root / hw / ne2000.c @ 3df3f6fd
History | View | Annotate | Download (18.6 kB)
1 |
/*
|
---|---|
2 |
* QEMU NE2000 emulation
|
3 |
*
|
4 |
* Copyright (c) 2003-2004 Fabrice Bellard
|
5 |
*
|
6 |
* Permission is hereby granted, free of charge, to any person obtaining a copy
|
7 |
* of this software and associated documentation files (the "Software"), to deal
|
8 |
* in the Software without restriction, including without limitation the rights
|
9 |
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
10 |
* copies of the Software, and to permit persons to whom the Software is
|
11 |
* furnished to do so, subject to the following conditions:
|
12 |
*
|
13 |
* The above copyright notice and this permission notice shall be included in
|
14 |
* all copies or substantial portions of the Software.
|
15 |
*
|
16 |
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
17 |
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
18 |
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
19 |
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
20 |
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
21 |
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
|
22 |
* THE SOFTWARE.
|
23 |
*/
|
24 |
#include "vl.h" |
25 |
|
26 |
/* debug NE2000 card */
|
27 |
//#define DEBUG_NE2000
|
28 |
|
29 |
#define MAX_ETH_FRAME_SIZE 1514 |
30 |
|
31 |
#define E8390_CMD 0x00 /* The command register (for all pages) */ |
32 |
/* Page 0 register offsets. */
|
33 |
#define EN0_CLDALO 0x01 /* Low byte of current local dma addr RD */ |
34 |
#define EN0_STARTPG 0x01 /* Starting page of ring bfr WR */ |
35 |
#define EN0_CLDAHI 0x02 /* High byte of current local dma addr RD */ |
36 |
#define EN0_STOPPG 0x02 /* Ending page +1 of ring bfr WR */ |
37 |
#define EN0_BOUNDARY 0x03 /* Boundary page of ring bfr RD WR */ |
38 |
#define EN0_TSR 0x04 /* Transmit status reg RD */ |
39 |
#define EN0_TPSR 0x04 /* Transmit starting page WR */ |
40 |
#define EN0_NCR 0x05 /* Number of collision reg RD */ |
41 |
#define EN0_TCNTLO 0x05 /* Low byte of tx byte count WR */ |
42 |
#define EN0_FIFO 0x06 /* FIFO RD */ |
43 |
#define EN0_TCNTHI 0x06 /* High byte of tx byte count WR */ |
44 |
#define EN0_ISR 0x07 /* Interrupt status reg RD WR */ |
45 |
#define EN0_CRDALO 0x08 /* low byte of current remote dma address RD */ |
46 |
#define EN0_RSARLO 0x08 /* Remote start address reg 0 */ |
47 |
#define EN0_CRDAHI 0x09 /* high byte, current remote dma address RD */ |
48 |
#define EN0_RSARHI 0x09 /* Remote start address reg 1 */ |
49 |
#define EN0_RCNTLO 0x0a /* Remote byte count reg WR */ |
50 |
#define EN0_RCNTHI 0x0b /* Remote byte count reg WR */ |
51 |
#define EN0_RSR 0x0c /* rx status reg RD */ |
52 |
#define EN0_RXCR 0x0c /* RX configuration reg WR */ |
53 |
#define EN0_TXCR 0x0d /* TX configuration reg WR */ |
54 |
#define EN0_COUNTER0 0x0d /* Rcv alignment error counter RD */ |
55 |
#define EN0_DCFG 0x0e /* Data configuration reg WR */ |
56 |
#define EN0_COUNTER1 0x0e /* Rcv CRC error counter RD */ |
