094
{
1095
    if (unlikely(float64_is_signaling_nan(FT0))) {
1096
        /* sNaN round */
1097
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN | POWERPC_EXCP_FP_VXCVI);
1098
    } else if (unlikely(float64_is_nan(FT0) || isinfinity(FT0))) {
1099
        /* qNan / infinity round */
1100
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXCVI);
1101
    } else {
1102
        set_float_rounding_mode(rounding_mode, &env->fp_status);
1103
        FT0 = float64_round_to_int(FT0, &env->fp_status);
1104
        /* Restore rounding mode from FPSCR */
1105
        fpscr_set_rounding_mode();
1106
    }
1107
}
1108

    
1109
void do_frin (void)
1110
{
1111
    do_fri(float_round_nearest_even);
1112
}
1113

    
1114
void do_friz (void)
1115
{
1116
    do_fri(float_round_to_zero);
1117
}
1118

    
1119
void do_frip (void)
1120
{
1121
    do_fri(float_round_up);
1122
}
1123

    
1124
void do_frim (void)
1125
{
1126
    do_fri(float_round_down);
1127
}
1128

    
1129
#if USE_PRECISE_EMULATION
1130
void do_fmadd (void)
1131
{
1132
    if (unlikely(float64_is_signaling_nan(FT0) ||
1133
                 float64_is_signaling_nan(FT1) ||
1134
                 float64_is_signaling_nan(FT2))) {
1135
        /* sNaN operation */
1136
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1137
    } else {
1138
#ifdef FLOAT128
1139
        /* This is the way the PowerPC specification defines it */
1140
        float128 ft0_128, ft1_128;
1141

    
1142
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
1143
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
1144
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1145
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
1146
        ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1147
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
1148
#else
1149
        /* This is OK on x86 hosts */
1150
        FT0 = (FT0 * FT1) + FT2;
1151
#endif
1152
    }
1153
}
1154

    
1155
void do_fmsub (void)
1156
{
1157
    if (unlikely(float64_is_signaling_nan(FT0) ||
1158
                 float64_is_signaling_nan(FT1) ||
1159
                 float64_is_signaling_nan(FT2))) {
1160
        /* sNaN operation */
1161
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1162
    } else {
1163
#ifdef FLOAT128
1164
        /* This is the way the PowerPC specification defines it */
1165
        float128 ft0_128, ft1_128;
1166

    
1167
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
1168
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
1169
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1170
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
1171
        ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1172
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
1173
#else
1174
        /* This is OK on x86 hosts */
1175
        FT0 = (FT0 * FT1) - FT2;
1176
#endif
1177
    }
1178
}
1179
#endif /* USE_PRECISE_EMULATION */
1180

    
1181
void do_fnmadd (void)
1182
{
1183
    if (unlikely(float64_is_signaling_nan(FT0) ||
1184
                 float64_is_signaling_nan(FT1) ||
1185
                 float64_is_signaling_nan(FT2))) {
1186
        /* sNaN operation */
1187
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1188
    } else {
1189
#if USE_PRECISE_EMULATION
1190
#ifdef FLOAT128
1191
        /* This is the way the PowerPC specification defines it */
1192
        float128 ft0_128, ft1_128;
1193

    
1194
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
1195
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
1196
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1197
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
1198
        ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
1199
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
1200
#else
1201
        /* This is OK on x86 hosts */
1202
        FT0 = (FT0 * FT1) + FT2;
1203
#endif
1204
#else
1205
        FT0 = float64_mul(FT0, FT1, &env->fp_status);
1206
        FT0 = float64_add(FT0, FT2, &env->fp_status);
1207
#endif
1208
        if (likely(!isnan(FT0)))
1209
            FT0 = float64_chs(FT0);
1210
    }
1211
}
1212

    
1213
void do_fnmsub (void)
1214
{
1215
    if (unlikely(float64_is_signaling_nan(FT0) ||
1216
                 float64_is_signaling_nan(FT1) ||
1217
                 float64_is_signaling_nan(FT2))) {
1218
        /* sNaN operation */
1219
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1220
    } else {
1221
#if USE_PRECISE_EMULATION
1222
#ifdef FLOAT128
1223
        /* This is the way the PowerPC specification defines it */
1224
        float128 ft0_128, ft1_128;
1225

    
1226
        ft0_128 = float64_to_float128(FT0, &env->fp_status);
1227
        ft1_128 = float64_to_float128(FT1, &env->fp_status);
1228
        ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
1229
        ft1_128 = float64_to_float128(FT2, &env->fp_status);
1230
        ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
1231
        FT0 = float128_to_float64(ft0_128, &env->fp_status);
1232
#else
1233
        /* This is OK on x86 hosts */
1234
        FT0 = (FT0 * FT1) - FT2;
1235
#endif
1236
#else
1237
        FT0 = float64_mul(FT0, FT1, &env->fp_status);
1238
        FT0 = float64_sub(FT0, FT2, &env->fp_status);
1239
#endif
1240
        if (likely(!isnan(FT0)))
1241
            FT0 = float64_chs(FT0);
1242
    }
1243
}
1244

    
1245
#if USE_PRECISE_EMULATION
1246
void do_frsp (void)
1247
{
1248
    if (unlikely(float64_is_signaling_nan(FT0))) {
1249
        /* sNaN square root */
1250
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1251
    } else {
1252
        FT0 = float64_to_float32(FT0, &env->fp_status);
1253
    }
1254
}
1255
#endif /* USE_PRECISE_EMULATION */
1256

    
1257
void do_fsqrt (void)
1258
{
1259
    if (unlikely(float64_is_signaling_nan(FT0))) {
1260
        /* sNaN square root */
1261
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1262
    } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1263
        /* Square root of a negative nonzero number */
1264
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1265
    } else {
1266
        FT0 = float64_sqrt(FT0, &env->fp_status);
1267
    }
1268
}
1269

    
1270
void do_fre (void)
1271
{
1272
    union {
1273
        double d;
1274
        uint64_t i;
1275
    } p;
1276

    
1277
    if (unlikely(float64_is_signaling_nan(FT0))) {
1278
        /* sNaN reciprocal */
1279
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1280
    } else if (unlikely(iszero(FT0))) {
1281
        /* Zero reciprocal */
1282
        float_zero_divide_excp();
1283
    } else if (likely(isnormal(FT0))) {
1284
        FT0 = float64_div(1.0, FT0, &env->fp_status);
1285
    } else {
1286
        p.d = FT0;
1287
        if (p.i == 0x8000000000000000ULL) {
1288
            p.i = 0xFFF0000000000000ULL;
1289
        } else if (p.i == 0x0000000000000000ULL) {
1290
            p.i = 0x7FF0000000000000ULL;
1291
        } else if (isnan(FT0)) {
1292
            p.i = 0x7FF8000000000000ULL;
1293
        } else if (fpisneg(FT0)) {
1294
            p.i = 0x8000000000000000ULL;
1295
        } else {
1296
            p.i = 0x0000000000000000ULL;
1297
        }
1298
        FT0 = p.d;
1299
    }
1300
}
1301

    
1302
void do_fres (void)
1303
{
1304
    union {
1305
        double d;
1306
        uint64_t i;
1307
    } p;
1308

    
1309
    if (unlikely(float64_is_signaling_nan(FT0))) {
1310
        /* sNaN reciprocal */
1311
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1312
    } else if (unlikely(iszero(FT0))) {
1313
        /* Zero reciprocal */
1314
        float_zero_divide_excp();
1315
    } else if (likely(isnormal(FT0))) {
1316
#if USE_PRECISE_EMULATION
1317
        FT0 = float64_div(1.0, FT0, &env->fp_status);
1318
        FT0 = float64_to_float32(FT0, &env->fp_status);
1319
#else
1320
        FT0 = float32_div(1.0, FT0, &env->fp_status);
1321
#endif
1322
    } else {
1323
        p.d = FT0;
1324
        if (p.i == 0x8000000000000000ULL) {
1325
            p.i = 0xFFF0000000000000ULL;
1326
        } else if (p.i == 0x0000000000000000ULL) {
1327
            p.i = 0x7FF0000000000000ULL;
1328
        } else if (isnan(FT0)) {
1329
            p.i = 0x7FF8000000000000ULL;
1330
        } else if (fpisneg(FT0)) {
1331
            p.i = 0x8000000000000000ULL;
1332
        } else {
1333
            p.i = 0x0000000000000000ULL;
1334
        }
1335
        FT0 = p.d;
1336
    }
1337
}
1338

    
1339
void do_frsqrte (void)
1340
{
1341
    union {
1342
        double d;
1343
        uint64_t i;
1344
    } p;
1345

    
1346
    if (unlikely(float64_is_signaling_nan(FT0))) {
1347
        /* sNaN reciprocal square root */
1348
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1349
    } else if (unlikely(fpisneg(FT0) && !iszero(FT0))) {
1350
        /* Reciprocal square root of a negative nonzero number */
1351
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSQRT);
1352
    } else if (likely(isnormal(FT0))) {
1353
        FT0 = float64_sqrt(FT0, &env->fp_status);
1354
        FT0 = float32_div(1.0, FT0, &env->fp_status);
1355
    } else {
1356
        p.d = FT0;
1357
        if (p.i == 0x8000000000000000ULL) {
1358
            p.i = 0xFFF0000000000000ULL;
1359
        } else if (p.i == 0x0000000000000000ULL) {
1360
            p.i = 0x7FF0000000000000ULL;
1361
        } else if (isnan(FT0)) {
1362
            p.i |= 0x000FFFFFFFFFFFFFULL;
1363
        } else if (fpisneg(FT0)) {
1364
            p.i = 0x7FF8000000000000ULL;
1365
        } else {
1366
            p.i = 0x0000000000000000ULL;
1367
        }
1368
        FT0 = p.d;
1369
    }
1370
}
1371

    
1372
void do_fsel (void)
1373
{
1374
    if (!fpisneg(FT0) || iszero(FT0))
1375
        FT0 = FT1;
1376
    else
1377
        FT0 = FT2;
1378
}
1379

    
1380
void do_fcmpu (void)
1381
{
1382
    if (unlikely(float64_is_signaling_nan(FT0) ||
1383
                 float64_is_signaling_nan(FT1))) {
1384
        /* sNaN comparison */
1385
        fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN);
1386
    } else {
1387
        if (float64_lt(FT0, FT1, &env->fp_status)) {
1388
            T0 = 0x08UL;
1389
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1390
            T0 = 0x04UL;
1391
        } else {
1392
            T0 = 0x02UL;
1393
        }
1394
    }
1395
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1396
    env->fpscr |= T0 << FPSCR_FPRF;
1397
}
1398

    
1399
void do_fcmpo (void)
1400
{
1401
    if (unlikely(float64_is_nan(FT0) ||
1402
                 float64_is_nan(FT1))) {
1403
        if (float64_is_signaling_nan(FT0) ||
1404
            float64_is_signaling_nan(FT1)) {
1405
            /* sNaN comparison */
1406
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXSNAN |
1407
                                  POWERPC_EXCP_FP_VXVC);
1408
        } else {
1409
            /* qNaN comparison */
1410
            fload_invalid_op_excp(POWERPC_EXCP_FP_VXVC);
1411
        }
1412
    } else {
1413
        if (float64_lt(FT0, FT1, &env->fp_status)) {
1414
            T0 = 0x08UL;
1415
        } else if (!float64_le(FT0, FT1, &env->fp_status)) {
1416
            T0 = 0x04UL;
1417
        } else {
1418
            T0 = 0x02UL;
1419
        }
1420
    }
1421
    env->fpscr &= ~(0x0F << FPSCR_FPRF);
1422
    env->fpscr |= T0 << FPSCR_FPRF;
1423
}
1424

    
1425
#if !defined (CONFIG_USER_ONLY)
1426
void cpu_dump_rfi (target_ulong RA, target_ulong msr);
1427

    
1428
void do_store_msr (void)
1429
{
1430
    T0 = hreg_store_msr(env, T0);
1431
    if (T0 != 0) {
1432
        env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1433
        do_raise_exception(T0);
1434
    }
1435
}
1436

    
1437
static always_inline void __do_rfi (target_ulong nip, target_ulong msr,
1438
                                    target_ulong msrm, int keep_msrh)
1439
{
1440
#if defined(TARGET_PPC64)
1441
    if (msr & (1ULL << MSR_SF)) {
1442
        nip = (uint64_t)nip;
1443
        msr &= (uint64_t)msrm;
1444
    } else {
1445
        nip = (uint32_t)nip;
1446
        msr = (uint32_t)(msr & msrm);
1447
        if (keep_msrh)
1448
            msr |= env->msr & ~((uint64_t)0xFFFFFFFF);
1449
    }
1450
#else
1451
    nip = (uint32_t)nip;
1452
    msr &= (uint32_t)msrm;
1453
#endif
1454
    /* XXX: beware: this is false if VLE is supported */
1455
    env->nip = nip & ~((target_ulong)0x00000003);
1456
    hreg_store_msr(env, msr);
1457
#if defined (DEBUG_OP)
1458
    cpu_dump_rfi(env->nip, env->msr);
1459
#endif
1460
    /* No need to raise an exception here,
1461
     * as rfi is always the last insn of a TB
1462
     */
1463
    env->interrupt_request |= CPU_INTERRUPT_EXITTB;
1464
}
1465

    
1466
void do_rfi (void)
1467
{
1468
    __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1469
             ~((target_ulong)0xFFFF0000), 1);
1470
}
1471

    
1472
#if defined(TARGET_PPC64)
1473
void do_rfid (void)
1474
{
1475
    __do_rfi(env->spr[SPR_SRR0], env->spr[SPR_SRR1],
1476
             ~((target_ulong)0xFFFF0000), 0);
1477
}
1478
#endif
1479
#if defined(TARGET_PPC64H)
1480
void do_hrfid (void)
1481
{
1482
    __do_rfi(env->spr[SPR_HSRR0], env->spr[SPR_HSRR1],
1483
             ~((target_ulong)0xFFFF0000), 0);
1484
}
1485
#endif
1486
#endif
1487

    
1488
void do_tw (int flags)
1489
{
1490
    if (!likely(!(((int32_t)T0 < (int32_t)T1 && (flags & 0x10)) ||
1491
                  ((int32_t)T0 > (int32_t)T1 && (flags & 0x08)) ||
1492
                  ((int32_t)T0 == (int32_t)T1 && (flags & 0x04)) ||
1493
                  ((uint32_t)T0 < (uint32_t)T1 && (flags & 0x02)) ||
1494
                  ((uint32_t)T0 > (uint32_t)T1 && (flags & 0x01))))) {
1495
        do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1496
    }
1497
}
1498

    
1499
#if defined(TARGET_PPC64)
1500
void do_td (int flags)
1501
{
1502
    if (!likely(!(((int64_t)T0 < (int64_t)T1 && (flags & 0x10)) ||
1503
                  ((int64_t)T0 > (int64_t)T1 && (flags & 0x08)) ||
1504
                  ((int64_t)T0 == (int64_t)T1 && (flags & 0x04)) ||
1505
                  ((uint64_t)T0 < (uint64_t)T1 && (flags & 0x02)) ||
1506
                  ((uint64_t)T0 > (uint64_t)T1 && (flags & 0x01)))))
1507
        do_raise_exception_err(POWERPC_EXCP_PROGRAM, POWERPC_EXCP_TRAP);
1508
}
1509
#endif
1510

    
1511
/*****************************************************************************/
1512
/* PowerPC 601 specific instructions (POWER bridge) */
1513
void do_POWER_abso (void)
1514
{
1515
    if ((int32_t)T0 == INT32_MIN) {
1516
        T0 = INT32_MAX;
1517
        xer_ov = 1;
1518
    } else if ((int32_t)T0 < 0) {
1519
        T0 = -T0;
1520
        xer_ov = 0;
1521
    } else {
1522
        xer_ov = 0;
1523
    }
1524
    xer_so |= xer_ov;
1525
}
1526

    
1527
void do_POWER_clcs (void)
1528
{
1529
    switch (T0) {
1530
    case 0x0CUL:
1531
        /* Instruction cache line size */
1532
        T0 = env->icache_line_size;
1533
        break;
1534
    case 0x0DUL:
1535
        /* Data cache line size */
1536
        T0 = env->dcache_line_size;
1537
        break;
1538
    case 0x0EUL:
1539
        /* Minimum cache line size */
1540
        T0 = env->icache_line_size < env->dcache_line_size ?
1541
            env->icache_line_size : env->dcache_line_size;
1542
        break;
1543
    case 0x0FUL:
1544
        /* Maximum cache line size */
1545
        T0 = env->icache_line_size > env->dcache_line_size ?
1546
            env->icache_line_size : env->dcache_line_size;
1547
        break;
1548
    default:
1549
        /* Undefined */
1550
        break;
1551
    }
1552
}
1553

    
1554
void do_POWER_div (void)
1555
{
1556
    uint64_t tmp;
1557

    
1558
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1559
        (int32_t)T1 == 0) {
1560
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1561
        env->spr[SPR_MQ] = 0;
1562
    } else {
1563
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1564
        env->spr[SPR_MQ] = tmp % T1;
1565
        T0 = tmp / (int32_t)T1;
1566
    }
1567
}
1568

    
1569
void do_POWER_divo (void)
1570
{
1571
    int64_t tmp;
1572

    
1573
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1574
        (int32_t)T1 == 0) {
1575
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1576
        env->spr[SPR_MQ] = 0;
1577
        xer_ov = 1;
1578
    } else {
1579
        tmp = ((uint64_t)T0 << 32) | env->spr[SPR_MQ];
1580
        env->spr[SPR_MQ] = tmp % T1;
1581
        tmp /= (int32_t)T1;
1582
        if (tmp > (int64_t)INT32_MAX || tmp < (int64_t)INT32_MIN) {
1583
            xer_ov = 1;
1584
        } else {
1585
            xer_ov = 0;
1586
        }
1587
        T0 = tmp;
1588
    }
1589
    xer_so |= xer_ov;
1590
}
1591