57 |
#define EN0_IMR 0x0f /* Interrupt mask reg WR */ |
58 |
#define EN0_COUNTER2 0x0f /* Rcv missed frame error counter RD */ |
59 |
|
60 |
#define EN1_PHYS 0x11 |
61 |
#define EN1_CURPAG 0x17 |
62 |
#define EN1_MULT 0x18 |
63 |
|
64 |
/* Register accessed at EN_CMD, the 8390 base addr. */
|
65 |
#define E8390_STOP 0x01 /* Stop and reset the chip */ |
66 |
#define E8390_START 0x02 /* Start the chip, clear reset */ |
67 |
#define E8390_TRANS 0x04 /* Transmit a frame */ |
68 |
#define E8390_RREAD 0x08 /* Remote read */ |
69 |
#define E8390_RWRITE 0x10 /* Remote write */ |
70 |
#define E8390_NODMA 0x20 /* Remote DMA */ |
71 |
#define E8390_PAGE0 0x00 /* Select page chip registers */ |
72 |
#define E8390_PAGE1 0x40 /* using the two high-order bits */ |
73 |
#define E8390_PAGE2 0x80 /* Page 3 is invalid. */ |
74 |
|
75 |
/* Bits in EN0_ISR - Interrupt status register */
|
76 |
#define ENISR_RX 0x01 /* Receiver, no error */ |
77 |
#define ENISR_TX 0x02 /* Transmitter, no error */ |
78 |
#define ENISR_RX_ERR 0x04 /* Receiver, with error */ |
79 |
#define ENISR_TX_ERR 0x08 /* Transmitter, with error */ |
80 |
#define ENISR_OVER 0x10 /* Receiver overwrote the ring */ |
81 |
#define ENISR_COUNTERS 0x20 /* Counters need emptying */ |
82 |
#define ENISR_RDC 0x40 /* remote dma complete */ |
83 |
#define ENISR_RESET 0x80 /* Reset completed */ |
84 |
#define ENISR_ALL 0x3f /* Interrupts we will enable */ |
85 |
|
86 |
/* Bits in received packet status byte and EN0_RSR*/
|
87 |
#define ENRSR_RXOK 0x01 /* Received a good packet */ |
88 |
#define ENRSR_CRC 0x02 /* CRC error */ |
89 |
#define ENRSR_FAE 0x04 /* frame alignment error */ |
90 |
#define ENRSR_FO 0x08 /* FIFO overrun */ |
91 |
#define ENRSR_MPA 0x10 /* missed pkt */ |
92 |
#define ENRSR_PHY 0x20 /* physical/multicast address */ |
93 |
#define ENRSR_DIS 0x40 /* receiver disable. set in monitor mode */ |
94 |
#define ENRSR_DEF 0x80 /* deferring */ |
95 |
|
96 |
/* Transmitted packet status, EN0_TSR. */
|
97 |
#define ENTSR_PTX 0x01 /* Packet transmitted without error */ |
98 |
#define ENTSR_ND 0x02 /* The transmit wasn't deferred. */ |
99 |
#define ENTSR_COL 0x04 /* The transmit collided at least once. */ |
100 |
#define ENTSR_ABT 0x08 /* The transmit collided 16 times, and was deferred. */ |
101 |
#define ENTSR_CRS 0x10 /* The carrier sense was lost. */ |
102 |
#define ENTSR_FU 0x20 /* A "FIFO underrun" occurred during transmit. */ |
103 |
#define ENTSR_CDH 0x40 /* The collision detect "heartbeat" signal was lost. */ |
104 |
#define ENTSR_OWC 0x80 /* There was an out-of-window collision. */ |
105 |
|
106 |
#define NE2000_PMEM_SIZE (32*1024) |
107 |
#define NE2000_PMEM_START (16*1024) |
108 |
#define NE2000_PMEM_END (NE2000_PMEM_SIZE+NE2000_PMEM_START)
|
109 |
#define NE2000_MEM_SIZE NE2000_PMEM_END
|
110 |
|
111 |
typedef struct NE2000State { |
112 |
uint8_t cmd; |
113 |
uint32_t start; |
114 |
uint32_t stop; |
115 |
uint8_t boundary; |
116 |
uint8_t tsr; |
117 |
uint8_t tpsr; |
118 |
uint16_t tcnt; |