    
1592
void do_POWER_divs (void)
1593
{
1594
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1595
        (int32_t)T1 == 0) {
1596
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1597
        env->spr[SPR_MQ] = 0;
1598
    } else {
1599
        env->spr[SPR_MQ] = T0 % T1;
1600
        T0 = (int32_t)T0 / (int32_t)T1;
1601
    }
1602
}
1603

    
1604
void do_POWER_divso (void)
1605
{
1606
    if (((int32_t)T0 == INT32_MIN && (int32_t)T1 == (int32_t)-1) ||
1607
        (int32_t)T1 == 0) {
1608
        T0 = UINT32_MAX * ((uint32_t)T0 >> 31);
1609
        env->spr[SPR_MQ] = 0;
1610
        xer_ov = 1;
1611
    } else {
1612
        T0 = (int32_t)T0 / (int32_t)T1;
1613
        env->spr[SPR_MQ] = (int32_t)T0 % (int32_t)T1;
1614
        xer_ov = 0;
1615
    }
1616
    xer_so |= xer_ov;
1617
}
1618

    
1619
void do_POWER_dozo (void)
1620
{
1621
    if ((int32_t)T1 > (int32_t)T0) {
1622
        T2 = T0;
1623
        T0 = T1 - T0;
1624
        if (((uint32_t)(~T2) ^ (uint32_t)T1 ^ UINT32_MAX) &
1625
            ((uint32_t)(~T2) ^ (uint32_t)T0) & (1UL << 31)) {
1626
            xer_ov = 1;
1627
            xer_so = 1;
1628
        } else {
1629
            xer_ov = 0;
1630
        }
1631
    } else {
1632
        T0 = 0;
1633
        xer_ov = 0;
1634
    }
1635
}
1636

    
1637
void do_POWER_maskg (void)
1638
{
1639
    uint32_t ret;
1640

    
1641
    if ((uint32_t)T0 == (uint32_t)(T1 + 1)) {
1642
        ret = UINT32_MAX;
1643
    } else {
1644
        ret = (UINT32_MAX >> ((uint32_t)T0)) ^
1645
            ((UINT32_MAX >> ((uint32_t)T1)) >> 1);
1646
        if ((uint32_t)T0 > (uint32_t)T1)
1647
            ret = ~ret;
1648
    }
1649
    T0 = ret;
1650
}
1651

    
1652
void do_POWER_mulo (void)
1653
{
1654
    uint64_t tmp;
1655

    
1656
    tmp = (uint64_t)T0 * (uint64_t)T1;
1657
    env->spr[SPR_MQ] = tmp >> 32;
1658
    T0 = tmp;
1659
    if (tmp >> 32 != ((uint64_t)T0 >> 16) * ((uint64_t)T1 >> 16)) {
1660
        xer_ov = 1;
1661
        xer_so = 1;
1662
    } else {
1663
        xer_ov = 0;
1664
    }
1665
}
1666

    
1667
#if !defined (CONFIG_USER_ONLY)
1668
void do_POWER_rac (void)
1669
{
1670
    mmu_ctx_t ctx;
1671
    int nb_BATs;
1672

    
1673
    /* We don't have to generate many instances of this instruction,
1674
     * as rac is supervisor only.
1675
     */
1676
    /* XXX: FIX THIS: Pretend we have no BAT */
1677
    nb_BATs = env->nb_BATs;
1678
    env->nb_BATs = 0;
1679
    if (get_physical_address(env, &ctx, T0, 0, ACCESS_INT) == 0)
1680
        T0 = ctx.raddr;
1681
    env->nb_BATs = nb_BATs;
1682
}
1683

    
1684
void do_POWER_rfsvc (void)
1685
{
1686
    __do_rfi(env->lr, env->ctr, 0x0000FFFF, 0);
1687
}
1688

    
1689
void do_store_hid0_601 (void)
1690
{
1691
    uint32_t hid0;
1692

    
1693
    hid0 = env->spr[SPR_HID0];
1694
    if ((T0 ^ hid0) & 0x00000008) {
1695
        /* Change current endianness */
1696
        env->hflags &= ~(1 << MSR_LE);
1697
        env->hflags_nmsr &= ~(1 << MSR_LE);
1698
        env->hflags_nmsr |= (1 << MSR_LE) & (((T0 >> 3) & 1) << MSR_LE);
1699
        env->hflags |= env->hflags_nmsr;
1700
        if (loglevel != 0) {
1701
            fprintf(logfile, "%s: set endianness to %c => " ADDRX "\n",
1702
                    __func__, T0 & 0x8 ? 'l' : 'b', env->hflags);
1703
        }
1704
    }
1705
    env->spr[SPR_HID0] = T0;
1706
}
1707
#endif
1708

    
1709
/*****************************************************************************/
1710
/* 602 specific instructions */
1711
/* mfrom is the most crazy instruction ever seen, imho ! */
1712
/* Real implementation uses a ROM table. Do the same */
1713
#define USE_MFROM_ROM_TABLE
1714
void do_op_602_mfrom (void)
1715
{
1716
    if (likely(T0 < 602)) {
1717
#if defined(USE_MFROM_ROM_TABLE)
1718
#include "mfrom_table.c"
1719
        T0 = mfrom_ROM_table[T0];
1720
#else
1721
        double d;
1722
        /* Extremly decomposed:
1723
         *                    -T0 / 256
1724
         * T0 = 256 * log10(10          + 1.0) + 0.5
1725
         */
1726
        d = T0;
1727
        d = float64_div(d, 256, &env->fp_status);
1728
        d = float64_chs(d);
1729
        d = exp10(d); // XXX: use float emulation function
1730
        d = float64_add(d, 1.0, &env->fp_status);
1731
        d = log10(d); // XXX: use float emulation function
1732
        d = float64_mul(d, 256, &env->fp_status);
1733
        d = float64_add(d, 0.5, &env->fp_status);
1734
        T0 = float64_round_to_int(d, &env->fp_status);
1735
#endif
1736
    } else {
1737
        T0 = 0;
1738
    }
1739
}
1740

    
1741
/*****************************************************************************/
1742
/* Embedded PowerPC specific helpers */
1743
void do_405_check_sat (void)
1744
{
1745
    if (!likely((((uint32_t)T1 ^ (uint32_t)T2) >> 31) ||
1746
                !(((uint32_t)T0 ^ (uint32_t)T2) >> 31))) {
1747
        /* Saturate result */
1748
        if (T2 >> 31) {
1749
            T0 = INT32_MIN;
1750
        } else {
1751
            T0 = INT32_MAX;
1752
        }
1753
    }
1754
}
1755

    
1756
/* XXX: to be improved to check access rights when in user-mode */
1757
void do_load_dcr (void)
1758
{
1759
    target_ulong val;
1760

    
1761
    if (unlikely(env->dcr_env == NULL)) {
1762
        if (loglevel != 0) {
1763
            fprintf(logfile, "No DCR environment\n");
1764
        }
1765
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1766
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1767
    } else if (unlikely(ppc_dcr_read(env->dcr_env, T0, &val) != 0)) {
1768
        if (loglevel != 0) {
1769
            fprintf(logfile, "DCR read error %d %03x\n", (int)T0, (int)T0);
1770
        }
1771
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1772
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1773
    } else {
1774
        T0 = val;
1775
    }
1776
}
1777

    
1778
void do_store_dcr (void)
1779
{
1780
    if (unlikely(env->dcr_env == NULL)) {
1781
        if (loglevel != 0) {
1782
            fprintf(logfile, "No DCR environment\n");
1783
        }
1784
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1785
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_INVAL_INVAL);
1786
    } else if (unlikely(ppc_dcr_write(env->dcr_env, T0, T1) != 0)) {
1787
        if (loglevel != 0) {
1788
            fprintf(logfile, "DCR write error %d %03x\n", (int)T0, (int)T0);
1789
        }
1790
        do_raise_exception_err(POWERPC_EXCP_PROGRAM,
1791
                               POWERPC_EXCP_INVAL | POWERPC_EXCP_PRIV_REG);
1792
    }
1793
}
1794

    
1795
#if !defined(CONFIG_USER_ONLY)
1796
void do_40x_rfci (void)
1797
{
1798
    __do_rfi(env->spr[SPR_40x_SRR2], env->spr[SPR_40x_SRR3],
1799
             ~((target_ulong)0xFFFF0000), 0);
1800
}
1801

    
1802
void do_rfci (void)
1803
{
1804
    __do_rfi(env->spr[SPR_BOOKE_CSRR0], SPR_BOOKE_CSRR1,
1805
             ~((target_ulong)0x3FFF0000), 0);
1806
}
1807

    
1808
void do_rfdi (void)
1809
{
1810
    __do_rfi(env->spr[SPR_BOOKE_DSRR0], SPR_BOOKE_DSRR1,
1811
             ~((target_ulong)0x3FFF0000), 0);
1812
}
1813

    
1814
void do_rfmci (void)
1815
{
1816
    __do_rfi(env->spr[SPR_BOOKE_MCSRR0], SPR_BOOKE_MCSRR1,
1817
             ~((target_ulong)0x3FFF0000), 0);
1818
}
1819

    
1820
void do_load_403_pb (int num)
1821
{
1822
    T0 = env->pb[num];
1823
}
1824

    
1825
void do_store_403_pb (int num)
1826
{
1827
    if (likely(env->pb[num] != T0)) {
1828
        env->pb[num] = T0;
1829
        /* Should be optimized */
1830
        tlb_flush(env, 1);
1831
    }
1832
}
1833
#endif
1834

    
1835
/* 440 specific */
1836
void do_440_dlmzb (void)
1837
{
1838
    target_ulong mask;
1839
    int i;
1840

    
1841
    i = 1;
1842
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1843
        if ((T0 & mask) == 0)
1844
            goto done;
1845
        i++;
1846
    }
1847
    for (mask = 0xFF000000; mask != 0; mask = mask >> 8) {
1848
        if ((T1 & mask) == 0)
1849
            break;
1850
        i++;
1851
    }
1852
 done:
1853
    T0 = i;
1854
}
1855

    
1856
/* SPE extension helpers */
1857
/* Use a table to make this quicker */
1858
static uint8_t hbrev[16] = {
1859
    0x0, 0x8, 0x4, 0xC, 0x2, 0xA, 0x6, 0xE,
1860
    0x1, 0x9, 0x5, 0xD, 0x3, 0xB, 0x7, 0xF,
1861
};
1862

    
1863
static always_inline uint8_t byte_reverse (uint8_t val)
1864
{
1865
    return hbrev[val >> 4] | (hbrev[val & 0xF] << 4);
1866
}
1867

    
1868
static always_inline uint32_t word_reverse (uint32_t val)
1869
{
1870
    return byte_reverse(val >> 24) | (byte_reverse(val >> 16) << 8) |
1871
        (byte_reverse(val >> 8) << 16) | (byte_reverse(val) << 24);
1872
}
1873

    
1874
#define MASKBITS 16 // Random value - to be fixed (implementation dependant)
1875
void do_brinc (void)
1876
{
1877
    uint32_t a, b, d, mask;
1878

    
1879
    mask = UINT32_MAX >> (32 - MASKBITS);
1880
    a = T0 & mask;
1881
    b = T1 & mask;
1882
    d = word_reverse(1 + word_reverse(a | ~b));
1883
    T0 = (T0 & ~mask) | (d & b);
1884
}
1885

    
1886
#define DO_SPE_OP2(name)                                                      \
1887
void do_ev##name (void)                                                       \
1888
{                                                                             \
1889
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32, T1_64 >> 32) << 32) |         \
1890
        (uint64_t)_do_e##name(T0_64, T1_64);                                  \
1891
}
1892

    
1893
#define DO_SPE_OP1(name)                                                      \
1894
void do_ev##name (void)                                                       \
1895
{                                                                             \
1896
    T0_64 = ((uint64_t)_do_e##name(T0_64 >> 32) << 32) |                      \
1897
        (uint64_t)_do_e##name(T0_64);                                         \
1898
}
1899

    
1900
/* Fixed-point vector arithmetic */
1901
static always_inline uint32_t _do_eabs (uint32_t val)
1902
{
1903
    if ((val & 0x80000000) && val != 0x80000000)
1904
        val -= val;
1905

    
1906
    return val;
1907
}
1908

    
1909
static always_inline uint32_t _do_eaddw (uint32_t op1, uint32_t op2)
1910
{
1911
    return op1 + op2;
1912
}
1913

    
1914
static always_inline int _do_ecntlsw (uint32_t val)
1915
{
1916
    if (val & 0x80000000)
1917
        return clz32(~val);
1918
    else
1919
        return clz32(val);
1920
}
1921

    
1922
static always_inline int _do_ecntlzw (uint32_t val)
1923
{
1924
    return clz32(val);
1925
}
1926

    
1927
static always_inline uint32_t _do_eneg (uint32_t val)
1928
{
1929
    if (val != 0x80000000)
1930
        val -= val;
1931

    
1932
    return val;
1933
}
1934

    
1935
static always_inline uint32_t _do_erlw (uint32_t op1, uint32_t op2)
1936
{
1937
    return rotl32(op1, op2);
1938
}
1939

    
1940
static always_inline uint32_t _do_erndw (uint32_t val)
1941
{
1942
    return (val + 0x000080000000) & 0xFFFF0000;
1943
}
1944

    
1945
static always_inline uint32_t _do_eslw (uint32_t op1, uint32_t op2)
1946
{
1947
    /* No error here: 6 bits are used */
1948
    return op1 << (op2 & 0x3F);
1949
}
1950

    
1951
static always_inline int32_t _do_esrws (int32_t op1, uint32_t op2)
1952
{
1953
    /* No error here: 6 bits are used */
1954
    return op1 >> (op2 & 0x3F);
1955
}
1956

    
1957
static always_inline uint32_t _do_esrwu (uint32_t op1, uint32_t op2)
1958
{
1959
    /* No error here: 6 bits are used */
1960
    return op1 >> (op2 & 0x3F);
1961
}
1962

    
1963
static always_inline uint32_t _do_esubfw (uint32_t op1, uint32_t op2)
1964
{
1965
    return op2 - op1;
1966
}
1967

    
1968
/* evabs */
1969
DO_SPE_OP1(abs);
1970
/* evaddw */
1971
DO_SPE_OP2(addw);
1972
/* evcntlsw */
1973
DO_SPE_OP1(cntlsw);
1974
/* evcntlzw */
1975
DO_SPE_OP1(cntlzw);
1976
/* evneg */
1977
DO_SPE_OP1(neg);
1978
/* evrlw */
1979
DO_SPE_OP2(rlw);
1980
/* evrnd */
1981
DO_SPE_OP1(rndw);
1982
/* evslw */
1983
DO_SPE_OP2(slw);
1984
/* evsrws */
1985
DO_SPE_OP2(srws);
1986
/* evsrwu */
1987
DO_SPE_OP2(srwu);
1988
/* evsubfw */
1989
DO_SPE_OP2(subfw);
1990

    
1991
/* evsel is a little bit more complicated... */
1992
static always_inline uint32_t _do_esel (uint32_t op1, uint32_t op2, int n)
1993
{
1994
    if (n)
1995
        return op1;
1996
    else
1997
        return op2;
1998
}
1999

    
2000
void do_evsel (void)
2001
{
2002
    T0_64 = ((uint64_t)_do_esel(T0_64 >> 32, T1_64 >> 32, T0 >> 3) << 32) |
2003
        (uint64_t)_do_esel(T0_64, T1_64, (T0 >> 2) & 1);
2004
}
2005

    
2006
/* Fixed-point vector comparisons */
2007
#define DO_SPE_CMP(name)                                                      \
2008
void do_ev##name (void)                                                       \
2009
{                                                                             \
2010
    T0 = _do_evcmp_merge((uint64_t)_do_e##name(T0_64 >> 32,                   \
2011
                                               T1_64 >> 32) << 32,            \
2012
                         _do_e##name(T0_64, T1_64));                          \
2013
}
2014

    
2015
static always_inline uint32_t _do_evcmp_merge (int t0, int t1)
2016
{
2017
    return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
2018
}
2019
static always_inline int _do_ecmpeq (uint32_t op1, uint32_t op2)
2020
{
2021
    return op1 == op2 ? 1 : 0;
2022
}
2023

    
2024
static always_inline int _do_ecmpgts (int32_t op1, int32_t op2)
2025
{
2026
    return op1 > op2 ? 1 : 0;
2027
}
2028

    
2029
static always_inline int _do_ecmpgtu (uint32_t op1, uint32_t op2)
2030
{
2031
    return op1 > op2 ? 1 : 0;
2032
}
2033

    
2034
static always_inline int _do_ecmplts (int32_t op1, int32_t op2)
2035
{
2036
    return op1 < op2 ? 1 : 0;
2037
}
2038

    
2039
static always_inline int _do_ecmpltu (uint32_t op1, uint32_t op2)
2040
{
2041
    return op1 < op2 ? 1 : 0;
2042
}
2043

    
2044
/* evcmpeq */
2045
DO_SPE_CMP(cmpeq);
2046
/* evcmpgts */
2047
DO_SPE_CMP(cmpgts);
2048
/* evcmpgtu */
2049
DO_SPE_CMP(cmpgtu);
2050
/* evcmplts */
2051
DO_SPE_CMP(cmplts);
2052
/* evcmpltu */
2053
DO_SPE_CMP(cmpltu);
2054

    
2055
/* Single precision floating-point conversions from/to integer */
2056
static always_inline uint32_t _do_efscfsi (int32_t val)
2057
{
2058
    union {
2059
        uint32_t u;
2060
        float32 f;
2061
    } u;
2062

    
2063
    u.f = int32_to_float32(val, &env->spe_status);
2064

    
2065
    return u.u;
2066
}
2067

    
2068
static always_inline uint32_t _do_efscfui (uint32_t val)
2069
{
2070
    union {
2071
        uint32_t u;
2072
        float32 f;
2073
    } u;
2074