119 |
uint16_t rcnt; |
120 |
uint32_t rsar; |
121 |
uint8_t rsr; |
122 |
uint8_t isr; |
123 |
uint8_t dcfg; |
124 |
uint8_t imr; |
125 |
uint8_t phys[6]; /* mac address */ |
126 |
uint8_t curpag; |
127 |
uint8_t mult[8]; /* multicast mask array */ |
128 |
int irq;
|
129 |
PCIDevice *pci_dev; |
130 |
NetDriverState *nd; |
131 |
uint8_t mem[NE2000_MEM_SIZE]; |
132 |
} NE2000State; |
133 |
|
134 |
static void ne2000_reset(NE2000State *s) |
135 |
{ |
136 |
int i;
|
137 |
|
138 |
s->isr = ENISR_RESET; |
139 |
memcpy(s->mem, s->nd->macaddr, 6);
|
140 |
s->mem[14] = 0x57; |
141 |
s->mem[15] = 0x57; |
142 |
|
143 |
/* duplicate prom data */
|
144 |
for(i = 15;i >= 0; i--) { |
145 |
s->mem[2 * i] = s->mem[i];
|
146 |
s->mem[2 * i + 1] = s->mem[i]; |
147 |
} |
148 |
} |
149 |
|
150 |
static void ne2000_update_irq(NE2000State *s) |
151 |
{ |
152 |
int isr;
|
153 |
isr = s->isr & s->imr; |
154 |
#if defined(DEBUG_NE2000)
|
155 |
printf("NE2000: Set IRQ line %d to %d (%02x %02x)\n",
|
156 |
s->irq, isr ? 1 : 0, s->isr, s->imr); |
157 |
#endif
|
158 |
if (s->irq == 16) { |
159 |
/* PCI irq */
|
160 |
pci_set_irq(s->pci_dev, 0, (isr != 0)); |
161 |
} else {
|
162 |
/* ISA irq */
|
163 |
pic_set_irq(s->irq, (isr != 0));
|
164 |
} |
165 |
} |
166 |
|
167 |
/* return the max buffer size if the NE2000 can receive more data */
|
168 |
static int ne2000_can_receive(void *opaque) |
169 |
{ |
170 |
NE2000State *s = opaque; |
171 |
int avail, index, boundary;
|
172 |
|
173 |
if (s->cmd & E8390_STOP)
|
174 |
return 0; |
175 |
index = s->curpag << 8;
|
176 |
boundary = s->boundary << 8;
|
177 |
if (index < boundary)
|
178 |
avail = boundary - index; |
179 |
else
|
180 |
avail = (s->stop - s->start) - (index - boundary); |
181 |
if (avail < (MAX_ETH_FRAME_SIZE + 4)) |
182 |
return 0; |
183 |
return MAX_ETH_FRAME_SIZE;
|
184 |
} |
185 |
|
186 |
#define MIN_BUF_SIZE 60 |
187 |
|
188 |
static void ne2000_receive(void *opaque, const uint8_t *buf, int size) |
189 |
{ |
190 |
NE2000State *s = opaque; |
191 |
uint8_t *p; |
192 |
int total_len, next, avail, len, index;
|
193 |
uint8_t buf1[60];
|
194 |
|
195 |
#if defined(DEBUG_NE2000)
|
196 |
printf("NE2000: received len=%d\n", size);
|
197 |
#endif
|
198 |
|
199 |
/* if too small buffer, then expand it */
|
200 |
if (size < MIN_BUF_SIZE) {
|
201 |
memcpy(buf1, buf, size); |
202 |
memset(buf1 + size, 0, MIN_BUF_SIZE - size);
|
203 |
buf = buf1; |
204 |
size = MIN_BUF_SIZE; |
205 |
} |
206 |
|
207 |
index = s->curpag << 8;
|
208 |
/* 4 bytes for header */
|
209 |
total_len = size + 4;
|
210 |
/* address for next packet (4 bytes for CRC) */
|
211 |
next = index + ((total_len + 4 + 255) & ~0xff); |
212 |
if (next >= s->stop)
|
213 |
next -= (s->stop - s->start); |
214 |
/* prepare packet header */
|
215 |
p = s->mem + index; |
216 |
s->rsr = ENRSR_RXOK; /* receive status */
|
217 |
/* XXX: check this */
|
218 |
if (buf[0] & 0x01) |
219 |
s->rsr |= ENRSR_PHY; |
220 |
p[0] = s->rsr;
|
221 |
p[1] = next >> 8; |
222 |
p[2] = total_len;