    
2075
    u.f = uint32_to_float32(val, &env->spe_status);
2076

    
2077
    return u.u;
2078
}
2079

    
2080
static always_inline int32_t _do_efsctsi (uint32_t val)
2081
{
2082
    union {
2083
        int32_t u;
2084
        float32 f;
2085
    } u;
2086

    
2087
    u.u = val;
2088
    /* NaN are not treated the same way IEEE 754 does */
2089
    if (unlikely(isnan(u.f)))
2090
        return 0;
2091

    
2092
    return float32_to_int32(u.f, &env->spe_status);
2093
}
2094

    
2095
static always_inline uint32_t _do_efsctui (uint32_t val)
2096
{
2097
    union {
2098
        int32_t u;
2099
        float32 f;
2100
    } u;
2101

    
2102
    u.u = val;
2103
    /* NaN are not treated the same way IEEE 754 does */
2104
    if (unlikely(isnan(u.f)))
2105
        return 0;
2106

    
2107
    return float32_to_uint32(u.f, &env->spe_status);
2108
}
2109

    
2110
static always_inline int32_t _do_efsctsiz (uint32_t val)
2111
{
2112
    union {
2113
        int32_t u;
2114
        float32 f;
2115
    } u;
2116

    
2117
    u.u = val;
2118
    /* NaN are not treated the same way IEEE 754 does */
2119
    if (unlikely(isnan(u.f)))
2120
        return 0;
2121

    
2122
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2123
}
2124

    
2125
static always_inline uint32_t _do_efsctuiz (uint32_t val)
2126
{
2127
    union {
2128
        int32_t u;
2129
        float32 f;
2130
    } u;
2131

    
2132
    u.u = val;
2133
    /* NaN are not treated the same way IEEE 754 does */
2134
    if (unlikely(isnan(u.f)))
2135
        return 0;
2136

    
2137
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2138
}
2139

    
2140
void do_efscfsi (void)
2141
{
2142
    T0_64 = _do_efscfsi(T0_64);
2143
}
2144

    
2145
void do_efscfui (void)
2146
{
2147
    T0_64 = _do_efscfui(T0_64);
2148
}
2149

    
2150
void do_efsctsi (void)
2151
{
2152
    T0_64 = _do_efsctsi(T0_64);
2153
}
2154

    
2155
void do_efsctui (void)
2156
{
2157
    T0_64 = _do_efsctui(T0_64);
2158
}
2159

    
2160
void do_efsctsiz (void)
2161
{
2162
    T0_64 = _do_efsctsiz(T0_64);
2163
}
2164

    
2165
void do_efsctuiz (void)
2166
{
2167
    T0_64 = _do_efsctuiz(T0_64);
2168
}
2169

    
2170
/* Single precision floating-point conversion to/from fractional */
2171
static always_inline uint32_t _do_efscfsf (uint32_t val)
2172
{
2173
    union {
2174
        uint32_t u;
2175
        float32 f;
2176
    } u;
2177
    float32 tmp;
2178

    
2179
    u.f = int32_to_float32(val, &env->spe_status);
2180
    tmp = int64_to_float32(1ULL << 32, &env->spe_status);
2181
    u.f = float32_div(u.f, tmp, &env->spe_status);
2182

    
2183
    return u.u;
2184
}
2185

    
2186
static always_inline uint32_t _do_efscfuf (uint32_t val)
2187
{
2188
    union {
2189
        uint32_t u;
2190
        float32 f;
2191
    } u;
2192
    float32 tmp;
2193

    
2194
    u.f = uint32_to_float32(val, &env->spe_status);
2195
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2196
    u.f = float32_div(u.f, tmp, &env->spe_status);
2197

    
2198
    return u.u;
2199
}
2200

    
2201
static always_inline int32_t _do_efsctsf (uint32_t val)
2202
{
2203
    union {
2204
        int32_t u;
2205
        float32 f;
2206
    } u;
2207
    float32 tmp;
2208

    
2209
    u.u = val;
2210
    /* NaN are not treated the same way IEEE 754 does */
2211
    if (unlikely(isnan(u.f)))
2212
        return 0;
2213
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2214
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2215

    
2216
    return float32_to_int32(u.f, &env->spe_status);
2217
}
2218

    
2219
static always_inline uint32_t _do_efsctuf (uint32_t val)
2220
{
2221
    union {
2222
        int32_t u;
2223
        float32 f;
2224
    } u;
2225
    float32 tmp;
2226

    
2227
    u.u = val;
2228
    /* NaN are not treated the same way IEEE 754 does */
2229
    if (unlikely(isnan(u.f)))
2230
        return 0;
2231
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2232
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2233

    
2234
    return float32_to_uint32(u.f, &env->spe_status);
2235
}
2236

    
2237
static always_inline int32_t _do_efsctsfz (uint32_t val)
2238
{
2239
    union {
2240
        int32_t u;
2241
        float32 f;
2242
    } u;
2243
    float32 tmp;
2244

    
2245
    u.u = val;
2246
    /* NaN are not treated the same way IEEE 754 does */
2247
    if (unlikely(isnan(u.f)))
2248
        return 0;
2249
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2250
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2251

    
2252
    return float32_to_int32_round_to_zero(u.f, &env->spe_status);
2253
}
2254

    
2255
static always_inline uint32_t _do_efsctufz (uint32_t val)
2256
{
2257
    union {
2258
        int32_t u;
2259
        float32 f;
2260
    } u;
2261
    float32 tmp;
2262

    
2263
    u.u = val;
2264
    /* NaN are not treated the same way IEEE 754 does */
2265
    if (unlikely(isnan(u.f)))
2266
        return 0;
2267
    tmp = uint64_to_float32(1ULL << 32, &env->spe_status);
2268
    u.f = float32_mul(u.f, tmp, &env->spe_status);
2269

    
2270
    return float32_to_uint32_round_to_zero(u.f, &env->spe_status);
2271
}
2272

    
2273
void do_efscfsf (void)
2274
{
2275
    T0_64 = _do_efscfsf(T0_64);
2276
}
2277

    
2278
void do_efscfuf (void)
2279
{
2280
    T0_64 = _do_efscfuf(T0_64);
2281
}
2282

    
2283
void do_efsctsf (void)
2284
{
2285
    T0_64 = _do_efsctsf(T0_64);
2286
}
2287

    
2288
void do_efsctuf (void)
2289
{
2290
    T0_64 = _do_efsctuf(T0_64);
2291
}
2292

    
2293
void do_efsctsfz (void)
2294
{
2295
    T0_64 = _do_efsctsfz(T0_64);
2296
}
2297

    
2298
void do_efsctufz (void)
2299
{
2300
    T0_64 = _do_efsctufz(T0_64);
2301
}
2302

    
2303
/* Double precision floating point helpers */
2304
static always_inline int _do_efdcmplt (uint64_t op1, uint64_t op2)
2305
{
2306
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2307
    return _do_efdtstlt(op1, op2);
2308
}
2309

    
2310
static always_inline int _do_efdcmpgt (uint64_t op1, uint64_t op2)
2311
{
2312
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2313
    return _do_efdtstgt(op1, op2);
2314
}
2315

    
2316
static always_inline int _do_efdcmpeq (uint64_t op1, uint64_t op2)
2317
{
2318
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2319
    return _do_efdtsteq(op1, op2);
2320
}
2321

    
2322
void do_efdcmplt (void)
2323
{
2324
    T0 = _do_efdcmplt(T0_64, T1_64);
2325
}
2326

    
2327
void do_efdcmpgt (void)
2328
{
2329
    T0 = _do_efdcmpgt(T0_64, T1_64);
2330
}
2331

    
2332
void do_efdcmpeq (void)
2333
{
2334
    T0 = _do_efdcmpeq(T0_64, T1_64);
2335
}
2336

    
2337
/* Double precision floating-point conversion to/from integer */
2338
static always_inline uint64_t _do_efdcfsi (int64_t val)
2339
{
2340
    union {
2341
        uint64_t u;
2342
        float64 f;
2343
    } u;
2344

    
2345
    u.f = int64_to_float64(val, &env->spe_status);
2346

    
2347
    return u.u;
2348
}
2349

    
2350
static always_inline uint64_t _do_efdcfui (uint64_t val)
2351
{
2352
    union {
2353
        uint64_t u;
2354
        float64 f;
2355
    } u;
2356

    
2357
    u.f = uint64_to_float64(val, &env->spe_status);
2358

    
2359
    return u.u;
2360
}
2361

    
2362
static always_inline int64_t _do_efdctsi (uint64_t val)
2363
{
2364
    union {
2365
        int64_t u;
2366
        float64 f;
2367
    } u;
2368

    
2369
    u.u = val;
2370
    /* NaN are not treated the same way IEEE 754 does */
2371
    if (unlikely(isnan(u.f)))
2372
        return 0;
2373

    
2374
    return float64_to_int64(u.f, &env->spe_status);
2375
}
2376

    
2377
static always_inline uint64_t _do_efdctui (uint64_t val)
2378
{
2379
    union {
2380
        int64_t u;
2381
        float64 f;
2382
    } u;
2383