|
223 |
p[3] = total_len >> 8; |
224 |
index += 4;
|
225 |
|
226 |
/* write packet data */
|
227 |
while (size > 0) { |
228 |
avail = s->stop - index; |
229 |
len = size; |
230 |
if (len > avail)
|
231 |
len = avail; |
232 |
memcpy(s->mem + index, buf, len); |
233 |
buf += len; |
234 |
index += len; |
235 |
if (index == s->stop)
|
236 |
index = s->start; |
237 |
size -= len; |
238 |
} |
239 |
s->curpag = next >> 8;
|
240 |
|
241 |
/* now we can signal we have receive something */
|
242 |
s->isr |= ENISR_RX; |
243 |
ne2000_update_irq(s); |
244 |
} |
245 |
|
246 |
static void ne2000_ioport_write(void *opaque, uint32_t addr, uint32_t val) |
247 |
{ |
248 |
NE2000State *s = opaque; |
249 |
int offset, page;
|
250 |
|
251 |
addr &= 0xf;
|
252 |
#ifdef DEBUG_NE2000
|
253 |
printf("NE2000: write addr=0x%x val=0x%02x\n", addr, val);
|
254 |
#endif
|
255 |
if (addr == E8390_CMD) {
|
256 |
/* control register */
|
257 |
s->cmd = val; |
258 |
if (val & E8390_START) {
|
259 |
s->isr &= ~ENISR_RESET; |
260 |
/* test specific case: zero length transfert */
|
261 |
if ((val & (E8390_RREAD | E8390_RWRITE)) &&
|
262 |
s->rcnt == 0) {
|
263 |
s->isr |= ENISR_RDC; |
264 |
ne2000_update_irq(s); |
265 |
} |
266 |
if (val & E8390_TRANS) {
|
267 |
qemu_send_packet(s->nd, s->mem + (s->tpsr << 8), s->tcnt);
|
268 |
/* signal end of transfert */
|
269 |
s->tsr = ENTSR_PTX; |
270 |
s->isr |= ENISR_TX; |
271 |
ne2000_update_irq(s); |
272 |
} |
273 |
} |
274 |
} else {
|
275 |
page = s->cmd >> 6;
|
276 |
offset = addr | (page << 4);
|
277 |
switch(offset) {
|
278 |
case EN0_STARTPG:
|
279 |
s->start = val << 8;
|
280 |
break;
|
281 |
case EN0_STOPPG:
|
282 |
s->stop = val << 8;
|
283 |
break;
|
284 |
case EN0_BOUNDARY:
|
285 |
s->boundary = val; |
286 |
break;
|
287 |
case EN0_IMR:
|
288 |
s->imr = val; |
289 |
ne2000_update_irq(s); |
290 |
break;
|
291 |
case EN0_TPSR:
|
292 |
s->tpsr = val; |
293 |
break;
|
294 |
case EN0_TCNTLO:
|
295 |
s->tcnt = (s->tcnt & 0xff00) | val;
|
296 |
break;
|
297 |
case EN0_TCNTHI:
|
298 |
s->tcnt = (s->tcnt & 0x00ff) | (val << 8); |
299 |
break;
|
300 |
case EN0_RSARLO:
|
301 |
s->rsar = (s->rsar & 0xff00) | val;
|
302 |
break;
|
303 |
case EN0_RSARHI:
|
304 |
s->rsar = (s->rsar & 0x00ff) | (val << 8); |
305 |
break;
|
306 |
case EN0_RCNTLO:
|
307 |
s->rcnt = (s->rcnt & 0xff00) | val;
|
308 |
break;
|
309 |
case EN0_RCNTHI:
|
310 |
s->rcnt = (s->rcnt & 0x00ff) | (val << 8); |
311 |
break;
|
312 |
case EN0_DCFG:
|
313 |
s->dcfg = val; |
314 |
break;
|
315 |
case EN0_ISR:
|
316 |
s->isr &= ~(val & 0x7f);
|
317 |
ne2000_update_irq(s); |
318 |
break;
|
319 |
case EN1_PHYS ... EN1_PHYS + 5: |
320 |
s->phys[offset - EN1_PHYS] = val; |
321 |
break;
|
322 |
case EN1_CURPAG:
|
323 |
s->curpag = val; |
324 |
break;
|
325 |
case EN1_MULT ... EN1_MULT + 7: |
326 |
s->mult[offset - EN1_MULT] = val; |
327 |
break;
|
328 |
} |
329 |
} |
330 |
} |
331 |
|
332 |
static uint32_t ne2000_ioport_read(void *opaque, uint32_t addr) |
333 |
{ |
334 |