    
2384
    u.u = val;
2385
    /* NaN are not treated the same way IEEE 754 does */
2386
    if (unlikely(isnan(u.f)))
2387
        return 0;
2388

    
2389
    return float64_to_uint64(u.f, &env->spe_status);
2390
}
2391

    
2392
static always_inline int64_t _do_efdctsiz (uint64_t val)
2393
{
2394
    union {
2395
        int64_t u;
2396
        float64 f;
2397
    } u;
2398

    
2399
    u.u = val;
2400
    /* NaN are not treated the same way IEEE 754 does */
2401
    if (unlikely(isnan(u.f)))
2402
        return 0;
2403

    
2404
    return float64_to_int64_round_to_zero(u.f, &env->spe_status);
2405
}
2406

    
2407
static always_inline uint64_t _do_efdctuiz (uint64_t val)
2408
{
2409
    union {
2410
        int64_t u;
2411
        float64 f;
2412
    } u;
2413

    
2414
    u.u = val;
2415
    /* NaN are not treated the same way IEEE 754 does */
2416
    if (unlikely(isnan(u.f)))
2417
        return 0;
2418

    
2419
    return float64_to_uint64_round_to_zero(u.f, &env->spe_status);
2420
}
2421

    
2422
void do_efdcfsi (void)
2423
{
2424
    T0_64 = _do_efdcfsi(T0_64);
2425
}
2426

    
2427
void do_efdcfui (void)
2428
{
2429
    T0_64 = _do_efdcfui(T0_64);
2430
}
2431

    
2432
void do_efdctsi (void)
2433
{
2434
    T0_64 = _do_efdctsi(T0_64);
2435
}
2436

    
2437
void do_efdctui (void)
2438
{
2439
    T0_64 = _do_efdctui(T0_64);
2440
}
2441

    
2442
void do_efdctsiz (void)
2443
{
2444
    T0_64 = _do_efdctsiz(T0_64);
2445
}
2446

    
2447
void do_efdctuiz (void)
2448
{
2449
    T0_64 = _do_efdctuiz(T0_64);
2450
}
2451

    
2452
/* Double precision floating-point conversion to/from fractional */
2453
static always_inline uint64_t _do_efdcfsf (int64_t val)
2454
{
2455
    union {
2456
        uint64_t u;
2457
        float64 f;
2458
    } u;
2459
    float64 tmp;
2460

    
2461
    u.f = int32_to_float64(val, &env->spe_status);
2462
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2463
    u.f = float64_div(u.f, tmp, &env->spe_status);
2464

    
2465
    return u.u;
2466
}
2467

    
2468
static always_inline uint64_t _do_efdcfuf (uint64_t val)
2469
{
2470
    union {
2471
        uint64_t u;
2472
        float64 f;
2473
    } u;
2474
    float64 tmp;
2475

    
2476
    u.f = uint32_to_float64(val, &env->spe_status);
2477
    tmp = int64_to_float64(1ULL << 32, &env->spe_status);
2478
    u.f = float64_div(u.f, tmp, &env->spe_status);
2479

    
2480
    return u.u;
2481
}
2482

    
2483
static always_inline int64_t _do_efdctsf (uint64_t val)
2484
{
2485
    union {
2486
        int64_t u;
2487
        float64 f;
2488
    } u;
2489
    float64 tmp;
2490

    
2491
    u.u = val;
2492
    /* NaN are not treated the same way IEEE 754 does */
2493
    if (unlikely(isnan(u.f)))
2494
        return 0;
2495
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2496
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2497

    
2498
    return float64_to_int32(u.f, &env->spe_status);
2499
}
2500

    
2501
static always_inline uint64_t _do_efdctuf (uint64_t val)
2502
{
2503
    union {
2504
        int64_t u;
2505
        float64 f;
2506
    } u;
2507
    float64 tmp;
2508

    
2509
    u.u = val;
2510
    /* NaN are not treated the same way IEEE 754 does */
2511
    if (unlikely(isnan(u.f)))
2512
        return 0;
2513
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2514
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2515

    
2516
    return float64_to_uint32(u.f, &env->spe_status);
2517
}
2518

    
2519
static always_inline int64_t _do_efdctsfz (uint64_t val)
2520
{
2521
    union {
2522
        int64_t u;
2523
        float64 f;
2524
    } u;
2525
    float64 tmp;
2526

    
2527
    u.u = val;
2528
    /* NaN are not treated the same way IEEE 754 does */
2529
    if (unlikely(isnan(u.f)))
2530
        return 0;
2531
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2532
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2533

    
2534
    return float64_to_int32_round_to_zero(u.f, &env->spe_status);
2535
}
2536

    
2537
static always_inline uint64_t _do_efdctufz (uint64_t val)
2538
{
2539
    union {
2540
        int64_t u;
2541
        float64 f;
2542
    } u;
2543
    float64 tmp;
2544

    
2545
    u.u = val;
2546
    /* NaN are not treated the same way IEEE 754 does */
2547
    if (unlikely(isnan(u.f)))
2548
        return 0;
2549
    tmp = uint64_to_float64(1ULL << 32, &env->spe_status);
2550
    u.f = float64_mul(u.f, tmp, &env->spe_status);
2551

    
2552
    return float64_to_uint32_round_to_zero(u.f, &env->spe_status);
2553
}
2554

    
2555
void do_efdcfsf (void)
2556
{
2557
    T0_64 = _do_efdcfsf(T0_64);
2558
}
2559

    
2560
void do_efdcfuf (void)
2561
{
2562
    T0_64 = _do_efdcfuf(T0_64);
2563
}
2564

    
2565
void do_efdctsf (void)
2566
{
2567
    T0_64 = _do_efdctsf(T0_64);
2568
}
2569

    
2570
void do_efdctuf (void)
2571
{
2572
    T0_64 = _do_efdctuf(T0_64);
2573
}
2574

    
2575
void do_efdctsfz (void)
2576
{
2577
    T0_64 = _do_efdctsfz(T0_64);
2578
}
2579

    
2580
void do_efdctufz (void)
2581
{
2582
    T0_64 = _do_efdctufz(T0_64);
2583
}
2584

    
2585
/* Floating point conversion between single and double precision */
2586
static always_inline uint32_t _do_efscfd (uint64_t val)
2587
{
2588
    union {
2589
        uint64_t u;
2590
        float64 f;
2591
    } u1;
2592
    union {
2593
        uint32_t u;
2594
        float32 f;
2595
    } u2;
2596

    
2597
    u1.u = val;
2598
    u2.f = float64_to_float32(u1.f, &env->spe_status);
2599

    
2600
    return u2.u;
2601
}
2602

    
2603
static always_inline uint64_t _do_efdcfs (uint32_t val)
2604
{
2605
    union {
2606
        uint64_t u;
2607
        float64 f;
2608
    } u2;
2609
    union {
2610
        uint32_t u;
2611
        float32 f;
2612
    } u1;
2613

    
2614
    u1.u = val;
2615
    u2.f = float32_to_float64(u1.f, &env->spe_status);
2616

    
2617
    return u2.u;
2618
}
2619

    
2620
void do_efscfd (void)
2621
{
2622
    T0_64 = _do_efscfd(T0_64);
2623
}
2624

    
2625
void do_efdcfs (void)
2626
{
2627
    T0_64 = _do_efdcfs(T0_64);
2628
}
2629

    
2630
/* Single precision fixed-point vector arithmetic */
2631
/* evfsabs */
2632
DO_SPE_OP1(fsabs);
2633
/* evfsnabs */
2634
DO_SPE_OP1(fsnabs);
2635
/* evfsneg */
2636
DO_SPE_OP1(fsneg);
2637
/* evfsadd */
2638
DO_SPE_OP2(fsadd);
2639
/* evfssub */
2640
DO_SPE_OP2(fssub);
2641
/* evfsmul */
2642
DO_SPE_OP2(fsmul);
2643
/* evfsdiv */
2644
DO_SPE_OP2(fsdiv);
2645

    
2646
/* Single-precision floating-point comparisons */
2647
static always_inline int _do_efscmplt (uint32_t op1, uint32_t op2)
2648
{
2649
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2650
    return _do_efststlt(op1, op2);
2651
}
2652

    
2653
static always_inline int _do_efscmpgt (uint32_t op1, uint32_t op2)
2654
{
2655
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2656
    return _do_efststgt(op1, op2);
2657
}
2658

    
2659
static always_inline int _do_efscmpeq (uint32_t op1, uint32_t op2)
2660
{
2661
    /* XXX: TODO: test special values (NaN, infinites, ...) */
2662
    return _do_efststeq(op1, op2);
2663
}
2664

    
2665
void do_efscmplt (void)
2666
{
2667
    T0 = _do_efscmplt(T0_64, T1_64);
2668
}
2669

    
2670
void do_efscmpgt (void)
2671
{
2672
    T0 = _do_efscmpgt(T0_64, T1_64);
2673
}
2674

    
2675
void do_efscmpeq (void)
2676
{
2677
    T0 = _do_efscmpeq(T0_64, T1_64);
2678
}
2679