NE2000State *s = opaque; |
335 |
int offset, page, ret;
|
336 |
|
337 |
addr &= 0xf;
|
338 |
if (addr == E8390_CMD) {
|
339 |
ret = s->cmd; |
340 |
} else {
|
341 |
page = s->cmd >> 6;
|
342 |
offset = addr | (page << 4);
|
343 |
switch(offset) {
|
344 |
case EN0_TSR:
|
345 |
ret = s->tsr; |
346 |
break;
|
347 |
case EN0_BOUNDARY:
|
348 |
ret = s->boundary; |
349 |
break;
|
350 |
case EN0_ISR:
|
351 |
ret = s->isr; |
352 |
break;
|
353 |
case EN0_RSARLO:
|
354 |
ret = s->rsar & 0x00ff;
|
355 |
break;
|
356 |
case EN0_RSARHI:
|
357 |
ret = s->rsar >> 8;
|
358 |
break;
|
359 |
case EN1_PHYS ... EN1_PHYS + 5: |
360 |
ret = s->phys[offset - EN1_PHYS]; |
361 |
break;
|
362 |
case EN1_CURPAG:
|
363 |
ret = s->curpag; |
364 |
break;
|
365 |
case EN1_MULT ... EN1_MULT + 7: |
366 |
ret = s->mult[offset - EN1_MULT]; |
367 |
break;
|
368 |
case EN0_RSR:
|
369 |
ret = s->rsr; |
370 |
break;
|
371 |
default:
|
372 |
ret = 0x00;
|
373 |
break;
|
374 |
} |
375 |
} |
376 |
#ifdef DEBUG_NE2000
|
377 |
printf("NE2000: read addr=0x%x val=%02x\n", addr, ret);
|
378 |
#endif
|
379 |
return ret;
|
380 |
} |
381 |
|
382 |
static inline void ne2000_mem_writeb(NE2000State *s, uint32_t addr, |
383 |
uint32_t val) |
384 |
{ |
385 |
if (addr < 32 || |
386 |
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { |
387 |
s->mem[addr] = val; |
388 |
} |
389 |
} |
390 |
|
391 |
static inline void ne2000_mem_writew(NE2000State *s, uint32_t addr, |
392 |
uint32_t val) |
393 |
{ |
394 |
addr &= ~1; /* XXX: check exact behaviour if not even */ |
395 |
if (addr < 32 || |
396 |
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { |
397 |
*(uint16_t *)(s->mem + addr) = cpu_to_le16(val); |
398 |
} |
399 |
} |
400 |
|
401 |
static inline void ne2000_mem_writel(NE2000State *s, uint32_t addr, |
402 |
uint32_t val) |
403 |
{ |
404 |
addr &= ~1; /* XXX: check exact behaviour if not even */ |
405 |
if (addr < 32 || |
406 |
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { |
407 |
cpu_to_le32wu((uint32_t *)(s->mem + addr), val); |
408 |
} |
409 |
} |
410 |
|
411 |
static inline uint32_t ne2000_mem_readb(NE2000State *s, uint32_t addr) |
412 |
{ |
413 |
if (addr < 32 || |
414 |
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { |
415 |
return s->mem[addr];
|
416 |
} else {
|
417 |
return 0xff; |
418 |
} |
419 |
} |
420 |
|
421 |
static inline uint32_t ne2000_mem_readw(NE2000State *s, uint32_t addr) |
422 |
{ |
423 |
addr &= ~1; /* XXX: check exact behaviour if not even */ |
424 |
if (addr < 32 || |
425 |
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { |
426 |
return le16_to_cpu(*(uint16_t *)(s->mem + addr));
|
427 |
} else {
|
428 |
return 0xffff; |
429 |
} |
430 |
} |
431 |
|
432 |
static inline uint32_t ne2000_mem_readl(NE2000State *s, uint32_t addr) |
433 |
{ |
434 |
addr &= ~1; /* XXX: check exact behaviour if not even */ |
435 |
if (addr < 32 || |
436 |
(addr >= NE2000_PMEM_START && addr < NE2000_MEM_SIZE)) { |
437 |
return le32_to_cpupu((uint32_t *)(s->mem + addr));
|
438 |
} else {
|
439 |
return 0xffffffff; |
440 |
} |
441 |
} |
442 |
|
443 |
static inline void ne2000_dma_update(NE2000State *s, int len) |
444 |
{ |
445 |
s->rsar += len; |
446 |
/* wrap */
|
447 |
/* XXX: check what to do if rsar > stop */
|
448 |
if (s->rsar == s->stop)
|
449 |
s->rsar = s->start; |
450 |
|
451 |
if (s->rcnt <= len) {
|
452 |
s->rcnt = 0;
|
453 |
/* signal end of transfert */
|
454 |
s->isr |= ENISR_RDC; |
455 |
ne2000_update_irq(s); |
456 |
} else {
|
457 |
s->rcnt -= len; |
458 |
} |
459 |
} |
460 |
|
461 |
static void ne2000_asic_ioport_write(void *opaque, uint32_t addr, uint32_t val) |
462 |
{ |
463 |
NE2000State *s = opaque; |
464 |
|
465 |
#ifdef DEBUG_NE2000
|
466 |
printf("NE2000: asic write val=0x%04x\n", val);
|
467 |
#endif
|
468 |
if (s->rcnt == 0) |
469 |
return;
|
470 |
if (s->dcfg & 0x01) { |
471 |
/* 16 bit access */
|
472 |
ne2000_mem_writew(s, s->rsar, val); |
473 |
ne2000_dma_update(s, 2);
|
474 |
} else {
|
475 |
/* 8 bit access */
|
476 |
ne2000_mem_writeb(s, s->rsar, val); |
477 |
ne2000_dma_update(s, 1);
|
478 |
} |
479 |
} |
480 |
|
481 |
static uint32_t ne2000_asic_ioport_read(void *opaque, uint32_t addr) |
482 |
{ |
483 |
NE2000State *s = opaque; |
484 |
int ret;
|
485 |
|
486 |
if (s->dcfg & 0x01) { |
487 |
/* 16 bit access */
|
488 |
ret = ne2000_mem_readw(s, s->rsar); |
489 |
ne2000_dma_update(s, 2);
|
490 |
} else {
|
491 |
/* 8 bit access */
|
492 |
ret = ne2000_mem_readb(s, s->rsar); |
493 |
ne2000_dma_update(s, 1);
|
494 |
} |
495 |
#ifdef DEBUG_NE2000
|
496 |
printf("NE2000: asic read val=0x%04x\n", ret);
|
497 |
#endif
|
498 |
return ret;
|
499 |
} |
500 |
|
501 |
static void ne2000_asic_ioport_writel(void *opaque, uint32_t addr, uint32_t val) |
502 |
{ |
503 |
NE2000State *s = opaque; |
504 |
|
505 |
#ifdef DEBUG_NE2000
|
506 |
printf("NE2000: asic writel val=0x%04x\n", val);
|
507 |
#endif
|
508 |
if (s->rcnt == 0) |
509 |
return;
|
510 |
/* 32 bit access */
|
511 |
ne2000_mem_writel(s, s->rsar, val); |
512 |
ne2000_dma_update(s, 4);
|
513 |
} |
514 |
|
515 |
static uint32_t ne2000_asic_ioport_readl(void *opaque, uint32_t addr) |
516 |
{ |
517 |
NE2000State *s = opaque; |
518 |
int ret;
|
519 |
|
520 |
/* 32 bit access */
|
521 |
ret = ne2000_mem_readl(s, s->rsar); |
522 |
ne2000_dma_update(s, 4);
|
523 |
#ifdef DEBUG_NE2000
|
524 |
printf("NE2000: asic readl val=0x%04x\n", ret);
|
525 |
#endif
|
526 |
return ret;
|
527 |
} |
528 |
|
529 |
static void ne2000_reset_ioport_write(void *opaque, uint32_t addr, uint32_t val) |
530 |
{ |
531 |
/* nothing to do (end of reset pulse) */
|
532 |
} |
533 |
|
534 |
static uint32_t ne2000_reset_ioport_read(void *opaque, uint32_t addr) |
535 |
{ |
536 |
NE2000State *s = opaque; |
537 |
ne2000_reset(s); |
538 |
return 0; |
539 |
} |
540 |
|
541 |
void isa_ne2000_init(int base, int irq, NetDriverState *nd) |
542 |
{ |
543 |
NE2000State *s; |
544 |
|
545 |
s = qemu_mallocz(sizeof(NE2000State));
|
546 |
if (!s)
|
547 |
return;
|
548 |
|
549 |