    
2680
/* Single-precision floating-point vector comparisons */
2681
/* evfscmplt */
2682
DO_SPE_CMP(fscmplt);
2683
/* evfscmpgt */
2684
DO_SPE_CMP(fscmpgt);
2685
/* evfscmpeq */
2686
DO_SPE_CMP(fscmpeq);
2687
/* evfststlt */
2688
DO_SPE_CMP(fststlt);
2689
/* evfststgt */
2690
DO_SPE_CMP(fststgt);
2691
/* evfststeq */
2692
DO_SPE_CMP(fststeq);
2693

    
2694
/* Single-precision floating-point vector conversions */
2695
/* evfscfsi */
2696
DO_SPE_OP1(fscfsi);
2697
/* evfscfui */
2698
DO_SPE_OP1(fscfui);
2699
/* evfscfuf */
2700
DO_SPE_OP1(fscfuf);
2701
/* evfscfsf */
2702
DO_SPE_OP1(fscfsf);
2703
/* evfsctsi */
2704
DO_SPE_OP1(fsctsi);
2705
/* evfsctui */
2706
DO_SPE_OP1(fsctui);
2707
/* evfsctsiz */
2708
DO_SPE_OP1(fsctsiz);
2709
/* evfsctuiz */
2710
DO_SPE_OP1(fsctuiz);
2711
/* evfsctsf */
2712
DO_SPE_OP1(fsctsf);
2713
/* evfsctuf */
2714
DO_SPE_OP1(fsctuf);
2715

    
2716
/*****************************************************************************/
2717
/* Softmmu support */
2718
#if !defined (CONFIG_USER_ONLY)
2719

    
2720
#define MMUSUFFIX _mmu
2721
#ifdef __s390__
2722
# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
2723
#else
2724
# define GETPC() (__builtin_return_address(0))
2725
#endif
2726

    
2727
#define SHIFT 0
2728
#include "softmmu_template.h"
2729

    
2730
#define SHIFT 1
2731
#include "softmmu_template.h"
2732

    
2733
#define SHIFT 2
2734
#include "softmmu_template.h"
2735

    
2736
#define SHIFT 3
2737
#include "softmmu_template.h"
2738

    
2739
/* try to fill the TLB and return an exception if error. If retaddr is
2740
   NULL, it means that the function was called in C code (i.e. not
2741
   from generated code or from helper.c) */
2742
/* XXX: fix it to restore all registers */
2743
void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
2744
{
2745
    TranslationBlock *tb;
2746
    CPUState *saved_env;
2747
    unsigned long pc;
2748
    int ret;
2749

    
2750
    /* XXX: hack to restore env in all cases, even if not called from
2751
       generated code */
2752
    saved_env = env;
2753
    env = cpu_single_env;
2754
    ret = cpu_ppc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
2755
    if (unlikely(ret != 0)) {
2756
        if (likely(retaddr)) {
2757
            /* now we have a real cpu fault */
2758
            pc = (unsigned long)retaddr;
2759
            tb = tb_find_pc(pc);
2760
            if (likely(tb)) {
2761
                /* the PC is inside the translated code. It means that we have
2762
                   a virtual CPU fault */
2763
                cpu_restore_state(tb, env, pc, NULL);
2764
            }
2765
        }
2766
        do_raise_exception_err(env->exception_index, env->error_code);
2767
    }
2768
    env = saved_env;
2769
}
2770

    
2771
/* Software driven TLBs management */
2772
/* PowerPC 602/603 software TLB load instructions helpers */
2773
void do_load_6xx_tlb (int is_code)
2774
{
2775
    target_ulong RPN, CMP, EPN;
2776
    int way;
2777

    
2778
    RPN = env->spr[SPR_RPA];
2779
    if (is_code) {
2780
        CMP = env->spr[SPR_ICMP];
2781
        EPN = env->spr[SPR_IMISS];
2782
    } else {
2783
        CMP = env->spr[SPR_DCMP];
2784
        EPN = env->spr[SPR_DMISS];
2785
    }
2786
    way = (env->spr[SPR_SRR1] >> 17) & 1;
2787
#if defined (DEBUG_SOFTWARE_TLB)
2788
    if (loglevel != 0) {
2789
        fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2790
                __func__, (unsigned long)T0, (unsigned long)EPN,
2791
                (unsigned long)CMP, (unsigned long)RPN, way);
2792
    }
2793
#endif
2794
    /* Store this TLB */
2795
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2796
                     way, is_code, CMP, RPN);
2797
}
2798

    
2799
void do_load_74xx_tlb (int is_code)
2800
{
2801
    target_ulong RPN, CMP, EPN;
2802
    int way;
2803

    
2804
    RPN = env->spr[SPR_PTELO];
2805
    CMP = env->spr[SPR_PTEHI];
2806
    EPN = env->spr[SPR_TLBMISS] & ~0x3;
2807
    way = env->spr[SPR_TLBMISS] & 0x3;
2808
#if defined (DEBUG_SOFTWARE_TLB)
2809
    if (loglevel != 0) {
2810
        fprintf(logfile, "%s: EPN %08lx %08lx PTE0 %08lx PTE1 %08lx way %d\n",
2811
                __func__, (unsigned long)T0, (unsigned long)EPN,
2812
                (unsigned long)CMP, (unsigned long)RPN, way);
2813
    }
2814
#endif
2815
    /* Store this TLB */
2816
    ppc6xx_tlb_store(env, (uint32_t)(T0 & TARGET_PAGE_MASK),
2817
                     way, is_code, CMP, RPN);
2818
}
2819

    
2820
static always_inline target_ulong booke_tlb_to_page_size (int size)
2821
{
2822
    return 1024 << (2 * size);
2823
}
2824

    
2825
static always_inline int booke_page_size_to_tlb (target_ulong page_size)
2826
{
2827
    int size;
2828

    
2829
    switch (page_size) {
2830
    case 0x00000400UL:
2831
        size = 0x0;
2832
        break;
2833
    case 0x00001000UL:
2834
        size = 0x1;
2835
        break;
2836
    case 0x00004000UL:
2837
        size = 0x2;
2838
        break;
2839
    case 0x00010000UL:
2840
        size = 0x3;
2841
        break;
2842
    case 0x00040000UL:
2843
        size = 0x4;
2844
        break;
2845
    case 0x00100000UL:
2846
        size = 0x5;
2847
        break;
2848
    case 0x00400000UL:
2849
        size = 0x6;
2850
        break;
2851
    case 0x01000000UL:
2852
        size = 0x7;
2853
        break;
2854
    case 0x04000000UL:
2855
        size = 0x8;
2856
        break;
2857
    case 0x10000000UL:
2858
        size = 0x9;
2859
        break;
2860
    case 0x40000000UL:
2861
        size = 0xA;
2862
        break;
2863
#if defined (TARGET_PPC64)
2864
    case 0x000100000000ULL:
2865
        size = 0xB;
2866
        break;
2867
    case 0x000400000000ULL:
2868
        size = 0xC;
2869
        break;
2870
    case 0x001000000000ULL:
2871
        size = 0xD;
2872
        break;
2873
    case 0x004000000000ULL:
2874
        size = 0xE;
2875
        break;
2876
    case 0x010000000000ULL:
2877
        size = 0xF;
2878
        break;
2879
#endif
2880
    default:
2881
        size = -1;
2882
        break;
2883
    }
2884

    
2885
    return size;
2886
}
2887

    
2888
/* Helpers for 4xx TLB management */
2889
void do_4xx_tlbre_lo (void)
2890
{
2891
    ppcemb_tlb_t *tlb;
2892
    int size;
2893

    
2894
    T0 &= 0x3F;
2895
    tlb = &env->tlb[T0].tlbe;
2896
    T0 = tlb->EPN;
2897
    if (tlb->prot & PAGE_VALID)
2898
        T0 |= 0x400;
2899
    size = booke_page_size_to_tlb(tlb->size);
2900
    if (size < 0 || size > 0x7)
2901
        size = 1;
2902
    T0 |= size << 7;
2903
    env->spr[SPR_40x_PID] = tlb->PID;
2904
}
2905

    
2906
void do_4xx_tlbre_hi (void)
2907
{
2908
    ppcemb_tlb_t *tlb;
2909

    
2910
    T0 &= 0x3F;
2911
    tlb = &env->tlb[T0].tlbe;
2912
    T0 = tlb->RPN;
2913
    if (tlb->prot & PAGE_EXEC)
2914
        T0 |= 0x200;
2915
    if (tlb->prot & PAGE_WRITE)
2916
        T0 |= 0x100;
2917
}
2918

    
2919
void do_4xx_tlbwe_hi (void)
2920
{
2921
    ppcemb_tlb_t *tlb;
2922
    target_ulong page, end;
2923