register_ioport_write(base, 16, 1, ne2000_ioport_write, s); |
550 |
register_ioport_read(base, 16, 1, ne2000_ioport_read, s); |
551 |
|
552 |
register_ioport_write(base + 0x10, 1, 1, ne2000_asic_ioport_write, s); |
553 |
register_ioport_read(base + 0x10, 1, 1, ne2000_asic_ioport_read, s); |
554 |
register_ioport_write(base + 0x10, 2, 2, ne2000_asic_ioport_write, s); |
555 |
register_ioport_read(base + 0x10, 2, 2, ne2000_asic_ioport_read, s); |
556 |
|
557 |
register_ioport_write(base + 0x1f, 1, 1, ne2000_reset_ioport_write, s); |
558 |
register_ioport_read(base + 0x1f, 1, 1, ne2000_reset_ioport_read, s); |
559 |
s->irq = irq; |
560 |
s->nd = nd; |
561 |
|
562 |
ne2000_reset(s); |
563 |
|
564 |
qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s); |
565 |
} |
566 |
|
567 |
/***********************************************************/
|
568 |
/* PCI NE2000 definitions */
|
569 |
|
570 |
typedef struct PCINE2000State { |
571 |
PCIDevice dev; |
572 |
NE2000State ne2000; |
573 |
} PCINE2000State; |
574 |
|
575 |
static void ne2000_map(PCIDevice *pci_dev, int region_num, |
576 |
uint32_t addr, uint32_t size, int type)
|
577 |
{ |
578 |
PCINE2000State *d = (PCINE2000State *)pci_dev; |
579 |
NE2000State *s = &d->ne2000; |
580 |
|
581 |
register_ioport_write(addr, 16, 1, ne2000_ioport_write, s); |
582 |
register_ioport_read(addr, 16, 1, ne2000_ioport_read, s); |
583 |
|
584 |
register_ioport_write(addr + 0x10, 1, 1, ne2000_asic_ioport_write, s); |
585 |
register_ioport_read(addr + 0x10, 1, 1, ne2000_asic_ioport_read, s); |
586 |
register_ioport_write(addr + 0x10, 2, 2, ne2000_asic_ioport_write, s); |
587 |
register_ioport_read(addr + 0x10, 2, 2, ne2000_asic_ioport_read, s); |
588 |
register_ioport_write(addr + 0x10, 4, 4, ne2000_asic_ioport_writel, s); |
589 |
register_ioport_read(addr + 0x10, 4, 4, ne2000_asic_ioport_readl, s); |
590 |
|
591 |
register_ioport_write(addr + 0x1f, 1, 1, ne2000_reset_ioport_write, s); |
592 |
register_ioport_read(addr + 0x1f, 1, 1, ne2000_reset_ioport_read, s); |
593 |
} |
594 |
|
595 |
void pci_ne2000_init(PCIBus *bus, NetDriverState *nd)
|
596 |
{ |
597 |
PCINE2000State *d; |
598 |
NE2000State *s; |
599 |
uint8_t *pci_conf; |
600 |
|
601 |
d = (PCINE2000State *)pci_register_device(bus, |
602 |
"NE2000", sizeof(PCINE2000State), |
603 |
-1,
|
604 |
NULL, NULL); |
605 |
pci_conf = d->dev.config; |
606 |
pci_conf[0x00] = 0xec; // Realtek 8029 |
607 |
pci_conf[0x01] = 0x10; |
608 |
pci_conf[0x02] = 0x29; |
609 |
pci_conf[0x03] = 0x80; |
610 |
pci_conf[0x0a] = 0x00; // ethernet network controller |
611 |
pci_conf[0x0b] = 0x02; |
612 |
pci_conf[0x0e] = 0x00; // header_type |
613 |
pci_conf[0x3d] = 1; // interrupt pin 0 |
614 |
|
615 |
pci_register_io_region((PCIDevice *)d, 0, 0x100, |
616 |
PCI_ADDRESS_SPACE_IO, ne2000_map); |
617 |
s = &d->ne2000; |
618 |
s->irq = 16; // PCI interrupt |
619 |
s->pci_dev = (PCIDevice *)d; |
620 |
s->nd = nd; |
621 |
ne2000_reset(s); |
622 |
qemu_add_read_packet(nd, ne2000_can_receive, ne2000_receive, s); |
623 |
} |