    
2924
#if defined (DEBUG_SOFTWARE_TLB)
2925
    if (loglevel != 0) {
2926
        fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2927
    }
2928
#endif
2929
    T0 &= 0x3F;
2930
    tlb = &env->tlb[T0].tlbe;
2931
    /* Invalidate previous TLB (if it's valid) */
2932
    if (tlb->prot & PAGE_VALID) {
2933
        end = tlb->EPN + tlb->size;
2934
#if defined (DEBUG_SOFTWARE_TLB)
2935
        if (loglevel != 0) {
2936
            fprintf(logfile, "%s: invalidate old TLB %d start " ADDRX
2937
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2938
        }
2939
#endif
2940
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2941
            tlb_flush_page(env, page);
2942
    }
2943
    tlb->size = booke_tlb_to_page_size((T1 >> 7) & 0x7);
2944
    /* We cannot handle TLB size < TARGET_PAGE_SIZE.
2945
     * If this ever occurs, one should use the ppcemb target instead
2946
     * of the ppc or ppc64 one
2947
     */
2948
    if ((T1 & 0x40) && tlb->size < TARGET_PAGE_SIZE) {
2949
        cpu_abort(env, "TLB size " TARGET_FMT_lu " < %u "
2950
                  "are not supported (%d)\n",
2951
                  tlb->size, TARGET_PAGE_SIZE, (int)((T1 >> 7) & 0x7));
2952
    }
2953
    tlb->EPN = T1 & ~(tlb->size - 1);
2954
    if (T1 & 0x40)
2955
        tlb->prot |= PAGE_VALID;
2956
    else
2957
        tlb->prot &= ~PAGE_VALID;
2958
    if (T1 & 0x20) {
2959
        /* XXX: TO BE FIXED */
2960
        cpu_abort(env, "Little-endian TLB entries are not supported by now\n");
2961
    }
2962
    tlb->PID = env->spr[SPR_40x_PID]; /* PID */
2963
    tlb->attr = T1 & 0xFF;
2964
#if defined (DEBUG_SOFTWARE_TLB)
2965
    if (loglevel != 0) {
2966
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
2967
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
2968
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
2969
                tlb->prot & PAGE_READ ? 'r' : '-',
2970
                tlb->prot & PAGE_WRITE ? 'w' : '-',
2971
                tlb->prot & PAGE_EXEC ? 'x' : '-',
2972
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
2973
    }
2974
#endif
2975
    /* Invalidate new TLB (if valid) */
2976
    if (tlb->prot & PAGE_VALID) {
2977
        end = tlb->EPN + tlb->size;
2978
#if defined (DEBUG_SOFTWARE_TLB)
2979
        if (loglevel != 0) {
2980
            fprintf(logfile, "%s: invalidate TLB %d start " ADDRX
2981
                    " end " ADDRX "\n", __func__, (int)T0, tlb->EPN, end);
2982
        }
2983
#endif
2984
        for (page = tlb->EPN; page < end; page += TARGET_PAGE_SIZE)
2985
            tlb_flush_page(env, page);
2986
    }
2987
}
2988

    
2989
void do_4xx_tlbwe_lo (void)
2990
{
2991
    ppcemb_tlb_t *tlb;
2992

    
2993
#if defined (DEBUG_SOFTWARE_TLB)
2994
    if (loglevel != 0) {
2995
        fprintf(logfile, "%s T0 " REGX " T1 " REGX "\n", __func__, T0, T1);
2996
    }
2997
#endif
2998
    T0 &= 0x3F;
2999
    tlb = &env->tlb[T0].tlbe;
3000
    tlb->RPN = T1 & 0xFFFFFC00;
3001
    tlb->prot = PAGE_READ;
3002
    if (T1 & 0x200)
3003
        tlb->prot |= PAGE_EXEC;
3004
    if (T1 & 0x100)
3005
        tlb->prot |= PAGE_WRITE;
3006
#if defined (DEBUG_SOFTWARE_TLB)
3007
    if (loglevel != 0) {
3008
        fprintf(logfile, "%s: set up TLB %d RPN " PADDRX " EPN " ADDRX
3009
                " size " ADDRX " prot %c%c%c%c PID %d\n", __func__,
3010
                (int)T0, tlb->RPN, tlb->EPN, tlb->size,
3011
                tlb->prot & PAGE_READ ? 'r' : '-',
3012
                tlb->prot & PAGE_WRITE ? 'w' : '-',
3013
                tlb->prot & PAGE_EXEC ? 'x' : '-',
3014
                tlb->prot & PAGE_VALID ? 'v' : '-', (int)tlb->PID);
3015
    }
3016
#endif
3017
}
3018

    
3019
/* PowerPC 440 TLB management */
3020
void do_440_tlbwe (int word)
3021
{
3022
    ppcemb_tlb_t *tlb;
3023
    target_ulong EPN, RPN, size;
3024
    int do_flush_tlbs;
3025

    
3026
#if defined (DEBUG_SOFTWARE_TLB)
3027
    if (loglevel != 0) {
3028
        fprintf(logfile, "%s word %d T0 " REGX " T1 " REGX "\n",
3029
                __func__, word, T0, T1);
3030
    }
3031
#endif
3032
    do_flush_tlbs = 0;
3033
    T0 &= 0x3F;
3034
    tlb = &env->tlb[T0].tlbe;
3035
    switch (word) {
3036
    default:
3037
        /* Just here to please gcc */
3038
    case 0:
3039
        EPN = T1 & 0xFFFFFC00;
3040
        if ((tlb->prot & PAGE_VALID) && EPN != tlb->EPN)
3041
            do_flush_tlbs = 1;
3042
        tlb->EPN = EPN;
3043
        size = booke_tlb_to_page_size((T1 >> 4) & 0xF);
3044
        if ((tlb->prot & PAGE_VALID) && tlb->size < size)
3045
            do_flush_tlbs = 1;
3046
        tlb->size = size;
3047
        tlb->attr &= ~0x1;
3048
        tlb->attr |= (T1 >> 8) & 1;
3049
        if (T1 & 0x200) {
3050
            tlb->prot |= PAGE_VALID;
3051
        } else {
3052
            if (tlb->prot & PAGE_VALID) {
3053
                tlb->prot &= ~PAGE_VALID;
3054
                do_flush_tlbs = 1;
3055
            }
3056
        }
3057
        tlb->PID = env->spr[SPR_440_MMUCR] & 0x000000FF;
3058
        if (do_flush_tlbs)
3059
            tlb_flush(env, 1);
3060
        break;
3061
    case 1:
3062
        RPN = T1 & 0xFFFFFC0F;
3063
        if ((tlb->prot & PAGE_VALID) && tlb->RPN != RPN)
3064
            tlb_flush(env, 1);
3065
        tlb->RPN = RPN;
3066
        break;
3067
    case 2:
3068
        tlb->attr = (tlb->attr & 0x1) | (T1 & 0x0000FF00);
3069
        tlb->prot = tlb->prot & PAGE_VALID;
3070
        if (T1 & 0x1)
3071
            tlb->prot |= PAGE_READ << 4;
3072
        if (T1 & 0x2)
3073
            tlb->prot |= PAGE_WRITE << 4;
3074
        if (T1 & 0x4)
3075
            tlb->prot |= PAGE_EXEC << 4;
3076
        if (T1 & 0x8)
3077
            tlb->prot |= PAGE_READ;
3078
        if (T1 & 0x10)
3079
            tlb->prot |= PAGE_WRITE;
3080
        if (T1 & 0x20)
3081
            tlb->prot |= PAGE_EXEC;
3082
        break;
3083
    }
3084
}
3085

    
3086
void do_440_tlbre (int word)
3087
{
3088
    ppcemb_tlb_t *tlb;
3089
    int size;
3090

    
3091
    T0 &= 0x3F;
3092
    tlb = &env->tlb[T0].tlbe;
3093
    switch (word) {
3094
    default:
3095
        /* Just here to please gcc */
3096
    case 0:
3097
        T0 = tlb->EPN;
3098
        size = booke_page_size_to_tlb(tlb->size);
3099
        if (size < 0 || size > 0xF)
3100
            size = 1;
3101
        T0 |= size << 4;
3102
        if (tlb->attr & 0x1)
3103
            T0 |= 0x100;
3104
        if (tlb->prot & PAGE_VALID)
3105
            T0 |= 0x200;
3106
        env->spr[SPR_440_MMUCR] &= ~0x000000FF;
3107
        env->spr[SPR_440_MMUCR] |= tlb->PID;
3108
        break;
3109
    case 1:
3110
        T0 = tlb->RPN;
3111
        break;
3112
    case 2:
3113
        T0 = tlb->attr & ~0x1;
3114
        if (tlb->prot & (PAGE_READ << 4))
3115
            T0 |= 0x1;
3116
        if (tlb->prot & (PAGE_WRITE << 4))
3117
            T0 |= 0x2;
3118
        if (tlb->prot & (PAGE_EXEC << 4))
3119
            T0 |= 0x4;
3120
        if (tlb->prot & PAGE_READ)
3121
            T0 |= 0x8;
3122
        if (tlb->prot & PAGE_WRITE)
3123
            T0 |= 0x10;
3124
        if (tlb->prot & PAGE_EXEC)
3125
            T0 |= 0x20;
3126
        break;
3127
    }
3128
}
3129
#endif /* !CONFIG_USER_ONLY */